Use WeakNSProtocol/WeakNSObject for WebControllerObserverBridge ivars.
[chromium-blink-merge.git] / cc / resources / picture_pile.cc
blob2ce3e500f2ea86458054ed71b8854a096fff5328
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
7 #include <algorithm>
8 #include <limits>
9 #include <vector>
11 #include "cc/base/region.h"
12 #include "cc/resources/picture_pile_impl.h"
13 #include "skia/ext/analysis_canvas.h"
15 namespace {
16 // Layout pixel buffer around the visible layer rect to record. Any base
17 // picture that intersects the visible layer rect expanded by this distance
18 // will be recorded.
19 const int kPixelDistanceToRecord = 8000;
20 // We don't perform solid color analysis on images that have more than 10 skia
21 // operations.
22 const int kOpCountThatIsOkToAnalyze = 10;
24 // Dimensions of the tiles in this picture pile as well as the dimensions of
25 // the base picture in each tile.
26 const int kBasePictureSize = 512;
28 // TODO(humper): The density threshold here is somewhat arbitrary; need a
29 // way to set // this from the command line so we can write a benchmark
30 // script and find a sweet spot.
31 const float kDensityThreshold = 0.5f;
33 bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) {
34 return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x());
37 bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) {
38 return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y());
41 float PerformClustering(const std::vector<gfx::Rect>& tiles,
42 std::vector<gfx::Rect>* clustered_rects) {
43 // These variables track the record area and invalid area
44 // for the entire clustering
45 int total_record_area = 0;
46 int total_invalid_area = 0;
48 // These variables track the record area and invalid area
49 // for the current cluster being constructed.
50 gfx::Rect cur_record_rect;
51 int cluster_record_area = 0, cluster_invalid_area = 0;
53 for (std::vector<gfx::Rect>::const_iterator it = tiles.begin();
54 it != tiles.end();
55 it++) {
56 gfx::Rect invalid_tile = *it;
58 // For each tile, we consider adding the invalid tile to the
59 // current record rectangle. Only add it if the amount of empty
60 // space created is below a density threshold.
61 int tile_area = invalid_tile.width() * invalid_tile.height();
63 gfx::Rect proposed_union = cur_record_rect;
64 proposed_union.Union(invalid_tile);
65 int proposed_area = proposed_union.width() * proposed_union.height();
66 float proposed_density =
67 static_cast<float>(cluster_invalid_area + tile_area) /
68 static_cast<float>(proposed_area);
70 if (proposed_density >= kDensityThreshold) {
71 // It's okay to add this invalid tile to the
72 // current recording rectangle.
73 cur_record_rect = proposed_union;
74 cluster_record_area = proposed_area;
75 cluster_invalid_area += tile_area;
76 total_invalid_area += tile_area;
77 } else {
78 // Adding this invalid tile to the current recording rectangle
79 // would exceed our badness threshold, so put the current rectangle
80 // in the list of recording rects, and start a new one.
81 clustered_rects->push_back(cur_record_rect);
82 total_record_area += cluster_record_area;
83 cur_record_rect = invalid_tile;
84 cluster_invalid_area = tile_area;
85 cluster_record_area = tile_area;
89 DCHECK(!cur_record_rect.IsEmpty());
90 clustered_rects->push_back(cur_record_rect);
91 total_record_area += cluster_record_area;;
93 DCHECK_NE(total_record_area, 0);
95 return static_cast<float>(total_invalid_area) /
96 static_cast<float>(total_record_area);
99 void ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles,
100 std::vector<gfx::Rect>* record_rects) {
101 TRACE_EVENT1("cc", "ClusterTiles",
102 "count",
103 invalid_tiles.size());
104 if (invalid_tiles.size() <= 1) {
105 // Quickly handle the special case for common
106 // single-invalidation update, and also the less common
107 // case of no tiles passed in.
108 *record_rects = invalid_tiles;
109 return;
112 // Sort the invalid tiles by y coordinate.
113 std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles;
114 std::sort(invalid_tiles_vertical.begin(),
115 invalid_tiles_vertical.end(),
116 rect_sort_y);
118 std::vector<gfx::Rect> vertical_clustering;
119 float vertical_density =
120 PerformClustering(invalid_tiles_vertical, &vertical_clustering);
122 // If vertical density is optimal, then we can return early.
123 if (vertical_density == 1.f) {
124 *record_rects = vertical_clustering;
125 return;
128 // Now try again with a horizontal sort, see which one is best
129 std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles;
130 std::sort(invalid_tiles_horizontal.begin(),
131 invalid_tiles_horizontal.end(),
132 rect_sort_x);
134 std::vector<gfx::Rect> horizontal_clustering;
135 float horizontal_density =
136 PerformClustering(invalid_tiles_horizontal, &horizontal_clustering);
138 if (vertical_density < horizontal_density) {
139 *record_rects = horizontal_clustering;
140 return;
143 *record_rects = vertical_clustering;
146 #ifdef NDEBUG
147 const bool kDefaultClearCanvasSetting = false;
148 #else
149 const bool kDefaultClearCanvasSetting = true;
150 #endif
152 } // namespace
154 namespace cc {
156 PicturePile::PicturePile(float min_contents_scale,
157 const gfx::Size& tile_grid_size)
158 : min_contents_scale_(0),
159 slow_down_raster_scale_factor_for_debug_(0),
160 gather_pixel_refs_(false),
161 has_any_recordings_(false),
162 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
163 requires_clear_(true),
164 is_solid_color_(false),
165 solid_color_(SK_ColorTRANSPARENT),
166 background_color_(SK_ColorTRANSPARENT),
167 pixel_record_distance_(kPixelDistanceToRecord),
168 is_suitable_for_gpu_rasterization_(true) {
169 tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
170 SetMinContentsScale(min_contents_scale);
171 SetTileGridSize(tile_grid_size);
174 PicturePile::~PicturePile() {
177 bool PicturePile::UpdateAndExpandInvalidation(
178 ContentLayerClient* painter,
179 Region* invalidation,
180 const gfx::Size& layer_size,
181 const gfx::Rect& visible_layer_rect,
182 int frame_number,
183 RecordingSource::RecordingMode recording_mode) {
184 gfx::Rect interest_rect = visible_layer_rect;
185 interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_);
186 recorded_viewport_ = interest_rect;
187 recorded_viewport_.Intersect(gfx::Rect(layer_size));
189 bool updated = ApplyInvalidationAndResize(interest_rect, invalidation,
190 layer_size, frame_number);
191 std::vector<gfx::Rect> invalid_tiles;
192 GetInvalidTileRects(interest_rect, &invalid_tiles);
193 std::vector<gfx::Rect> record_rects;
194 ClusterTiles(invalid_tiles, &record_rects);
196 if (record_rects.empty())
197 return updated;
199 CreatePictures(painter, recording_mode, record_rects);
201 DetermineIfSolidColor();
203 has_any_recordings_ = true;
204 DCHECK(CanRasterSlowTileCheck(recorded_viewport_));
205 return true;
208 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect& interest_rect,
209 Region* invalidation,
210 const gfx::Size& layer_size,
211 int frame_number) {
212 bool updated = false;
214 Region synthetic_invalidation;
215 gfx::Size old_tiling_size = GetSize();
216 if (old_tiling_size != layer_size) {
217 tiling_.SetTilingSize(layer_size);
218 updated = true;
221 gfx::Rect interest_rect_over_tiles =
222 tiling_.ExpandRectToTileBounds(interest_rect);
224 if (old_tiling_size != layer_size) {
225 gfx::Size min_tiling_size(
226 std::min(GetSize().width(), old_tiling_size.width()),
227 std::min(GetSize().height(), old_tiling_size.height()));
228 gfx::Size max_tiling_size(
229 std::max(GetSize().width(), old_tiling_size.width()),
230 std::max(GetSize().height(), old_tiling_size.height()));
232 has_any_recordings_ = false;
234 // Drop recordings that are outside the new or old layer bounds or that
235 // changed size. Newly exposed areas are considered invalidated.
236 // Previously exposed areas that are now outside of bounds also need to
237 // be invalidated, as they may become part of raster when scale < 1.
238 std::vector<PictureMapKey> to_erase;
239 int min_toss_x = tiling_.num_tiles_x();
240 if (max_tiling_size.width() > min_tiling_size.width()) {
241 min_toss_x =
242 tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width());
244 int min_toss_y = tiling_.num_tiles_y();
245 if (max_tiling_size.height() > min_tiling_size.height()) {
246 min_toss_y =
247 tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height());
249 for (const auto& key_picture_pair : picture_map_) {
250 const PictureMapKey& key = key_picture_pair.first;
251 if (key.first < min_toss_x && key.second < min_toss_y) {
252 has_any_recordings_ = true;
253 continue;
255 to_erase.push_back(key);
258 for (size_t i = 0; i < to_erase.size(); ++i)
259 picture_map_.erase(to_erase[i]);
261 // If a recording is dropped and not re-recorded below, invalidate that
262 // full recording to cause any raster tiles that would use it to be
263 // dropped.
264 // If the recording will be replaced below, invalidate newly exposed
265 // areas and previously exposed areas to force raster tiles that include the
266 // old recording to know there is new recording to display.
267 gfx::Rect min_tiling_rect_over_tiles =
268 tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size));
269 if (min_toss_x < tiling_.num_tiles_x()) {
270 // The bounds which we want to invalidate are the tiles along the old
271 // edge of the pile when expanding, or the new edge of the pile when
272 // shrinking. In either case, it's the difference of the two, so we'll
273 // call this bounding box the DELTA EDGE RECT.
275 // In the picture below, the delta edge rect would be the bounding box of
276 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
277 // the same tiles.
279 // min pile edge-v max pile edge-v
280 // ---------------+ - - - - - - - -+
281 // mmppssvvyybbeeh|h .
282 // mmppssvvyybbeeh|h .
283 // nnqqttwwzzccffi|i .
284 // nnqqttwwzzccffi|i .
285 // oorruuxxaaddggj|j .
286 // oorruuxxaaddggj|j .
287 // ---------------+ - - - - - - - -+ <- min pile edge
288 // .
289 // - - - - - - - - - - - - - - - -+ <- max pile edge
291 // If you were to slide a vertical beam from the left edge of the
292 // delta edge rect toward the right, it would either hit the right edge
293 // of the delta edge rect, or the interest rect (expanded to the bounds
294 // of the tiles it touches). The same is true for a beam parallel to
295 // any of the four edges, sliding across the delta edge rect. We use
296 // the union of these four rectangles generated by these beams to
297 // determine which part of the delta edge rect is outside of the expanded
298 // interest rect.
300 // Case 1: Intersect rect is outside the delta edge rect. It can be
301 // either on the left or the right. The |left_rect| and |right_rect|,
302 // cover this case, one will be empty and one will cover the full
303 // delta edge rect. In the picture below, |left_rect| would cover the
304 // delta edge rect, and |right_rect| would be empty.
305 // +----------------------+ |^^^^^^^^^^^^^^^|
306 // |===> DELTA EDGE RECT | | |
307 // |===> | | INTEREST RECT |
308 // |===> | | |
309 // |===> | | |
310 // +----------------------+ |vvvvvvvvvvvvvvv|
312 // Case 2: Interest rect is inside the delta edge rect. It will always
313 // fill the entire delta edge rect horizontally since the old edge rect
314 // is a single tile wide, and the interest rect has been expanded to the
315 // bounds of the tiles it touches. In this case the |left_rect| and
316 // |right_rect| will be empty, but the case is handled by the |top_rect|
317 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
318 // |bottom_rect| would empty, they would each cover the area of the old
319 // edge rect outside the expanded interest rect.
320 // +-----------------+
321 // |:::::::::::::::::|
322 // |:::::::::::::::::|
323 // |vvvvvvvvvvvvvvvvv|
324 // | |
325 // +-----------------+
326 // | INTEREST RECT |
327 // | |
328 // +-----------------+
329 // | |
330 // | DELTA EDGE RECT |
331 // +-----------------+
333 // Lastly, we need to consider tiles inside the expanded interest rect.
334 // For those tiles, we want to invalidate exactly the newly exposed
335 // pixels. In the picture below the tiles in the delta edge rect have
336 // been resized and the area covered by periods must be invalidated. The
337 // |exposed_rect| will cover exactly that area.
338 // v-min pile edge
339 // +---------+-------+
340 // | ........|
341 // | ........|
342 // | DELTA EDGE.RECT.|
343 // | ........|
344 // | ........|
345 // | ........|
346 // | ........|
347 // | ........|
348 // | ........|
349 // +---------+-------+
351 int left = tiling_.TilePositionX(min_toss_x);
352 int right = left + tiling_.TileSizeX(min_toss_x);
353 int top = min_tiling_rect_over_tiles.y();
354 int bottom = min_tiling_rect_over_tiles.bottom();
356 int left_until = std::min(interest_rect_over_tiles.x(), right);
357 int right_until = std::max(interest_rect_over_tiles.right(), left);
358 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
359 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
361 int exposed_left = min_tiling_size.width();
362 int exposed_left_until = max_tiling_size.width();
363 int exposed_top = top;
364 int exposed_bottom = max_tiling_size.height();
365 DCHECK_GE(exposed_left, left);
367 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
368 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
369 gfx::Rect top_rect(left, top, right - left, top_until - top);
370 gfx::Rect bottom_rect(
371 left, bottom_until, right - left, bottom - bottom_until);
372 gfx::Rect exposed_rect(exposed_left,
373 exposed_top,
374 exposed_left_until - exposed_left,
375 exposed_bottom - exposed_top);
376 synthetic_invalidation.Union(left_rect);
377 synthetic_invalidation.Union(right_rect);
378 synthetic_invalidation.Union(top_rect);
379 synthetic_invalidation.Union(bottom_rect);
380 synthetic_invalidation.Union(exposed_rect);
382 if (min_toss_y < tiling_.num_tiles_y()) {
383 // The same thing occurs here as in the case above, but the invalidation
384 // rect is the bounding box around the bottom row of tiles in the min
385 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
387 int top = tiling_.TilePositionY(min_toss_y);
388 int bottom = top + tiling_.TileSizeY(min_toss_y);
389 int left = min_tiling_rect_over_tiles.x();
390 int right = min_tiling_rect_over_tiles.right();
392 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
393 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
394 int left_until = std::min(interest_rect_over_tiles.x(), right);
395 int right_until = std::max(interest_rect_over_tiles.right(), left);
397 int exposed_top = min_tiling_size.height();
398 int exposed_top_until = max_tiling_size.height();
399 int exposed_left = left;
400 int exposed_right = max_tiling_size.width();
401 DCHECK_GE(exposed_top, top);
403 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
404 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
405 gfx::Rect top_rect(left, top, right - left, top_until - top);
406 gfx::Rect bottom_rect(
407 left, bottom_until, right - left, bottom - bottom_until);
408 gfx::Rect exposed_rect(exposed_left,
409 exposed_top,
410 exposed_right - exposed_left,
411 exposed_top_until - exposed_top);
412 synthetic_invalidation.Union(left_rect);
413 synthetic_invalidation.Union(right_rect);
414 synthetic_invalidation.Union(top_rect);
415 synthetic_invalidation.Union(bottom_rect);
416 synthetic_invalidation.Union(exposed_rect);
420 // Detect cases where the full pile is invalidated, in this situation we
421 // can just drop/invalidate everything.
422 if (invalidation->Contains(gfx::Rect(old_tiling_size)) ||
423 invalidation->Contains(gfx::Rect(GetSize()))) {
424 updated = !picture_map_.empty();
425 picture_map_.clear();
426 } else {
427 // Expand invalidation that is on tiles that aren't in the interest rect and
428 // will not be re-recorded below. These tiles are no longer valid and should
429 // be considerered fully invalid, so we can know to not keep around raster
430 // tiles that intersect with these recording tiles.
431 Region invalidation_expanded_to_full_tiles;
433 for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) {
434 gfx::Rect invalid_rect = i.rect();
436 // This rect covers the bounds (excluding borders) of all tiles whose
437 // bounds (including borders) touch the |interest_rect|. This matches
438 // the iteration of the |invalid_rect| below which includes borders when
439 // calling Invalidate() on pictures.
440 gfx::Rect invalid_rect_outside_interest_rect_tiles =
441 tiling_.ExpandRectToTileBounds(invalid_rect);
442 // We subtract the |interest_rect_over_tiles| which represents the bounds
443 // of tiles that will be re-recorded below. This matches the iteration of
444 // |interest_rect| below which includes borders.
445 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
446 // instead of using Rect::Subtract which gives you the bounding box of the
447 // subtraction.
448 invalid_rect_outside_interest_rect_tiles.Subtract(
449 interest_rect_over_tiles);
450 invalidation_expanded_to_full_tiles.Union(
451 invalid_rect_outside_interest_rect_tiles);
453 // Split this inflated invalidation across tile boundaries and apply it
454 // to all tiles that it touches.
455 bool include_borders = true;
456 for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders);
457 iter;
458 ++iter) {
459 const PictureMapKey& key = iter.index();
461 PictureMap::iterator picture_it = picture_map_.find(key);
462 if (picture_it == picture_map_.end())
463 continue;
465 updated = true;
466 picture_map_.erase(key);
468 // Invalidate drops the picture so the whole tile better be invalidated
469 // if it won't be re-recorded below.
470 DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second)
471 .Intersects(interest_rect_over_tiles),
472 invalidation_expanded_to_full_tiles.Contains(
473 tiling_.TileBounds(key.first, key.second)));
476 invalidation->Union(invalidation_expanded_to_full_tiles);
479 invalidation->Union(synthetic_invalidation);
480 return updated;
483 void PicturePile::GetInvalidTileRects(const gfx::Rect& interest_rect,
484 std::vector<gfx::Rect>* invalid_tiles) {
485 // Make a list of all invalid tiles; we will attempt to
486 // cluster these into multiple invalidation regions.
487 bool include_borders = true;
488 for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it;
489 ++it) {
490 const PictureMapKey& key = it.index();
491 if (picture_map_.find(key) == picture_map_.end())
492 invalid_tiles->push_back(tiling_.TileBounds(key.first, key.second));
496 void PicturePile::CreatePictures(ContentLayerClient* painter,
497 RecordingSource::RecordingMode recording_mode,
498 const std::vector<gfx::Rect>& record_rects) {
499 for (const auto& record_rect : record_rects) {
500 gfx::Rect padded_record_rect = PadRect(record_rect);
502 int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_);
503 scoped_refptr<Picture> picture;
505 for (int i = 0; i < repeat_count; i++) {
506 picture = Picture::Create(padded_record_rect, painter, tile_grid_size_,
507 gather_pixel_refs_, recording_mode);
508 // Note the '&&' with previous is-suitable state.
509 // This means that once a picture-pile becomes unsuitable for gpu
510 // rasterization due to some content, it will continue to be unsuitable
511 // even if that content is replaced by gpu-friendly content.
512 // This is an optimization to avoid iterating though all pictures in
513 // the pile after each invalidation.
514 if (is_suitable_for_gpu_rasterization_) {
515 const char* reason = nullptr;
516 is_suitable_for_gpu_rasterization_ &=
517 picture->IsSuitableForGpuRasterization(&reason);
519 if (!is_suitable_for_gpu_rasterization_) {
520 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
521 TRACE_EVENT_SCOPE_THREAD, "reason", reason);
526 bool found_tile_for_recorded_picture = false;
528 bool include_borders = true;
529 for (TilingData::Iterator it(&tiling_, padded_record_rect, include_borders);
530 it; ++it) {
531 const PictureMapKey& key = it.index();
532 gfx::Rect tile = PaddedRect(key);
533 if (padded_record_rect.Contains(tile)) {
534 picture_map_[key] = picture;
535 found_tile_for_recorded_picture = true;
538 DCHECK(found_tile_for_recorded_picture);
542 scoped_refptr<RasterSource> PicturePile::CreateRasterSource(
543 bool can_use_lcd_text) const {
544 return scoped_refptr<RasterSource>(
545 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text));
548 gfx::Size PicturePile::GetSize() const {
549 return tiling_.tiling_size();
552 void PicturePile::SetEmptyBounds() {
553 tiling_.SetTilingSize(gfx::Size());
554 Clear();
557 void PicturePile::SetMinContentsScale(float min_contents_scale) {
558 DCHECK(min_contents_scale);
559 if (min_contents_scale_ == min_contents_scale)
560 return;
562 // Picture contents are played back scaled. When the final contents scale is
563 // less than 1 (i.e. low res), then multiple recorded pixels will be used
564 // to raster one final pixel. To avoid splitting a final pixel across
565 // pictures (which would result in incorrect rasterization due to blending), a
566 // buffer margin is added so that any picture can be snapped to integral
567 // final pixels.
569 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
570 // pixels, since that's the minimum number of pixels to add so that resulting
571 // content can be snapped to a four pixel aligned grid.
572 int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
573 buffer_pixels = std::max(0, buffer_pixels);
574 SetBufferPixels(buffer_pixels);
575 min_contents_scale_ = min_contents_scale;
578 void PicturePile::SetSlowdownRasterScaleFactor(int factor) {
579 slow_down_raster_scale_factor_for_debug_ = factor;
582 void PicturePile::SetGatherPixelRefs(bool gather_pixel_refs) {
583 gather_pixel_refs_ = gather_pixel_refs;
586 void PicturePile::SetBackgroundColor(SkColor background_color) {
587 background_color_ = background_color;
590 void PicturePile::SetRequiresClear(bool requires_clear) {
591 requires_clear_ = requires_clear;
594 bool PicturePile::IsSuitableForGpuRasterization() const {
595 return is_suitable_for_gpu_rasterization_;
598 void PicturePile::SetTileGridSize(const gfx::Size& tile_grid_size) {
599 DCHECK_GT(tile_grid_size.width(), 0);
600 DCHECK_GT(tile_grid_size.height(), 0);
602 tile_grid_size_ = tile_grid_size;
605 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
606 is_suitable_for_gpu_rasterization_ = false;
609 gfx::Size PicturePile::GetTileGridSizeForTesting() const {
610 return tile_grid_size_;
613 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect& layer_rect) const {
614 bool include_borders = false;
615 for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders);
616 tile_iter; ++tile_iter) {
617 PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
618 if (map_iter == picture_map_.end())
619 return false;
621 return true;
624 void PicturePile::DetermineIfSolidColor() {
625 is_solid_color_ = false;
626 solid_color_ = SK_ColorTRANSPARENT;
628 if (picture_map_.empty()) {
629 return;
632 PictureMap::const_iterator it = picture_map_.begin();
633 const Picture* picture = it->second.get();
635 // Missing recordings due to frequent invalidations or being too far away
636 // from the interest rect will cause the a null picture to exist.
637 if (!picture)
638 return;
640 // Don't bother doing more work if the first image is too complicated.
641 if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze)
642 return;
644 // Make sure all of the mapped images point to the same picture.
645 for (++it; it != picture_map_.end(); ++it) {
646 if (it->second.get() != picture)
647 return;
650 gfx::Size layer_size = GetSize();
651 skia::AnalysisCanvas canvas(layer_size.width(), layer_size.height());
653 picture->Raster(&canvas, nullptr, Region(), 1.0f);
654 is_solid_color_ = canvas.GetColorIfSolid(&solid_color_);
657 gfx::Rect PicturePile::PaddedRect(const PictureMapKey& key) const {
658 gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
659 return PadRect(tile);
662 gfx::Rect PicturePile::PadRect(const gfx::Rect& rect) const {
663 gfx::Rect padded_rect = rect;
664 padded_rect.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
665 -buffer_pixels());
666 return padded_rect;
669 void PicturePile::Clear() {
670 picture_map_.clear();
671 recorded_viewport_ = gfx::Rect();
672 has_any_recordings_ = false;
673 is_solid_color_ = false;
676 void PicturePile::SetBufferPixels(int new_buffer_pixels) {
677 if (new_buffer_pixels == buffer_pixels())
678 return;
680 Clear();
681 tiling_.SetBorderTexels(new_buffer_pixels);
684 } // namespace cc