Roll src/third_party/WebKit 3aea697:d9c6159 (svn 201973:201974)
[chromium-blink-merge.git] / tools / android / heap_profiler / heap_profiler.c
blobaef63baf41c2d5deda3996a602c676bc8b2adabe
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This is a OS-independent* module which purpose is tracking allocations and
6 // their call sites (stack traces). It is able to deal with hole punching
7 // (read: munmap). Also, it has low overhead and its presence in the system its
8 // barely noticeable, even if tracing *all* the processes.
9 // This module does NOT know how to deal with stack unwinding. The caller must
10 // do that and pass the addresses of the unwound stack.
11 // * (Modulo three lines for mutexes.)
13 // Exposed API:
14 // void heap_profiler_init(HeapStats*);
15 // void heap_profiler_alloc(addr, size, stack_frames, depth, flags);
16 // void heap_profiler_free(addr, size); (size == 0 means free entire region).
18 // The profiling information is tracked into two data structures:
19 // 1) A RB-Tree of non-overlapping VM regions (allocs) sorted by their start
20 // addr. Each entry tracks the start-end addresses and points to the stack
21 // trace which created that allocation (see below).
22 // 2) A (hash) table of stack traces. In general the #allocations >> #call sites
23 // which create those allocations. In order to avoid duplicating the latter,
24 // they are stored distinctly in this hash table and used by reference.
26 // / Process virtual address space \
27 // +------+ +------+ +------+
28 // |Alloc1| |Alloc2| |Alloc3| <- Allocs (a RB-Tree underneath)
29 // +------+ +------+ +------+
30 // Len: 12 Len: 4 Len: 4
31 // | | | stack_traces
32 // | | | +-----------+--------------+
33 // | | | | Alloc tot | stack frames +
34 // | | | +-----------+--------------+
35 // +------------|-------------+------------> | 16 | 0x1234 .... |
36 // | +-----------+--------------+
37 // +--------------------------> | 4 | 0x5678 .... |
38 // +-----------+--------------+
39 // (A hash-table underneath)
41 // Final note: the memory for both 1) and 2) entries is carved out from two
42 // static pools (i.e. stack_traces and allocs). The pools are treated as
43 // a sbrk essentially, and are kept compact by reusing freed elements (hence
44 // having a freelist for each of them).
46 // All the internal (static) functions here assume that the |lock| is held.
48 #include <assert.h>
49 #include <string.h>
51 // Platform-dependent mutex boilerplate.
52 #if defined(__linux__) || defined(__ANDROID__)
53 #include <pthread.h>
54 #define DEFINE_MUTEX(x) pthread_mutex_t x = PTHREAD_MUTEX_INITIALIZER
55 #define LOCK_MUTEX(x) pthread_mutex_lock(&x)
56 #define UNLOCK_MUTEX(x) pthread_mutex_unlock(&x)
57 #else
58 #error OS not supported.
59 #endif
61 #include "tools/android/heap_profiler/heap_profiler.h"
64 static DEFINE_MUTEX(lock);
66 // |stats| contains the global tracking metadata and is the entry point which
67 // is read by the heap_dump tool.
68 static HeapStats* stats;
70 // +---------------------------------------------------------------------------+
71 // + Stack traces hash-table +
72 // +---------------------------------------------------------------------------+
73 #define ST_ENTRIES_MAX (64 * 1024)
74 #define ST_HASHTABLE_BUCKETS (64 * 1024) /* Must be a power of 2. */
76 static StacktraceEntry stack_traces[ST_ENTRIES_MAX];
77 static StacktraceEntry* stack_traces_freelist;
78 static StacktraceEntry* stack_traces_ht[ST_HASHTABLE_BUCKETS];
80 // Looks up a stack trace from the stack frames. Creates a new one if necessary.
81 static StacktraceEntry* record_stacktrace(uintptr_t* frames, uint32_t depth) {
82 if (depth == 0)
83 return NULL;
85 if (depth > HEAP_PROFILER_MAX_DEPTH)
86 depth = HEAP_PROFILER_MAX_DEPTH;
88 uint32_t i;
89 uintptr_t hash = 0;
90 for (i = 0; i < depth; ++i)
91 hash = (hash << 1) ^ (frames[i]);
92 const uint32_t slot = hash & (ST_HASHTABLE_BUCKETS - 1);
93 StacktraceEntry* st = stack_traces_ht[slot];
95 // Look for an existing entry in the hash-table.
96 const size_t frames_length = depth * sizeof(uintptr_t);
97 while (st != NULL && st->hash != hash &&
98 memcmp(frames, st->frames, frames_length) != 0) {
99 st = st->next;
102 // If not found, create a new one from the stack_traces array and add it to
103 // the hash-table.
104 if (st == NULL) {
105 // Get a free element either from the freelist or from the pool.
106 if (stack_traces_freelist != NULL) {
107 st = stack_traces_freelist;
108 stack_traces_freelist = stack_traces_freelist->next;
109 } else if (stats->max_stack_traces < ST_ENTRIES_MAX) {
110 st = &stack_traces[stats->max_stack_traces];
111 ++stats->max_stack_traces;
112 } else {
113 return NULL;
116 memset(st, 0, sizeof(*st));
117 memcpy(st->frames, frames, frames_length);
118 st->hash = hash;
119 st->next = stack_traces_ht[slot];
120 stack_traces_ht[slot] = st;
121 ++stats->num_stack_traces;
124 return st;
127 // Frees up a stack trace and appends it to the corresponding freelist.
128 static void free_stacktrace(StacktraceEntry* st) {
129 assert(st->alloc_bytes == 0);
130 const uint32_t slot = st->hash & (ST_HASHTABLE_BUCKETS - 1);
132 // The expected load factor of the hash-table is very low. Frees should be
133 // pretty rare. Hence don't bother with a doubly linked list, might cost more.
134 StacktraceEntry** prev = &stack_traces_ht[slot];
135 while (*prev != st)
136 prev = &((*prev)->next);
138 // Remove from the hash-table bucket.
139 assert(*prev == st);
140 *prev = st->next;
142 // Add to the freelist.
143 st->next = stack_traces_freelist;
144 stack_traces_freelist = st;
145 --stats->num_stack_traces;
148 // +---------------------------------------------------------------------------+
149 // + Allocs RB-tree +
150 // +---------------------------------------------------------------------------+
151 #define ALLOCS_ENTRIES_MAX (256 * 1024)
153 static Alloc allocs[ALLOCS_ENTRIES_MAX];
154 static Alloc* allocs_freelist;
155 static RB_HEAD(HeapEntriesTree, Alloc) allocs_tree =
156 RB_INITIALIZER(&allocs_tree);
158 // Comparator used by the RB-Tree (mind the overflow, avoid arith on addresses).
159 static int allocs_tree_cmp(Alloc *alloc_1, Alloc *alloc_2) {
160 if (alloc_1->start < alloc_2->start)
161 return -1;
162 if (alloc_1->start > alloc_2->start)
163 return 1;
164 return 0;
167 RB_PROTOTYPE(HeapEntriesTree, Alloc, rb_node, allocs_tree_cmp);
168 RB_GENERATE(HeapEntriesTree, Alloc, rb_node, allocs_tree_cmp);
170 // Allocates a new Alloc and inserts it in the tree.
171 static Alloc* insert_alloc(
172 uintptr_t start, uintptr_t end, StacktraceEntry* st, uint32_t flags) {
173 Alloc* alloc = NULL;
175 // First of all, get a free element either from the freelist or from the pool.
176 if (allocs_freelist != NULL) {
177 alloc = allocs_freelist;
178 allocs_freelist = alloc->next_free;
179 } else if (stats->max_allocs < ALLOCS_ENTRIES_MAX) {
180 alloc = &allocs[stats->max_allocs];
181 ++stats->max_allocs;
182 } else {
183 return NULL; // OOM.
186 alloc->start = start;
187 alloc->end = end;
188 alloc->st = st;
189 alloc->flags = flags;
190 alloc->next_free = NULL;
191 RB_INSERT(HeapEntriesTree, &allocs_tree, alloc);
192 ++stats->num_allocs;
193 return alloc;
196 // Deletes all the allocs in the range [addr, addr+size[ dealing with partial
197 // frees and hole punching. Note that in the general case this function might
198 // need to deal with very unfortunate cases, as below:
200 // Alloc tree begin: [Alloc 1]----[Alloc 2]-------[Alloc 3][Alloc 4]---[Alloc 5]
201 // Deletion range: [xxxxxxxxxxxxxxxxxxxx]
202 // Alloc tree end: [Alloc 1]----[Al.2]----------------------[Al.4]---[Alloc 5]
203 // Alloc3 has to be deleted and Alloc 2,4 shrunk.
204 static uint32_t delete_allocs_in_range(void* addr, size_t size) {
205 uintptr_t del_start = (uintptr_t) addr;
206 uintptr_t del_end = del_start + size - 1;
207 uint32_t flags = 0;
209 Alloc* alloc = NULL;
210 Alloc* next_alloc = RB_ROOT(&allocs_tree);
212 // Lookup the first (by address) relevant Alloc to initiate the deletion walk.
213 // At the end of the loop next_alloc is either:
214 // - the closest alloc starting before (or exactly at) the start of the
215 // deletion range (i.e. addr == del_start).
216 // - the first alloc inside the deletion range.
217 // - the first alloc after the deletion range iff the range was already empty
218 // (in this case the next loop will just bail out doing nothing).
219 // - NULL: iff the entire tree is empty (as above).
220 while (next_alloc != NULL) {
221 alloc = next_alloc;
222 if (alloc->start > del_start) {
223 next_alloc = RB_LEFT(alloc, rb_node);
224 } else if (alloc->end < del_start) {
225 next_alloc = RB_RIGHT(alloc, rb_node);
226 } else { // alloc->start <= del_start && alloc->end >= del_start
227 break;
231 // Now scan the allocs linearly deleting chunks (or eventually whole allocs)
232 // until passing the end of the deleting region.
233 next_alloc = alloc;
234 while (next_alloc != NULL) {
235 alloc = next_alloc;
236 next_alloc = RB_NEXT(HeapEntriesTree, &allocs_tree, alloc);
238 if (size != 0) {
239 // In the general case we stop passed the end of the deletion range.
240 if (alloc->start > del_end)
241 break;
243 // This deals with the case of the first Alloc laying before the range.
244 if (alloc->end < del_start)
245 continue;
246 } else {
247 // size == 0 is a special case. It means deleting only the alloc which
248 // starts exactly at |del_start| if any (for dealing with free(ptr)).
249 if (alloc->start > del_start)
250 break;
251 if (alloc->start < del_start)
252 continue;
253 del_end = alloc->end;
256 // Reached this point the Alloc must overlap (partially or completely) with
257 // the deletion range.
258 assert(!(alloc->start > del_end || alloc->end < del_start));
260 StacktraceEntry* st = alloc->st;
261 flags |= alloc->flags;
262 uintptr_t freed_bytes = 0; // Bytes freed in this cycle.
264 if (del_start <= alloc->start) {
265 if (del_end >= alloc->end) {
266 // Complete overlap. Delete full Alloc. Note: the range might might
267 // still overlap with the next allocs.
268 // Begin: ------[alloc.start alloc.end]-[next alloc]
269 // Del range: [xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx]
270 // Result: ---------------------------------[next alloc]
271 // [next alloc] will be shrinked on the next iteration.
272 freed_bytes = alloc->end - alloc->start + 1;
273 RB_REMOVE(HeapEntriesTree, &allocs_tree, alloc);
275 // Clean-up, so heap_dump can tell this is a free entry and skip it.
276 alloc->start = alloc->end = 0;
277 alloc->st = NULL;
279 // Put in the freelist.
280 alloc->next_free = allocs_freelist;
281 allocs_freelist = alloc;
282 --stats->num_allocs;
283 } else {
284 // Partial overlap at beginning. Cut first part and shrink the alloc.
285 // Begin: ------[alloc.start alloc.end]-[next alloc]
286 // Del range: [xxxxxx]
287 // Result: ------------[start alloc.end]-[next alloc]
288 freed_bytes = del_end - alloc->start + 1;
289 alloc->start = del_end + 1;
290 // No need to update the tree even if we changed the key. The keys are
291 // still monotonic (because the ranges are guaranteed to not overlap).
293 } else {
294 if (del_end >= alloc->end) {
295 // Partial overlap at end. Cut last part and shrink the alloc left.
296 // Begin: ------[alloc.start alloc.end]-[next alloc]
297 // Del range: [xxxxxxxx]
298 // Result: ------[alloc.start alloc.end]-----[next alloc]
299 // [next alloc] will be shrinked on the next iteration.
300 freed_bytes = alloc->end - del_start + 1;
301 alloc->end = del_start - 1;
302 } else {
303 // Hole punching. Requires creating an extra alloc.
304 // Begin: ------[alloc.start alloc.end]-[next alloc]
305 // Del range: [xxx]
306 // Result: ------[ alloc 1 ]-----[ alloc 2 ]-[next alloc]
307 freed_bytes = del_end - del_start + 1;
308 const uintptr_t old_end = alloc->end;
309 alloc->end = del_start - 1;
311 // In case of OOM, don't count the 2nd alloc we failed to allocate.
312 if (insert_alloc(del_end + 1, old_end, st, alloc->flags) == NULL)
313 freed_bytes += (old_end - del_end);
316 // Now update the StackTraceEntry the Alloc was pointing to, eventually
317 // freeing it up.
318 assert(st->alloc_bytes >= freed_bytes);
319 st->alloc_bytes -= freed_bytes;
320 if (st->alloc_bytes == 0)
321 free_stacktrace(st);
322 stats->total_alloc_bytes -= freed_bytes;
324 return flags;
327 // +---------------------------------------------------------------------------+
328 // + Library entry points (refer to heap_profiler.h for API doc). +
329 // +---------------------------------------------------------------------------+
330 void heap_profiler_free(void* addr, size_t size, uint32_t* old_flags) {
331 assert(size == 0 || ((uintptr_t) addr + (size - 1)) >= (uintptr_t) addr);
333 LOCK_MUTEX(lock);
334 uint32_t flags = delete_allocs_in_range(addr, size);
335 UNLOCK_MUTEX(lock);
337 if (old_flags != NULL)
338 *old_flags = flags;
341 void heap_profiler_alloc(void* addr, size_t size, uintptr_t* frames,
342 uint32_t depth, uint32_t flags) {
343 if (depth > HEAP_PROFILER_MAX_DEPTH)
344 depth = HEAP_PROFILER_MAX_DEPTH;
346 if (size == 0) // Apps calling malloc(0), sometimes it happens.
347 return;
349 const uintptr_t start = (uintptr_t) addr;
350 const uintptr_t end = start + (size - 1);
351 assert(start <= end);
353 LOCK_MUTEX(lock);
355 delete_allocs_in_range(addr, size);
357 StacktraceEntry* st = record_stacktrace(frames, depth);
358 if (st != NULL) {
359 Alloc* alloc = insert_alloc(start, end, st, flags);
360 if (alloc != NULL) {
361 st->alloc_bytes += size;
362 stats->total_alloc_bytes += size;
366 UNLOCK_MUTEX(lock);
369 void heap_profiler_init(HeapStats* heap_stats) {
370 LOCK_MUTEX(lock);
372 assert(stats == NULL);
373 stats = heap_stats;
374 memset(stats, 0, sizeof(HeapStats));
375 stats->magic_start = HEAP_PROFILER_MAGIC_MARKER;
376 stats->allocs = &allocs[0];
377 stats->stack_traces = &stack_traces[0];
379 UNLOCK_MUTEX(lock);
382 void heap_profiler_cleanup(void) {
383 LOCK_MUTEX(lock);
385 assert(stats != NULL);
386 memset(stack_traces, 0, sizeof(StacktraceEntry) * stats->max_stack_traces);
387 memset(stack_traces_ht, 0, sizeof(stack_traces_ht));
388 stack_traces_freelist = NULL;
390 memset(allocs, 0, sizeof(Alloc) * stats->max_allocs);
391 allocs_freelist = NULL;
392 RB_INIT(&allocs_tree);
394 stats = NULL;
396 UNLOCK_MUTEX(lock);