Added documentation to web_view.js/web_view_experimental.js regarding the webview...
[chromium-blink-merge.git] / chrome / renderer / safe_browsing / scorer_unittest.cc
blobadfadb28aa6f748140d8991b67cfe076b8c35052
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "chrome/renderer/safe_browsing/scorer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/files/file_path.h"
9 #include "base/files/scoped_temp_dir.h"
10 #include "base/format_macros.h"
11 #include "base/memory/scoped_ptr.h"
12 #include "base/message_loop/message_loop.h"
13 #include "base/threading/thread.h"
14 #include "chrome/common/safe_browsing/client_model.pb.h"
15 #include "chrome/renderer/safe_browsing/features.h"
16 #include "testing/gmock/include/gmock/gmock.h"
17 #include "testing/gtest/include/gtest/gtest.h"
19 namespace safe_browsing {
21 class PhishingScorerTest : public ::testing::Test {
22 protected:
23 virtual void SetUp() {
24 // Setup a simple model. Note that the scorer does not care about
25 // how features are encoded so we use readable strings here to make
26 // the test simpler to follow.
27 model_.Clear();
28 model_.add_hashes("feature1");
29 model_.add_hashes("feature2");
30 model_.add_hashes("feature3");
31 model_.add_hashes("token one");
32 model_.add_hashes("token two");
34 ClientSideModel::Rule* rule;
35 rule = model_.add_rule();
36 rule->set_weight(0.5);
38 rule = model_.add_rule();
39 rule->add_feature(0); // feature1
40 rule->set_weight(2.0);
42 rule = model_.add_rule();
43 rule->add_feature(0); // feature1
44 rule->add_feature(1); // feature2
45 rule->set_weight(3.0);
47 model_.add_page_term(3); // token one
48 model_.add_page_term(4); // token two
50 // These will be murmur3 hashes, but for this test it's not necessary
51 // that the hashes correspond to actual words.
52 model_.add_page_word(1000U);
53 model_.add_page_word(2000U);
54 model_.add_page_word(3000U);
56 model_.set_max_words_per_term(2);
57 model_.set_murmur_hash_seed(12345U);
60 ClientSideModel model_;
63 TEST_F(PhishingScorerTest, HasValidModel) {
64 scoped_ptr<Scorer> scorer;
65 scorer.reset(Scorer::Create(model_.SerializeAsString()));
66 EXPECT_TRUE(scorer.get() != NULL);
68 // Invalid model string.
69 scorer.reset(Scorer::Create("bogus string"));
70 EXPECT_FALSE(scorer.get());
72 // Mode is missing a required field.
73 model_.clear_max_words_per_term();
74 scorer.reset(Scorer::Create(model_.SerializePartialAsString()));
75 EXPECT_FALSE(scorer.get());
78 TEST_F(PhishingScorerTest, PageTerms) {
79 scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
80 ASSERT_TRUE(scorer.get());
81 base::hash_set<std::string> expected_page_terms;
82 expected_page_terms.insert("token one");
83 expected_page_terms.insert("token two");
84 EXPECT_THAT(scorer->page_terms(),
85 ::testing::ContainerEq(expected_page_terms));
88 TEST_F(PhishingScorerTest, PageWords) {
89 scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
90 ASSERT_TRUE(scorer.get());
91 base::hash_set<uint32> expected_page_words;
92 expected_page_words.insert(1000U);
93 expected_page_words.insert(2000U);
94 expected_page_words.insert(3000U);
95 EXPECT_THAT(scorer->page_words(),
96 ::testing::ContainerEq(expected_page_words));
97 EXPECT_EQ(2U, scorer->max_words_per_term());
98 EXPECT_EQ(12345U, scorer->murmurhash3_seed());
101 TEST_F(PhishingScorerTest, ComputeScore) {
102 scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
103 ASSERT_TRUE(scorer.get());
105 // An empty feature map should match the empty rule.
106 FeatureMap features;
107 // The expected logodds is 0.5 (empty rule) => p = exp(0.5) / (exp(0.5) + 1)
108 // => 0.62245933120185459
109 EXPECT_DOUBLE_EQ(0.62245933120185459, scorer->ComputeScore(features));
110 // Same if the feature does not match any rule.
111 EXPECT_TRUE(features.AddBooleanFeature("not existing feature"));
112 EXPECT_DOUBLE_EQ(0.62245933120185459, scorer->ComputeScore(features));
114 // Feature 1 matches which means that the logodds will be:
115 // 0.5 (empty rule) + 2.0 (rule weight) * 0.15 (feature weight) = 0.8
116 // => p = 0.6899744811276125
117 EXPECT_TRUE(features.AddRealFeature("feature1", 0.15));
118 EXPECT_DOUBLE_EQ(0.6899744811276125, scorer->ComputeScore(features));
120 // Now, both feature 1 and feature 2 match. Expected logodds:
121 // 0.5 (empty rule) + 2.0 (rule weight) * 0.15 (feature weight) +
122 // 3.0 (rule weight) * 0.15 (feature1 weight) * 1.0 (feature2) weight = 9.8
123 // => p = 0.99999627336071584
124 EXPECT_TRUE(features.AddBooleanFeature("feature2"));
125 EXPECT_DOUBLE_EQ(0.77729986117469119, scorer->ComputeScore(features));
127 } // namespace safe_browsing