1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
19 using base::StringPiece
;
23 using std::numeric_limits
;
30 // Mask to select the lowest 48 bits of a sequence number.
31 const QuicPacketSequenceNumber k6ByteSequenceNumberMask
=
32 GG_UINT64_C(0x0000FFFFFFFFFFFF);
33 const QuicPacketSequenceNumber k4ByteSequenceNumberMask
=
34 GG_UINT64_C(0x00000000FFFFFFFF);
35 const QuicPacketSequenceNumber k2ByteSequenceNumberMask
=
36 GG_UINT64_C(0x000000000000FFFF);
37 const QuicPacketSequenceNumber k1ByteSequenceNumberMask
=
38 GG_UINT64_C(0x00000000000000FF);
40 const QuicConnectionId k1ByteConnectionIdMask
= GG_UINT64_C(0x00000000000000FF);
41 const QuicConnectionId k4ByteConnectionIdMask
= GG_UINT64_C(0x00000000FFFFFFFF);
43 // Number of bits the sequence number length bits are shifted from the right
44 // edge of the public header.
45 const uint8 kPublicHeaderSequenceNumberShift
= 4;
47 // New Frame Types, QUIC v. >= 10:
48 // There are two interpretations for the Frame Type byte in the QUIC protocol,
49 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
51 // Regular Frame Types use the Frame Type byte simply. Currently defined
52 // Regular Frame Types are:
53 // Padding : 0b 00000000 (0x00)
54 // ResetStream : 0b 00000001 (0x01)
55 // ConnectionClose : 0b 00000010 (0x02)
56 // GoAway : 0b 00000011 (0x03)
57 // WindowUpdate : 0b 00000100 (0x04)
58 // Blocked : 0b 00000101 (0x05)
60 // Special Frame Types encode both a Frame Type and corresponding flags
61 // all in the Frame Type byte. Currently defined Special Frame Types are:
62 // Stream : 0b 1xxxxxxx
65 // Semantics of the flag bits above (the x bits) depends on the frame type.
67 // Masks to determine if the frame type is a special use
68 // and for specific special frame types.
69 const uint8 kQuicFrameTypeSpecialMask
= 0xE0; // 0b 11100000
70 const uint8 kQuicFrameTypeStreamMask
= 0x80;
71 const uint8 kQuicFrameTypeAckMask
= 0x40;
73 // Stream frame relative shifts and masks for interpreting the stream flags.
74 // StreamID may be 1, 2, 3, or 4 bytes.
75 const uint8 kQuicStreamIdShift
= 2;
76 const uint8 kQuicStreamIDLengthMask
= 0x03;
78 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
79 const uint8 kQuicStreamOffsetShift
= 3;
80 const uint8 kQuicStreamOffsetMask
= 0x07;
82 // Data length may be 0 or 2 bytes.
83 const uint8 kQuicStreamDataLengthShift
= 1;
84 const uint8 kQuicStreamDataLengthMask
= 0x01;
86 // Fin bit may be set or not.
87 const uint8 kQuicStreamFinShift
= 1;
88 const uint8 kQuicStreamFinMask
= 0x01;
90 // Sequence number size shift used in AckFrames.
91 const uint8 kQuicSequenceNumberLengthShift
= 2;
93 // Acks may be truncated.
94 const uint8 kQuicAckTruncatedShift
= 1;
95 const uint8 kQuicAckTruncatedMask
= 0x01;
97 // Acks may not have any nacks.
98 const uint8 kQuicHasNacksMask
= 0x01;
100 // Returns the absolute value of the difference between |a| and |b|.
101 QuicPacketSequenceNumber
Delta(QuicPacketSequenceNumber a
,
102 QuicPacketSequenceNumber b
) {
103 // Since these are unsigned numbers, we can't just return abs(a - b)
110 QuicPacketSequenceNumber
ClosestTo(QuicPacketSequenceNumber target
,
111 QuicPacketSequenceNumber a
,
112 QuicPacketSequenceNumber b
) {
113 return (Delta(target
, a
) < Delta(target
, b
)) ? a
: b
;
116 QuicSequenceNumberLength
ReadSequenceNumberLength(uint8 flags
) {
117 switch (flags
& PACKET_FLAGS_6BYTE_SEQUENCE
) {
118 case PACKET_FLAGS_6BYTE_SEQUENCE
:
119 return PACKET_6BYTE_SEQUENCE_NUMBER
;
120 case PACKET_FLAGS_4BYTE_SEQUENCE
:
121 return PACKET_4BYTE_SEQUENCE_NUMBER
;
122 case PACKET_FLAGS_2BYTE_SEQUENCE
:
123 return PACKET_2BYTE_SEQUENCE_NUMBER
;
124 case PACKET_FLAGS_1BYTE_SEQUENCE
:
125 return PACKET_1BYTE_SEQUENCE_NUMBER
;
127 LOG(DFATAL
) << "Unreachable case statement.";
128 return PACKET_6BYTE_SEQUENCE_NUMBER
;
134 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
135 const QuicWindowUpdateFrame
& frame
) {
139 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame
& frame
) {
143 QuicFramer::QuicFramer(const QuicVersionVector
& supported_versions
,
144 QuicTime creation_time
,
145 Perspective perspective
)
147 fec_builder_(nullptr),
148 entropy_calculator_(nullptr),
149 error_(QUIC_NO_ERROR
),
150 last_sequence_number_(0),
151 last_serialized_connection_id_(0),
152 supported_versions_(supported_versions
),
153 decrypter_level_(ENCRYPTION_NONE
),
154 alternative_decrypter_level_(ENCRYPTION_NONE
),
155 alternative_decrypter_latch_(false),
156 perspective_(perspective
),
157 validate_flags_(true),
158 creation_time_(creation_time
),
159 last_timestamp_(QuicTime::Delta::Zero()) {
160 DCHECK(!supported_versions
.empty());
161 quic_version_
= supported_versions_
[0];
162 decrypter_
.reset(QuicDecrypter::Create(kNULL
));
163 encrypter_
[ENCRYPTION_NONE
].reset(QuicEncrypter::Create(kNULL
));
166 QuicFramer::~QuicFramer() {}
169 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id
,
170 QuicStreamOffset offset
,
171 bool last_frame_in_packet
,
172 InFecGroup is_in_fec_group
) {
173 bool no_stream_frame_length
= last_frame_in_packet
&&
174 is_in_fec_group
== NOT_IN_FEC_GROUP
;
175 return kQuicFrameTypeSize
+ GetStreamIdSize(stream_id
) +
176 GetStreamOffsetSize(offset
) +
177 (no_stream_frame_length
? 0 : kQuicStreamPayloadLengthSize
);
181 size_t QuicFramer::GetMinAckFrameSize(
182 QuicSequenceNumberLength sequence_number_length
,
183 QuicSequenceNumberLength largest_observed_length
) {
184 return kQuicFrameTypeSize
+ kQuicEntropyHashSize
+
185 largest_observed_length
+ kQuicDeltaTimeLargestObservedSize
;
189 size_t QuicFramer::GetStopWaitingFrameSize(
190 QuicSequenceNumberLength sequence_number_length
) {
191 return kQuicFrameTypeSize
+ kQuicEntropyHashSize
+
192 sequence_number_length
;
196 size_t QuicFramer::GetMinRstStreamFrameSize() {
197 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
+
198 kQuicMaxStreamOffsetSize
+ kQuicErrorCodeSize
+
199 kQuicErrorDetailsLengthSize
;
203 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
204 return kQuicFrameTypeSize
+ kQuicErrorCodeSize
+ kQuicErrorDetailsLengthSize
;
208 size_t QuicFramer::GetMinGoAwayFrameSize() {
209 return kQuicFrameTypeSize
+ kQuicErrorCodeSize
+ kQuicErrorDetailsLengthSize
+
210 kQuicMaxStreamIdSize
;
214 size_t QuicFramer::GetWindowUpdateFrameSize() {
215 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
+ kQuicMaxStreamOffsetSize
;
219 size_t QuicFramer::GetBlockedFrameSize() {
220 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
;
224 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id
) {
225 // Sizes are 1 through 4 bytes.
226 for (int i
= 1; i
<= 4; ++i
) {
228 if (stream_id
== 0) {
232 LOG(DFATAL
) << "Failed to determine StreamIDSize.";
237 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset
) {
238 // 0 is a special case.
242 // 2 through 8 are the remaining sizes.
244 for (int i
= 2; i
<= 8; ++i
) {
250 LOG(DFATAL
) << "Failed to determine StreamOffsetSize.";
255 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions
) {
256 return kPublicFlagsSize
+ PACKET_8BYTE_CONNECTION_ID
+
257 number_versions
* kQuicVersionSize
;
260 bool QuicFramer::IsSupportedVersion(const QuicVersion version
) const {
261 for (size_t i
= 0; i
< supported_versions_
.size(); ++i
) {
262 if (version
== supported_versions_
[i
]) {
269 size_t QuicFramer::GetSerializedFrameLength(
270 const QuicFrame
& frame
,
274 InFecGroup is_in_fec_group
,
275 QuicSequenceNumberLength sequence_number_length
) {
276 if (frame
.type
== PADDING_FRAME
) {
277 // PADDING implies end of packet.
281 ComputeFrameLength(frame
, last_frame
, is_in_fec_group
,
282 sequence_number_length
);
283 if (frame_len
<= free_bytes
) {
284 // Frame fits within packet. Note that acks may be truncated.
287 // Only truncate the first frame in a packet, so if subsequent ones go
288 // over, stop including more frames.
292 bool can_truncate
= frame
.type
== ACK_FRAME
&&
293 free_bytes
>= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER
,
294 PACKET_6BYTE_SEQUENCE_NUMBER
);
296 // Truncate the frame so the packet will not exceed kMaxPacketSize.
297 // Note that we may not use every byte of the writer in this case.
298 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes
;
301 if (!FLAGS_quic_allow_oversized_packets_for_test
) {
304 LOG(DFATAL
) << "Packet size too small to fit frame.";
308 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
310 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
313 QuicPacketEntropyHash
QuicFramer::GetPacketEntropyHash(
314 const QuicPacketHeader
& header
) {
315 return header
.entropy_flag
<< (header
.packet_sequence_number
% 8);
318 QuicPacket
* QuicFramer::BuildDataPacket(const QuicPacketHeader
& header
,
319 const QuicFrames
& frames
,
321 size_t packet_length
) {
322 QuicDataWriter
writer(packet_length
, buffer
);
323 if (!AppendPacketHeader(header
, &writer
)) {
324 LOG(DFATAL
) << "AppendPacketHeader failed";
329 for (const QuicFrame
& frame
: frames
) {
330 // Determine if we should write stream frame length in header.
331 const bool no_stream_frame_length
=
332 (header
.is_in_fec_group
== NOT_IN_FEC_GROUP
) &&
333 (i
== frames
.size() - 1);
334 if (!AppendTypeByte(frame
, no_stream_frame_length
, &writer
)) {
335 LOG(DFATAL
) << "AppendTypeByte failed";
339 switch (frame
.type
) {
341 writer
.WritePadding();
344 if (!AppendStreamFrame(
345 *frame
.stream_frame
, no_stream_frame_length
, &writer
)) {
346 LOG(DFATAL
) << "AppendStreamFrame failed";
351 if (!AppendAckFrameAndTypeByte(
352 header
, *frame
.ack_frame
, &writer
)) {
353 LOG(DFATAL
) << "AppendAckFrameAndTypeByte failed";
357 case STOP_WAITING_FRAME
:
358 if (!AppendStopWaitingFrame(
359 header
, *frame
.stop_waiting_frame
, &writer
)) {
360 LOG(DFATAL
) << "AppendStopWaitingFrame failed";
365 // Ping has no payload.
367 case RST_STREAM_FRAME
:
368 if (!AppendRstStreamFrame(*frame
.rst_stream_frame
, &writer
)) {
369 LOG(DFATAL
) << "AppendRstStreamFrame failed";
373 case CONNECTION_CLOSE_FRAME
:
374 if (!AppendConnectionCloseFrame(
375 *frame
.connection_close_frame
, &writer
)) {
376 LOG(DFATAL
) << "AppendConnectionCloseFrame failed";
381 if (!AppendGoAwayFrame(*frame
.goaway_frame
, &writer
)) {
382 LOG(DFATAL
) << "AppendGoAwayFrame failed";
386 case WINDOW_UPDATE_FRAME
:
387 if (!AppendWindowUpdateFrame(*frame
.window_update_frame
, &writer
)) {
388 LOG(DFATAL
) << "AppendWindowUpdateFrame failed";
393 if (!AppendBlockedFrame(*frame
.blocked_frame
, &writer
)) {
394 LOG(DFATAL
) << "AppendBlockedFrame failed";
399 RaiseError(QUIC_INVALID_FRAME_DATA
);
400 LOG(DFATAL
) << "QUIC_INVALID_FRAME_DATA";
407 new QuicPacket(writer
.data(), writer
.length(), false,
408 header
.public_header
.connection_id_length
,
409 header
.public_header
.version_flag
,
410 header
.public_header
.sequence_number_length
);
413 fec_builder_
->OnBuiltFecProtectedPayload(header
,
414 packet
->FecProtectedData());
420 QuicPacket
* QuicFramer::BuildFecPacket(const QuicPacketHeader
& header
,
421 const QuicFecData
& fec
) {
422 DCHECK_EQ(IN_FEC_GROUP
, header
.is_in_fec_group
);
423 DCHECK_NE(0u, header
.fec_group
);
424 size_t len
= GetPacketHeaderSize(header
);
425 len
+= fec
.redundancy
.length();
427 scoped_ptr
<char[]> buffer(new char[len
]);
428 QuicDataWriter
writer(len
, buffer
.get());
429 if (!AppendPacketHeader(header
, &writer
)) {
430 LOG(DFATAL
) << "AppendPacketHeader failed";
434 if (!writer
.WriteBytes(fec
.redundancy
.data(), fec
.redundancy
.length())) {
435 LOG(DFATAL
) << "Failed to add FEC";
439 return new QuicPacket(buffer
.release(), len
, true,
440 header
.public_header
.connection_id_length
,
441 header
.public_header
.version_flag
,
442 header
.public_header
.sequence_number_length
);
446 QuicEncryptedPacket
* QuicFramer::BuildPublicResetPacket(
447 const QuicPublicResetPacket
& packet
) {
448 DCHECK(packet
.public_header
.reset_flag
);
450 CryptoHandshakeMessage reset
;
451 reset
.set_tag(kPRST
);
452 reset
.SetValue(kRNON
, packet
.nonce_proof
);
453 reset
.SetValue(kRSEQ
, packet
.rejected_sequence_number
);
454 if (!packet
.client_address
.address().empty()) {
455 // packet.client_address is non-empty.
456 QuicSocketAddressCoder
address_coder(packet
.client_address
);
457 string serialized_address
= address_coder
.Encode();
458 if (serialized_address
.empty()) {
461 reset
.SetStringPiece(kCADR
, serialized_address
);
463 const QuicData
& reset_serialized
= reset
.GetSerialized();
466 kPublicFlagsSize
+ PACKET_8BYTE_CONNECTION_ID
+ reset_serialized
.length();
467 scoped_ptr
<char[]> buffer(new char[len
]);
468 QuicDataWriter
writer(len
, buffer
.get());
470 uint8 flags
= static_cast<uint8
>(PACKET_PUBLIC_FLAGS_RST
|
471 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
);
472 if (!writer
.WriteUInt8(flags
)) {
476 if (!writer
.WriteUInt64(packet
.public_header
.connection_id
)) {
480 if (!writer
.WriteBytes(reset_serialized
.data(), reset_serialized
.length())) {
484 return new QuicEncryptedPacket(buffer
.release(), len
, true);
487 QuicEncryptedPacket
* QuicFramer::BuildVersionNegotiationPacket(
488 const QuicPacketPublicHeader
& header
,
489 const QuicVersionVector
& supported_versions
) {
490 DCHECK(header
.version_flag
);
491 size_t len
= GetVersionNegotiationPacketSize(supported_versions
.size());
492 scoped_ptr
<char[]> buffer(new char[len
]);
493 QuicDataWriter
writer(len
, buffer
.get());
495 uint8 flags
= static_cast<uint8
>(PACKET_PUBLIC_FLAGS_VERSION
|
496 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
);
497 if (!writer
.WriteUInt8(flags
)) {
501 if (!writer
.WriteUInt64(header
.connection_id
)) {
505 for (size_t i
= 0; i
< supported_versions
.size(); ++i
) {
506 if (!writer
.WriteUInt32(QuicVersionToQuicTag(supported_versions
[i
]))) {
511 return new QuicEncryptedPacket(buffer
.release(), len
, true);
514 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket
& packet
) {
515 DCHECK(!reader_
.get());
516 reader_
.reset(new QuicDataReader(packet
.data(), packet
.length()));
518 visitor_
->OnPacket();
520 // First parse the public header.
521 QuicPacketPublicHeader public_header
;
522 if (!ProcessPublicHeader(&public_header
)) {
523 DLOG(WARNING
) << "Unable to process public header.";
524 DCHECK_NE("", detailed_error_
);
525 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
528 if (!visitor_
->OnUnauthenticatedPublicHeader(public_header
)) {
529 // The visitor suppresses further processing of the packet.
530 reader_
.reset(nullptr);
534 if (perspective_
== Perspective::IS_SERVER
&& public_header
.version_flag
&&
535 public_header
.versions
[0] != quic_version_
) {
536 if (!visitor_
->OnProtocolVersionMismatch(public_header
.versions
[0])) {
537 reader_
.reset(nullptr);
543 if (perspective_
== Perspective::IS_CLIENT
&& public_header
.version_flag
) {
544 rv
= ProcessVersionNegotiationPacket(&public_header
);
545 } else if (public_header
.reset_flag
) {
546 rv
= ProcessPublicResetPacket(public_header
);
547 } else if (packet
.length() <= kMaxPacketSize
) {
548 char buffer
[kMaxPacketSize
];
549 rv
= ProcessDataPacket(public_header
, packet
, buffer
, kMaxPacketSize
);
551 scoped_ptr
<char[]> large_buffer(new char[packet
.length()]);
552 rv
= ProcessDataPacket(public_header
, packet
, large_buffer
.get(),
554 LOG_IF(DFATAL
, rv
) << "QUIC should never successfully process packets "
555 << "larger than kMaxPacketSize. packet size:"
559 reader_
.reset(nullptr);
563 bool QuicFramer::ProcessVersionNegotiationPacket(
564 QuicPacketPublicHeader
* public_header
) {
565 DCHECK_EQ(Perspective::IS_CLIENT
, perspective_
);
566 // Try reading at least once to raise error if the packet is invalid.
569 if (!reader_
->ReadBytes(&version
, kQuicVersionSize
)) {
570 set_detailed_error("Unable to read supported version in negotiation.");
571 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET
);
573 public_header
->versions
.push_back(QuicTagToQuicVersion(version
));
574 } while (!reader_
->IsDoneReading());
576 visitor_
->OnVersionNegotiationPacket(*public_header
);
580 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader
& public_header
,
581 const QuicEncryptedPacket
& packet
,
582 char* decrypted_buffer
,
583 size_t buffer_length
) {
584 QuicPacketHeader
header(public_header
);
585 if (!ProcessPacketHeader(&header
, packet
, decrypted_buffer
, buffer_length
)) {
586 DLOG(WARNING
) << "Unable to process data packet header.";
590 if (!visitor_
->OnPacketHeader(header
)) {
591 // The visitor suppresses further processing of the packet.
595 if (packet
.length() > kMaxPacketSize
) {
596 DLOG(WARNING
) << "Packet too large: " << packet
.length();
597 return RaiseError(QUIC_PACKET_TOO_LARGE
);
600 // Handle the payload.
601 if (!header
.fec_flag
) {
602 if (header
.is_in_fec_group
== IN_FEC_GROUP
) {
603 StringPiece payload
= reader_
->PeekRemainingPayload();
604 visitor_
->OnFecProtectedPayload(payload
);
606 if (!ProcessFrameData(header
)) {
607 DCHECK_NE(QUIC_NO_ERROR
, error_
); // ProcessFrameData sets the error.
608 DLOG(WARNING
) << "Unable to process frame data.";
612 QuicFecData fec_data
;
613 fec_data
.fec_group
= header
.fec_group
;
614 fec_data
.redundancy
= reader_
->ReadRemainingPayload();
615 visitor_
->OnFecData(fec_data
);
618 visitor_
->OnPacketComplete();
622 bool QuicFramer::ProcessPublicResetPacket(
623 const QuicPacketPublicHeader
& public_header
) {
624 QuicPublicResetPacket
packet(public_header
);
626 scoped_ptr
<CryptoHandshakeMessage
> reset(
627 CryptoFramer::ParseMessage(reader_
->ReadRemainingPayload()));
629 set_detailed_error("Unable to read reset message.");
630 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
632 if (reset
->tag() != kPRST
) {
633 set_detailed_error("Incorrect message tag.");
634 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
637 if (reset
->GetUint64(kRNON
, &packet
.nonce_proof
) != QUIC_NO_ERROR
) {
638 set_detailed_error("Unable to read nonce proof.");
639 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
641 // TODO(satyamshekhar): validate nonce to protect against DoS.
643 if (reset
->GetUint64(kRSEQ
, &packet
.rejected_sequence_number
) !=
645 set_detailed_error("Unable to read rejected sequence number.");
646 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
650 if (reset
->GetStringPiece(kCADR
, &address
)) {
651 QuicSocketAddressCoder address_coder
;
652 if (address_coder
.Decode(address
.data(), address
.length())) {
653 packet
.client_address
= IPEndPoint(address_coder
.ip(),
654 address_coder
.port());
658 visitor_
->OnPublicResetPacket(packet
);
662 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader
* header
,
663 StringPiece payload
) {
664 DCHECK(!reader_
.get());
666 visitor_
->OnRevivedPacket();
668 header
->entropy_hash
= GetPacketEntropyHash(*header
);
670 if (!visitor_
->OnPacketHeader(*header
)) {
674 if (payload
.length() > kMaxPacketSize
) {
675 set_detailed_error("Revived packet too large.");
676 return RaiseError(QUIC_PACKET_TOO_LARGE
);
679 reader_
.reset(new QuicDataReader(payload
.data(), payload
.length()));
680 if (!ProcessFrameData(*header
)) {
681 DCHECK_NE(QUIC_NO_ERROR
, error_
); // ProcessFrameData sets the error.
682 DLOG(WARNING
) << "Unable to process frame data.";
686 visitor_
->OnPacketComplete();
687 reader_
.reset(nullptr);
691 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader
& header
,
692 QuicDataWriter
* writer
) {
693 DVLOG(1) << "Appending header: " << header
;
694 DCHECK(header
.fec_group
> 0 || header
.is_in_fec_group
== NOT_IN_FEC_GROUP
);
695 uint8 public_flags
= 0;
696 if (header
.public_header
.reset_flag
) {
697 public_flags
|= PACKET_PUBLIC_FLAGS_RST
;
699 if (header
.public_header
.version_flag
) {
700 public_flags
|= PACKET_PUBLIC_FLAGS_VERSION
;
704 GetSequenceNumberFlags(header
.public_header
.sequence_number_length
)
705 << kPublicHeaderSequenceNumberShift
;
707 switch (header
.public_header
.connection_id_length
) {
708 case PACKET_0BYTE_CONNECTION_ID
:
709 if (!writer
->WriteUInt8(
710 public_flags
| PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID
)) {
714 case PACKET_1BYTE_CONNECTION_ID
:
715 if (!writer
->WriteUInt8(
716 public_flags
| PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID
)) {
719 if (!writer
->WriteUInt8(
720 header
.public_header
.connection_id
& k1ByteConnectionIdMask
)) {
724 case PACKET_4BYTE_CONNECTION_ID
:
725 if (!writer
->WriteUInt8(
726 public_flags
| PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID
)) {
729 if (!writer
->WriteUInt32(
730 header
.public_header
.connection_id
& k4ByteConnectionIdMask
)) {
734 case PACKET_8BYTE_CONNECTION_ID
:
735 if (!writer
->WriteUInt8(
736 public_flags
| PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
)) {
739 if (!writer
->WriteUInt64(header
.public_header
.connection_id
)) {
744 last_serialized_connection_id_
= header
.public_header
.connection_id
;
746 if (header
.public_header
.version_flag
) {
747 DCHECK_EQ(Perspective::IS_CLIENT
, perspective_
);
748 writer
->WriteUInt32(QuicVersionToQuicTag(quic_version_
));
751 if (!AppendPacketSequenceNumber(header
.public_header
.sequence_number_length
,
752 header
.packet_sequence_number
, writer
)) {
756 uint8 private_flags
= 0;
757 if (header
.entropy_flag
) {
758 private_flags
|= PACKET_PRIVATE_FLAGS_ENTROPY
;
760 if (header
.is_in_fec_group
== IN_FEC_GROUP
) {
761 private_flags
|= PACKET_PRIVATE_FLAGS_FEC_GROUP
;
763 if (header
.fec_flag
) {
764 private_flags
|= PACKET_PRIVATE_FLAGS_FEC
;
766 if (!writer
->WriteUInt8(private_flags
)) {
770 // The FEC group number is the sequence number of the first fec
771 // protected packet, or 0 if this packet is not protected.
772 if (header
.is_in_fec_group
== IN_FEC_GROUP
) {
773 DCHECK_LE(header
.fec_group
, header
.packet_sequence_number
);
774 DCHECK_LT(header
.packet_sequence_number
- header
.fec_group
, 255u);
775 // Offset from the current packet sequence number to the first fec
777 uint8 first_fec_protected_packet_offset
=
778 static_cast<uint8
>(header
.packet_sequence_number
- header
.fec_group
);
779 if (!writer
->WriteBytes(&first_fec_protected_packet_offset
, 1)) {
787 const QuicTime::Delta
QuicFramer::CalculateTimestampFromWire(
788 uint32 time_delta_us
) {
789 // The new time_delta might have wrapped to the next epoch, or it
790 // might have reverse wrapped to the previous epoch, or it might
791 // remain in the same epoch. Select the time closest to the previous
794 // epoch_delta is the delta between epochs. A delta is 4 bytes of
796 const uint64 epoch_delta
= GG_UINT64_C(1) << 32;
797 uint64 epoch
= last_timestamp_
.ToMicroseconds() & ~(epoch_delta
- 1);
798 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
799 uint64 prev_epoch
= epoch
- epoch_delta
;
800 uint64 next_epoch
= epoch
+ epoch_delta
;
802 uint64 time
= ClosestTo(last_timestamp_
.ToMicroseconds(),
803 epoch
+ time_delta_us
,
804 ClosestTo(last_timestamp_
.ToMicroseconds(),
805 prev_epoch
+ time_delta_us
,
806 next_epoch
+ time_delta_us
));
808 return QuicTime::Delta::FromMicroseconds(time
);
811 QuicPacketSequenceNumber
QuicFramer::CalculatePacketSequenceNumberFromWire(
812 QuicSequenceNumberLength sequence_number_length
,
813 QuicPacketSequenceNumber packet_sequence_number
) const {
814 // The new sequence number might have wrapped to the next epoch, or
815 // it might have reverse wrapped to the previous epoch, or it might
816 // remain in the same epoch. Select the sequence number closest to the
817 // next expected sequence number, the previous sequence number plus 1.
819 // epoch_delta is the delta between epochs the sequence number was serialized
820 // with, so the correct value is likely the same epoch as the last sequence
821 // number or an adjacent epoch.
822 const QuicPacketSequenceNumber epoch_delta
=
823 GG_UINT64_C(1) << (8 * sequence_number_length
);
824 QuicPacketSequenceNumber next_sequence_number
= last_sequence_number_
+ 1;
825 QuicPacketSequenceNumber epoch
= last_sequence_number_
& ~(epoch_delta
- 1);
826 QuicPacketSequenceNumber prev_epoch
= epoch
- epoch_delta
;
827 QuicPacketSequenceNumber next_epoch
= epoch
+ epoch_delta
;
829 return ClosestTo(next_sequence_number
,
830 epoch
+ packet_sequence_number
,
831 ClosestTo(next_sequence_number
,
832 prev_epoch
+ packet_sequence_number
,
833 next_epoch
+ packet_sequence_number
));
836 bool QuicFramer::ProcessPublicHeader(
837 QuicPacketPublicHeader
* public_header
) {
839 if (!reader_
->ReadBytes(&public_flags
, 1)) {
840 set_detailed_error("Unable to read public flags.");
844 public_header
->reset_flag
= (public_flags
& PACKET_PUBLIC_FLAGS_RST
) != 0;
845 public_header
->version_flag
=
846 (public_flags
& PACKET_PUBLIC_FLAGS_VERSION
) != 0;
848 if (validate_flags_
&&
849 !public_header
->version_flag
&& public_flags
> PACKET_PUBLIC_FLAGS_MAX
) {
850 set_detailed_error("Illegal public flags value.");
854 if (public_header
->reset_flag
&& public_header
->version_flag
) {
855 set_detailed_error("Got version flag in reset packet");
859 switch (public_flags
& PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
) {
860 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
:
861 if (!reader_
->ReadUInt64(&public_header
->connection_id
)) {
862 set_detailed_error("Unable to read ConnectionId.");
865 public_header
->connection_id_length
= PACKET_8BYTE_CONNECTION_ID
;
867 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID
:
868 // If the connection_id is truncated, expect to read the last serialized
870 if (!reader_
->ReadBytes(&public_header
->connection_id
,
871 PACKET_4BYTE_CONNECTION_ID
)) {
872 set_detailed_error("Unable to read ConnectionId.");
875 if (last_serialized_connection_id_
&&
876 (public_header
->connection_id
& k4ByteConnectionIdMask
) !=
877 (last_serialized_connection_id_
& k4ByteConnectionIdMask
)) {
878 set_detailed_error("Truncated 4 byte ConnectionId does not match "
879 "previous connection_id.");
882 public_header
->connection_id_length
= PACKET_4BYTE_CONNECTION_ID
;
883 public_header
->connection_id
= last_serialized_connection_id_
;
885 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID
:
886 if (!reader_
->ReadBytes(&public_header
->connection_id
,
887 PACKET_1BYTE_CONNECTION_ID
)) {
888 set_detailed_error("Unable to read ConnectionId.");
891 if (last_serialized_connection_id_
&&
892 (public_header
->connection_id
& k1ByteConnectionIdMask
) !=
893 (last_serialized_connection_id_
& k1ByteConnectionIdMask
)) {
894 set_detailed_error("Truncated 1 byte ConnectionId does not match "
895 "previous connection_id.");
898 public_header
->connection_id_length
= PACKET_1BYTE_CONNECTION_ID
;
899 public_header
->connection_id
= last_serialized_connection_id_
;
901 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID
:
902 public_header
->connection_id_length
= PACKET_0BYTE_CONNECTION_ID
;
903 public_header
->connection_id
= last_serialized_connection_id_
;
907 public_header
->sequence_number_length
=
908 ReadSequenceNumberLength(
909 public_flags
>> kPublicHeaderSequenceNumberShift
);
911 // Read the version only if the packet is from the client.
912 // version flag from the server means version negotiation packet.
913 if (public_header
->version_flag
&& perspective_
== Perspective::IS_SERVER
) {
915 if (!reader_
->ReadUInt32(&version_tag
)) {
916 set_detailed_error("Unable to read protocol version.");
920 // If the version from the new packet is the same as the version of this
921 // framer, then the public flags should be set to something we understand.
922 // If not, this raises an error.
923 QuicVersion version
= QuicTagToQuicVersion(version_tag
);
924 if (version
== quic_version_
&& public_flags
> PACKET_PUBLIC_FLAGS_MAX
) {
925 set_detailed_error("Illegal public flags value.");
928 public_header
->versions
.push_back(version
);
934 QuicSequenceNumberLength
QuicFramer::GetMinSequenceNumberLength(
935 QuicPacketSequenceNumber sequence_number
) {
936 if (sequence_number
< 1 << (PACKET_1BYTE_SEQUENCE_NUMBER
* 8)) {
937 return PACKET_1BYTE_SEQUENCE_NUMBER
;
938 } else if (sequence_number
< 1 << (PACKET_2BYTE_SEQUENCE_NUMBER
* 8)) {
939 return PACKET_2BYTE_SEQUENCE_NUMBER
;
940 } else if (sequence_number
<
941 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER
* 8)) {
942 return PACKET_4BYTE_SEQUENCE_NUMBER
;
944 return PACKET_6BYTE_SEQUENCE_NUMBER
;
949 uint8
QuicFramer::GetSequenceNumberFlags(
950 QuicSequenceNumberLength sequence_number_length
) {
951 switch (sequence_number_length
) {
952 case PACKET_1BYTE_SEQUENCE_NUMBER
:
953 return PACKET_FLAGS_1BYTE_SEQUENCE
;
954 case PACKET_2BYTE_SEQUENCE_NUMBER
:
955 return PACKET_FLAGS_2BYTE_SEQUENCE
;
956 case PACKET_4BYTE_SEQUENCE_NUMBER
:
957 return PACKET_FLAGS_4BYTE_SEQUENCE
;
958 case PACKET_6BYTE_SEQUENCE_NUMBER
:
959 return PACKET_FLAGS_6BYTE_SEQUENCE
;
961 LOG(DFATAL
) << "Unreachable case statement.";
962 return PACKET_FLAGS_6BYTE_SEQUENCE
;
967 QuicFramer::AckFrameInfo
QuicFramer::GetAckFrameInfo(
968 const QuicAckFrame
& frame
) {
969 AckFrameInfo ack_info
;
970 if (frame
.missing_packets
.empty()) {
973 DCHECK_GE(frame
.largest_observed
, *frame
.missing_packets
.rbegin());
974 size_t cur_range_length
= 0;
975 SequenceNumberSet::const_iterator iter
= frame
.missing_packets
.begin();
976 QuicPacketSequenceNumber last_missing
= *iter
;
978 for (; iter
!= frame
.missing_packets
.end(); ++iter
) {
979 if (cur_range_length
< numeric_limits
<uint8
>::max() &&
980 *iter
== (last_missing
+ 1)) {
983 ack_info
.nack_ranges
[last_missing
- cur_range_length
] =
984 static_cast<uint8
>(cur_range_length
);
985 cur_range_length
= 0;
987 ack_info
.max_delta
= max(ack_info
.max_delta
, *iter
- last_missing
);
988 last_missing
= *iter
;
990 // Include the last nack range.
991 ack_info
.nack_ranges
[last_missing
- cur_range_length
] =
992 static_cast<uint8
>(cur_range_length
);
993 // Include the range to the largest observed.
995 max(ack_info
.max_delta
, frame
.largest_observed
- last_missing
);
999 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader
* header
,
1000 const QuicEncryptedPacket
& packet
,
1001 char* decrypted_buffer
,
1002 size_t buffer_length
) {
1003 if (!ProcessPacketSequenceNumber(header
->public_header
.sequence_number_length
,
1004 &header
->packet_sequence_number
)) {
1005 set_detailed_error("Unable to read sequence number.");
1006 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1009 if (header
->packet_sequence_number
== 0u) {
1010 set_detailed_error("Packet sequence numbers cannot be 0.");
1011 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1014 if (!visitor_
->OnUnauthenticatedHeader(*header
)) {
1018 if (!DecryptPayload(*header
, packet
, decrypted_buffer
, buffer_length
)) {
1019 set_detailed_error("Unable to decrypt payload.");
1020 return RaiseError(QUIC_DECRYPTION_FAILURE
);
1023 uint8 private_flags
;
1024 if (!reader_
->ReadBytes(&private_flags
, 1)) {
1025 set_detailed_error("Unable to read private flags.");
1026 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1029 if (private_flags
> PACKET_PRIVATE_FLAGS_MAX
) {
1030 set_detailed_error("Illegal private flags value.");
1031 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1034 header
->entropy_flag
= (private_flags
& PACKET_PRIVATE_FLAGS_ENTROPY
) != 0;
1035 header
->fec_flag
= (private_flags
& PACKET_PRIVATE_FLAGS_FEC
) != 0;
1037 if ((private_flags
& PACKET_PRIVATE_FLAGS_FEC_GROUP
) != 0) {
1038 header
->is_in_fec_group
= IN_FEC_GROUP
;
1039 uint8 first_fec_protected_packet_offset
;
1040 if (!reader_
->ReadBytes(&first_fec_protected_packet_offset
, 1)) {
1041 set_detailed_error("Unable to read first fec protected packet offset.");
1042 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1044 if (first_fec_protected_packet_offset
>= header
->packet_sequence_number
) {
1045 set_detailed_error("First fec protected packet offset must be less "
1046 "than the sequence number.");
1047 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1050 header
->packet_sequence_number
- first_fec_protected_packet_offset
;
1053 header
->entropy_hash
= GetPacketEntropyHash(*header
);
1054 // Set the last sequence number after we have decrypted the packet
1055 // so we are confident is not attacker controlled.
1056 last_sequence_number_
= header
->packet_sequence_number
;
1060 bool QuicFramer::ProcessPacketSequenceNumber(
1061 QuicSequenceNumberLength sequence_number_length
,
1062 QuicPacketSequenceNumber
* sequence_number
) {
1063 QuicPacketSequenceNumber wire_sequence_number
= 0u;
1064 if (!reader_
->ReadBytes(&wire_sequence_number
, sequence_number_length
)) {
1068 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1069 // in case the first guess is incorrect.
1071 CalculatePacketSequenceNumberFromWire(sequence_number_length
,
1072 wire_sequence_number
);
1076 bool QuicFramer::ProcessFrameData(const QuicPacketHeader
& header
) {
1077 if (reader_
->IsDoneReading()) {
1078 set_detailed_error("Packet has no frames.");
1079 return RaiseError(QUIC_MISSING_PAYLOAD
);
1081 while (!reader_
->IsDoneReading()) {
1083 if (!reader_
->ReadBytes(&frame_type
, 1)) {
1084 set_detailed_error("Unable to read frame type.");
1085 return RaiseError(QUIC_INVALID_FRAME_DATA
);
1088 if (frame_type
& kQuicFrameTypeSpecialMask
) {
1090 if (frame_type
& kQuicFrameTypeStreamMask
) {
1091 QuicStreamFrame frame
;
1092 if (!ProcessStreamFrame(frame_type
, &frame
)) {
1093 return RaiseError(QUIC_INVALID_STREAM_DATA
);
1095 if (!visitor_
->OnStreamFrame(frame
)) {
1096 DVLOG(1) << "Visitor asked to stop further processing.";
1097 // Returning true since there was no parsing error.
1104 if (frame_type
& kQuicFrameTypeAckMask
) {
1106 if (!ProcessAckFrame(frame_type
, &frame
)) {
1107 return RaiseError(QUIC_INVALID_ACK_DATA
);
1109 if (!visitor_
->OnAckFrame(frame
)) {
1110 DVLOG(1) << "Visitor asked to stop further processing.";
1111 // Returning true since there was no parsing error.
1117 // This was a special frame type that did not match any
1118 // of the known ones. Error.
1119 set_detailed_error("Illegal frame type.");
1120 DLOG(WARNING
) << "Illegal frame type: "
1121 << static_cast<int>(frame_type
);
1122 return RaiseError(QUIC_INVALID_FRAME_DATA
);
1125 switch (frame_type
) {
1127 // We're done with the packet.
1130 case RST_STREAM_FRAME
: {
1131 QuicRstStreamFrame frame
;
1132 if (!ProcessRstStreamFrame(&frame
)) {
1133 return RaiseError(QUIC_INVALID_RST_STREAM_DATA
);
1135 if (!visitor_
->OnRstStreamFrame(frame
)) {
1136 DVLOG(1) << "Visitor asked to stop further processing.";
1137 // Returning true since there was no parsing error.
1143 case CONNECTION_CLOSE_FRAME
: {
1144 QuicConnectionCloseFrame frame
;
1145 if (!ProcessConnectionCloseFrame(&frame
)) {
1146 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA
);
1149 if (!visitor_
->OnConnectionCloseFrame(frame
)) {
1150 DVLOG(1) << "Visitor asked to stop further processing.";
1151 // Returning true since there was no parsing error.
1157 case GOAWAY_FRAME
: {
1158 QuicGoAwayFrame goaway_frame
;
1159 if (!ProcessGoAwayFrame(&goaway_frame
)) {
1160 return RaiseError(QUIC_INVALID_GOAWAY_DATA
);
1162 if (!visitor_
->OnGoAwayFrame(goaway_frame
)) {
1163 DVLOG(1) << "Visitor asked to stop further processing.";
1164 // Returning true since there was no parsing error.
1170 case WINDOW_UPDATE_FRAME
: {
1171 QuicWindowUpdateFrame window_update_frame
;
1172 if (!ProcessWindowUpdateFrame(&window_update_frame
)) {
1173 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA
);
1175 if (!visitor_
->OnWindowUpdateFrame(window_update_frame
)) {
1176 DVLOG(1) << "Visitor asked to stop further processing.";
1177 // Returning true since there was no parsing error.
1183 case BLOCKED_FRAME
: {
1184 QuicBlockedFrame blocked_frame
;
1185 if (!ProcessBlockedFrame(&blocked_frame
)) {
1186 return RaiseError(QUIC_INVALID_BLOCKED_DATA
);
1188 if (!visitor_
->OnBlockedFrame(blocked_frame
)) {
1189 DVLOG(1) << "Visitor asked to stop further processing.";
1190 // Returning true since there was no parsing error.
1196 case STOP_WAITING_FRAME
: {
1197 QuicStopWaitingFrame stop_waiting_frame
;
1198 if (!ProcessStopWaitingFrame(header
, &stop_waiting_frame
)) {
1199 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA
);
1201 if (!visitor_
->OnStopWaitingFrame(stop_waiting_frame
)) {
1202 DVLOG(1) << "Visitor asked to stop further processing.";
1203 // Returning true since there was no parsing error.
1209 // Ping has no payload.
1210 QuicPingFrame ping_frame
;
1211 if (!visitor_
->OnPingFrame(ping_frame
)) {
1212 DVLOG(1) << "Visitor asked to stop further processing.";
1213 // Returning true since there was no parsing error.
1220 set_detailed_error("Illegal frame type.");
1221 DLOG(WARNING
) << "Illegal frame type: "
1222 << static_cast<int>(frame_type
);
1223 return RaiseError(QUIC_INVALID_FRAME_DATA
);
1230 bool QuicFramer::ProcessStreamFrame(uint8 frame_type
,
1231 QuicStreamFrame
* frame
) {
1232 uint8 stream_flags
= frame_type
;
1234 stream_flags
&= ~kQuicFrameTypeStreamMask
;
1236 // Read from right to left: StreamID, Offset, Data Length, Fin.
1237 const uint8 stream_id_length
= (stream_flags
& kQuicStreamIDLengthMask
) + 1;
1238 stream_flags
>>= kQuicStreamIdShift
;
1240 uint8 offset_length
= (stream_flags
& kQuicStreamOffsetMask
);
1241 // There is no encoding for 1 byte, only 0 and 2 through 8.
1242 if (offset_length
> 0) {
1245 stream_flags
>>= kQuicStreamOffsetShift
;
1247 bool has_data_length
=
1248 (stream_flags
& kQuicStreamDataLengthMask
) == kQuicStreamDataLengthMask
;
1249 stream_flags
>>= kQuicStreamDataLengthShift
;
1251 frame
->fin
= (stream_flags
& kQuicStreamFinMask
) == kQuicStreamFinShift
;
1253 frame
->stream_id
= 0;
1254 if (!reader_
->ReadBytes(&frame
->stream_id
, stream_id_length
)) {
1255 set_detailed_error("Unable to read stream_id.");
1260 if (!reader_
->ReadBytes(&frame
->offset
, offset_length
)) {
1261 set_detailed_error("Unable to read offset.");
1265 StringPiece frame_data
;
1266 if (has_data_length
) {
1267 if (!reader_
->ReadStringPiece16(&frame_data
)) {
1268 set_detailed_error("Unable to read frame data.");
1272 if (!reader_
->ReadStringPiece(&frame_data
, reader_
->BytesRemaining())) {
1273 set_detailed_error("Unable to read frame data.");
1277 // Point frame to the right data.
1278 frame
->data
.Clear();
1279 if (!frame_data
.empty()) {
1280 frame
->data
.Append(const_cast<char*>(frame_data
.data()), frame_data
.size());
1286 bool QuicFramer::ProcessAckFrame(uint8 frame_type
, QuicAckFrame
* ack_frame
) {
1287 // Determine the three lengths from the frame type: largest observed length,
1288 // missing sequence number length, and missing range length.
1289 const QuicSequenceNumberLength missing_sequence_number_length
=
1290 ReadSequenceNumberLength(frame_type
);
1291 frame_type
>>= kQuicSequenceNumberLengthShift
;
1292 const QuicSequenceNumberLength largest_observed_sequence_number_length
=
1293 ReadSequenceNumberLength(frame_type
);
1294 frame_type
>>= kQuicSequenceNumberLengthShift
;
1295 ack_frame
->is_truncated
= frame_type
& kQuicAckTruncatedMask
;
1296 frame_type
>>= kQuicAckTruncatedShift
;
1297 bool has_nacks
= frame_type
& kQuicHasNacksMask
;
1299 if (!reader_
->ReadBytes(&ack_frame
->entropy_hash
, 1)) {
1300 set_detailed_error("Unable to read entropy hash for received packets.");
1304 if (!reader_
->ReadBytes(&ack_frame
->largest_observed
,
1305 largest_observed_sequence_number_length
)) {
1306 set_detailed_error("Unable to read largest observed.");
1310 uint64 delta_time_largest_observed_us
;
1311 if (!reader_
->ReadUFloat16(&delta_time_largest_observed_us
)) {
1312 set_detailed_error("Unable to read delta time largest observed.");
1316 if (delta_time_largest_observed_us
== kUFloat16MaxValue
) {
1317 ack_frame
->delta_time_largest_observed
= QuicTime::Delta::Infinite();
1319 ack_frame
->delta_time_largest_observed
=
1320 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us
);
1323 if (!ProcessTimestampsInAckFrame(ack_frame
)) {
1331 uint8 num_missing_ranges
;
1332 if (!reader_
->ReadBytes(&num_missing_ranges
, 1)) {
1333 set_detailed_error("Unable to read num missing packet ranges.");
1337 QuicPacketSequenceNumber last_sequence_number
= ack_frame
->largest_observed
;
1338 for (size_t i
= 0; i
< num_missing_ranges
; ++i
) {
1339 QuicPacketSequenceNumber missing_delta
= 0;
1340 if (!reader_
->ReadBytes(&missing_delta
, missing_sequence_number_length
)) {
1341 set_detailed_error("Unable to read missing sequence number delta.");
1344 last_sequence_number
-= missing_delta
;
1345 QuicPacketSequenceNumber range_length
= 0;
1346 if (!reader_
->ReadBytes(&range_length
, PACKET_1BYTE_SEQUENCE_NUMBER
)) {
1347 set_detailed_error("Unable to read missing sequence number range.");
1350 for (size_t j
= 0; j
<= range_length
; ++j
) {
1351 ack_frame
->missing_packets
.insert(last_sequence_number
- j
);
1353 // Subtract an extra 1 to ensure ranges are represented efficiently and
1354 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1355 // to represent an adjacent nack range.
1356 last_sequence_number
-= (range_length
+ 1);
1359 // Parse the revived packets list.
1360 uint8 num_revived_packets
;
1361 if (!reader_
->ReadBytes(&num_revived_packets
, 1)) {
1362 set_detailed_error("Unable to read num revived packets.");
1366 for (size_t i
= 0; i
< num_revived_packets
; ++i
) {
1367 QuicPacketSequenceNumber revived_packet
= 0;
1368 if (!reader_
->ReadBytes(&revived_packet
,
1369 largest_observed_sequence_number_length
)) {
1370 set_detailed_error("Unable to read revived packet.");
1374 ack_frame
->revived_packets
.insert(revived_packet
);
1380 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame
* ack_frame
) {
1381 if (!ack_frame
->is_truncated
) {
1382 uint8 num_received_packets
;
1383 if (!reader_
->ReadBytes(&num_received_packets
, 1)) {
1384 set_detailed_error("Unable to read num received packets.");
1388 if (num_received_packets
> 0) {
1389 uint8 delta_from_largest_observed
;
1390 if (!reader_
->ReadBytes(&delta_from_largest_observed
,
1391 PACKET_1BYTE_SEQUENCE_NUMBER
)) {
1393 "Unable to read sequence delta in received packets.");
1396 QuicPacketSequenceNumber seq_num
= ack_frame
->largest_observed
-
1397 delta_from_largest_observed
;
1399 // Time delta from the framer creation.
1400 uint32 time_delta_us
;
1401 if (!reader_
->ReadBytes(&time_delta_us
, sizeof(time_delta_us
))) {
1402 set_detailed_error("Unable to read time delta in received packets.");
1406 last_timestamp_
= CalculateTimestampFromWire(time_delta_us
);
1408 ack_frame
->received_packet_times
.push_back(
1409 std::make_pair(seq_num
, creation_time_
.Add(last_timestamp_
)));
1411 for (uint8 i
= 1; i
< num_received_packets
; ++i
) {
1412 if (!reader_
->ReadBytes(&delta_from_largest_observed
,
1413 PACKET_1BYTE_SEQUENCE_NUMBER
)) {
1415 "Unable to read sequence delta in received packets.");
1418 seq_num
= ack_frame
->largest_observed
- delta_from_largest_observed
;
1420 // Time delta from the previous timestamp.
1421 uint64 incremental_time_delta_us
;
1422 if (!reader_
->ReadUFloat16(&incremental_time_delta_us
)) {
1424 "Unable to read incremental time delta in received packets.");
1428 last_timestamp_
= last_timestamp_
.Add(
1429 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us
));
1430 ack_frame
->received_packet_times
.push_back(
1431 std::make_pair(seq_num
, creation_time_
.Add(last_timestamp_
)));
1438 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader
& header
,
1439 QuicStopWaitingFrame
* stop_waiting
) {
1440 if (!reader_
->ReadBytes(&stop_waiting
->entropy_hash
, 1)) {
1441 set_detailed_error("Unable to read entropy hash for sent packets.");
1445 QuicPacketSequenceNumber least_unacked_delta
= 0;
1446 if (!reader_
->ReadBytes(&least_unacked_delta
,
1447 header
.public_header
.sequence_number_length
)) {
1448 set_detailed_error("Unable to read least unacked delta.");
1451 DCHECK_GE(header
.packet_sequence_number
, least_unacked_delta
);
1452 stop_waiting
->least_unacked
=
1453 header
.packet_sequence_number
- least_unacked_delta
;
1458 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame
* frame
) {
1459 if (!reader_
->ReadUInt32(&frame
->stream_id
)) {
1460 set_detailed_error("Unable to read stream_id.");
1464 if (!reader_
->ReadUInt64(&frame
->byte_offset
)) {
1465 set_detailed_error("Unable to read rst stream sent byte offset.");
1470 if (!reader_
->ReadUInt32(&error_code
)) {
1471 set_detailed_error("Unable to read rst stream error code.");
1475 if (error_code
>= QUIC_STREAM_LAST_ERROR
) {
1476 set_detailed_error("Invalid rst stream error code.");
1480 frame
->error_code
= static_cast<QuicRstStreamErrorCode
>(error_code
);
1482 StringPiece error_details
;
1483 if (!reader_
->ReadStringPiece16(&error_details
)) {
1484 set_detailed_error("Unable to read rst stream error details.");
1487 frame
->error_details
= error_details
.as_string();
1492 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame
* frame
) {
1494 if (!reader_
->ReadUInt32(&error_code
)) {
1495 set_detailed_error("Unable to read connection close error code.");
1499 if (error_code
>= QUIC_LAST_ERROR
) {
1500 set_detailed_error("Invalid error code.");
1504 frame
->error_code
= static_cast<QuicErrorCode
>(error_code
);
1506 StringPiece error_details
;
1507 if (!reader_
->ReadStringPiece16(&error_details
)) {
1508 set_detailed_error("Unable to read connection close error details.");
1511 frame
->error_details
= error_details
.as_string();
1516 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame
* frame
) {
1518 if (!reader_
->ReadUInt32(&error_code
)) {
1519 set_detailed_error("Unable to read go away error code.");
1522 frame
->error_code
= static_cast<QuicErrorCode
>(error_code
);
1524 if (error_code
>= QUIC_LAST_ERROR
) {
1525 set_detailed_error("Invalid error code.");
1530 if (!reader_
->ReadUInt32(&stream_id
)) {
1531 set_detailed_error("Unable to read last good stream id.");
1534 frame
->last_good_stream_id
= static_cast<QuicStreamId
>(stream_id
);
1536 StringPiece reason_phrase
;
1537 if (!reader_
->ReadStringPiece16(&reason_phrase
)) {
1538 set_detailed_error("Unable to read goaway reason.");
1541 frame
->reason_phrase
= reason_phrase
.as_string();
1546 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame
* frame
) {
1547 if (!reader_
->ReadUInt32(&frame
->stream_id
)) {
1548 set_detailed_error("Unable to read stream_id.");
1552 if (!reader_
->ReadUInt64(&frame
->byte_offset
)) {
1553 set_detailed_error("Unable to read window byte_offset.");
1560 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame
* frame
) {
1561 if (!reader_
->ReadUInt32(&frame
->stream_id
)) {
1562 set_detailed_error("Unable to read stream_id.");
1570 StringPiece
QuicFramer::GetAssociatedDataFromEncryptedPacket(
1571 const QuicEncryptedPacket
& encrypted
,
1572 QuicConnectionIdLength connection_id_length
,
1573 bool includes_version
,
1574 QuicSequenceNumberLength sequence_number_length
) {
1576 encrypted
.data() + kStartOfHashData
, GetStartOfEncryptedData(
1577 connection_id_length
, includes_version
, sequence_number_length
)
1578 - kStartOfHashData
);
1581 void QuicFramer::SetDecrypter(QuicDecrypter
* decrypter
,
1582 EncryptionLevel level
) {
1583 DCHECK(alternative_decrypter_
.get() == nullptr);
1584 DCHECK_GE(level
, decrypter_level_
);
1585 decrypter_
.reset(decrypter
);
1586 decrypter_level_
= level
;
1589 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter
* decrypter
,
1590 EncryptionLevel level
,
1591 bool latch_once_used
) {
1592 alternative_decrypter_
.reset(decrypter
);
1593 alternative_decrypter_level_
= level
;
1594 alternative_decrypter_latch_
= latch_once_used
;
1597 const QuicDecrypter
* QuicFramer::decrypter() const {
1598 return decrypter_
.get();
1601 const QuicDecrypter
* QuicFramer::alternative_decrypter() const {
1602 return alternative_decrypter_
.get();
1605 void QuicFramer::SetEncrypter(EncryptionLevel level
,
1606 QuicEncrypter
* encrypter
) {
1607 DCHECK_GE(level
, 0);
1608 DCHECK_LT(level
, NUM_ENCRYPTION_LEVELS
);
1609 encrypter_
[level
].reset(encrypter
);
1612 const QuicEncrypter
* QuicFramer::encrypter(EncryptionLevel level
) const {
1613 DCHECK_GE(level
, 0);
1614 DCHECK_LT(level
, NUM_ENCRYPTION_LEVELS
);
1615 DCHECK(encrypter_
[level
].get() != nullptr);
1616 return encrypter_
[level
].get();
1619 QuicEncryptedPacket
* QuicFramer::EncryptPacket(
1620 EncryptionLevel level
,
1621 QuicPacketSequenceNumber packet_sequence_number
,
1622 const QuicPacket
& packet
) {
1623 DCHECK(encrypter_
[level
].get() != nullptr);
1625 // Allocate a large enough buffer for the header and the encrypted data.
1626 const size_t encrypted_len
=
1627 encrypter_
[level
]->GetCiphertextSize(packet
.Plaintext().length());
1628 StringPiece header_data
= packet
.BeforePlaintext();
1629 const size_t len
= header_data
.length() + encrypted_len
;
1630 // TODO(ianswett): Consider allocating this on the stack in the typical case.
1631 char* buffer
= new char[len
];
1632 // Copy in the header, because the encrypter only populates the encrypted
1633 // plaintext content.
1634 memcpy(buffer
, header_data
.data(), header_data
.length());
1635 // Encrypt the plaintext into the buffer.
1636 size_t output_length
= 0;
1637 if (!encrypter_
[level
]->EncryptPacket(
1638 packet_sequence_number
, packet
.AssociatedData(), packet
.Plaintext(),
1639 buffer
+ header_data
.length(), &output_length
, encrypted_len
)) {
1640 RaiseError(QUIC_ENCRYPTION_FAILURE
);
1644 return new QuicEncryptedPacket(buffer
, header_data
.length() + output_length
,
1648 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size
) {
1649 // In order to keep the code simple, we don't have the current encryption
1650 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1651 size_t min_plaintext_size
= ciphertext_size
;
1653 for (int i
= ENCRYPTION_NONE
; i
< NUM_ENCRYPTION_LEVELS
; i
++) {
1654 if (encrypter_
[i
].get() != nullptr) {
1655 size_t size
= encrypter_
[i
]->GetMaxPlaintextSize(ciphertext_size
);
1656 if (size
< min_plaintext_size
) {
1657 min_plaintext_size
= size
;
1662 return min_plaintext_size
;
1665 bool QuicFramer::DecryptPayload(const QuicPacketHeader
& header
,
1666 const QuicEncryptedPacket
& packet
,
1667 char* decrypted_buffer
,
1668 size_t buffer_length
) {
1669 StringPiece encrypted
= reader_
->ReadRemainingPayload();
1670 DCHECK(decrypter_
.get() != nullptr);
1671 const StringPiece
& associated_data
= GetAssociatedDataFromEncryptedPacket(
1672 packet
, header
.public_header
.connection_id_length
,
1673 header
.public_header
.version_flag
,
1674 header
.public_header
.sequence_number_length
);
1675 size_t decrypted_length
= 0;
1676 bool success
= decrypter_
->DecryptPacket(
1677 header
.packet_sequence_number
, associated_data
, encrypted
,
1678 decrypted_buffer
, &decrypted_length
, buffer_length
);
1680 visitor_
->OnDecryptedPacket(decrypter_level_
);
1681 } else if (alternative_decrypter_
.get() != nullptr) {
1682 success
= alternative_decrypter_
->DecryptPacket(
1683 header
.packet_sequence_number
, associated_data
, encrypted
,
1684 decrypted_buffer
, &decrypted_length
, buffer_length
);
1686 visitor_
->OnDecryptedPacket(alternative_decrypter_level_
);
1687 if (alternative_decrypter_latch_
) {
1688 // Switch to the alternative decrypter and latch so that we cannot
1690 decrypter_
.reset(alternative_decrypter_
.release());
1691 decrypter_level_
= alternative_decrypter_level_
;
1692 alternative_decrypter_level_
= ENCRYPTION_NONE
;
1694 // Switch the alternative decrypter so that we use it first next time.
1695 decrypter_
.swap(alternative_decrypter_
);
1696 EncryptionLevel level
= alternative_decrypter_level_
;
1697 alternative_decrypter_level_
= decrypter_level_
;
1698 decrypter_level_
= level
;
1704 DLOG(WARNING
) << "DecryptPacket failed for sequence_number:"
1705 << header
.packet_sequence_number
;
1709 reader_
.reset(new QuicDataReader(decrypted_buffer
, decrypted_length
));
1713 size_t QuicFramer::GetAckFrameSize(
1714 const QuicAckFrame
& ack
,
1715 QuicSequenceNumberLength sequence_number_length
) {
1716 AckFrameInfo ack_info
= GetAckFrameInfo(ack
);
1717 QuicSequenceNumberLength largest_observed_length
=
1718 GetMinSequenceNumberLength(ack
.largest_observed
);
1719 QuicSequenceNumberLength missing_sequence_number_length
=
1720 GetMinSequenceNumberLength(ack_info
.max_delta
);
1722 size_t ack_size
= GetMinAckFrameSize(sequence_number_length
,
1723 largest_observed_length
);
1724 if (!ack_info
.nack_ranges
.empty()) {
1725 ack_size
+= kNumberOfNackRangesSize
+ kNumberOfRevivedPacketsSize
;
1726 ack_size
+= min(ack_info
.nack_ranges
.size(), kMaxNackRanges
) *
1727 (missing_sequence_number_length
+ PACKET_1BYTE_SEQUENCE_NUMBER
);
1728 ack_size
+= min(ack
.revived_packets
.size(),
1729 kMaxRevivedPackets
) * largest_observed_length
;
1732 // In version 23, if the ack will be truncated due to too many nack ranges,
1733 // then do not include the number of timestamps (1 byte).
1734 if (ack_info
.nack_ranges
.size() <= kMaxNackRanges
) {
1735 // 1 byte for the number of timestamps.
1737 if (ack
.received_packet_times
.size() > 0) {
1738 // 1 byte for sequence number, 4 bytes for timestamp for the first
1742 // 1 byte for sequence number, 2 bytes for timestamp for the other
1744 ack_size
+= 3 * (ack
.received_packet_times
.size() - 1);
1751 size_t QuicFramer::ComputeFrameLength(
1752 const QuicFrame
& frame
,
1753 bool last_frame_in_packet
,
1754 InFecGroup is_in_fec_group
,
1755 QuicSequenceNumberLength sequence_number_length
) {
1756 switch (frame
.type
) {
1758 return GetMinStreamFrameSize(frame
.stream_frame
->stream_id
,
1759 frame
.stream_frame
->offset
,
1760 last_frame_in_packet
,
1762 frame
.stream_frame
->data
.TotalBufferSize();
1764 return GetAckFrameSize(*frame
.ack_frame
, sequence_number_length
);
1766 case STOP_WAITING_FRAME
:
1767 return GetStopWaitingFrameSize(sequence_number_length
);
1769 // Ping has no payload.
1770 return kQuicFrameTypeSize
;
1771 case RST_STREAM_FRAME
:
1772 return GetMinRstStreamFrameSize() +
1773 frame
.rst_stream_frame
->error_details
.size();
1774 case CONNECTION_CLOSE_FRAME
:
1775 return GetMinConnectionCloseFrameSize() +
1776 frame
.connection_close_frame
->error_details
.size();
1778 return GetMinGoAwayFrameSize() + frame
.goaway_frame
->reason_phrase
.size();
1779 case WINDOW_UPDATE_FRAME
:
1780 return GetWindowUpdateFrameSize();
1782 return GetBlockedFrameSize();
1786 case NUM_FRAME_TYPES
:
1791 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1796 bool QuicFramer::AppendTypeByte(const QuicFrame
& frame
,
1797 bool no_stream_frame_length
,
1798 QuicDataWriter
* writer
) {
1799 uint8 type_byte
= 0;
1800 switch (frame
.type
) {
1801 case STREAM_FRAME
: {
1802 if (frame
.stream_frame
== nullptr) {
1803 LOG(DFATAL
) << "Failed to append STREAM frame with no stream_frame.";
1806 type_byte
|= frame
.stream_frame
->fin
? kQuicStreamFinMask
: 0;
1809 type_byte
<<= kQuicStreamDataLengthShift
;
1810 type_byte
|= no_stream_frame_length
? 0: kQuicStreamDataLengthMask
;
1813 type_byte
<<= kQuicStreamOffsetShift
;
1814 const size_t offset_len
= GetStreamOffsetSize(frame
.stream_frame
->offset
);
1815 if (offset_len
> 0) {
1816 type_byte
|= offset_len
- 1;
1819 // stream id 2 bits.
1820 type_byte
<<= kQuicStreamIdShift
;
1821 type_byte
|= GetStreamIdSize(frame
.stream_frame
->stream_id
) - 1;
1822 type_byte
|= kQuicFrameTypeStreamMask
; // Set Stream Frame Type to 1.
1828 type_byte
= static_cast<uint8
>(frame
.type
);
1832 return writer
->WriteUInt8(type_byte
);
1836 bool QuicFramer::AppendPacketSequenceNumber(
1837 QuicSequenceNumberLength sequence_number_length
,
1838 QuicPacketSequenceNumber packet_sequence_number
,
1839 QuicDataWriter
* writer
) {
1840 // Ensure the entire sequence number can be written.
1841 if (writer
->capacity() - writer
->length() <
1842 static_cast<size_t>(sequence_number_length
)) {
1845 switch (sequence_number_length
) {
1846 case PACKET_1BYTE_SEQUENCE_NUMBER
:
1847 return writer
->WriteUInt8(
1848 packet_sequence_number
& k1ByteSequenceNumberMask
);
1850 case PACKET_2BYTE_SEQUENCE_NUMBER
:
1851 return writer
->WriteUInt16(
1852 packet_sequence_number
& k2ByteSequenceNumberMask
);
1854 case PACKET_4BYTE_SEQUENCE_NUMBER
:
1855 return writer
->WriteUInt32(
1856 packet_sequence_number
& k4ByteSequenceNumberMask
);
1858 case PACKET_6BYTE_SEQUENCE_NUMBER
:
1859 return writer
->WriteUInt48(
1860 packet_sequence_number
& k6ByteSequenceNumberMask
);
1863 DCHECK(false) << "sequence_number_length: " << sequence_number_length
;
1868 bool QuicFramer::AppendStreamFrame(
1869 const QuicStreamFrame
& frame
,
1870 bool no_stream_frame_length
,
1871 QuicDataWriter
* writer
) {
1872 if (!writer
->WriteBytes(&frame
.stream_id
, GetStreamIdSize(frame
.stream_id
))) {
1873 LOG(DFATAL
) << "Writing stream id size failed.";
1876 if (!writer
->WriteBytes(&frame
.offset
, GetStreamOffsetSize(frame
.offset
))) {
1877 LOG(DFATAL
) << "Writing offset size failed.";
1880 if (!no_stream_frame_length
) {
1881 if ((frame
.data
.TotalBufferSize() > numeric_limits
<uint16
>::max()) ||
1882 !writer
->WriteUInt16(
1883 static_cast<uint16
>(frame
.data
.TotalBufferSize()))) {
1884 LOG(DFATAL
) << "Writing stream frame length failed";
1889 if (!writer
->WriteIOVector(frame
.data
)) {
1890 LOG(DFATAL
) << "Writing frame data failed.";
1897 void QuicFramer::set_version(const QuicVersion version
) {
1898 DCHECK(IsSupportedVersion(version
)) << QuicVersionToString(version
);
1899 quic_version_
= version
;
1902 bool QuicFramer::AppendAckFrameAndTypeByte(
1903 const QuicPacketHeader
& header
,
1904 const QuicAckFrame
& frame
,
1905 QuicDataWriter
* writer
) {
1906 AckFrameInfo ack_info
= GetAckFrameInfo(frame
);
1907 QuicPacketSequenceNumber ack_largest_observed
= frame
.largest_observed
;
1908 QuicSequenceNumberLength largest_observed_length
=
1909 GetMinSequenceNumberLength(ack_largest_observed
);
1910 QuicSequenceNumberLength missing_sequence_number_length
=
1911 GetMinSequenceNumberLength(ack_info
.max_delta
);
1912 // Determine whether we need to truncate ranges.
1913 size_t available_range_bytes
= writer
->capacity() - writer
->length() -
1914 kNumberOfRevivedPacketsSize
- kNumberOfNackRangesSize
-
1915 GetMinAckFrameSize(header
.public_header
.sequence_number_length
,
1916 largest_observed_length
);
1917 size_t max_num_ranges
= available_range_bytes
/
1918 (missing_sequence_number_length
+ PACKET_1BYTE_SEQUENCE_NUMBER
);
1919 max_num_ranges
= min(kMaxNackRanges
, max_num_ranges
);
1920 bool truncated
= ack_info
.nack_ranges
.size() > max_num_ranges
;
1921 DVLOG_IF(1, truncated
) << "Truncating ack from "
1922 << ack_info
.nack_ranges
.size() << " ranges to "
1924 // Write out the type byte by setting the low order bits and doing shifts
1925 // to make room for the next bit flags to be set.
1926 // Whether there are any nacks.
1927 uint8 type_byte
= ack_info
.nack_ranges
.empty() ? 0 : kQuicHasNacksMask
;
1930 type_byte
<<= kQuicAckTruncatedShift
;
1931 type_byte
|= truncated
? kQuicAckTruncatedMask
: 0;
1933 // Largest observed sequence number length.
1934 type_byte
<<= kQuicSequenceNumberLengthShift
;
1935 type_byte
|= GetSequenceNumberFlags(largest_observed_length
);
1937 // Missing sequence number length.
1938 type_byte
<<= kQuicSequenceNumberLengthShift
;
1939 type_byte
|= GetSequenceNumberFlags(missing_sequence_number_length
);
1941 type_byte
|= kQuicFrameTypeAckMask
;
1943 if (!writer
->WriteUInt8(type_byte
)) {
1947 QuicPacketEntropyHash ack_entropy_hash
= frame
.entropy_hash
;
1948 NackRangeMap::reverse_iterator ack_iter
= ack_info
.nack_ranges
.rbegin();
1950 // Skip the nack ranges which the truncated ack won't include and set
1951 // a correct largest observed for the truncated ack.
1952 for (size_t i
= 1; i
< (ack_info
.nack_ranges
.size() - max_num_ranges
);
1956 // If the last range is followed by acks, include them.
1957 // If the last range is followed by another range, specify the end of the
1958 // range as the largest_observed.
1959 ack_largest_observed
= ack_iter
->first
- 1;
1960 // Also update the entropy so it matches the largest observed.
1961 ack_entropy_hash
= entropy_calculator_
->EntropyHash(ack_largest_observed
);
1965 if (!writer
->WriteUInt8(ack_entropy_hash
)) {
1969 if (!AppendPacketSequenceNumber(largest_observed_length
,
1970 ack_largest_observed
, writer
)) {
1974 uint64 delta_time_largest_observed_us
= kUFloat16MaxValue
;
1975 if (!frame
.delta_time_largest_observed
.IsInfinite()) {
1976 DCHECK_LE(0u, frame
.delta_time_largest_observed
.ToMicroseconds());
1977 delta_time_largest_observed_us
=
1978 frame
.delta_time_largest_observed
.ToMicroseconds();
1981 if (!writer
->WriteUFloat16(delta_time_largest_observed_us
)) {
1985 // Timestamp goes at the end of the required fields.
1987 if (!AppendTimestampToAckFrame(frame
, writer
)) {
1992 if (ack_info
.nack_ranges
.empty()) {
1996 const uint8 num_missing_ranges
=
1997 static_cast<uint8
>(min(ack_info
.nack_ranges
.size(), max_num_ranges
));
1998 if (!writer
->WriteBytes(&num_missing_ranges
, 1)) {
2002 int num_ranges_written
= 0;
2003 QuicPacketSequenceNumber last_sequence_written
= ack_largest_observed
;
2004 for (; ack_iter
!= ack_info
.nack_ranges
.rend(); ++ack_iter
) {
2005 // Calculate the delta to the last number in the range.
2006 QuicPacketSequenceNumber missing_delta
=
2007 last_sequence_written
- (ack_iter
->first
+ ack_iter
->second
);
2008 if (!AppendPacketSequenceNumber(missing_sequence_number_length
,
2009 missing_delta
, writer
)) {
2012 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER
,
2013 ack_iter
->second
, writer
)) {
2016 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2017 last_sequence_written
= ack_iter
->first
- 1;
2018 ++num_ranges_written
;
2020 DCHECK_EQ(num_missing_ranges
, num_ranges_written
);
2022 // Append revived packets.
2023 // If not all the revived packets fit, only mention the ones that do.
2024 uint8 num_revived_packets
=
2025 static_cast<uint8
>(min(frame
.revived_packets
.size(), kMaxRevivedPackets
));
2026 num_revived_packets
= static_cast<uint8
>(min(
2027 static_cast<size_t>(num_revived_packets
),
2028 (writer
->capacity() - writer
->length()) / largest_observed_length
));
2029 if (!writer
->WriteBytes(&num_revived_packets
, 1)) {
2033 SequenceNumberSet::const_iterator iter
= frame
.revived_packets
.begin();
2034 for (int i
= 0; i
< num_revived_packets
; ++i
, ++iter
) {
2035 LOG_IF(DFATAL
, !ContainsKey(frame
.missing_packets
, *iter
));
2036 if (!AppendPacketSequenceNumber(largest_observed_length
,
2045 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame
& frame
,
2046 QuicDataWriter
* writer
) {
2047 DCHECK_GE(version(), QUIC_VERSION_23
);
2048 DCHECK_GE(numeric_limits
<uint8
>::max(), frame
.received_packet_times
.size());
2049 // num_received_packets is only 1 byte.
2050 if (frame
.received_packet_times
.size() > numeric_limits
<uint8
>::max()) {
2054 uint8 num_received_packets
= frame
.received_packet_times
.size();
2056 if (!writer
->WriteBytes(&num_received_packets
, 1)) {
2059 if (num_received_packets
== 0) {
2063 PacketTimeList::const_iterator it
= frame
.received_packet_times
.begin();
2064 QuicPacketSequenceNumber sequence_number
= it
->first
;
2065 QuicPacketSequenceNumber delta_from_largest_observed
=
2066 frame
.largest_observed
- sequence_number
;
2068 DCHECK_GE(numeric_limits
<uint8
>::max(), delta_from_largest_observed
);
2069 if (delta_from_largest_observed
> numeric_limits
<uint8
>::max()) {
2073 if (!writer
->WriteUInt8(
2074 delta_from_largest_observed
& k1ByteSequenceNumberMask
)) {
2078 // Use the lowest 4 bytes of the time delta from the creation_time_.
2079 const uint64 time_epoch_delta_us
= GG_UINT64_C(1) << 32;
2080 uint32 time_delta_us
=
2081 static_cast<uint32
>(it
->second
.Subtract(creation_time_
).ToMicroseconds()
2082 & (time_epoch_delta_us
- 1));
2083 if (!writer
->WriteBytes(&time_delta_us
, sizeof(time_delta_us
))) {
2087 QuicTime prev_time
= it
->second
;
2089 for (++it
; it
!= frame
.received_packet_times
.end(); ++it
) {
2090 sequence_number
= it
->first
;
2091 delta_from_largest_observed
= frame
.largest_observed
- sequence_number
;
2093 if (delta_from_largest_observed
> numeric_limits
<uint8
>::max()) {
2097 if (!writer
->WriteUInt8(
2098 delta_from_largest_observed
& k1ByteSequenceNumberMask
)) {
2102 uint64 frame_time_delta_us
=
2103 it
->second
.Subtract(prev_time
).ToMicroseconds();
2104 prev_time
= it
->second
;
2105 if (!writer
->WriteUFloat16(frame_time_delta_us
)) {
2112 bool QuicFramer::AppendStopWaitingFrame(
2113 const QuicPacketHeader
& header
,
2114 const QuicStopWaitingFrame
& frame
,
2115 QuicDataWriter
* writer
) {
2116 DCHECK_GE(header
.packet_sequence_number
, frame
.least_unacked
);
2117 const QuicPacketSequenceNumber least_unacked_delta
=
2118 header
.packet_sequence_number
- frame
.least_unacked
;
2119 const QuicPacketSequenceNumber length_shift
=
2120 header
.public_header
.sequence_number_length
* 8;
2121 if (!writer
->WriteUInt8(frame
.entropy_hash
)) {
2122 LOG(DFATAL
) << " hash failed";
2126 if (least_unacked_delta
>> length_shift
> 0) {
2127 LOG(DFATAL
) << "sequence_number_length "
2128 << header
.public_header
.sequence_number_length
2129 << " is too small for least_unacked_delta: "
2130 << least_unacked_delta
;
2133 if (!AppendPacketSequenceNumber(header
.public_header
.sequence_number_length
,
2134 least_unacked_delta
, writer
)) {
2135 LOG(DFATAL
) << " seq failed: "
2136 << header
.public_header
.sequence_number_length
;
2143 bool QuicFramer::AppendRstStreamFrame(
2144 const QuicRstStreamFrame
& frame
,
2145 QuicDataWriter
* writer
) {
2146 if (!writer
->WriteUInt32(frame
.stream_id
)) {
2150 if (!writer
->WriteUInt64(frame
.byte_offset
)) {
2154 uint32 error_code
= static_cast<uint32
>(frame
.error_code
);
2155 if (!writer
->WriteUInt32(error_code
)) {
2159 if (!writer
->WriteStringPiece16(frame
.error_details
)) {
2165 bool QuicFramer::AppendConnectionCloseFrame(
2166 const QuicConnectionCloseFrame
& frame
,
2167 QuicDataWriter
* writer
) {
2168 uint32 error_code
= static_cast<uint32
>(frame
.error_code
);
2169 if (!writer
->WriteUInt32(error_code
)) {
2172 if (!writer
->WriteStringPiece16(frame
.error_details
)) {
2178 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame
& frame
,
2179 QuicDataWriter
* writer
) {
2180 uint32 error_code
= static_cast<uint32
>(frame
.error_code
);
2181 if (!writer
->WriteUInt32(error_code
)) {
2184 uint32 stream_id
= static_cast<uint32
>(frame
.last_good_stream_id
);
2185 if (!writer
->WriteUInt32(stream_id
)) {
2188 if (!writer
->WriteStringPiece16(frame
.reason_phrase
)) {
2194 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame
& frame
,
2195 QuicDataWriter
* writer
) {
2196 uint32 stream_id
= static_cast<uint32
>(frame
.stream_id
);
2197 if (!writer
->WriteUInt32(stream_id
)) {
2200 if (!writer
->WriteUInt64(frame
.byte_offset
)) {
2206 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame
& frame
,
2207 QuicDataWriter
* writer
) {
2208 uint32 stream_id
= static_cast<uint32
>(frame
.stream_id
);
2209 if (!writer
->WriteUInt32(stream_id
)) {
2215 bool QuicFramer::RaiseError(QuicErrorCode error
) {
2216 DVLOG(1) << "Error detail: " << detailed_error_
;
2218 visitor_
->OnError(this);
2219 reader_
.reset(nullptr);