1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/process_util.h"
7 #import <Cocoa/Cocoa.h>
8 #include <crt_externs.h>
11 #include <mach/mach.h>
12 #include <mach/mach_init.h>
13 #include <mach/mach_vm.h>
14 #include <mach/shared_region.h>
15 #include <mach/task.h>
16 #include <mach-o/nlist.h>
17 #include <malloc/malloc.h>
18 #import <objc/runtime.h>
21 #include <sys/event.h>
23 #include <sys/sysctl.h>
24 #include <sys/types.h>
30 #include "base/debug/debugger.h"
31 #include "base/eintr_wrapper.h"
32 #include "base/file_util.h"
33 #include "base/hash_tables.h"
34 #include "base/lazy_instance.h"
35 #include "base/logging.h"
36 #include "base/mac/mac_util.h"
37 #include "base/mac/scoped_mach_port.h"
38 #include "base/string_util.h"
39 #include "base/sys_info.h"
40 #include "base/threading/thread_local.h"
41 #include "third_party/apple_apsl/CFBase.h"
42 #include "third_party/apple_apsl/malloc.h"
43 #include "third_party/mach_override/mach_override.h"
47 void RestoreDefaultExceptionHandler() {
48 // This function is tailored to remove the Breakpad exception handler.
49 // exception_mask matches s_exception_mask in
50 // breakpad/src/client/mac/handler/exception_handler.cc
51 const exception_mask_t exception_mask = EXC_MASK_BAD_ACCESS |
52 EXC_MASK_BAD_INSTRUCTION |
56 // Setting the exception port to MACH_PORT_NULL may not be entirely
57 // kosher to restore the default exception handler, but in practice,
58 // it results in the exception port being set to Apple Crash Reporter,
59 // the desired behavior.
60 task_set_exception_ports(mach_task_self(), exception_mask, MACH_PORT_NULL,
61 EXCEPTION_DEFAULT, THREAD_STATE_NONE);
64 ProcessIterator::ProcessIterator(const ProcessFilter* filter)
65 : index_of_kinfo_proc_(0),
67 // Get a snapshot of all of my processes (yes, as we loop it can go stale, but
68 // but trying to find where we were in a constantly changing list is basically
71 int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, geteuid() };
73 // Since more processes could start between when we get the size and when
74 // we get the list, we do a loop to keep trying until we get it.
77 const int max_tries = 10;
79 // Get the size of the buffer
81 if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) {
82 DLOG(ERROR) << "failed to get the size needed for the process list";
83 kinfo_procs_.resize(0);
86 size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
87 // Leave some spare room for process table growth (more could show up
88 // between when we check and now)
89 num_of_kinfo_proc += 16;
90 kinfo_procs_.resize(num_of_kinfo_proc);
91 len = num_of_kinfo_proc * sizeof(struct kinfo_proc);
92 // Load the list of processes
93 if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) {
94 // If we get a mem error, it just means we need a bigger buffer, so
95 // loop around again. Anything else is a real error and give up.
96 if (errno != ENOMEM) {
97 DLOG(ERROR) << "failed to get the process list";
98 kinfo_procs_.resize(0);
102 // Got the list, just make sure we're sized exactly right
103 size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
104 kinfo_procs_.resize(num_of_kinfo_proc);
108 } while (!done && (try_num++ < max_tries));
111 DLOG(ERROR) << "failed to collect the process list in a few tries";
112 kinfo_procs_.resize(0);
116 ProcessIterator::~ProcessIterator() {
119 bool ProcessIterator::CheckForNextProcess() {
121 for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) {
122 kinfo_proc& kinfo = kinfo_procs_[index_of_kinfo_proc_];
124 // Skip processes just awaiting collection
125 if ((kinfo.kp_proc.p_pid > 0) && (kinfo.kp_proc.p_stat == SZOMB))
128 int mib[] = { CTL_KERN, KERN_PROCARGS, kinfo.kp_proc.p_pid };
130 // Find out what size buffer we need.
132 if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) {
133 DVPLOG(1) << "failed to figure out the buffer size for a commandline";
137 data.resize(data_len);
138 if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) {
139 DVPLOG(1) << "failed to fetch a commandline";
143 // |data| contains all the command line parameters of the process, separated
144 // by blocks of one or more null characters. We tokenize |data| into a
145 // vector of strings using '\0' as a delimiter and populate
146 // |entry_.cmd_line_args_|.
147 std::string delimiters;
148 delimiters.push_back('\0');
149 Tokenize(data, delimiters, &entry_.cmd_line_args_);
151 // |data| starts with the full executable path followed by a null character.
152 // We search for the first instance of '\0' and extract everything before it
153 // to populate |entry_.exe_file_|.
154 size_t exec_name_end = data.find('\0');
155 if (exec_name_end == std::string::npos) {
156 DLOG(ERROR) << "command line data didn't match expected format";
160 entry_.pid_ = kinfo.kp_proc.p_pid;
161 entry_.ppid_ = kinfo.kp_eproc.e_ppid;
162 entry_.gid_ = kinfo.kp_eproc.e_pgid;
163 size_t last_slash = data.rfind('/', exec_name_end);
164 if (last_slash == std::string::npos)
165 entry_.exe_file_.assign(data, 0, exec_name_end);
167 entry_.exe_file_.assign(data, last_slash + 1,
168 exec_name_end - last_slash - 1);
169 // Start w/ the next entry next time through
170 ++index_of_kinfo_proc_;
177 bool NamedProcessIterator::IncludeEntry() {
178 return (executable_name_ == entry().exe_file() &&
179 ProcessIterator::IncludeEntry());
183 // ------------------------------------------------------------------------
184 // NOTE: about ProcessMetrics
186 // Getting a mach task from a pid for another process requires permissions in
187 // general, so there doesn't really seem to be a way to do these (and spinning
188 // up ps to fetch each stats seems dangerous to put in a base api for anyone to
189 // call). Child processes ipc their port, so return something if available,
190 // otherwise return 0.
193 ProcessMetrics::ProcessMetrics(ProcessHandle process,
194 ProcessMetrics::PortProvider* port_provider)
197 last_system_time_(0),
198 port_provider_(port_provider) {
199 processor_count_ = SysInfo::NumberOfProcessors();
203 ProcessMetrics* ProcessMetrics::CreateProcessMetrics(
204 ProcessHandle process,
205 ProcessMetrics::PortProvider* port_provider) {
206 return new ProcessMetrics(process, port_provider);
209 bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
213 static bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
214 if (task == MACH_PORT_NULL)
216 mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
217 kern_return_t kr = task_info(task,
219 reinterpret_cast<task_info_t>(task_info_data),
221 // Most likely cause for failure: |task| is a zombie.
222 return kr == KERN_SUCCESS;
225 size_t ProcessMetrics::GetPagefileUsage() const {
226 task_basic_info_64 task_info_data;
227 if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
229 return task_info_data.virtual_size;
232 size_t ProcessMetrics::GetPeakPagefileUsage() const {
236 size_t ProcessMetrics::GetWorkingSetSize() const {
237 task_basic_info_64 task_info_data;
238 if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
240 return task_info_data.resident_size;
243 size_t ProcessMetrics::GetPeakWorkingSetSize() const {
247 static bool GetCPUTypeForProcess(pid_t pid, cpu_type_t* cpu_type) {
248 size_t len = sizeof(*cpu_type);
249 int result = sysctlbyname("sysctl.proc_cputype",
255 DPLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")";
262 static bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) {
263 if (type == CPU_TYPE_I386)
264 return addr >= SHARED_REGION_BASE_I386 &&
265 addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386);
266 else if (type == CPU_TYPE_X86_64)
267 return addr >= SHARED_REGION_BASE_X86_64 &&
268 addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64);
273 // This is a rough approximation of the algorithm that libtop uses.
274 // private_bytes is the size of private resident memory.
275 // shared_bytes is the size of shared resident memory.
276 bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
277 size_t* shared_bytes) {
279 size_t private_pages_count = 0;
280 size_t shared_pages_count = 0;
282 if (!private_bytes && !shared_bytes)
285 mach_port_t task = TaskForPid(process_);
286 if (task == MACH_PORT_NULL) {
287 DLOG(ERROR) << "Invalid process";
292 if (!GetCPUTypeForProcess(process_, &cpu_type))
295 // The same region can be referenced multiple times. To avoid double counting
296 // we need to keep track of which regions we've already counted.
297 base::hash_set<int> seen_objects;
299 // We iterate through each VM region in the task's address map. For shared
300 // memory we add up all the pages that are marked as shared. Like libtop we
301 // try to avoid counting pages that are also referenced by other tasks. Since
302 // we don't have access to the VM regions of other tasks the only hint we have
303 // is if the address is in the shared region area.
305 // Private memory is much simpler. We simply count the pages that are marked
306 // as private or copy on write (COW).
308 // See libtop_update_vm_regions in
309 // http://www.opensource.apple.com/source/top/top-67/libtop.c
310 mach_vm_size_t size = 0;
311 for (mach_vm_address_t address = MACH_VM_MIN_ADDRESS;; address += size) {
312 vm_region_top_info_data_t info;
313 mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
314 mach_port_t object_name;
315 kr = mach_vm_region(task,
319 (vm_region_info_t)&info,
322 if (kr == KERN_INVALID_ADDRESS) {
323 // We're at the end of the address space.
325 } else if (kr != KERN_SUCCESS) {
326 DLOG(ERROR) << "Calling mach_vm_region failed with error: "
327 << mach_error_string(kr);
331 if (IsAddressInSharedRegion(address, cpu_type) &&
332 info.share_mode != SM_PRIVATE)
335 if (info.share_mode == SM_COW && info.ref_count == 1)
336 info.share_mode = SM_PRIVATE;
338 switch (info.share_mode) {
340 private_pages_count += info.private_pages_resident;
341 private_pages_count += info.shared_pages_resident;
344 private_pages_count += info.private_pages_resident;
347 if (seen_objects.count(info.obj_id) == 0) {
348 // Only count the first reference to this region.
349 seen_objects.insert(info.obj_id);
350 shared_pages_count += info.shared_pages_resident;
359 kr = host_page_size(task, &page_size);
360 if (kr != KERN_SUCCESS) {
361 DLOG(ERROR) << "Failed to fetch host page size, error: "
362 << mach_error_string(kr);
367 *private_bytes = private_pages_count * page_size;
369 *shared_bytes = shared_pages_count * page_size;
374 void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
377 bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
378 size_t priv = GetWorkingSetSize();
381 ws_usage->priv = priv / 1024;
382 ws_usage->shareable = 0;
383 ws_usage->shared = 0;
387 #define TIME_VALUE_TO_TIMEVAL(a, r) do { \
388 (r)->tv_sec = (a)->seconds; \
389 (r)->tv_usec = (a)->microseconds; \
392 double ProcessMetrics::GetCPUUsage() {
393 mach_port_t task = TaskForPid(process_);
394 if (task == MACH_PORT_NULL)
399 // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
400 // in libtop.c), but this is more concise and gives the same results:
401 task_thread_times_info thread_info_data;
402 mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
404 TASK_THREAD_TIMES_INFO,
405 reinterpret_cast<task_info_t>(&thread_info_data),
407 if (kr != KERN_SUCCESS) {
408 // Most likely cause: |task| is a zombie.
412 task_basic_info_64 task_info_data;
413 if (!GetTaskInfo(task, &task_info_data))
416 /* Set total_time. */
417 // thread info contains live time...
418 struct timeval user_timeval, system_timeval, task_timeval;
419 TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
420 TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
421 timeradd(&user_timeval, &system_timeval, &task_timeval);
423 // ... task info contains terminated time.
424 TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
425 TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
426 timeradd(&user_timeval, &task_timeval, &task_timeval);
427 timeradd(&system_timeval, &task_timeval, &task_timeval);
430 int retval = gettimeofday(&now, NULL);
434 int64 time = TimeValToMicroseconds(now);
435 int64 task_time = TimeValToMicroseconds(task_timeval);
437 if ((last_system_time_ == 0) || (last_time_ == 0)) {
438 // First call, just set the last values.
439 last_system_time_ = task_time;
444 int64 system_time_delta = task_time - last_system_time_;
445 int64 time_delta = time - last_time_;
446 DCHECK_NE(0U, time_delta);
450 // We add time_delta / 2 so the result is rounded.
451 double cpu = static_cast<double>((system_time_delta * 100.0) / time_delta);
453 last_system_time_ = task_time;
459 mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const {
460 mach_port_t task = MACH_PORT_NULL;
462 task = port_provider_->TaskForPid(process_);
463 if (task == MACH_PORT_NULL && process_ == getpid())
464 task = mach_task_self();
468 // ------------------------------------------------------------------------
470 // Bytes committed by the system.
471 size_t GetSystemCommitCharge() {
472 base::mac::ScopedMachPort host(mach_host_self());
473 mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
474 vm_statistics_data_t data;
475 kern_return_t kr = host_statistics(host, HOST_VM_INFO,
476 reinterpret_cast<host_info_t>(&data),
479 DLOG(WARNING) << "Failed to fetch host statistics.";
484 kr = host_page_size(host, &page_size);
486 DLOG(ERROR) << "Failed to fetch host page size.";
490 return (data.active_count * page_size) / 1024;
495 // Finds the library path for malloc() and thus the libC part of libSystem,
496 // which in Lion is in a separate image.
497 const char* LookUpLibCPath() {
498 const void* addr = reinterpret_cast<void*>(&malloc);
501 if (dladdr(addr, &info))
502 return info.dli_fname;
504 DLOG(WARNING) << "Could not find image path for malloc()";
508 typedef void(*malloc_error_break_t)(void);
509 malloc_error_break_t g_original_malloc_error_break = NULL;
511 // Returns the function pointer for malloc_error_break. This symbol is declared
512 // as __private_extern__ and cannot be dlsym()ed. Instead, use nlist() to
514 malloc_error_break_t LookUpMallocErrorBreak() {
516 const char* lib_c_path = LookUpLibCPath();
520 // Only need to look up two symbols, but nlist() requires a NULL-terminated
521 // array and takes no count.
523 bzero(&nl, sizeof(nl));
525 // The symbol to find.
526 nl[0].n_un.n_name = const_cast<char*>("_malloc_error_break");
528 // A reference symbol by which the address of the desired symbol will be
530 nl[1].n_un.n_name = const_cast<char*>("_malloc");
532 int rv = nlist(lib_c_path, nl);
533 if (rv != 0 || nl[0].n_type == N_UNDF || nl[1].n_type == N_UNDF) {
537 // nlist() returns addresses as offsets in the image, not the instruction
538 // pointer in memory. Use the known in-memory address of malloc()
539 // to compute the offset for malloc_error_break().
540 uintptr_t reference_addr = reinterpret_cast<uintptr_t>(&malloc);
541 reference_addr -= nl[1].n_value;
542 reference_addr += nl[0].n_value;
544 return reinterpret_cast<malloc_error_break_t>(reference_addr);
545 #endif // ARCH_CPU_32_BITS
550 // Simple scoper that saves the current value of errno, resets it to 0, and on
551 // destruction puts the old value back. This is so that CrMallocErrorBreak can
552 // safely test errno free from the effects of other routines.
553 class ScopedClearErrno {
555 ScopedClearErrno() : old_errno_(errno) {
558 ~ScopedClearErrno() {
566 DISALLOW_COPY_AND_ASSIGN(ScopedClearErrno);
569 // Combines ThreadLocalBoolean with AutoReset. It would be convenient
570 // to compose ThreadLocalPointer<bool> with AutoReset<bool>, but that
571 // would require allocating some storage for the bool.
572 class ThreadLocalBooleanAutoReset {
574 ThreadLocalBooleanAutoReset(ThreadLocalBoolean* tlb, bool new_value)
576 original_value_(tlb->Get()) {
577 scoped_tlb_->Set(new_value);
579 ~ThreadLocalBooleanAutoReset() {
580 scoped_tlb_->Set(original_value_);
584 ThreadLocalBoolean* scoped_tlb_;
585 bool original_value_;
587 DISALLOW_COPY_AND_ASSIGN(ThreadLocalBooleanAutoReset);
590 base::LazyInstance<ThreadLocalBoolean>::Leaky
591 g_unchecked_malloc = LAZY_INSTANCE_INITIALIZER;
593 void CrMallocErrorBreak() {
594 g_original_malloc_error_break();
596 // Out of memory is certainly not heap corruption, and not necessarily
597 // something for which the process should be terminated. Leave that decision
598 // to the OOM killer. The EBADF case comes up because the malloc library
599 // attempts to log to ASL (syslog) before calling this code, which fails
600 // accessing a Unix-domain socket because of sandboxing.
601 if (errno == ENOMEM || (errno == EBADF && g_unchecked_malloc.Get().Get()))
604 // A unit test checks this error message, so it needs to be in release builds.
606 "Terminating process due to a potential for future heap corruption";
608 // Crash by writing to NULL+errno to allow analyzing errno from
609 // crash dump info (setting a breakpad key would re-enter the malloc
610 // library). Max documented errno in intro(2) is actually 102, but
611 // it really just needs to be "small" to stay on the right vm page.
612 const int kMaxErrno = 256;
613 char* volatile death_ptr = NULL;
614 death_ptr += std::min(errno, kMaxErrno);
620 void EnableTerminationOnHeapCorruption() {
621 #ifdef ADDRESS_SANITIZER
622 // Don't do anything special on heap corruption, because it should be handled
623 // by AddressSanitizer.
626 malloc_error_break_t malloc_error_break = LookUpMallocErrorBreak();
627 if (!malloc_error_break) {
628 DLOG(WARNING) << "Could not find malloc_error_break";
632 mach_error_t err = mach_override_ptr(
633 (void*)malloc_error_break,
634 (void*)&CrMallocErrorBreak,
635 (void**)&g_original_malloc_error_break);
638 DLOG(WARNING) << "Could not override malloc_error_break; error = " << err;
641 // ------------------------------------------------------------------------
645 bool g_oom_killer_enabled;
647 // === C malloc/calloc/valloc/realloc/posix_memalign ===
649 typedef void* (*malloc_type)(struct _malloc_zone_t* zone,
651 typedef void* (*calloc_type)(struct _malloc_zone_t* zone,
654 typedef void* (*valloc_type)(struct _malloc_zone_t* zone,
656 typedef void (*free_type)(struct _malloc_zone_t* zone,
658 typedef void* (*realloc_type)(struct _malloc_zone_t* zone,
661 typedef void* (*memalign_type)(struct _malloc_zone_t* zone,
665 malloc_type g_old_malloc;
666 calloc_type g_old_calloc;
667 valloc_type g_old_valloc;
668 free_type g_old_free;
669 realloc_type g_old_realloc;
670 memalign_type g_old_memalign;
672 malloc_type g_old_malloc_purgeable;
673 calloc_type g_old_calloc_purgeable;
674 valloc_type g_old_valloc_purgeable;
675 free_type g_old_free_purgeable;
676 realloc_type g_old_realloc_purgeable;
677 memalign_type g_old_memalign_purgeable;
679 void* oom_killer_malloc(struct _malloc_zone_t* zone,
681 ScopedClearErrno clear_errno;
682 void* result = g_old_malloc(zone, size);
684 debug::BreakDebugger();
688 void* oom_killer_calloc(struct _malloc_zone_t* zone,
691 ScopedClearErrno clear_errno;
692 void* result = g_old_calloc(zone, num_items, size);
693 if (!result && num_items && size)
694 debug::BreakDebugger();
698 void* oom_killer_valloc(struct _malloc_zone_t* zone,
700 ScopedClearErrno clear_errno;
701 void* result = g_old_valloc(zone, size);
703 debug::BreakDebugger();
707 void oom_killer_free(struct _malloc_zone_t* zone,
709 ScopedClearErrno clear_errno;
710 g_old_free(zone, ptr);
713 void* oom_killer_realloc(struct _malloc_zone_t* zone,
716 ScopedClearErrno clear_errno;
717 void* result = g_old_realloc(zone, ptr, size);
719 debug::BreakDebugger();
723 void* oom_killer_memalign(struct _malloc_zone_t* zone,
726 ScopedClearErrno clear_errno;
727 void* result = g_old_memalign(zone, alignment, size);
728 // Only die if posix_memalign would have returned ENOMEM, since there are
729 // other reasons why NULL might be returned (see
730 // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
731 if (!result && size && alignment >= sizeof(void*)
732 && (alignment & (alignment - 1)) == 0) {
733 debug::BreakDebugger();
738 void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone,
740 ScopedClearErrno clear_errno;
741 void* result = g_old_malloc_purgeable(zone, size);
743 debug::BreakDebugger();
747 void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone,
750 ScopedClearErrno clear_errno;
751 void* result = g_old_calloc_purgeable(zone, num_items, size);
752 if (!result && num_items && size)
753 debug::BreakDebugger();
757 void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone,
759 ScopedClearErrno clear_errno;
760 void* result = g_old_valloc_purgeable(zone, size);
762 debug::BreakDebugger();
766 void oom_killer_free_purgeable(struct _malloc_zone_t* zone,
768 ScopedClearErrno clear_errno;
769 g_old_free_purgeable(zone, ptr);
772 void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone,
775 ScopedClearErrno clear_errno;
776 void* result = g_old_realloc_purgeable(zone, ptr, size);
778 debug::BreakDebugger();
782 void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone,
785 ScopedClearErrno clear_errno;
786 void* result = g_old_memalign_purgeable(zone, alignment, size);
787 // Only die if posix_memalign would have returned ENOMEM, since there are
788 // other reasons why NULL might be returned (see
789 // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
790 if (!result && size && alignment >= sizeof(void*)
791 && (alignment & (alignment - 1)) == 0) {
792 debug::BreakDebugger();
797 // === C++ operator new ===
799 void oom_killer_new() {
800 debug::BreakDebugger();
803 // === Core Foundation CFAllocators ===
805 bool CanGetContextForCFAllocator() {
807 IsOSDangerouslyLaterThanMountainLionForUseByCFAllocatorReplacement();
810 CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) {
811 if (base::mac::IsOSSnowLeopard()) {
812 ChromeCFAllocatorLeopards* our_allocator =
813 const_cast<ChromeCFAllocatorLeopards*>(
814 reinterpret_cast<const ChromeCFAllocatorLeopards*>(allocator));
815 return &our_allocator->_context;
816 } else if (base::mac::IsOSLion() || base::mac::IsOSMountainLion()) {
817 ChromeCFAllocatorLions* our_allocator =
818 const_cast<ChromeCFAllocatorLions*>(
819 reinterpret_cast<const ChromeCFAllocatorLions*>(allocator));
820 return &our_allocator->_context;
826 CFAllocatorAllocateCallBack g_old_cfallocator_system_default;
827 CFAllocatorAllocateCallBack g_old_cfallocator_malloc;
828 CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone;
830 void* oom_killer_cfallocator_system_default(CFIndex alloc_size,
833 void* result = g_old_cfallocator_system_default(alloc_size, hint, info);
835 debug::BreakDebugger();
839 void* oom_killer_cfallocator_malloc(CFIndex alloc_size,
842 void* result = g_old_cfallocator_malloc(alloc_size, hint, info);
844 debug::BreakDebugger();
848 void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size,
851 void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info);
853 debug::BreakDebugger();
857 // === Cocoa NSObject allocation ===
859 typedef id (*allocWithZone_t)(id, SEL, NSZone*);
860 allocWithZone_t g_old_allocWithZone;
862 id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone)
864 id result = g_old_allocWithZone(self, _cmd, zone);
866 debug::BreakDebugger();
872 void* UncheckedMalloc(size_t size) {
874 ScopedClearErrno clear_errno;
875 ThreadLocalBooleanAutoReset flag(g_unchecked_malloc.Pointer(), true);
876 return g_old_malloc(malloc_default_zone(), size);
881 void EnableTerminationOnOutOfMemory() {
882 if (g_oom_killer_enabled)
885 g_oom_killer_enabled = true;
887 // === C malloc/calloc/valloc/realloc/posix_memalign ===
889 // This approach is not perfect, as requests for amounts of memory larger than
890 // MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will
891 // still fail with a NULL rather than dying (see
892 // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details).
893 // Unfortunately, it's the best we can do. Also note that this does not affect
894 // allocations from non-default zones.
896 CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc &&
897 !g_old_memalign) << "Old allocators unexpectedly non-null";
899 CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable &&
900 !g_old_valloc_purgeable && !g_old_realloc_purgeable &&
901 !g_old_memalign_purgeable) << "Old allocators unexpectedly non-null";
903 #if !defined(ADDRESS_SANITIZER)
904 // Don't do anything special on OOM for the malloc zones replaced by
905 // AddressSanitizer, as modifying or protecting them may not work correctly.
907 // See http://trac.webkit.org/changeset/53362/trunk/Tools/DumpRenderTree/mac
908 bool zone_allocators_protected = base::mac::IsOSLionOrLater();
910 ChromeMallocZone* default_zone =
911 reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
912 ChromeMallocZone* purgeable_zone =
913 reinterpret_cast<ChromeMallocZone*>(malloc_default_purgeable_zone());
915 vm_address_t page_start_default = 0;
916 vm_address_t page_start_purgeable = 0;
917 vm_size_t len_default = 0;
918 vm_size_t len_purgeable = 0;
919 if (zone_allocators_protected) {
920 page_start_default = reinterpret_cast<vm_address_t>(default_zone) &
921 static_cast<vm_size_t>(~(getpagesize() - 1));
922 len_default = reinterpret_cast<vm_address_t>(default_zone) -
923 page_start_default + sizeof(ChromeMallocZone);
924 mprotect(reinterpret_cast<void*>(page_start_default), len_default,
925 PROT_READ | PROT_WRITE);
927 if (purgeable_zone) {
928 page_start_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) &
929 static_cast<vm_size_t>(~(getpagesize() - 1));
930 len_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) -
931 page_start_purgeable + sizeof(ChromeMallocZone);
932 mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable,
933 PROT_READ | PROT_WRITE);
939 g_old_malloc = default_zone->malloc;
940 g_old_calloc = default_zone->calloc;
941 g_old_valloc = default_zone->valloc;
942 g_old_free = default_zone->free;
943 g_old_realloc = default_zone->realloc;
944 CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_free &&
946 << "Failed to get system allocation functions.";
948 default_zone->malloc = oom_killer_malloc;
949 default_zone->calloc = oom_killer_calloc;
950 default_zone->valloc = oom_killer_valloc;
951 default_zone->free = oom_killer_free;
952 default_zone->realloc = oom_killer_realloc;
954 if (default_zone->version >= 5) {
955 g_old_memalign = default_zone->memalign;
957 default_zone->memalign = oom_killer_memalign;
960 // Purgeable zone (if it exists)
962 if (purgeable_zone) {
963 g_old_malloc_purgeable = purgeable_zone->malloc;
964 g_old_calloc_purgeable = purgeable_zone->calloc;
965 g_old_valloc_purgeable = purgeable_zone->valloc;
966 g_old_free_purgeable = purgeable_zone->free;
967 g_old_realloc_purgeable = purgeable_zone->realloc;
968 CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable &&
969 g_old_valloc_purgeable && g_old_free_purgeable &&
970 g_old_realloc_purgeable)
971 << "Failed to get system allocation functions.";
973 purgeable_zone->malloc = oom_killer_malloc_purgeable;
974 purgeable_zone->calloc = oom_killer_calloc_purgeable;
975 purgeable_zone->valloc = oom_killer_valloc_purgeable;
976 purgeable_zone->free = oom_killer_free_purgeable;
977 purgeable_zone->realloc = oom_killer_realloc_purgeable;
979 if (purgeable_zone->version >= 5) {
980 g_old_memalign_purgeable = purgeable_zone->memalign;
981 if (g_old_memalign_purgeable)
982 purgeable_zone->memalign = oom_killer_memalign_purgeable;
986 if (zone_allocators_protected) {
987 mprotect(reinterpret_cast<void*>(page_start_default), len_default,
989 if (purgeable_zone) {
990 mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable,
996 // === C malloc_zone_batch_malloc ===
998 // batch_malloc is omitted because the default malloc zone's implementation
999 // only supports batch_malloc for "tiny" allocations from the free list. It
1000 // will fail for allocations larger than "tiny", and will only allocate as
1001 // many blocks as it's able to from the free list. These factors mean that it
1002 // can return less than the requested memory even in a non-out-of-memory
1003 // situation. There's no good way to detect whether a batch_malloc failure is
1004 // due to these other factors, or due to genuine memory or address space
1005 // exhaustion. The fact that it only allocates space from the "tiny" free list
1006 // means that it's likely that a failure will not be due to memory exhaustion.
1007 // Similarly, these constraints on batch_malloc mean that callers must always
1008 // be expecting to receive less memory than was requested, even in situations
1009 // where memory pressure is not a concern. Finally, the only public interface
1010 // to batch_malloc is malloc_zone_batch_malloc, which is specific to the
1011 // system's malloc implementation. It's unlikely that anyone's even heard of
1014 // === C++ operator new ===
1016 // Yes, operator new does call through to malloc, but this will catch failures
1017 // that our imperfect handling of malloc cannot.
1019 std::set_new_handler(oom_killer_new);
1021 #ifndef ADDRESS_SANITIZER
1022 // === Core Foundation CFAllocators ===
1024 // This will not catch allocation done by custom allocators, but will catch
1025 // all allocation done by system-provided ones.
1027 CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc &&
1028 !g_old_cfallocator_malloc_zone)
1029 << "Old allocators unexpectedly non-null";
1031 bool cf_allocator_internals_known = CanGetContextForCFAllocator();
1033 if (cf_allocator_internals_known) {
1034 CFAllocatorContext* context =
1035 ContextForCFAllocator(kCFAllocatorSystemDefault);
1036 CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault.";
1037 g_old_cfallocator_system_default = context->allocate;
1038 CHECK(g_old_cfallocator_system_default)
1039 << "Failed to get kCFAllocatorSystemDefault allocation function.";
1040 context->allocate = oom_killer_cfallocator_system_default;
1042 context = ContextForCFAllocator(kCFAllocatorMalloc);
1043 CHECK(context) << "Failed to get context for kCFAllocatorMalloc.";
1044 g_old_cfallocator_malloc = context->allocate;
1045 CHECK(g_old_cfallocator_malloc)
1046 << "Failed to get kCFAllocatorMalloc allocation function.";
1047 context->allocate = oom_killer_cfallocator_malloc;
1049 context = ContextForCFAllocator(kCFAllocatorMallocZone);
1050 CHECK(context) << "Failed to get context for kCFAllocatorMallocZone.";
1051 g_old_cfallocator_malloc_zone = context->allocate;
1052 CHECK(g_old_cfallocator_malloc_zone)
1053 << "Failed to get kCFAllocatorMallocZone allocation function.";
1054 context->allocate = oom_killer_cfallocator_malloc_zone;
1056 NSLog(@"Internals of CFAllocator not known; out-of-memory failures via "
1057 "CFAllocator will not result in termination. http://crbug.com/45650");
1061 // === Cocoa NSObject allocation ===
1063 // Note that both +[NSObject new] and +[NSObject alloc] call through to
1064 // +[NSObject allocWithZone:].
1066 CHECK(!g_old_allocWithZone)
1067 << "Old allocator unexpectedly non-null";
1069 Class nsobject_class = [NSObject class];
1070 Method orig_method = class_getClassMethod(nsobject_class,
1071 @selector(allocWithZone:));
1072 g_old_allocWithZone = reinterpret_cast<allocWithZone_t>(
1073 method_getImplementation(orig_method));
1074 CHECK(g_old_allocWithZone)
1075 << "Failed to get allocWithZone allocation function.";
1076 method_setImplementation(orig_method,
1077 reinterpret_cast<IMP>(oom_killer_allocWithZone));
1080 ProcessId GetParentProcessId(ProcessHandle process) {
1081 struct kinfo_proc info;
1082 size_t length = sizeof(struct kinfo_proc);
1083 int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process };
1084 if (sysctl(mib, 4, &info, &length, NULL, 0) < 0) {
1085 DPLOG(ERROR) << "sysctl";
1090 return info.kp_eproc.e_ppid;
1095 const int kWaitBeforeKillSeconds = 2;
1097 // Reap |child| process. This call blocks until completion.
1098 void BlockingReap(pid_t child) {
1099 const pid_t result = HANDLE_EINTR(waitpid(child, NULL, 0));
1101 DPLOG(ERROR) << "waitpid(" << child << ", NULL, 0)";
1105 // Waits for |timeout| seconds for the given |child| to exit and reap it. If
1106 // the child doesn't exit within the time specified, kills it.
1108 // This function takes two approaches: first, it tries to use kqueue to
1109 // observe when the process exits. kevent can monitor a kqueue with a
1110 // timeout, so this method is preferred to wait for a specified period of
1111 // time. Once the kqueue indicates the process has exited, waitpid will reap
1112 // the exited child. If the kqueue doesn't provide an exit event notification,
1113 // before the timeout expires, or if the kqueue fails or misbehaves, the
1114 // process will be mercilessly killed and reaped.
1116 // A child process passed to this function may be in one of several states:
1117 // running, terminated and not yet reaped, and (apparently, and unfortunately)
1118 // terminated and already reaped. Normally, a process will at least have been
1119 // asked to exit before this function is called, but this is not required.
1120 // If a process is terminating and unreaped, there may be a window between the
1121 // time that kqueue will no longer recognize it and when it becomes an actual
1122 // zombie that a non-blocking (WNOHANG) waitpid can reap. This condition is
1123 // detected when kqueue indicates that the process is not running and a
1124 // non-blocking waitpid fails to reap the process but indicates that it is
1125 // still running. In this event, a blocking attempt to reap the process
1126 // collects the known-dying child, preventing zombies from congregating.
1128 // In the event that the kqueue misbehaves entirely, as it might under a
1129 // EMFILE condition ("too many open files", or out of file descriptors), this
1130 // function will forcibly kill and reap the child without delay. This
1131 // eliminates another potential zombie vector. (If you're out of file
1132 // descriptors, you're probably deep into something else, but that doesn't
1133 // mean that zombies be allowed to kick you while you're down.)
1135 // The fact that this function seemingly can be called to wait on a child
1136 // that's not only already terminated but already reaped is a bit of a
1137 // problem: a reaped child's pid can be reclaimed and may refer to a distinct
1138 // process in that case. The fact that this function can seemingly be called
1139 // to wait on a process that's not even a child is also a problem: kqueue will
1140 // work in that case, but waitpid won't, and killing a non-child might not be
1141 // the best approach.
1142 void WaitForChildToDie(pid_t child, int timeout) {
1144 DCHECK(timeout > 0);
1146 // DON'T ADD ANY EARLY RETURNS TO THIS FUNCTION without ensuring that
1147 // |child| has been reaped. Specifically, even if a kqueue, kevent, or other
1148 // call fails, this function should fall back to the last resort of trying
1149 // to kill and reap the process. Not observing this rule will resurrect
1154 int kq = HANDLE_EINTR(kqueue());
1156 DPLOG(ERROR) << "kqueue()";
1158 file_util::ScopedFD auto_close_kq(&kq);
1160 struct kevent change = {0};
1161 EV_SET(&change, child, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL);
1162 result = HANDLE_EINTR(kevent(kq, &change, 1, NULL, 0, NULL));
1165 if (errno != ESRCH) {
1166 DPLOG(ERROR) << "kevent (setup " << child << ")";
1168 // At this point, one of the following has occurred:
1169 // 1. The process has died but has not yet been reaped.
1170 // 2. The process has died and has already been reaped.
1171 // 3. The process is in the process of dying. It's no longer
1172 // kqueueable, but it may not be waitable yet either. Mark calls
1173 // this case the "zombie death race".
1175 result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG));
1178 // A positive result indicates case 1. waitpid succeeded and reaped
1179 // the child. A result of -1 indicates case 2. The child has already
1180 // been reaped. In both of these cases, no further action is
1185 // |result| is 0, indicating case 3. The process will be waitable in
1186 // short order. Fall back out of the kqueue code to kill it (for good
1187 // measure) and reap it.
1190 // Keep track of the elapsed time to be able to restart kevent if it's
1192 TimeDelta remaining_delta = TimeDelta::FromSeconds(timeout);
1193 Time deadline = Time::Now() + remaining_delta;
1195 struct kevent event = {0};
1196 while (remaining_delta.InMilliseconds() > 0) {
1197 const struct timespec remaining_timespec = remaining_delta.ToTimeSpec();
1198 result = kevent(kq, NULL, 0, &event, 1, &remaining_timespec);
1199 if (result == -1 && errno == EINTR) {
1200 remaining_delta = deadline - Time::Now();
1208 DPLOG(ERROR) << "kevent (wait " << child << ")";
1209 } else if (result > 1) {
1210 DLOG(ERROR) << "kevent (wait " << child << "): unexpected result "
1212 } else if (result == 1) {
1213 if ((event.fflags & NOTE_EXIT) &&
1214 (event.ident == static_cast<uintptr_t>(child))) {
1215 // The process is dead or dying. This won't block for long, if at
1217 BlockingReap(child);
1220 DLOG(ERROR) << "kevent (wait " << child
1221 << "): unexpected event: fflags=" << event.fflags
1222 << ", ident=" << event.ident;
1228 // The child is still alive, or is very freshly dead. Be sure by sending it
1229 // a signal. This is safe even if it's freshly dead, because it will be a
1230 // zombie (or on the way to zombiedom) and kill will return 0 even if the
1231 // signal is not delivered to a live process.
1232 result = kill(child, SIGKILL);
1234 DPLOG(ERROR) << "kill(" << child << ", SIGKILL)";
1236 // The child is definitely on the way out now. BlockingReap won't need to
1237 // wait for long, if at all.
1238 BlockingReap(child);
1244 void EnsureProcessTerminated(ProcessHandle process) {
1245 WaitForChildToDie(process, kWaitBeforeKillSeconds);