1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
11 #include "cc/base/region.h"
12 #include "cc/resources/picture_pile_impl.h"
13 #include "skia/ext/analysis_canvas.h"
16 // Layout pixel buffer around the visible layer rect to record. Any base
17 // picture that intersects the visible layer rect expanded by this distance
19 const int kPixelDistanceToRecord
= 8000;
20 // We don't perform solid color analysis on images that have more than 10 skia
22 const int kOpCountThatIsOkToAnalyze
= 10;
24 // Dimensions of the tiles in this picture pile as well as the dimensions of
25 // the base picture in each tile.
26 const int kBasePictureSize
= 512;
28 // TODO(humper): The density threshold here is somewhat arbitrary; need a
29 // way to set // this from the command line so we can write a benchmark
30 // script and find a sweet spot.
31 const float kDensityThreshold
= 0.5f
;
33 bool rect_sort_y(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
34 return r1
.y() < r2
.y() || (r1
.y() == r2
.y() && r1
.x() < r2
.x());
37 bool rect_sort_x(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
38 return r1
.x() < r2
.x() || (r1
.x() == r2
.x() && r1
.y() < r2
.y());
41 float PerformClustering(const std::vector
<gfx::Rect
>& tiles
,
42 std::vector
<gfx::Rect
>* clustered_rects
) {
43 // These variables track the record area and invalid area
44 // for the entire clustering
45 int total_record_area
= 0;
46 int total_invalid_area
= 0;
48 // These variables track the record area and invalid area
49 // for the current cluster being constructed.
50 gfx::Rect cur_record_rect
;
51 int cluster_record_area
= 0, cluster_invalid_area
= 0;
53 for (std::vector
<gfx::Rect
>::const_iterator it
= tiles
.begin();
56 gfx::Rect invalid_tile
= *it
;
58 // For each tile, we consider adding the invalid tile to the
59 // current record rectangle. Only add it if the amount of empty
60 // space created is below a density threshold.
61 int tile_area
= invalid_tile
.width() * invalid_tile
.height();
63 gfx::Rect proposed_union
= cur_record_rect
;
64 proposed_union
.Union(invalid_tile
);
65 int proposed_area
= proposed_union
.width() * proposed_union
.height();
66 float proposed_density
=
67 static_cast<float>(cluster_invalid_area
+ tile_area
) /
68 static_cast<float>(proposed_area
);
70 if (proposed_density
>= kDensityThreshold
) {
71 // It's okay to add this invalid tile to the
72 // current recording rectangle.
73 cur_record_rect
= proposed_union
;
74 cluster_record_area
= proposed_area
;
75 cluster_invalid_area
+= tile_area
;
76 total_invalid_area
+= tile_area
;
78 // Adding this invalid tile to the current recording rectangle
79 // would exceed our badness threshold, so put the current rectangle
80 // in the list of recording rects, and start a new one.
81 clustered_rects
->push_back(cur_record_rect
);
82 total_record_area
+= cluster_record_area
;
83 cur_record_rect
= invalid_tile
;
84 cluster_invalid_area
= tile_area
;
85 cluster_record_area
= tile_area
;
89 DCHECK(!cur_record_rect
.IsEmpty());
90 clustered_rects
->push_back(cur_record_rect
);
91 total_record_area
+= cluster_record_area
;;
93 DCHECK_NE(total_record_area
, 0);
95 return static_cast<float>(total_invalid_area
) /
96 static_cast<float>(total_record_area
);
99 void ClusterTiles(const std::vector
<gfx::Rect
>& invalid_tiles
,
100 std::vector
<gfx::Rect
>* record_rects
) {
101 TRACE_EVENT1("cc", "ClusterTiles",
103 invalid_tiles
.size());
104 if (invalid_tiles
.size() <= 1) {
105 // Quickly handle the special case for common
106 // single-invalidation update, and also the less common
107 // case of no tiles passed in.
108 *record_rects
= invalid_tiles
;
112 // Sort the invalid tiles by y coordinate.
113 std::vector
<gfx::Rect
> invalid_tiles_vertical
= invalid_tiles
;
114 std::sort(invalid_tiles_vertical
.begin(),
115 invalid_tiles_vertical
.end(),
118 std::vector
<gfx::Rect
> vertical_clustering
;
119 float vertical_density
=
120 PerformClustering(invalid_tiles_vertical
, &vertical_clustering
);
122 // If vertical density is optimal, then we can return early.
123 if (vertical_density
== 1.f
) {
124 *record_rects
= vertical_clustering
;
128 // Now try again with a horizontal sort, see which one is best
129 std::vector
<gfx::Rect
> invalid_tiles_horizontal
= invalid_tiles
;
130 std::sort(invalid_tiles_horizontal
.begin(),
131 invalid_tiles_horizontal
.end(),
134 std::vector
<gfx::Rect
> horizontal_clustering
;
135 float horizontal_density
=
136 PerformClustering(invalid_tiles_horizontal
, &horizontal_clustering
);
138 if (vertical_density
< horizontal_density
) {
139 *record_rects
= horizontal_clustering
;
143 *record_rects
= vertical_clustering
;
147 const bool kDefaultClearCanvasSetting
= false;
149 const bool kDefaultClearCanvasSetting
= true;
156 PicturePile::PicturePile(float min_contents_scale
,
157 const gfx::Size
& tile_grid_size
)
158 : min_contents_scale_(0),
159 slow_down_raster_scale_factor_for_debug_(0),
160 gather_pixel_refs_(false),
161 has_any_recordings_(false),
162 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting
),
163 requires_clear_(true),
164 is_solid_color_(false),
165 solid_color_(SK_ColorTRANSPARENT
),
166 background_color_(SK_ColorTRANSPARENT
),
167 pixel_record_distance_(kPixelDistanceToRecord
),
168 is_suitable_for_gpu_rasterization_(true) {
169 tiling_
.SetMaxTextureSize(gfx::Size(kBasePictureSize
, kBasePictureSize
));
170 SetMinContentsScale(min_contents_scale
);
171 SetTileGridSize(tile_grid_size
);
174 PicturePile::~PicturePile() {
177 bool PicturePile::UpdateAndExpandInvalidation(
178 ContentLayerClient
* painter
,
179 Region
* invalidation
,
180 const gfx::Size
& layer_size
,
181 const gfx::Rect
& visible_layer_rect
,
183 RecordingSource::RecordingMode recording_mode
) {
184 gfx::Rect interest_rect
= visible_layer_rect
;
185 interest_rect
.Inset(-pixel_record_distance_
, -pixel_record_distance_
);
186 recorded_viewport_
= interest_rect
;
187 recorded_viewport_
.Intersect(gfx::Rect(layer_size
));
189 bool updated
= ApplyInvalidationAndResize(interest_rect
, invalidation
,
190 layer_size
, frame_number
);
191 std::vector
<gfx::Rect
> invalid_tiles
;
192 GetInvalidTileRects(interest_rect
, &invalid_tiles
);
193 std::vector
<gfx::Rect
> record_rects
;
194 ClusterTiles(invalid_tiles
, &record_rects
);
196 if (record_rects
.empty())
199 CreatePictures(painter
, recording_mode
, record_rects
);
201 DetermineIfSolidColor();
203 has_any_recordings_
= true;
204 DCHECK(CanRasterSlowTileCheck(recorded_viewport_
));
208 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect
& interest_rect
,
209 Region
* invalidation
,
210 const gfx::Size
& layer_size
,
212 bool updated
= false;
214 Region synthetic_invalidation
;
215 gfx::Size old_tiling_size
= GetSize();
216 if (old_tiling_size
!= layer_size
) {
217 tiling_
.SetTilingSize(layer_size
);
221 gfx::Rect interest_rect_over_tiles
=
222 tiling_
.ExpandRectToTileBounds(interest_rect
);
224 if (old_tiling_size
!= layer_size
) {
225 gfx::Size
min_tiling_size(
226 std::min(GetSize().width(), old_tiling_size
.width()),
227 std::min(GetSize().height(), old_tiling_size
.height()));
228 gfx::Size
max_tiling_size(
229 std::max(GetSize().width(), old_tiling_size
.width()),
230 std::max(GetSize().height(), old_tiling_size
.height()));
232 has_any_recordings_
= false;
234 // Drop recordings that are outside the new or old layer bounds or that
235 // changed size. Newly exposed areas are considered invalidated.
236 // Previously exposed areas that are now outside of bounds also need to
237 // be invalidated, as they may become part of raster when scale < 1.
238 std::vector
<PictureMapKey
> to_erase
;
239 int min_toss_x
= tiling_
.num_tiles_x();
240 if (max_tiling_size
.width() > min_tiling_size
.width()) {
242 tiling_
.FirstBorderTileXIndexFromSrcCoord(min_tiling_size
.width());
244 int min_toss_y
= tiling_
.num_tiles_y();
245 if (max_tiling_size
.height() > min_tiling_size
.height()) {
247 tiling_
.FirstBorderTileYIndexFromSrcCoord(min_tiling_size
.height());
249 for (const auto& key_picture_pair
: picture_map_
) {
250 const PictureMapKey
& key
= key_picture_pair
.first
;
251 if (key
.first
< min_toss_x
&& key
.second
< min_toss_y
) {
252 has_any_recordings_
= true;
255 to_erase
.push_back(key
);
258 for (size_t i
= 0; i
< to_erase
.size(); ++i
)
259 picture_map_
.erase(to_erase
[i
]);
261 // If a recording is dropped and not re-recorded below, invalidate that
262 // full recording to cause any raster tiles that would use it to be
264 // If the recording will be replaced below, invalidate newly exposed
265 // areas and previously exposed areas to force raster tiles that include the
266 // old recording to know there is new recording to display.
267 gfx::Rect min_tiling_rect_over_tiles
=
268 tiling_
.ExpandRectToTileBounds(gfx::Rect(min_tiling_size
));
269 if (min_toss_x
< tiling_
.num_tiles_x()) {
270 // The bounds which we want to invalidate are the tiles along the old
271 // edge of the pile when expanding, or the new edge of the pile when
272 // shrinking. In either case, it's the difference of the two, so we'll
273 // call this bounding box the DELTA EDGE RECT.
275 // In the picture below, the delta edge rect would be the bounding box of
276 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
279 // min pile edge-v max pile edge-v
280 // ---------------+ - - - - - - - -+
281 // mmppssvvyybbeeh|h .
282 // mmppssvvyybbeeh|h .
283 // nnqqttwwzzccffi|i .
284 // nnqqttwwzzccffi|i .
285 // oorruuxxaaddggj|j .
286 // oorruuxxaaddggj|j .
287 // ---------------+ - - - - - - - -+ <- min pile edge
289 // - - - - - - - - - - - - - - - -+ <- max pile edge
291 // If you were to slide a vertical beam from the left edge of the
292 // delta edge rect toward the right, it would either hit the right edge
293 // of the delta edge rect, or the interest rect (expanded to the bounds
294 // of the tiles it touches). The same is true for a beam parallel to
295 // any of the four edges, sliding across the delta edge rect. We use
296 // the union of these four rectangles generated by these beams to
297 // determine which part of the delta edge rect is outside of the expanded
300 // Case 1: Intersect rect is outside the delta edge rect. It can be
301 // either on the left or the right. The |left_rect| and |right_rect|,
302 // cover this case, one will be empty and one will cover the full
303 // delta edge rect. In the picture below, |left_rect| would cover the
304 // delta edge rect, and |right_rect| would be empty.
305 // +----------------------+ |^^^^^^^^^^^^^^^|
306 // |===> DELTA EDGE RECT | | |
307 // |===> | | INTEREST RECT |
310 // +----------------------+ |vvvvvvvvvvvvvvv|
312 // Case 2: Interest rect is inside the delta edge rect. It will always
313 // fill the entire delta edge rect horizontally since the old edge rect
314 // is a single tile wide, and the interest rect has been expanded to the
315 // bounds of the tiles it touches. In this case the |left_rect| and
316 // |right_rect| will be empty, but the case is handled by the |top_rect|
317 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
318 // |bottom_rect| would empty, they would each cover the area of the old
319 // edge rect outside the expanded interest rect.
320 // +-----------------+
321 // |:::::::::::::::::|
322 // |:::::::::::::::::|
323 // |vvvvvvvvvvvvvvvvv|
325 // +-----------------+
328 // +-----------------+
330 // | DELTA EDGE RECT |
331 // +-----------------+
333 // Lastly, we need to consider tiles inside the expanded interest rect.
334 // For those tiles, we want to invalidate exactly the newly exposed
335 // pixels. In the picture below the tiles in the delta edge rect have
336 // been resized and the area covered by periods must be invalidated. The
337 // |exposed_rect| will cover exactly that area.
339 // +---------+-------+
342 // | DELTA EDGE.RECT.|
349 // +---------+-------+
351 int left
= tiling_
.TilePositionX(min_toss_x
);
352 int right
= left
+ tiling_
.TileSizeX(min_toss_x
);
353 int top
= min_tiling_rect_over_tiles
.y();
354 int bottom
= min_tiling_rect_over_tiles
.bottom();
356 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
357 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
358 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
359 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
361 int exposed_left
= min_tiling_size
.width();
362 int exposed_left_until
= max_tiling_size
.width();
363 int exposed_top
= top
;
364 int exposed_bottom
= max_tiling_size
.height();
365 DCHECK_GE(exposed_left
, left
);
367 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
368 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
369 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
370 gfx::Rect
bottom_rect(
371 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
372 gfx::Rect
exposed_rect(exposed_left
,
374 exposed_left_until
- exposed_left
,
375 exposed_bottom
- exposed_top
);
376 synthetic_invalidation
.Union(left_rect
);
377 synthetic_invalidation
.Union(right_rect
);
378 synthetic_invalidation
.Union(top_rect
);
379 synthetic_invalidation
.Union(bottom_rect
);
380 synthetic_invalidation
.Union(exposed_rect
);
382 if (min_toss_y
< tiling_
.num_tiles_y()) {
383 // The same thing occurs here as in the case above, but the invalidation
384 // rect is the bounding box around the bottom row of tiles in the min
385 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
387 int top
= tiling_
.TilePositionY(min_toss_y
);
388 int bottom
= top
+ tiling_
.TileSizeY(min_toss_y
);
389 int left
= min_tiling_rect_over_tiles
.x();
390 int right
= min_tiling_rect_over_tiles
.right();
392 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
393 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
394 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
395 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
397 int exposed_top
= min_tiling_size
.height();
398 int exposed_top_until
= max_tiling_size
.height();
399 int exposed_left
= left
;
400 int exposed_right
= max_tiling_size
.width();
401 DCHECK_GE(exposed_top
, top
);
403 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
404 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
405 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
406 gfx::Rect
bottom_rect(
407 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
408 gfx::Rect
exposed_rect(exposed_left
,
410 exposed_right
- exposed_left
,
411 exposed_top_until
- exposed_top
);
412 synthetic_invalidation
.Union(left_rect
);
413 synthetic_invalidation
.Union(right_rect
);
414 synthetic_invalidation
.Union(top_rect
);
415 synthetic_invalidation
.Union(bottom_rect
);
416 synthetic_invalidation
.Union(exposed_rect
);
420 // Detect cases where the full pile is invalidated, in this situation we
421 // can just drop/invalidate everything.
422 if (invalidation
->Contains(gfx::Rect(old_tiling_size
)) ||
423 invalidation
->Contains(gfx::Rect(GetSize()))) {
424 updated
= !picture_map_
.empty();
425 picture_map_
.clear();
427 // Expand invalidation that is on tiles that aren't in the interest rect and
428 // will not be re-recorded below. These tiles are no longer valid and should
429 // be considerered fully invalid, so we can know to not keep around raster
430 // tiles that intersect with these recording tiles.
431 Region invalidation_expanded_to_full_tiles
;
433 for (Region::Iterator
i(*invalidation
); i
.has_rect(); i
.next()) {
434 gfx::Rect invalid_rect
= i
.rect();
436 // This rect covers the bounds (excluding borders) of all tiles whose
437 // bounds (including borders) touch the |interest_rect|. This matches
438 // the iteration of the |invalid_rect| below which includes borders when
439 // calling Invalidate() on pictures.
440 gfx::Rect invalid_rect_outside_interest_rect_tiles
=
441 tiling_
.ExpandRectToTileBounds(invalid_rect
);
442 // We subtract the |interest_rect_over_tiles| which represents the bounds
443 // of tiles that will be re-recorded below. This matches the iteration of
444 // |interest_rect| below which includes borders.
445 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
446 // instead of using Rect::Subtract which gives you the bounding box of the
448 invalid_rect_outside_interest_rect_tiles
.Subtract(
449 interest_rect_over_tiles
);
450 invalidation_expanded_to_full_tiles
.Union(
451 invalid_rect_outside_interest_rect_tiles
);
453 // Split this inflated invalidation across tile boundaries and apply it
454 // to all tiles that it touches.
455 bool include_borders
= true;
456 for (TilingData::Iterator
iter(&tiling_
, invalid_rect
, include_borders
);
459 const PictureMapKey
& key
= iter
.index();
461 PictureMap::iterator picture_it
= picture_map_
.find(key
);
462 if (picture_it
== picture_map_
.end())
466 picture_map_
.erase(key
);
468 // Invalidate drops the picture so the whole tile better be invalidated
469 // if it won't be re-recorded below.
470 DCHECK_IMPLIES(!tiling_
.TileBounds(key
.first
, key
.second
)
471 .Intersects(interest_rect_over_tiles
),
472 invalidation_expanded_to_full_tiles
.Contains(
473 tiling_
.TileBounds(key
.first
, key
.second
)));
476 invalidation
->Union(invalidation_expanded_to_full_tiles
);
479 invalidation
->Union(synthetic_invalidation
);
483 void PicturePile::GetInvalidTileRects(const gfx::Rect
& interest_rect
,
484 std::vector
<gfx::Rect
>* invalid_tiles
) {
485 // Make a list of all invalid tiles; we will attempt to
486 // cluster these into multiple invalidation regions.
487 bool include_borders
= true;
488 for (TilingData::Iterator
it(&tiling_
, interest_rect
, include_borders
); it
;
490 const PictureMapKey
& key
= it
.index();
491 if (picture_map_
.find(key
) == picture_map_
.end())
492 invalid_tiles
->push_back(tiling_
.TileBounds(key
.first
, key
.second
));
496 void PicturePile::CreatePictures(ContentLayerClient
* painter
,
497 RecordingSource::RecordingMode recording_mode
,
498 const std::vector
<gfx::Rect
>& record_rects
) {
499 for (const auto& record_rect
: record_rects
) {
500 gfx::Rect padded_record_rect
= PadRect(record_rect
);
502 int repeat_count
= std::max(1, slow_down_raster_scale_factor_for_debug_
);
503 scoped_refptr
<Picture
> picture
;
505 for (int i
= 0; i
< repeat_count
; i
++) {
506 picture
= Picture::Create(padded_record_rect
, painter
, tile_grid_size_
,
507 gather_pixel_refs_
, recording_mode
);
508 // Note the '&&' with previous is-suitable state.
509 // This means that once a picture-pile becomes unsuitable for gpu
510 // rasterization due to some content, it will continue to be unsuitable
511 // even if that content is replaced by gpu-friendly content.
512 // This is an optimization to avoid iterating though all pictures in
513 // the pile after each invalidation.
514 if (is_suitable_for_gpu_rasterization_
) {
515 const char* reason
= nullptr;
516 is_suitable_for_gpu_rasterization_
&=
517 picture
->IsSuitableForGpuRasterization(&reason
);
519 if (!is_suitable_for_gpu_rasterization_
) {
520 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
521 TRACE_EVENT_SCOPE_THREAD
, "reason", reason
);
526 bool found_tile_for_recorded_picture
= false;
528 bool include_borders
= true;
529 for (TilingData::Iterator
it(&tiling_
, padded_record_rect
, include_borders
);
531 const PictureMapKey
& key
= it
.index();
532 gfx::Rect tile
= PaddedRect(key
);
533 if (padded_record_rect
.Contains(tile
)) {
534 picture_map_
[key
] = picture
;
535 found_tile_for_recorded_picture
= true;
538 DCHECK(found_tile_for_recorded_picture
);
542 scoped_refptr
<RasterSource
> PicturePile::CreateRasterSource(
543 bool can_use_lcd_text
) const {
544 return scoped_refptr
<RasterSource
>(
545 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text
));
548 gfx::Size
PicturePile::GetSize() const {
549 return tiling_
.tiling_size();
552 void PicturePile::SetEmptyBounds() {
553 tiling_
.SetTilingSize(gfx::Size());
557 void PicturePile::SetMinContentsScale(float min_contents_scale
) {
558 DCHECK(min_contents_scale
);
559 if (min_contents_scale_
== min_contents_scale
)
562 // Picture contents are played back scaled. When the final contents scale is
563 // less than 1 (i.e. low res), then multiple recorded pixels will be used
564 // to raster one final pixel. To avoid splitting a final pixel across
565 // pictures (which would result in incorrect rasterization due to blending), a
566 // buffer margin is added so that any picture can be snapped to integral
569 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
570 // pixels, since that's the minimum number of pixels to add so that resulting
571 // content can be snapped to a four pixel aligned grid.
572 int buffer_pixels
= static_cast<int>(ceil(1 / min_contents_scale
) - 1);
573 buffer_pixels
= std::max(0, buffer_pixels
);
574 SetBufferPixels(buffer_pixels
);
575 min_contents_scale_
= min_contents_scale
;
578 void PicturePile::SetSlowdownRasterScaleFactor(int factor
) {
579 slow_down_raster_scale_factor_for_debug_
= factor
;
582 void PicturePile::SetGatherPixelRefs(bool gather_pixel_refs
) {
583 gather_pixel_refs_
= gather_pixel_refs
;
586 void PicturePile::SetBackgroundColor(SkColor background_color
) {
587 background_color_
= background_color
;
590 void PicturePile::SetRequiresClear(bool requires_clear
) {
591 requires_clear_
= requires_clear
;
594 bool PicturePile::IsSuitableForGpuRasterization() const {
595 return is_suitable_for_gpu_rasterization_
;
598 void PicturePile::SetTileGridSize(const gfx::Size
& tile_grid_size
) {
599 DCHECK_GT(tile_grid_size
.width(), 0);
600 DCHECK_GT(tile_grid_size
.height(), 0);
602 tile_grid_size_
= tile_grid_size
;
605 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
606 is_suitable_for_gpu_rasterization_
= false;
609 gfx::Size
PicturePile::GetTileGridSizeForTesting() const {
610 return tile_grid_size_
;
613 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect
& layer_rect
) const {
614 bool include_borders
= false;
615 for (TilingData::Iterator
tile_iter(&tiling_
, layer_rect
, include_borders
);
616 tile_iter
; ++tile_iter
) {
617 PictureMap::const_iterator map_iter
= picture_map_
.find(tile_iter
.index());
618 if (map_iter
== picture_map_
.end())
624 void PicturePile::DetermineIfSolidColor() {
625 is_solid_color_
= false;
626 solid_color_
= SK_ColorTRANSPARENT
;
628 if (picture_map_
.empty()) {
632 PictureMap::const_iterator it
= picture_map_
.begin();
633 const Picture
* picture
= it
->second
.get();
635 // Missing recordings due to frequent invalidations or being too far away
636 // from the interest rect will cause the a null picture to exist.
640 // Don't bother doing more work if the first image is too complicated.
641 if (picture
->ApproximateOpCount() > kOpCountThatIsOkToAnalyze
)
644 // Make sure all of the mapped images point to the same picture.
645 for (++it
; it
!= picture_map_
.end(); ++it
) {
646 if (it
->second
.get() != picture
)
650 gfx::Size layer_size
= GetSize();
651 skia::AnalysisCanvas
canvas(layer_size
.width(), layer_size
.height());
653 picture
->Raster(&canvas
, nullptr, Region(), 1.0f
);
654 is_solid_color_
= canvas
.GetColorIfSolid(&solid_color_
);
657 gfx::Rect
PicturePile::PaddedRect(const PictureMapKey
& key
) const {
658 gfx::Rect tile
= tiling_
.TileBounds(key
.first
, key
.second
);
659 return PadRect(tile
);
662 gfx::Rect
PicturePile::PadRect(const gfx::Rect
& rect
) const {
663 gfx::Rect padded_rect
= rect
;
664 padded_rect
.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
669 void PicturePile::Clear() {
670 picture_map_
.clear();
671 recorded_viewport_
= gfx::Rect();
672 has_any_recordings_
= false;
673 is_solid_color_
= false;
676 void PicturePile::SetBufferPixels(int new_buffer_pixels
) {
677 if (new_buffer_pixels
== buffer_pixels())
681 tiling_
.SetBorderTexels(new_buffer_pixels
);