1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/cubic_bytes.h"
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "net/quic/quic_protocol.h"
14 #include "net/quic/quic_time.h"
22 // Constants based on TCP defaults.
23 // The following constants are in 2^10 fractions of a second instead of ms to
24 // allow a 10 shift right to divide.
25 const int kCubeScale
= 40; // 1024*1024^3 (first 1024 is from 0.100^3)
26 // where 0.100 is 100 ms which is the scaling
28 const int kCubeCongestionWindowScale
= 410;
29 // The cube factor for packets in bytes.
30 const uint64 kCubeFactor
= (UINT64_C(1) << kCubeScale
) /
31 kCubeCongestionWindowScale
/ kDefaultTCPMSS
;
33 const uint32 kDefaultNumConnections
= 2;
34 const float kBeta
= 0.7f
; // Default Cubic backoff factor.
35 // Additional backoff factor when loss occurs in the concave part of the Cubic
36 // curve. This additional backoff factor is expected to give up bandwidth to
37 // new concurrent flows and speed up convergence.
38 const float kBetaLastMax
= 0.85f
;
42 CubicBytes::CubicBytes(const QuicClock
* clock
)
44 num_connections_(kDefaultNumConnections
),
45 epoch_(QuicTime::Zero()),
46 last_update_time_(QuicTime::Zero()) {
50 void CubicBytes::SetNumConnections(int num_connections
) {
51 num_connections_
= num_connections
;
54 float CubicBytes::Alpha() const {
55 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
56 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
57 // We derive the equivalent alpha for an N-connection emulation as:
58 const float beta
= Beta();
59 return 3 * num_connections_
* num_connections_
* (1 - beta
) / (1 + beta
);
62 float CubicBytes::Beta() const {
63 // kNConnectionBeta is the backoff factor after loss for our N-connection
64 // emulation, which emulates the effective backoff of an ensemble of N
65 // TCP-Reno connections on a single loss event. The effective multiplier is
67 return (num_connections_
- 1 + kBeta
) / num_connections_
;
70 void CubicBytes::Reset() {
71 epoch_
= QuicTime::Zero(); // Reset time.
72 last_update_time_
= QuicTime::Zero(); // Reset time.
73 last_congestion_window_
= 0;
74 last_max_congestion_window_
= 0;
75 acked_bytes_count_
= 0;
76 estimated_tcp_congestion_window_
= 0;
77 origin_point_congestion_window_
= 0;
78 time_to_origin_point_
= 0;
79 last_target_congestion_window_
= 0;
82 QuicByteCount
CubicBytes::CongestionWindowAfterPacketLoss(
83 QuicByteCount current_congestion_window
) {
84 if (current_congestion_window
< last_max_congestion_window_
) {
85 // We never reached the old max, so assume we are competing with another
86 // flow. Use our extra back off factor to allow the other flow to go up.
87 last_max_congestion_window_
=
88 static_cast<int>(kBetaLastMax
* current_congestion_window
);
90 last_max_congestion_window_
= current_congestion_window
;
92 epoch_
= QuicTime::Zero(); // Reset time.
93 return static_cast<int>(current_congestion_window
* Beta());
96 QuicByteCount
CubicBytes::CongestionWindowAfterAck(
97 QuicByteCount acked_bytes
,
98 QuicByteCount current_congestion_window
,
99 QuicTime::Delta delay_min
) {
100 acked_bytes_count_
+= acked_bytes
;
101 QuicTime current_time
= clock_
->ApproximateNow();
103 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
104 if (last_congestion_window_
== current_congestion_window
&&
105 (current_time
.Subtract(last_update_time_
) <= MaxCubicTimeInterval())) {
106 return max(last_target_congestion_window_
,
107 estimated_tcp_congestion_window_
);
109 last_congestion_window_
= current_congestion_window
;
110 last_update_time_
= current_time
;
112 if (!epoch_
.IsInitialized()) {
113 // First ACK after a loss event.
114 DVLOG(1) << "Start of epoch";
115 epoch_
= current_time
; // Start of epoch.
116 acked_bytes_count_
= acked_bytes
; // Reset count.
117 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
118 estimated_tcp_congestion_window_
= current_congestion_window
;
119 if (last_max_congestion_window_
<= current_congestion_window
) {
120 time_to_origin_point_
= 0;
121 origin_point_congestion_window_
= current_congestion_window
;
123 time_to_origin_point_
=
124 static_cast<uint32
>(cbrt(kCubeFactor
* (last_max_congestion_window_
-
125 current_congestion_window
)));
126 origin_point_congestion_window_
= last_max_congestion_window_
;
129 // Change the time unit from microseconds to 2^10 fractions per second. Take
130 // the round trip time in account. This is done to allow us to use shift as a
133 (current_time
.Add(delay_min
).Subtract(epoch_
).ToMicroseconds() << 10) /
136 int64 offset
= time_to_origin_point_
- elapsed_time
;
137 QuicByteCount delta_congestion_window
=
138 ((kCubeCongestionWindowScale
* offset
* offset
* offset
) >> kCubeScale
) *
141 QuicByteCount target_congestion_window
=
142 origin_point_congestion_window_
- delta_congestion_window
;
144 DCHECK_LT(0u, estimated_tcp_congestion_window_
);
145 // Increase the window by Alpha * 1 MSS of bytes every time we ack an
146 // estimated tcp window of bytes.
147 estimated_tcp_congestion_window_
+= acked_bytes_count_
*
148 (Alpha() * kDefaultTCPMSS
) /
149 estimated_tcp_congestion_window_
;
150 acked_bytes_count_
= 0;
152 // We have a new cubic congestion window.
153 last_target_congestion_window_
= target_congestion_window
;
155 // Compute target congestion_window based on cubic target and estimated TCP
156 // congestion_window, use highest (fastest).
157 if (target_congestion_window
< estimated_tcp_congestion_window_
) {
158 target_congestion_window
= estimated_tcp_congestion_window_
;
161 DVLOG(1) << "Target congestion_window: " << target_congestion_window
;
162 return target_congestion_window
;