Pin Chrome's shortcut to the Win10 Start menu on install and OS upgrade.
[chromium-blink-merge.git] / net / disk_cache / blockfile / entry_impl_v3.cc
blob73719364829fb761998f0f765ebc86c9e0081be5
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/entry_impl_v3.h"
7 #include "base/hash.h"
8 #include "base/message_loop/message_loop.h"
9 #include "base/strings/string_util.h"
10 #include "net/base/io_buffer.h"
11 #include "net/base/net_errors.h"
12 #include "net/disk_cache/blockfile/backend_impl_v3.h"
13 #include "net/disk_cache/blockfile/bitmap.h"
14 #include "net/disk_cache/blockfile/disk_format_v3.h"
15 #include "net/disk_cache/blockfile/histogram_macros_v3.h"
16 #include "net/disk_cache/cache_util.h"
17 #include "net/disk_cache/net_log_parameters.h"
18 // #include "net/disk_cache/blockfile/sparse_control_v3.h"
20 // Provide a BackendImpl object to macros from histogram_macros.h.
21 #define CACHE_UMA_BACKEND_IMPL_OBJ backend_
23 using base::Time;
24 using base::TimeDelta;
25 using base::TimeTicks;
27 namespace {
29 const int kMaxBufferSize = 1024 * 1024; // 1 MB.
31 } // namespace
33 namespace disk_cache {
35 typedef StorageBlock<EntryRecord> CacheEntryBlockV3;
36 typedef StorageBlock<ShortEntryRecord> CacheShortEntryBlock;
38 // This class handles individual memory buffers that store data before it is
39 // sent to disk. The buffer can start at any offset, but if we try to write to
40 // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to
41 // zero. The buffer grows up to a size determined by the backend, to keep the
42 // total memory used under control.
43 class EntryImplV3::UserBuffer {
44 public:
45 explicit UserBuffer(BackendImplV3* backend)
46 : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) {
47 buffer_.reserve(kMaxBlockSize);
49 ~UserBuffer() {
50 if (backend_)
51 backend_->BufferDeleted(capacity() - kMaxBlockSize);
54 // Returns true if we can handle writing |len| bytes to |offset|.
55 bool PreWrite(int offset, int len);
57 // Truncates the buffer to |offset| bytes.
58 void Truncate(int offset);
60 // Writes |len| bytes from |buf| at the given |offset|.
61 void Write(int offset, IOBuffer* buf, int len);
63 // Returns true if we can read |len| bytes from |offset|, given that the
64 // actual file has |eof| bytes stored. Note that the number of bytes to read
65 // may be modified by this method even though it returns false: that means we
66 // should do a smaller read from disk.
67 bool PreRead(int eof, int offset, int* len);
69 // Read |len| bytes from |buf| at the given |offset|.
70 int Read(int offset, IOBuffer* buf, int len);
72 // Prepare this buffer for reuse.
73 void Reset();
75 char* Data() { return buffer_.size() ? &buffer_[0] : NULL; }
76 int Size() { return static_cast<int>(buffer_.size()); }
77 int Start() { return offset_; }
78 int End() { return offset_ + Size(); }
80 private:
81 int capacity() { return static_cast<int>(buffer_.capacity()); }
82 bool GrowBuffer(int required, int limit);
84 base::WeakPtr<BackendImplV3> backend_;
85 int offset_;
86 std::vector<char> buffer_;
87 bool grow_allowed_;
88 DISALLOW_COPY_AND_ASSIGN(UserBuffer);
91 bool EntryImplV3::UserBuffer::PreWrite(int offset, int len) {
92 DCHECK_GE(offset, 0);
93 DCHECK_GE(len, 0);
94 DCHECK_GE(offset + len, 0);
96 // We don't want to write before our current start.
97 if (offset < offset_)
98 return false;
100 // Lets get the common case out of the way.
101 if (offset + len <= capacity())
102 return true;
104 // If we are writing to the first 16K (kMaxBlockSize), we want to keep the
105 // buffer offset_ at 0.
106 if (!Size() && offset > kMaxBlockSize)
107 return GrowBuffer(len, kMaxBufferSize);
109 int required = offset - offset_ + len;
110 return GrowBuffer(required, kMaxBufferSize * 6 / 5);
113 void EntryImplV3::UserBuffer::Truncate(int offset) {
114 DCHECK_GE(offset, 0);
115 DCHECK_GE(offset, offset_);
116 DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_;
118 offset -= offset_;
119 if (Size() >= offset)
120 buffer_.resize(offset);
123 void EntryImplV3::UserBuffer::Write(int offset, IOBuffer* buf, int len) {
124 DCHECK_GE(offset, 0);
125 DCHECK_GE(len, 0);
126 DCHECK_GE(offset + len, 0);
127 DCHECK_GE(offset, offset_);
128 DVLOG(3) << "Buffer write at " << offset << " current " << offset_;
130 if (!Size() && offset > kMaxBlockSize)
131 offset_ = offset;
133 offset -= offset_;
135 if (offset > Size())
136 buffer_.resize(offset);
138 if (!len)
139 return;
141 char* buffer = buf->data();
142 int valid_len = Size() - offset;
143 int copy_len = std::min(valid_len, len);
144 if (copy_len) {
145 memcpy(&buffer_[offset], buffer, copy_len);
146 len -= copy_len;
147 buffer += copy_len;
149 if (!len)
150 return;
152 buffer_.insert(buffer_.end(), buffer, buffer + len);
155 bool EntryImplV3::UserBuffer::PreRead(int eof, int offset, int* len) {
156 DCHECK_GE(offset, 0);
157 DCHECK_GT(*len, 0);
159 if (offset < offset_) {
160 // We are reading before this buffer.
161 if (offset >= eof)
162 return true;
164 // If the read overlaps with the buffer, change its length so that there is
165 // no overlap.
166 *len = std::min(*len, offset_ - offset);
167 *len = std::min(*len, eof - offset);
169 // We should read from disk.
170 return false;
173 if (!Size())
174 return false;
176 // See if we can fulfill the first part of the operation.
177 return (offset - offset_ < Size());
180 int EntryImplV3::UserBuffer::Read(int offset, IOBuffer* buf, int len) {
181 DCHECK_GE(offset, 0);
182 DCHECK_GT(len, 0);
183 DCHECK(Size() || offset < offset_);
185 int clean_bytes = 0;
186 if (offset < offset_) {
187 // We don't have a file so lets fill the first part with 0.
188 clean_bytes = std::min(offset_ - offset, len);
189 memset(buf->data(), 0, clean_bytes);
190 if (len == clean_bytes)
191 return len;
192 offset = offset_;
193 len -= clean_bytes;
196 int start = offset - offset_;
197 int available = Size() - start;
198 DCHECK_GE(start, 0);
199 DCHECK_GE(available, 0);
200 len = std::min(len, available);
201 memcpy(buf->data() + clean_bytes, &buffer_[start], len);
202 return len + clean_bytes;
205 void EntryImplV3::UserBuffer::Reset() {
206 if (!grow_allowed_) {
207 if (backend_)
208 backend_->BufferDeleted(capacity() - kMaxBlockSize);
209 grow_allowed_ = true;
210 std::vector<char> tmp;
211 buffer_.swap(tmp);
212 buffer_.reserve(kMaxBlockSize);
214 offset_ = 0;
215 buffer_.clear();
218 bool EntryImplV3::UserBuffer::GrowBuffer(int required, int limit) {
219 DCHECK_GE(required, 0);
220 int current_size = capacity();
221 if (required <= current_size)
222 return true;
224 if (required > limit)
225 return false;
227 if (!backend_)
228 return false;
230 int to_add = std::max(required - current_size, kMaxBlockSize * 4);
231 to_add = std::max(current_size, to_add);
232 required = std::min(current_size + to_add, limit);
234 grow_allowed_ = backend_->IsAllocAllowed(current_size, required);
235 if (!grow_allowed_)
236 return false;
238 DVLOG(3) << "Buffer grow to " << required;
240 buffer_.reserve(required);
241 return true;
244 // ------------------------------------------------------------------------
246 EntryImplV3::EntryImplV3(BackendImplV3* backend, Addr address, bool read_only)
247 : backend_(backend->GetWeakPtr()),
248 address_(address),
249 doomed_(false),
250 read_only_(read_only),
251 dirty_(true),
252 modified_(false) {
253 for (int i = 0; i < kNumStreams; i++) {
254 unreported_size_[i] = 0;
258 #if defined(V3_NOT_JUST_YET_READY)
260 bool EntryImplV3::CreateEntry(Addr node_address, const std::string& key,
261 uint32 hash) {
262 Trace("Create entry In");
263 EntryStore* entry_store = entry_.Data();
264 RankingsNode* node = node_.Data();
265 memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks());
266 memset(node, 0, sizeof(RankingsNode));
267 if (!node_.LazyInit(backend_->File(node_address), node_address))
268 return false;
270 entry_store->rankings_node = node_address.value();
271 node->contents = entry_.address().value();
273 entry_store->hash = hash;
274 entry_store->creation_time = Time::Now().ToInternalValue();
275 entry_store->key_len = static_cast<int32>(key.size());
276 if (entry_store->key_len > kMaxInternalKeyLength) {
277 Addr address(0);
278 if (!CreateBlock(entry_store->key_len + 1, &address))
279 return false;
281 entry_store->long_key = address.value();
282 File* key_file = GetBackingFile(address, kKeyFileIndex);
283 key_ = key;
285 size_t offset = 0;
286 if (address.is_block_file())
287 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
289 if (!key_file || !key_file->Write(key.data(), key.size(), offset)) {
290 DeleteData(address, kKeyFileIndex);
291 return false;
294 if (address.is_separate_file())
295 key_file->SetLength(key.size() + 1);
296 } else {
297 memcpy(entry_store->key, key.data(), key.size());
298 entry_store->key[key.size()] = '\0';
300 backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
301 CACHE_UMA(COUNTS, "KeySize", 0, static_cast<int32>(key.size()));
302 node->dirty = backend_->GetCurrentEntryId();
303 Log("Create Entry ");
304 return true;
307 uint32 EntryImplV3::GetHash() {
308 return entry_.Data()->hash;
311 bool EntryImplV3::IsSameEntry(const std::string& key, uint32 hash) {
312 if (entry_.Data()->hash != hash ||
313 static_cast<size_t>(entry_.Data()->key_len) != key.size())
314 return false;
316 return (key.compare(GetKey()) == 0);
319 void EntryImplV3::InternalDoom() {
320 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
321 DCHECK(node_.HasData());
322 if (!node_.Data()->dirty) {
323 node_.Data()->dirty = backend_->GetCurrentEntryId();
324 node_.Store();
326 doomed_ = true;
329 // This only includes checks that relate to the first block of the entry (the
330 // first 256 bytes), and values that should be set from the entry creation.
331 // Basically, even if there is something wrong with this entry, we want to see
332 // if it is possible to load the rankings node and delete them together.
333 bool EntryImplV3::SanityCheck() {
334 if (!entry_.VerifyHash())
335 return false;
337 EntryStore* stored = entry_.Data();
338 if (!stored->rankings_node || stored->key_len <= 0)
339 return false;
341 if (stored->reuse_count < 0 || stored->refetch_count < 0)
342 return false;
344 Addr rankings_addr(stored->rankings_node);
345 if (!rankings_addr.SanityCheckForRankings())
346 return false;
348 Addr next_addr(stored->next);
349 if (next_addr.is_initialized() && !next_addr.SanityCheckForEntry()) {
350 STRESS_NOTREACHED();
351 return false;
353 STRESS_DCHECK(next_addr.value() != entry_.address().value());
355 if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL)
356 return false;
358 Addr key_addr(stored->long_key);
359 if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) ||
360 (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized()))
361 return false;
363 if (!key_addr.SanityCheck())
364 return false;
366 if (key_addr.is_initialized() &&
367 ((stored->key_len < kMaxBlockSize && key_addr.is_separate_file()) ||
368 (stored->key_len >= kMaxBlockSize && key_addr.is_block_file())))
369 return false;
371 int num_blocks = NumBlocksForEntry(stored->key_len);
372 if (entry_.address().num_blocks() != num_blocks)
373 return false;
375 return true;
378 bool EntryImplV3::DataSanityCheck() {
379 EntryStore* stored = entry_.Data();
380 Addr key_addr(stored->long_key);
382 // The key must be NULL terminated.
383 if (!key_addr.is_initialized() && stored->key[stored->key_len])
384 return false;
386 if (stored->hash != base::Hash(GetKey()))
387 return false;
389 for (int i = 0; i < kNumStreams; i++) {
390 Addr data_addr(stored->data_addr[i]);
391 int data_size = stored->data_size[i];
392 if (data_size < 0)
393 return false;
394 if (!data_size && data_addr.is_initialized())
395 return false;
396 if (!data_addr.SanityCheck())
397 return false;
398 if (!data_size)
399 continue;
400 if (data_size <= kMaxBlockSize && data_addr.is_separate_file())
401 return false;
402 if (data_size > kMaxBlockSize && data_addr.is_block_file())
403 return false;
405 return true;
408 void EntryImplV3::FixForDelete() {
409 EntryStore* stored = entry_.Data();
410 Addr key_addr(stored->long_key);
412 if (!key_addr.is_initialized())
413 stored->key[stored->key_len] = '\0';
415 for (int i = 0; i < kNumStreams; i++) {
416 Addr data_addr(stored->data_addr[i]);
417 int data_size = stored->data_size[i];
418 if (data_addr.is_initialized()) {
419 if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) ||
420 (data_size > kMaxBlockSize && data_addr.is_block_file()) ||
421 !data_addr.SanityCheck()) {
422 STRESS_NOTREACHED();
423 // The address is weird so don't attempt to delete it.
424 stored->data_addr[i] = 0;
425 // In general, trust the stored size as it should be in sync with the
426 // total size tracked by the backend.
429 if (data_size < 0)
430 stored->data_size[i] = 0;
432 entry_.Store();
435 void EntryImplV3::SetTimes(base::Time last_used, base::Time last_modified) {
436 node_.Data()->last_used = last_used.ToInternalValue();
437 node_.Data()->last_modified = last_modified.ToInternalValue();
438 node_.set_modified();
441 void EntryImplV3::BeginLogging(net::NetLog* net_log, bool created) {
442 DCHECK(!net_log_.net_log());
443 net_log_ = net::BoundNetLog::Make(
444 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY);
445 net_log_.BeginEvent(
446 net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL,
447 CreateNetLogEntryCreationCallback(this, created));
450 const net::BoundNetLog& EntryImplV3::net_log() const {
451 return net_log_;
454 // ------------------------------------------------------------------------
456 void EntryImplV3::Doom() {
457 if (background_queue_)
458 background_queue_->DoomEntryImpl(this);
461 void EntryImplV3::DoomImpl() {
462 if (doomed_ || !backend_)
463 return;
465 SetPointerForInvalidEntry(backend_->GetCurrentEntryId());
466 backend_->InternalDoomEntry(this);
469 void EntryImplV3::Close() {
470 if (background_queue_)
471 background_queue_->CloseEntryImpl(this);
474 std::string EntryImplV3::GetKey() const {
475 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
476 int key_len = entry->Data()->key_len;
477 if (key_len <= kMaxInternalKeyLength)
478 return std::string(entry->Data()->key);
480 // We keep a copy of the key so that we can always return it, even if the
481 // backend is disabled.
482 if (!key_.empty())
483 return key_;
485 Addr address(entry->Data()->long_key);
486 DCHECK(address.is_initialized());
487 size_t offset = 0;
488 if (address.is_block_file())
489 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
491 static_assert(kNumStreams == kKeyFileIndex, "invalid key index");
492 File* key_file = const_cast<EntryImpl*>(this)->GetBackingFile(address,
493 kKeyFileIndex);
494 if (!key_file)
495 return std::string();
497 ++key_len; // We store a trailing \0 on disk that we read back below.
498 if (!offset && key_file->GetLength() != static_cast<size_t>(key_len))
499 return std::string();
501 if (!key_file->Read(base::WriteInto(&key_, key_len), key_len, offset))
502 key_.clear();
503 return key_;
506 Time EntryImplV3::GetLastUsed() const {
507 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
508 return Time::FromInternalValue(node->Data()->last_used);
511 Time EntryImplV3::GetLastModified() const {
512 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
513 return Time::FromInternalValue(node->Data()->last_modified);
516 int32 EntryImplV3::GetDataSize(int index) const {
517 if (index < 0 || index >= kNumStreams)
518 return 0;
520 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
521 return entry->Data()->data_size[index];
524 int EntryImplV3::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
525 const CompletionCallback& callback) {
526 if (callback.is_null())
527 return ReadDataImpl(index, offset, buf, buf_len, callback);
529 DCHECK(node_.Data()->dirty || read_only_);
530 if (index < 0 || index >= kNumStreams)
531 return net::ERR_INVALID_ARGUMENT;
533 int entry_size = entry_.Data()->data_size[index];
534 if (offset >= entry_size || offset < 0 || !buf_len)
535 return 0;
537 if (buf_len < 0)
538 return net::ERR_INVALID_ARGUMENT;
540 if (!background_queue_)
541 return net::ERR_UNEXPECTED;
543 background_queue_->ReadData(this, index, offset, buf, buf_len, callback);
544 return net::ERR_IO_PENDING;
547 int EntryImpl::ReadDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
548 const CompletionCallback& callback) {
549 if (net_log_.IsCapturing()) {
550 net_log_.BeginEvent(
551 net::NetLog::TYPE_ENTRY_READ_DATA,
552 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
555 int result = InternalReadData(index, offset, buf, buf_len, callback);
557 if (result != net::ERR_IO_PENDING && net_log_.IsCapturing()) {
558 net_log_.EndEvent(
559 net::NetLog::TYPE_ENTRY_READ_DATA,
560 CreateNetLogReadWriteCompleteCallback(result));
562 return result;
565 int EntryImplV3::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
566 const CompletionCallback& callback, bool truncate) {
567 if (callback.is_null())
568 return WriteDataImpl(index, offset, buf, buf_len, callback, truncate);
570 DCHECK(node_.Data()->dirty || read_only_);
571 if (index < 0 || index >= kNumStreams)
572 return net::ERR_INVALID_ARGUMENT;
574 if (offset < 0 || buf_len < 0)
575 return net::ERR_INVALID_ARGUMENT;
577 if (!background_queue_)
578 return net::ERR_UNEXPECTED;
580 background_queue_->WriteData(this, index, offset, buf, buf_len, truncate,
581 callback);
582 return net::ERR_IO_PENDING;
585 int EntryImpl::WriteDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
586 const CompletionCallback& callback,
587 bool truncate) {
588 if (net_log_.IsCapturing()) {
589 net_log_.BeginEvent(
590 net::NetLog::TYPE_ENTRY_WRITE_DATA,
591 CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
594 int result = InternalWriteData(index, offset, buf, buf_len, callback,
595 truncate);
597 if (result != net::ERR_IO_PENDING && net_log_.IsCapturing()) {
598 net_log_.EndEvent(
599 net::NetLog::TYPE_ENTRY_WRITE_DATA,
600 CreateNetLogReadWriteCompleteCallback(result));
602 return result;
605 int EntryImplV3::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
606 const CompletionCallback& callback) {
607 if (callback.is_null())
608 return ReadSparseDataImpl(offset, buf, buf_len, callback);
610 if (!background_queue_)
611 return net::ERR_UNEXPECTED;
613 background_queue_->ReadSparseData(this, offset, buf, buf_len, callback);
614 return net::ERR_IO_PENDING;
617 int EntryImpl::ReadSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
618 const CompletionCallback& callback) {
619 DCHECK(node_.Data()->dirty || read_only_);
620 int result = InitSparseData();
621 if (net::OK != result)
622 return result;
624 TimeTicks start = TimeTicks::Now();
625 result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len,
626 callback);
627 ReportIOTime(kSparseRead, start);
628 return result;
631 int EntryImplV3::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
632 const CompletionCallback& callback) {
633 if (callback.is_null())
634 return WriteSparseDataImpl(offset, buf, buf_len, callback);
636 if (!background_queue_)
637 return net::ERR_UNEXPECTED;
639 background_queue_->WriteSparseData(this, offset, buf, buf_len, callback);
640 return net::ERR_IO_PENDING;
643 int EntryImpl::WriteSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
644 const CompletionCallback& callback) {
645 DCHECK(node_.Data()->dirty || read_only_);
646 int result = InitSparseData();
647 if (net::OK != result)
648 return result;
650 TimeTicks start = TimeTicks::Now();
651 result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf,
652 buf_len, callback);
653 ReportIOTime(kSparseWrite, start);
654 return result;
657 int EntryImplV3::GetAvailableRange(int64 offset, int len, int64* start,
658 const CompletionCallback& callback) {
659 if (!background_queue_)
660 return net::ERR_UNEXPECTED;
662 background_queue_->GetAvailableRange(this, offset, len, start, callback);
663 return net::ERR_IO_PENDING;
666 int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) {
667 int result = InitSparseData();
668 if (net::OK != result)
669 return result;
671 return sparse_->GetAvailableRange(offset, len, start);
674 bool EntryImplV3::CouldBeSparse() const {
675 if (sparse_.get())
676 return true;
678 scoped_ptr<SparseControl> sparse;
679 sparse.reset(new SparseControl(const_cast<EntryImpl*>(this)));
680 return sparse->CouldBeSparse();
683 void EntryImplV3::CancelSparseIO() {
684 if (background_queue_)
685 background_queue_->CancelSparseIO(this);
688 void EntryImplV3::CancelSparseIOImpl() {
689 if (!sparse_.get())
690 return;
692 sparse_->CancelIO();
695 int EntryImplV3::ReadyForSparseIO(const CompletionCallback& callback) {
696 if (!sparse_.get())
697 return net::OK;
699 if (!background_queue_)
700 return net::ERR_UNEXPECTED;
702 background_queue_->ReadyForSparseIO(this, callback);
703 return net::ERR_IO_PENDING;
706 int EntryImplV3::ReadyForSparseIOImpl(const CompletionCallback& callback) {
707 DCHECK(sparse_.get());
708 return sparse_->ReadyToUse(callback);
711 // ------------------------------------------------------------------------
713 // When an entry is deleted from the cache, we clean up all the data associated
714 // with it for two reasons: to simplify the reuse of the block (we know that any
715 // unused block is filled with zeros), and to simplify the handling of write /
716 // read partial information from an entry (don't have to worry about returning
717 // data related to a previous cache entry because the range was not fully
718 // written before).
719 EntryImplV3::~EntryImplV3() {
720 if (!backend_) {
721 entry_.clear_modified();
722 node_.clear_modified();
723 return;
725 Log("~EntryImpl in");
727 // Save the sparse info to disk. This will generate IO for this entry and
728 // maybe for a child entry, so it is important to do it before deleting this
729 // entry.
730 sparse_.reset();
732 // Remove this entry from the list of open entries.
733 backend_->OnEntryDestroyBegin(entry_.address());
735 if (doomed_) {
736 DeleteEntryData(true);
737 } else {
738 #if defined(NET_BUILD_STRESS_CACHE)
739 SanityCheck();
740 #endif
741 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE);
742 bool ret = true;
743 for (int index = 0; index < kNumStreams; index++) {
744 if (user_buffers_[index].get()) {
745 if (!(ret = Flush(index, 0)))
746 LOG(ERROR) << "Failed to save user data";
748 if (unreported_size_[index]) {
749 backend_->ModifyStorageSize(
750 entry_.Data()->data_size[index] - unreported_size_[index],
751 entry_.Data()->data_size[index]);
755 if (!ret) {
756 // There was a failure writing the actual data. Mark the entry as dirty.
757 int current_id = backend_->GetCurrentEntryId();
758 node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1;
759 node_.Store();
760 } else if (node_.HasData() && !dirty_ && node_.Data()->dirty) {
761 node_.Data()->dirty = 0;
762 node_.Store();
766 Trace("~EntryImpl out 0x%p", reinterpret_cast<void*>(this));
767 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL);
768 backend_->OnEntryDestroyEnd();
771 int EntryImpl::InternalReadData(int index, int offset,
772 IOBuffer* buf, int buf_len,
773 const CompletionCallback& callback) {
774 DCHECK(node_.Data()->dirty || read_only_);
775 DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len;
776 if (index < 0 || index >= kNumStreams)
777 return net::ERR_INVALID_ARGUMENT;
779 int entry_size = entry_.Data()->data_size[index];
780 if (offset >= entry_size || offset < 0 || !buf_len)
781 return 0;
783 if (buf_len < 0)
784 return net::ERR_INVALID_ARGUMENT;
786 if (!backend_)
787 return net::ERR_UNEXPECTED;
789 TimeTicks start = TimeTicks::Now();
791 if (offset + buf_len > entry_size)
792 buf_len = entry_size - offset;
794 UpdateRank(false);
796 backend_->OnEvent(Stats::READ_DATA);
797 backend_->OnRead(buf_len);
799 Addr address(entry_.Data()->data_addr[index]);
800 int eof = address.is_initialized() ? entry_size : 0;
801 if (user_buffers_[index].get() &&
802 user_buffers_[index]->PreRead(eof, offset, &buf_len)) {
803 // Complete the operation locally.
804 buf_len = user_buffers_[index]->Read(offset, buf, buf_len);
805 ReportIOTime(kRead, start);
806 return buf_len;
809 address.set_value(entry_.Data()->data_addr[index]);
810 DCHECK(address.is_initialized());
811 if (!address.is_initialized()) {
812 DoomImpl();
813 return net::ERR_FAILED;
816 File* file = GetBackingFile(address, index);
817 if (!file) {
818 DoomImpl();
819 LOG(ERROR) << "No file for " << std::hex << address.value();
820 return net::ERR_FILE_NOT_FOUND;
823 size_t file_offset = offset;
824 if (address.is_block_file()) {
825 DCHECK_LE(offset + buf_len, kMaxBlockSize);
826 file_offset += address.start_block() * address.BlockSize() +
827 kBlockHeaderSize;
830 SyncCallback* io_callback = NULL;
831 if (!callback.is_null()) {
832 io_callback = new SyncCallback(this, buf, callback,
833 net::NetLog::TYPE_ENTRY_READ_DATA);
836 TimeTicks start_async = TimeTicks::Now();
838 bool completed;
839 if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) {
840 if (io_callback)
841 io_callback->Discard();
842 DoomImpl();
843 return net::ERR_CACHE_READ_FAILURE;
846 if (io_callback && completed)
847 io_callback->Discard();
849 if (io_callback)
850 ReportIOTime(kReadAsync1, start_async);
852 ReportIOTime(kRead, start);
853 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
856 int EntryImpl::InternalWriteData(int index, int offset,
857 IOBuffer* buf, int buf_len,
858 const CompletionCallback& callback,
859 bool truncate) {
860 DCHECK(node_.Data()->dirty || read_only_);
861 DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len;
862 if (index < 0 || index >= kNumStreams)
863 return net::ERR_INVALID_ARGUMENT;
865 if (offset < 0 || buf_len < 0)
866 return net::ERR_INVALID_ARGUMENT;
868 if (!backend_)
869 return net::ERR_UNEXPECTED;
871 int max_file_size = backend_->MaxFileSize();
873 // offset or buf_len could be negative numbers.
874 if (offset > max_file_size || buf_len > max_file_size ||
875 offset + buf_len > max_file_size) {
876 int size = offset + buf_len;
877 if (size <= max_file_size)
878 size = kint32max;
879 backend_->TooMuchStorageRequested(size);
880 return net::ERR_FAILED;
883 TimeTicks start = TimeTicks::Now();
885 // Read the size at this point (it may change inside prepare).
886 int entry_size = entry_.Data()->data_size[index];
887 bool extending = entry_size < offset + buf_len;
888 truncate = truncate && entry_size > offset + buf_len;
889 Trace("To PrepareTarget 0x%x", entry_.address().value());
890 if (!PrepareTarget(index, offset, buf_len, truncate))
891 return net::ERR_FAILED;
893 Trace("From PrepareTarget 0x%x", entry_.address().value());
894 if (extending || truncate)
895 UpdateSize(index, entry_size, offset + buf_len);
897 UpdateRank(true);
899 backend_->OnEvent(Stats::WRITE_DATA);
900 backend_->OnWrite(buf_len);
902 if (user_buffers_[index].get()) {
903 // Complete the operation locally.
904 user_buffers_[index]->Write(offset, buf, buf_len);
905 ReportIOTime(kWrite, start);
906 return buf_len;
909 Addr address(entry_.Data()->data_addr[index]);
910 if (offset + buf_len == 0) {
911 if (truncate) {
912 DCHECK(!address.is_initialized());
914 return 0;
917 File* file = GetBackingFile(address, index);
918 if (!file)
919 return net::ERR_FILE_NOT_FOUND;
921 size_t file_offset = offset;
922 if (address.is_block_file()) {
923 DCHECK_LE(offset + buf_len, kMaxBlockSize);
924 file_offset += address.start_block() * address.BlockSize() +
925 kBlockHeaderSize;
926 } else if (truncate || (extending && !buf_len)) {
927 if (!file->SetLength(offset + buf_len))
928 return net::ERR_FAILED;
931 if (!buf_len)
932 return 0;
934 SyncCallback* io_callback = NULL;
935 if (!callback.is_null()) {
936 io_callback = new SyncCallback(this, buf, callback,
937 net::NetLog::TYPE_ENTRY_WRITE_DATA);
940 TimeTicks start_async = TimeTicks::Now();
942 bool completed;
943 if (!file->Write(buf->data(), buf_len, file_offset, io_callback,
944 &completed)) {
945 if (io_callback)
946 io_callback->Discard();
947 return net::ERR_CACHE_WRITE_FAILURE;
950 if (io_callback && completed)
951 io_callback->Discard();
953 if (io_callback)
954 ReportIOTime(kWriteAsync1, start_async);
956 ReportIOTime(kWrite, start);
957 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
960 // ------------------------------------------------------------------------
962 bool EntryImpl::CreateDataBlock(int index, int size) {
963 DCHECK(index >= 0 && index < kNumStreams);
965 Addr address(entry_.Data()->data_addr[index]);
966 if (!CreateBlock(size, &address))
967 return false;
969 entry_.Data()->data_addr[index] = address.value();
970 entry_.Store();
971 return true;
974 bool EntryImpl::CreateBlock(int size, Addr* address) {
975 DCHECK(!address->is_initialized());
976 if (!backend_)
977 return false;
979 FileType file_type = Addr::RequiredFileType(size);
980 if (EXTERNAL == file_type) {
981 if (size > backend_->MaxFileSize())
982 return false;
983 if (!backend_->CreateExternalFile(address))
984 return false;
985 } else {
986 int num_blocks = Addr::RequiredBlocks(size, file_type);
988 if (!backend_->CreateBlock(file_type, num_blocks, address))
989 return false;
991 return true;
994 // Note that this method may end up modifying a block file so upon return the
995 // involved block will be free, and could be reused for something else. If there
996 // is a crash after that point (and maybe before returning to the caller), the
997 // entry will be left dirty... and at some point it will be discarded; it is
998 // important that the entry doesn't keep a reference to this address, or we'll
999 // end up deleting the contents of |address| once again.
1000 void EntryImpl::DeleteData(Addr address, int index) {
1001 DCHECK(backend_);
1002 if (!address.is_initialized())
1003 return;
1004 if (address.is_separate_file()) {
1005 int failure = !DeleteCacheFile(backend_->GetFileName(address));
1006 CACHE_UMA(COUNTS, "DeleteFailed", 0, failure);
1007 if (failure) {
1008 LOG(ERROR) << "Failed to delete " <<
1009 backend_->GetFileName(address).value() << " from the cache.";
1011 if (files_[index])
1012 files_[index] = NULL; // Releases the object.
1013 } else {
1014 backend_->DeleteBlock(address, true);
1018 void EntryImpl::UpdateRank(bool modified) {
1019 if (!backend_)
1020 return;
1022 if (!doomed_) {
1023 // Everything is handled by the backend.
1024 backend_->UpdateRank(this, modified);
1025 return;
1028 Time current = Time::Now();
1029 node_.Data()->last_used = current.ToInternalValue();
1031 if (modified)
1032 node_.Data()->last_modified = current.ToInternalValue();
1035 void EntryImpl::DeleteEntryData(bool everything) {
1036 DCHECK(doomed_ || !everything);
1038 if (GetEntryFlags() & PARENT_ENTRY) {
1039 // We have some child entries that must go away.
1040 SparseControl::DeleteChildren(this);
1043 if (GetDataSize(0))
1044 CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0));
1045 if (GetDataSize(1))
1046 CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1));
1047 for (int index = 0; index < kNumStreams; index++) {
1048 Addr address(entry_.Data()->data_addr[index]);
1049 if (address.is_initialized()) {
1050 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1051 unreported_size_[index], 0);
1052 entry_.Data()->data_addr[index] = 0;
1053 entry_.Data()->data_size[index] = 0;
1054 entry_.Store();
1055 DeleteData(address, index);
1059 if (!everything)
1060 return;
1062 // Remove all traces of this entry.
1063 backend_->RemoveEntry(this);
1065 // Note that at this point node_ and entry_ are just two blocks of data, and
1066 // even if they reference each other, nobody should be referencing them.
1068 Addr address(entry_.Data()->long_key);
1069 DeleteData(address, kKeyFileIndex);
1070 backend_->ModifyStorageSize(entry_.Data()->key_len, 0);
1072 backend_->DeleteBlock(entry_.address(), true);
1073 entry_.Discard();
1075 if (!LeaveRankingsBehind()) {
1076 backend_->DeleteBlock(node_.address(), true);
1077 node_.Discard();
1081 // We keep a memory buffer for everything that ends up stored on a block file
1082 // (because we don't know yet the final data size), and for some of the data
1083 // that end up on external files. This function will initialize that memory
1084 // buffer and / or the files needed to store the data.
1086 // In general, a buffer may overlap data already stored on disk, and in that
1087 // case, the contents of the buffer are the most accurate. It may also extend
1088 // the file, but we don't want to read from disk just to keep the buffer up to
1089 // date. This means that as soon as there is a chance to get confused about what
1090 // is the most recent version of some part of a file, we'll flush the buffer and
1091 // reuse it for the new data. Keep in mind that the normal use pattern is quite
1092 // simple (write sequentially from the beginning), so we optimize for handling
1093 // that case.
1094 bool EntryImpl::PrepareTarget(int index, int offset, int buf_len,
1095 bool truncate) {
1096 if (truncate)
1097 return HandleTruncation(index, offset, buf_len);
1099 if (!offset && !buf_len)
1100 return true;
1102 Addr address(entry_.Data()->data_addr[index]);
1103 if (address.is_initialized()) {
1104 if (address.is_block_file() && !MoveToLocalBuffer(index))
1105 return false;
1107 if (!user_buffers_[index].get() && offset < kMaxBlockSize) {
1108 // We are about to create a buffer for the first 16KB, make sure that we
1109 // preserve existing data.
1110 if (!CopyToLocalBuffer(index))
1111 return false;
1115 if (!user_buffers_[index].get())
1116 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1118 return PrepareBuffer(index, offset, buf_len);
1121 // We get to this function with some data already stored. If there is a
1122 // truncation that results on data stored internally, we'll explicitly
1123 // handle the case here.
1124 bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) {
1125 Addr address(entry_.Data()->data_addr[index]);
1127 int current_size = entry_.Data()->data_size[index];
1128 int new_size = offset + buf_len;
1130 if (!new_size) {
1131 // This is by far the most common scenario.
1132 backend_->ModifyStorageSize(current_size - unreported_size_[index], 0);
1133 entry_.Data()->data_addr[index] = 0;
1134 entry_.Data()->data_size[index] = 0;
1135 unreported_size_[index] = 0;
1136 entry_.Store();
1137 DeleteData(address, index);
1139 user_buffers_[index].reset();
1140 return true;
1143 // We never postpone truncating a file, if there is one, but we may postpone
1144 // telling the backend about the size reduction.
1145 if (user_buffers_[index].get()) {
1146 DCHECK_GE(current_size, user_buffers_[index]->Start());
1147 if (!address.is_initialized()) {
1148 // There is no overlap between the buffer and disk.
1149 if (new_size > user_buffers_[index]->Start()) {
1150 // Just truncate our buffer.
1151 DCHECK_LT(new_size, user_buffers_[index]->End());
1152 user_buffers_[index]->Truncate(new_size);
1153 return true;
1156 // Just discard our buffer.
1157 user_buffers_[index]->Reset();
1158 return PrepareBuffer(index, offset, buf_len);
1161 // There is some overlap or we need to extend the file before the
1162 // truncation.
1163 if (offset > user_buffers_[index]->Start())
1164 user_buffers_[index]->Truncate(new_size);
1165 UpdateSize(index, current_size, new_size);
1166 if (!Flush(index, 0))
1167 return false;
1168 user_buffers_[index].reset();
1171 // We have data somewhere, and it is not in a buffer.
1172 DCHECK(!user_buffers_[index].get());
1173 DCHECK(address.is_initialized());
1175 if (new_size > kMaxBlockSize)
1176 return true; // Let the operation go directly to disk.
1178 return ImportSeparateFile(index, offset + buf_len);
1181 bool EntryImpl::CopyToLocalBuffer(int index) {
1182 Addr address(entry_.Data()->data_addr[index]);
1183 DCHECK(!user_buffers_[index].get());
1184 DCHECK(address.is_initialized());
1186 int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize);
1187 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1188 user_buffers_[index]->Write(len, NULL, 0);
1190 File* file = GetBackingFile(address, index);
1191 int offset = 0;
1193 if (address.is_block_file())
1194 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1196 if (!file ||
1197 !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) {
1198 user_buffers_[index].reset();
1199 return false;
1201 return true;
1204 bool EntryImpl::MoveToLocalBuffer(int index) {
1205 if (!CopyToLocalBuffer(index))
1206 return false;
1208 Addr address(entry_.Data()->data_addr[index]);
1209 entry_.Data()->data_addr[index] = 0;
1210 entry_.Store();
1211 DeleteData(address, index);
1213 // If we lose this entry we'll see it as zero sized.
1214 int len = entry_.Data()->data_size[index];
1215 backend_->ModifyStorageSize(len - unreported_size_[index], 0);
1216 unreported_size_[index] = len;
1217 return true;
1220 bool EntryImpl::ImportSeparateFile(int index, int new_size) {
1221 if (entry_.Data()->data_size[index] > new_size)
1222 UpdateSize(index, entry_.Data()->data_size[index], new_size);
1224 return MoveToLocalBuffer(index);
1227 bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) {
1228 DCHECK(user_buffers_[index].get());
1229 if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) ||
1230 offset > entry_.Data()->data_size[index]) {
1231 // We are about to extend the buffer or the file (with zeros), so make sure
1232 // that we are not overwriting anything.
1233 Addr address(entry_.Data()->data_addr[index]);
1234 if (address.is_initialized() && address.is_separate_file()) {
1235 if (!Flush(index, 0))
1236 return false;
1237 // There is an actual file already, and we don't want to keep track of
1238 // its length so we let this operation go straight to disk.
1239 // The only case when a buffer is allowed to extend the file (as in fill
1240 // with zeros before the start) is when there is no file yet to extend.
1241 user_buffers_[index].reset();
1242 return true;
1246 if (!user_buffers_[index]->PreWrite(offset, buf_len)) {
1247 if (!Flush(index, offset + buf_len))
1248 return false;
1250 // Lets try again.
1251 if (offset > user_buffers_[index]->End() ||
1252 !user_buffers_[index]->PreWrite(offset, buf_len)) {
1253 // We cannot complete the operation with a buffer.
1254 DCHECK(!user_buffers_[index]->Size());
1255 DCHECK(!user_buffers_[index]->Start());
1256 user_buffers_[index].reset();
1259 return true;
1262 bool EntryImpl::Flush(int index, int min_len) {
1263 Addr address(entry_.Data()->data_addr[index]);
1264 DCHECK(user_buffers_[index].get());
1265 DCHECK(!address.is_initialized() || address.is_separate_file());
1266 DVLOG(3) << "Flush";
1268 int size = std::max(entry_.Data()->data_size[index], min_len);
1269 if (size && !address.is_initialized() && !CreateDataBlock(index, size))
1270 return false;
1272 if (!entry_.Data()->data_size[index]) {
1273 DCHECK(!user_buffers_[index]->Size());
1274 return true;
1277 address.set_value(entry_.Data()->data_addr[index]);
1279 int len = user_buffers_[index]->Size();
1280 int offset = user_buffers_[index]->Start();
1281 if (!len && !offset)
1282 return true;
1284 if (address.is_block_file()) {
1285 DCHECK_EQ(len, entry_.Data()->data_size[index]);
1286 DCHECK(!offset);
1287 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1290 File* file = GetBackingFile(address, index);
1291 if (!file)
1292 return false;
1294 if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL))
1295 return false;
1296 user_buffers_[index]->Reset();
1298 return true;
1301 void EntryImpl::UpdateSize(int index, int old_size, int new_size) {
1302 if (entry_.Data()->data_size[index] == new_size)
1303 return;
1305 unreported_size_[index] += new_size - old_size;
1306 entry_.Data()->data_size[index] = new_size;
1307 entry_.set_modified();
1310 int EntryImpl::InitSparseData() {
1311 if (sparse_.get())
1312 return net::OK;
1314 // Use a local variable so that sparse_ never goes from 'valid' to NULL.
1315 scoped_ptr<SparseControl> sparse(new SparseControl(this));
1316 int result = sparse->Init();
1317 if (net::OK == result)
1318 sparse_.swap(sparse);
1320 return result;
1323 void EntryImpl::SetEntryFlags(uint32 flags) {
1324 entry_.Data()->flags |= flags;
1325 entry_.set_modified();
1328 uint32 EntryImpl::GetEntryFlags() {
1329 return entry_.Data()->flags;
1332 void EntryImpl::GetData(int index, char** buffer, Addr* address) {
1333 DCHECK(backend_);
1334 if (user_buffers_[index].get() && user_buffers_[index]->Size() &&
1335 !user_buffers_[index]->Start()) {
1336 // The data is already in memory, just copy it and we're done.
1337 int data_len = entry_.Data()->data_size[index];
1338 if (data_len <= user_buffers_[index]->Size()) {
1339 DCHECK(!user_buffers_[index]->Start());
1340 *buffer = new char[data_len];
1341 memcpy(*buffer, user_buffers_[index]->Data(), data_len);
1342 return;
1346 // Bad news: we'd have to read the info from disk so instead we'll just tell
1347 // the caller where to read from.
1348 *buffer = NULL;
1349 address->set_value(entry_.Data()->data_addr[index]);
1350 if (address->is_initialized()) {
1351 // Prevent us from deleting the block from the backing store.
1352 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1353 unreported_size_[index], 0);
1354 entry_.Data()->data_addr[index] = 0;
1355 entry_.Data()->data_size[index] = 0;
1359 #endif // defined(V3_NOT_JUST_YET_READY).
1361 void EntryImplV3::ReportIOTime(Operation op, const base::TimeTicks& start) {
1362 if (!backend_)
1363 return;
1365 switch (op) {
1366 case kRead:
1367 CACHE_UMA(AGE_MS, "ReadTime", start);
1368 break;
1369 case kWrite:
1370 CACHE_UMA(AGE_MS, "WriteTime", start);
1371 break;
1372 case kSparseRead:
1373 CACHE_UMA(AGE_MS, "SparseReadTime", start);
1374 break;
1375 case kSparseWrite:
1376 CACHE_UMA(AGE_MS, "SparseWriteTime", start);
1377 break;
1378 case kAsyncIO:
1379 CACHE_UMA(AGE_MS, "AsyncIOTime", start);
1380 break;
1381 case kReadAsync1:
1382 CACHE_UMA(AGE_MS, "AsyncReadDispatchTime", start);
1383 break;
1384 case kWriteAsync1:
1385 CACHE_UMA(AGE_MS, "AsyncWriteDispatchTime", start);
1386 break;
1387 default:
1388 NOTREACHED();
1392 void EntryImplV3::Log(const char* msg) {
1393 Trace("%s 0x%p 0x%x", msg, reinterpret_cast<void*>(this), address_);
1394 Trace(" data: 0x%x 0x%x", entry_->data_addr[0], entry_->data_addr[1]);
1395 Trace(" doomed: %d", doomed_);
1398 void EntryImplV3::Doom() {
1399 NOTIMPLEMENTED();
1402 void EntryImplV3::Close() {
1403 NOTIMPLEMENTED();
1406 std::string EntryImplV3::GetKey() const {
1407 return std::string();
1410 Time EntryImplV3::GetLastUsed() const {
1411 return Time();
1414 Time EntryImplV3::GetLastModified() const {
1415 return Time();
1418 int32 EntryImplV3::GetDataSize(int index) const {
1419 return 0;
1422 int EntryImplV3::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
1423 const CompletionCallback& callback) {
1424 return net::ERR_FAILED;
1427 int EntryImplV3::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
1428 const CompletionCallback& callback, bool truncate) {
1429 return net::ERR_FAILED;
1432 int EntryImplV3::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
1433 const CompletionCallback& callback) {
1434 return net::ERR_FAILED;
1437 int EntryImplV3::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
1438 const CompletionCallback& callback) {
1439 return net::ERR_FAILED;
1442 int EntryImplV3::GetAvailableRange(int64 offset, int len, int64* start,
1443 const CompletionCallback& callback) {
1444 return net::ERR_FAILED;
1447 bool EntryImplV3::CouldBeSparse() const {
1448 return false;
1451 void EntryImplV3::CancelSparseIO() {
1452 NOTIMPLEMENTED();
1455 int EntryImplV3::ReadyForSparseIO(const CompletionCallback& callback) {
1456 return net::ERR_FAILED;
1459 EntryImplV3::~EntryImplV3() {
1460 NOTIMPLEMENTED();
1463 } // namespace disk_cache