Pin Chrome's shortcut to the Win10 Start menu on install and OS upgrade.
[chromium-blink-merge.git] / media / base / simd / convert_rgb_to_yuv_sse2.cc
blob1b07598e4dba2e2c876bfc95494843a8da3bc8e6
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "build/build_config.h"
6 #include "media/base/simd/convert_rgb_to_yuv.h"
8 #if defined(COMPILER_MSVC)
9 #include <intrin.h>
10 #else
11 #include <mmintrin.h>
12 #include <emmintrin.h>
13 #endif
15 #if defined(COMPILER_MSVC)
16 #define SIMD_ALIGNED(var) __declspec(align(16)) var
17 #else
18 #define SIMD_ALIGNED(var) var __attribute__((aligned(16)))
19 #endif
21 namespace media {
23 #define FIX_SHIFT 12
24 #define FIX(x) ((x) * (1 << FIX_SHIFT))
26 // Define a convenient macro to do static cast.
27 #define INT16_FIX(x) static_cast<int16>(FIX(x))
29 // Android's pixel layout is RGBA, while other platforms
30 // are BGRA.
31 #if defined(OS_ANDROID)
32 SIMD_ALIGNED(const int16 ConvertRGBAToYUV_kTable[8 * 3]) = {
33 INT16_FIX(0.257), INT16_FIX(0.504), INT16_FIX(0.098), 0,
34 INT16_FIX(0.257), INT16_FIX(0.504), INT16_FIX(0.098), 0,
35 -INT16_FIX(0.148), -INT16_FIX(0.291), INT16_FIX(0.439), 0,
36 -INT16_FIX(0.148), -INT16_FIX(0.291), INT16_FIX(0.439), 0,
37 INT16_FIX(0.439), -INT16_FIX(0.368), -INT16_FIX(0.071), 0,
38 INT16_FIX(0.439), -INT16_FIX(0.368), -INT16_FIX(0.071), 0,
40 #else
41 SIMD_ALIGNED(const int16 ConvertRGBAToYUV_kTable[8 * 3]) = {
42 INT16_FIX(0.098), INT16_FIX(0.504), INT16_FIX(0.257), 0,
43 INT16_FIX(0.098), INT16_FIX(0.504), INT16_FIX(0.257), 0,
44 INT16_FIX(0.439), -INT16_FIX(0.291), -INT16_FIX(0.148), 0,
45 INT16_FIX(0.439), -INT16_FIX(0.291), -INT16_FIX(0.148), 0,
46 -INT16_FIX(0.071), -INT16_FIX(0.368), INT16_FIX(0.439), 0,
47 -INT16_FIX(0.071), -INT16_FIX(0.368), INT16_FIX(0.439), 0,
49 #endif
51 #undef INT16_FIX
53 // This is the final offset for the conversion from signed yuv values to
54 // unsigned values. It is arranged so that offset of 16 is applied to Y
55 // components and 128 is added to UV components for 2 pixels.
56 SIMD_ALIGNED(const int32 kYOffset[4]) = {16, 16, 16, 16};
58 static inline uint8 Clamp(int value) {
59 if (value < 0)
60 return 0;
61 if (value > 255)
62 return 255;
63 return static_cast<uint8>(value);
66 static inline uint8 RGBToY(int r, int g, int b) {
67 int y = ConvertRGBAToYUV_kTable[0] * b +
68 ConvertRGBAToYUV_kTable[1] * g +
69 ConvertRGBAToYUV_kTable[2] * r;
70 y >>= FIX_SHIFT;
71 return Clamp(y + 16);
74 static inline uint8 RGBToU(int r, int g, int b, int shift) {
75 int u = ConvertRGBAToYUV_kTable[8] * b +
76 ConvertRGBAToYUV_kTable[9] * g +
77 ConvertRGBAToYUV_kTable[10] * r;
78 u >>= FIX_SHIFT + shift;
79 return Clamp(u + 128);
82 static inline uint8 RGBToV(int r, int g, int b, int shift) {
83 int v = ConvertRGBAToYUV_kTable[16] * b +
84 ConvertRGBAToYUV_kTable[17] * g +
85 ConvertRGBAToYUV_kTable[18] * r;
86 v >>= FIX_SHIFT + shift;
87 return Clamp(v + 128);
90 #define CONVERT_Y(rgb_buf, y_buf) \
91 b = *rgb_buf++; \
92 g = *rgb_buf++; \
93 r = *rgb_buf++; \
94 ++rgb_buf; \
95 sum_b += b; \
96 sum_g += g; \
97 sum_r += r; \
98 *y_buf++ = RGBToY(r, g, b);
100 static inline void ConvertRGBToYUV_V2H2(const uint8* rgb_buf_1,
101 const uint8* rgb_buf_2,
102 uint8* y_buf_1,
103 uint8* y_buf_2,
104 uint8* u_buf,
105 uint8* v_buf) {
106 int sum_b = 0;
107 int sum_g = 0;
108 int sum_r = 0;
109 int r, g, b;
113 CONVERT_Y(rgb_buf_1, y_buf_1);
114 CONVERT_Y(rgb_buf_1, y_buf_1);
115 CONVERT_Y(rgb_buf_2, y_buf_2);
116 CONVERT_Y(rgb_buf_2, y_buf_2);
117 *u_buf++ = RGBToU(sum_r, sum_g, sum_b, 2);
118 *v_buf++ = RGBToV(sum_r, sum_g, sum_b, 2);
121 static inline void ConvertRGBToYUV_V2H1(const uint8* rgb_buf_1,
122 const uint8* rgb_buf_2,
123 uint8* y_buf_1,
124 uint8* y_buf_2,
125 uint8* u_buf,
126 uint8* v_buf) {
127 int sum_b = 0;
128 int sum_g = 0;
129 int sum_r = 0;
130 int r, g, b;
132 CONVERT_Y(rgb_buf_1, y_buf_1);
133 CONVERT_Y(rgb_buf_2, y_buf_2);
134 *u_buf++ = RGBToU(sum_r, sum_g, sum_b, 1);
135 *v_buf++ = RGBToV(sum_r, sum_g, sum_b, 1);
138 static inline void ConvertRGBToYUV_V1H2(const uint8* rgb_buf,
139 uint8* y_buf,
140 uint8* u_buf,
141 uint8* v_buf) {
142 int sum_b = 0;
143 int sum_g = 0;
144 int sum_r = 0;
145 int r, g, b;
147 CONVERT_Y(rgb_buf, y_buf);
148 CONVERT_Y(rgb_buf, y_buf);
149 *u_buf++ = RGBToU(sum_r, sum_g, sum_b, 1);
150 *v_buf++ = RGBToV(sum_r, sum_g, sum_b, 1);
153 static inline void ConvertRGBToYUV_V1H1(const uint8* rgb_buf,
154 uint8* y_buf,
155 uint8* u_buf,
156 uint8* v_buf) {
157 int sum_b = 0;
158 int sum_g = 0;
159 int sum_r = 0;
160 int r, g, b;
162 CONVERT_Y(rgb_buf, y_buf);
163 *u_buf++ = RGBToU(r, g, b, 0);
164 *v_buf++ = RGBToV(r, g, b, 0);
167 static void ConvertRGB32ToYUVRow_SSE2(const uint8* rgb_buf_1,
168 const uint8* rgb_buf_2,
169 uint8* y_buf_1,
170 uint8* y_buf_2,
171 uint8* u_buf,
172 uint8* v_buf,
173 int width) {
174 while (width >= 4) {
175 // Name for the Y pixels:
176 // Row 1: a b c d
177 // Row 2: e f g h
179 // First row 4 pixels.
180 __m128i rgb_row_1 = _mm_loadu_si128(
181 reinterpret_cast<const __m128i*>(rgb_buf_1));
182 __m128i zero_1 = _mm_xor_si128(rgb_row_1, rgb_row_1);
184 __m128i y_table = _mm_load_si128(
185 reinterpret_cast<const __m128i*>(ConvertRGBAToYUV_kTable));
187 __m128i rgb_a_b = _mm_unpackhi_epi8(rgb_row_1, zero_1);
188 rgb_a_b = _mm_madd_epi16(rgb_a_b, y_table);
190 __m128i rgb_c_d = _mm_unpacklo_epi8(rgb_row_1, zero_1);
191 rgb_c_d = _mm_madd_epi16(rgb_c_d, y_table);
193 // Do a crazh shuffle so that we get:
194 // v------------ Multiply Add
195 // BG: a b c d
196 // A0: a b c d
197 __m128i bg_abcd = _mm_castps_si128(
198 _mm_shuffle_ps(
199 _mm_castsi128_ps(rgb_c_d),
200 _mm_castsi128_ps(rgb_a_b),
201 (3 << 6) | (1 << 4) | (3 << 2) | 1));
202 __m128i r_abcd = _mm_castps_si128(
203 _mm_shuffle_ps(
204 _mm_castsi128_ps(rgb_c_d),
205 _mm_castsi128_ps(rgb_a_b),
206 (2 << 6) | (2 << 2)));
207 __m128i y_abcd = _mm_add_epi32(bg_abcd, r_abcd);
209 // Down shift back to 8bits range.
210 __m128i y_offset = _mm_load_si128(
211 reinterpret_cast<const __m128i*>(kYOffset));
212 y_abcd = _mm_srai_epi32(y_abcd, FIX_SHIFT);
213 y_abcd = _mm_add_epi32(y_abcd, y_offset);
214 y_abcd = _mm_packs_epi32(y_abcd, y_abcd);
215 y_abcd = _mm_packus_epi16(y_abcd, y_abcd);
216 *reinterpret_cast<uint32*>(y_buf_1) = _mm_cvtsi128_si32(y_abcd);
217 y_buf_1 += 4;
219 // Second row 4 pixels.
220 __m128i rgb_row_2 = _mm_loadu_si128(
221 reinterpret_cast<const __m128i*>(rgb_buf_2));
222 __m128i zero_2 = _mm_xor_si128(rgb_row_2, rgb_row_2);
223 __m128i rgb_e_f = _mm_unpackhi_epi8(rgb_row_2, zero_2);
224 __m128i rgb_g_h = _mm_unpacklo_epi8(rgb_row_2, zero_2);
226 // Add two rows together.
227 __m128i rgb_ae_bf =
228 _mm_add_epi16(_mm_unpackhi_epi8(rgb_row_1, zero_2), rgb_e_f);
229 __m128i rgb_cg_dh =
230 _mm_add_epi16(_mm_unpacklo_epi8(rgb_row_1, zero_2), rgb_g_h);
232 // Multiply add like the previous row.
233 rgb_e_f = _mm_madd_epi16(rgb_e_f, y_table);
234 rgb_g_h = _mm_madd_epi16(rgb_g_h, y_table);
236 __m128i bg_efgh = _mm_castps_si128(
237 _mm_shuffle_ps(_mm_castsi128_ps(rgb_g_h),
238 _mm_castsi128_ps(rgb_e_f),
239 (3 << 6) | (1 << 4) | (3 << 2) | 1));
240 __m128i r_efgh = _mm_castps_si128(
241 _mm_shuffle_ps(_mm_castsi128_ps(rgb_g_h),
242 _mm_castsi128_ps(rgb_e_f),
243 (2 << 6) | (2 << 2)));
244 __m128i y_efgh = _mm_add_epi32(bg_efgh, r_efgh);
245 y_efgh = _mm_srai_epi32(y_efgh, FIX_SHIFT);
246 y_efgh = _mm_add_epi32(y_efgh, y_offset);
247 y_efgh = _mm_packs_epi32(y_efgh, y_efgh);
248 y_efgh = _mm_packus_epi16(y_efgh, y_efgh);
249 *reinterpret_cast<uint32*>(y_buf_2) = _mm_cvtsi128_si32(y_efgh);
250 y_buf_2 += 4;
252 __m128i rgb_ae_cg = _mm_castps_si128(
253 _mm_shuffle_ps(_mm_castsi128_ps(rgb_cg_dh),
254 _mm_castsi128_ps(rgb_ae_bf),
255 (3 << 6) | (2 << 4) | (3 << 2) | 2));
256 __m128i rgb_bf_dh = _mm_castps_si128(
257 _mm_shuffle_ps(_mm_castsi128_ps(rgb_cg_dh),
258 _mm_castsi128_ps(rgb_ae_bf),
259 (1 << 6) | (1 << 2)));
261 // This is a 2x2 subsampling for 2 pixels.
262 __m128i rgb_abef_cdgh = _mm_add_epi16(rgb_ae_cg, rgb_bf_dh);
264 // Do a multiply add with U table.
265 __m128i u_a_b = _mm_madd_epi16(
266 rgb_abef_cdgh,
267 _mm_load_si128(
268 reinterpret_cast<const __m128i*>(ConvertRGBAToYUV_kTable + 8)));
269 u_a_b = _mm_add_epi32(_mm_shuffle_epi32(u_a_b, ((3 << 2) | 1)),
270 _mm_shuffle_epi32(u_a_b, (2 << 2)));
271 // Right shift 14 because of 12 from fixed point and 2 from subsampling.
272 u_a_b = _mm_srai_epi32(u_a_b, FIX_SHIFT + 2);
273 __m128i uv_offset = _mm_slli_epi32(y_offset, 3);
274 u_a_b = _mm_add_epi32(u_a_b, uv_offset);
275 u_a_b = _mm_packs_epi32(u_a_b, u_a_b);
276 u_a_b = _mm_packus_epi16(u_a_b, u_a_b);
277 *reinterpret_cast<uint16*>(u_buf) =
278 static_cast<uint16>(_mm_extract_epi16(u_a_b, 0));
279 u_buf += 2;
281 __m128i v_a_b = _mm_madd_epi16(
282 rgb_abef_cdgh,
283 _mm_load_si128(
284 reinterpret_cast<const __m128i*>(ConvertRGBAToYUV_kTable + 16)));
285 v_a_b = _mm_add_epi32(_mm_shuffle_epi32(v_a_b, ((3 << 2) | 1)),
286 _mm_shuffle_epi32(v_a_b, (2 << 2)));
287 v_a_b = _mm_srai_epi32(v_a_b, FIX_SHIFT + 2);
288 v_a_b = _mm_add_epi32(v_a_b, uv_offset);
289 v_a_b = _mm_packs_epi32(v_a_b, v_a_b);
290 v_a_b = _mm_packus_epi16(v_a_b, v_a_b);
291 *reinterpret_cast<uint16*>(v_buf) =
292 static_cast<uint16>(_mm_extract_epi16(v_a_b, 0));
293 v_buf += 2;
295 rgb_buf_1 += 16;
296 rgb_buf_2 += 16;
298 // Move forward by 4 pixels.
299 width -= 4;
302 // Just use C code to convert the remaining pixels.
303 if (width >= 2) {
304 ConvertRGBToYUV_V2H2(rgb_buf_1, rgb_buf_2, y_buf_1, y_buf_2, u_buf, v_buf);
305 rgb_buf_1 += 8;
306 rgb_buf_2 += 8;
307 y_buf_1 += 2;
308 y_buf_2 += 2;
309 ++u_buf;
310 ++v_buf;
311 width -= 2;
314 if (width)
315 ConvertRGBToYUV_V2H1(rgb_buf_1, rgb_buf_2, y_buf_1, y_buf_2, u_buf, v_buf);
318 extern void ConvertRGB32ToYUV_SSE2(const uint8* rgbframe,
319 uint8* yplane,
320 uint8* uplane,
321 uint8* vplane,
322 int width,
323 int height,
324 int rgbstride,
325 int ystride,
326 int uvstride) {
327 while (height >= 2) {
328 ConvertRGB32ToYUVRow_SSE2(rgbframe,
329 rgbframe + rgbstride,
330 yplane,
331 yplane + ystride,
332 uplane,
333 vplane,
334 width);
335 rgbframe += 2 * rgbstride;
336 yplane += 2 * ystride;
337 uplane += uvstride;
338 vplane += uvstride;
339 height -= 2;
342 if (!height)
343 return;
345 // Handle the last row.
346 while (width >= 2) {
347 ConvertRGBToYUV_V1H2(rgbframe, yplane, uplane, vplane);
348 rgbframe += 8;
349 yplane += 2;
350 ++uplane;
351 ++vplane;
352 width -= 2;
355 if (width)
356 ConvertRGBToYUV_V1H1(rgbframe, yplane, uplane, vplane);
359 void ConvertRGB32ToYUV_SSE2_Reference(const uint8* rgbframe,
360 uint8* yplane,
361 uint8* uplane,
362 uint8* vplane,
363 int width,
364 int height,
365 int rgbstride,
366 int ystride,
367 int uvstride) {
368 while (height >= 2) {
369 int i = 0;
371 // Convert a 2x2 block.
372 while (i + 2 <= width) {
373 ConvertRGBToYUV_V2H2(rgbframe + i * 4,
374 rgbframe + rgbstride + i * 4,
375 yplane + i,
376 yplane + ystride + i,
377 uplane + i / 2,
378 vplane + i / 2);
379 i += 2;
382 // Convert the last pixel of two rows.
383 if (i < width) {
384 ConvertRGBToYUV_V2H1(rgbframe + i * 4,
385 rgbframe + rgbstride + i * 4,
386 yplane + i,
387 yplane + ystride + i,
388 uplane + i / 2,
389 vplane + i / 2);
392 rgbframe += 2 * rgbstride;
393 yplane += 2 * ystride;
394 uplane += uvstride;
395 vplane += uvstride;
396 height -= 2;
399 if (!height)
400 return;
402 // Handle the last row.
403 while (width >= 2) {
404 ConvertRGBToYUV_V1H2(rgbframe, yplane, uplane, vplane);
405 rgbframe += 8;
406 yplane += 2;
407 ++uplane;
408 ++vplane;
409 width -= 2;
412 // Handle the last pixel in the last row.
413 if (width)
414 ConvertRGBToYUV_V1H1(rgbframe, yplane, uplane, vplane);
417 } // namespace media