Performance histograms for extension content verification
[chromium-blink-merge.git] / ui / gfx / geometry / quad_f.cc
blobdbc50458b3fa1e04aedfdee3c51d5ae00351b46a
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/gfx/geometry/quad_f.h"
7 #include <limits>
9 #include "base/strings/stringprintf.h"
11 namespace gfx {
13 void QuadF::operator=(const RectF& rect) {
14 p1_ = PointF(rect.x(), rect.y());
15 p2_ = PointF(rect.right(), rect.y());
16 p3_ = PointF(rect.right(), rect.bottom());
17 p4_ = PointF(rect.x(), rect.bottom());
20 std::string QuadF::ToString() const {
21 return base::StringPrintf("%s;%s;%s;%s",
22 p1_.ToString().c_str(),
23 p2_.ToString().c_str(),
24 p3_.ToString().c_str(),
25 p4_.ToString().c_str());
28 static inline bool WithinEpsilon(float a, float b) {
29 return std::abs(a - b) < std::numeric_limits<float>::epsilon();
32 bool QuadF::IsRectilinear() const {
33 return
34 (WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) &&
35 WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) ||
36 (WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) &&
37 WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x()));
40 bool QuadF::IsCounterClockwise() const {
41 // This math computes the signed area of the quad. Positive area
42 // indicates the quad is clockwise; negative area indicates the quad is
43 // counter-clockwise. Note carefully: this is backwards from conventional
44 // math because our geometric space uses screen coordiantes with y-axis
45 // pointing downards.
46 // Reference: http://mathworld.wolfram.com/PolygonArea.html
48 // Up-cast to double so this cannot overflow.
49 double determinant1 = static_cast<double>(p1_.x()) * p2_.y()
50 - static_cast<double>(p2_.x()) * p1_.y();
51 double determinant2 = static_cast<double>(p2_.x()) * p3_.y()
52 - static_cast<double>(p3_.x()) * p2_.y();
53 double determinant3 = static_cast<double>(p3_.x()) * p4_.y()
54 - static_cast<double>(p4_.x()) * p3_.y();
55 double determinant4 = static_cast<double>(p4_.x()) * p1_.y()
56 - static_cast<double>(p1_.x()) * p4_.y();
58 return determinant1 + determinant2 + determinant3 + determinant4 < 0;
61 static inline bool PointIsInTriangle(const PointF& point,
62 const PointF& r1,
63 const PointF& r2,
64 const PointF& r3) {
65 // Compute the barycentric coordinates (u, v, w) of |point| relative to the
66 // triangle (r1, r2, r3) by the solving the system of equations:
67 // 1) point = u * r1 + v * r2 + w * r3
68 // 2) u + v + w = 1
69 // This algorithm comes from Christer Ericson's Real-Time Collision Detection.
71 Vector2dF r31 = r1 - r3;
72 Vector2dF r32 = r2 - r3;
73 Vector2dF r3p = point - r3;
75 float denom = r32.y() * r31.x() - r32.x() * r31.y();
76 float u = (r32.y() * r3p.x() - r32.x() * r3p.y()) / denom;
77 float v = (r31.x() * r3p.y() - r31.y() * r3p.x()) / denom;
78 float w = 1.f - u - v;
80 // Use the barycentric coordinates to test if |point| is inside the
81 // triangle (r1, r2, r2).
82 return (u >= 0) && (v >= 0) && (w >= 0);
85 bool QuadF::Contains(const PointF& point) const {
86 return PointIsInTriangle(point, p1_, p2_, p3_)
87 || PointIsInTriangle(point, p1_, p3_, p4_);
90 void QuadF::Scale(float x_scale, float y_scale) {
91 p1_.Scale(x_scale, y_scale);
92 p2_.Scale(x_scale, y_scale);
93 p3_.Scale(x_scale, y_scale);
94 p4_.Scale(x_scale, y_scale);
97 void QuadF::operator+=(const Vector2dF& rhs) {
98 p1_ += rhs;
99 p2_ += rhs;
100 p3_ += rhs;
101 p4_ += rhs;
104 void QuadF::operator-=(const Vector2dF& rhs) {
105 p1_ -= rhs;
106 p2_ -= rhs;
107 p3_ -= rhs;
108 p4_ -= rhs;
111 QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) {
112 QuadF result = lhs;
113 result += rhs;
114 return result;
117 QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) {
118 QuadF result = lhs;
119 result -= rhs;
120 return result;
123 } // namespace gfx