Pin Chrome's shortcut to the Win10 Start menu on install and OS upgrade.
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blobed5c011ff6c011d8762e10f2083cc6177777f59f
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include <stdint.h>
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "base/stl_util.h"
12 #include "net/quic/crypto/crypto_framer.h"
13 #include "net/quic/crypto/crypto_handshake_message.h"
14 #include "net/quic/crypto/crypto_protocol.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_data_reader.h"
18 #include "net/quic/quic_data_writer.h"
19 #include "net/quic/quic_flags.h"
20 #include "net/quic/quic_socket_address_coder.h"
21 #include "net/quic/quic_utils.h"
23 using base::StringPiece;
24 using std::map;
25 using std::max;
26 using std::min;
27 using std::numeric_limits;
28 using std::string;
30 namespace net {
32 namespace {
34 // Mask to select the lowest 48 bits of a sequence number.
35 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
36 UINT64_C(0x0000FFFFFFFFFFFF);
37 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
38 UINT64_C(0x00000000FFFFFFFF);
39 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
40 UINT64_C(0x000000000000FFFF);
41 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
42 UINT64_C(0x00000000000000FF);
44 const QuicConnectionId k1ByteConnectionIdMask = UINT64_C(0x00000000000000FF);
45 const QuicConnectionId k4ByteConnectionIdMask = UINT64_C(0x00000000FFFFFFFF);
47 // Number of bits the sequence number length bits are shifted from the right
48 // edge of the public header.
49 const uint8 kPublicHeaderSequenceNumberShift = 4;
51 // New Frame Types, QUIC v. >= 10:
52 // There are two interpretations for the Frame Type byte in the QUIC protocol,
53 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
55 // Regular Frame Types use the Frame Type byte simply. Currently defined
56 // Regular Frame Types are:
57 // Padding : 0b 00000000 (0x00)
58 // ResetStream : 0b 00000001 (0x01)
59 // ConnectionClose : 0b 00000010 (0x02)
60 // GoAway : 0b 00000011 (0x03)
61 // WindowUpdate : 0b 00000100 (0x04)
62 // Blocked : 0b 00000101 (0x05)
64 // Special Frame Types encode both a Frame Type and corresponding flags
65 // all in the Frame Type byte. Currently defined Special Frame Types are:
66 // Stream : 0b 1xxxxxxx
67 // Ack : 0b 01xxxxxx
69 // Semantics of the flag bits above (the x bits) depends on the frame type.
71 // Masks to determine if the frame type is a special use
72 // and for specific special frame types.
73 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
74 const uint8 kQuicFrameTypeStreamMask = 0x80;
75 const uint8 kQuicFrameTypeAckMask = 0x40;
77 // Stream frame relative shifts and masks for interpreting the stream flags.
78 // StreamID may be 1, 2, 3, or 4 bytes.
79 const uint8 kQuicStreamIdShift = 2;
80 const uint8 kQuicStreamIDLengthMask = 0x03;
82 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
83 const uint8 kQuicStreamOffsetShift = 3;
84 const uint8 kQuicStreamOffsetMask = 0x07;
86 // Data length may be 0 or 2 bytes.
87 const uint8 kQuicStreamDataLengthShift = 1;
88 const uint8 kQuicStreamDataLengthMask = 0x01;
90 // Fin bit may be set or not.
91 const uint8 kQuicStreamFinShift = 1;
92 const uint8 kQuicStreamFinMask = 0x01;
94 // Sequence number size shift used in AckFrames.
95 const uint8 kQuicSequenceNumberLengthShift = 2;
97 // Acks may be truncated.
98 const uint8 kQuicAckTruncatedShift = 1;
99 const uint8 kQuicAckTruncatedMask = 0x01;
101 // Acks may not have any nacks.
102 const uint8 kQuicHasNacksMask = 0x01;
104 // Returns the absolute value of the difference between |a| and |b|.
105 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
106 QuicPacketSequenceNumber b) {
107 // Since these are unsigned numbers, we can't just return abs(a - b)
108 if (a < b) {
109 return b - a;
111 return a - b;
114 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
115 QuicPacketSequenceNumber a,
116 QuicPacketSequenceNumber b) {
117 return (Delta(target, a) < Delta(target, b)) ? a : b;
120 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
121 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
122 case PACKET_FLAGS_6BYTE_SEQUENCE:
123 return PACKET_6BYTE_SEQUENCE_NUMBER;
124 case PACKET_FLAGS_4BYTE_SEQUENCE:
125 return PACKET_4BYTE_SEQUENCE_NUMBER;
126 case PACKET_FLAGS_2BYTE_SEQUENCE:
127 return PACKET_2BYTE_SEQUENCE_NUMBER;
128 case PACKET_FLAGS_1BYTE_SEQUENCE:
129 return PACKET_1BYTE_SEQUENCE_NUMBER;
130 default:
131 LOG(DFATAL) << "Unreachable case statement.";
132 return PACKET_6BYTE_SEQUENCE_NUMBER;
136 } // namespace
138 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
139 QuicTime creation_time,
140 Perspective perspective)
141 : visitor_(nullptr),
142 entropy_calculator_(nullptr),
143 error_(QUIC_NO_ERROR),
144 last_sequence_number_(0),
145 last_serialized_connection_id_(0),
146 supported_versions_(supported_versions),
147 decrypter_level_(ENCRYPTION_NONE),
148 alternative_decrypter_level_(ENCRYPTION_NONE),
149 alternative_decrypter_latch_(false),
150 perspective_(perspective),
151 validate_flags_(true),
152 creation_time_(creation_time),
153 last_timestamp_(QuicTime::Delta::Zero()) {
154 DCHECK(!supported_versions.empty());
155 quic_version_ = supported_versions_[0];
156 decrypter_.reset(QuicDecrypter::Create(kNULL));
157 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
160 QuicFramer::~QuicFramer() {}
162 // static
163 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
164 QuicStreamOffset offset,
165 bool last_frame_in_packet,
166 InFecGroup is_in_fec_group) {
167 bool no_stream_frame_length = last_frame_in_packet &&
168 is_in_fec_group == NOT_IN_FEC_GROUP;
169 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
170 GetStreamOffsetSize(offset) +
171 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
174 // static
175 size_t QuicFramer::GetMinAckFrameSize(
176 QuicSequenceNumberLength largest_observed_length) {
177 return kQuicFrameTypeSize + kQuicEntropyHashSize +
178 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
181 // static
182 size_t QuicFramer::GetStopWaitingFrameSize(
183 QuicSequenceNumberLength sequence_number_length) {
184 return kQuicFrameTypeSize + kQuicEntropyHashSize +
185 sequence_number_length;
188 // static
189 size_t QuicFramer::GetMinRstStreamFrameSize() {
190 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
191 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
192 kQuicErrorDetailsLengthSize;
195 // static
196 size_t QuicFramer::GetRstStreamFrameSize() {
197 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
198 kQuicErrorCodeSize;
201 // static
202 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
203 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
206 // static
207 size_t QuicFramer::GetMinGoAwayFrameSize() {
208 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
209 kQuicMaxStreamIdSize;
212 // static
213 size_t QuicFramer::GetWindowUpdateFrameSize() {
214 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
217 // static
218 size_t QuicFramer::GetBlockedFrameSize() {
219 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
222 // static
223 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
224 // Sizes are 1 through 4 bytes.
225 for (int i = 1; i <= 4; ++i) {
226 stream_id >>= 8;
227 if (stream_id == 0) {
228 return i;
231 LOG(DFATAL) << "Failed to determine StreamIDSize.";
232 return 4;
235 // static
236 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
237 // 0 is a special case.
238 if (offset == 0) {
239 return 0;
241 // 2 through 8 are the remaining sizes.
242 offset >>= 8;
243 for (int i = 2; i <= 8; ++i) {
244 offset >>= 8;
245 if (offset == 0) {
246 return i;
249 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
250 return 8;
253 // static
254 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
255 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
256 number_versions * kQuicVersionSize;
259 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
260 for (size_t i = 0; i < supported_versions_.size(); ++i) {
261 if (version == supported_versions_[i]) {
262 return true;
265 return false;
268 size_t QuicFramer::GetSerializedFrameLength(
269 const QuicFrame& frame,
270 size_t free_bytes,
271 bool first_frame,
272 bool last_frame,
273 InFecGroup is_in_fec_group,
274 QuicSequenceNumberLength sequence_number_length) {
275 // Prevent a rare crash reported in b/19458523.
276 if (frame.stream_frame == nullptr) {
277 LOG(DFATAL) << "Cannot compute the length of a null frame. "
278 << "type:" << frame.type << "free_bytes:" << free_bytes
279 << " first_frame:" << first_frame
280 << " last_frame:" << last_frame
281 << " is_in_fec:" << is_in_fec_group
282 << " seq num length:" << sequence_number_length;
283 set_error(QUIC_INTERNAL_ERROR);
284 visitor_->OnError(this);
285 return false;
287 if (frame.type == PADDING_FRAME) {
288 // PADDING implies end of packet.
289 return free_bytes;
291 size_t frame_len =
292 ComputeFrameLength(frame, last_frame, is_in_fec_group,
293 sequence_number_length);
294 if (frame_len <= free_bytes) {
295 // Frame fits within packet. Note that acks may be truncated.
296 return frame_len;
298 // Only truncate the first frame in a packet, so if subsequent ones go
299 // over, stop including more frames.
300 if (!first_frame) {
301 return 0;
303 bool can_truncate =
304 frame.type == ACK_FRAME &&
305 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER);
306 if (can_truncate) {
307 // Truncate the frame so the packet will not exceed kMaxPacketSize.
308 // Note that we may not use every byte of the writer in this case.
309 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
310 return free_bytes;
312 if (!FLAGS_quic_allow_oversized_packets_for_test) {
313 return 0;
315 LOG(DFATAL) << "Packet size too small to fit frame.";
316 return frame_len;
319 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
321 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
323 // static
324 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
325 const QuicPacketHeader& header) {
326 return header.entropy_flag << (header.packet_sequence_number % 8);
329 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
330 const QuicFrames& frames,
331 char* buffer,
332 size_t packet_length) {
333 QuicDataWriter writer(packet_length, buffer);
334 if (!AppendPacketHeader(header, &writer)) {
335 LOG(DFATAL) << "AppendPacketHeader failed";
336 return nullptr;
339 size_t i = 0;
340 for (const QuicFrame& frame : frames) {
341 // Determine if we should write stream frame length in header.
342 const bool no_stream_frame_length =
343 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
344 (i == frames.size() - 1);
345 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
346 LOG(DFATAL) << "AppendTypeByte failed";
347 return nullptr;
350 switch (frame.type) {
351 case PADDING_FRAME:
352 writer.WritePadding();
353 break;
354 case STREAM_FRAME:
355 if (!AppendStreamFrame(
356 *frame.stream_frame, no_stream_frame_length, &writer)) {
357 LOG(DFATAL) << "AppendStreamFrame failed";
358 return nullptr;
360 break;
361 case ACK_FRAME:
362 if (!AppendAckFrameAndTypeByte(
363 header, *frame.ack_frame, &writer)) {
364 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
365 return nullptr;
367 break;
368 case STOP_WAITING_FRAME:
369 if (!AppendStopWaitingFrame(
370 header, *frame.stop_waiting_frame, &writer)) {
371 LOG(DFATAL) << "AppendStopWaitingFrame failed";
372 return nullptr;
374 break;
375 case MTU_DISCOVERY_FRAME:
376 // MTU discovery frames are serialized as ping frames.
377 case PING_FRAME:
378 // Ping has no payload.
379 break;
380 case RST_STREAM_FRAME:
381 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
382 LOG(DFATAL) << "AppendRstStreamFrame failed";
383 return nullptr;
385 break;
386 case CONNECTION_CLOSE_FRAME:
387 if (!AppendConnectionCloseFrame(
388 *frame.connection_close_frame, &writer)) {
389 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
390 return nullptr;
392 break;
393 case GOAWAY_FRAME:
394 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
395 LOG(DFATAL) << "AppendGoAwayFrame failed";
396 return nullptr;
398 break;
399 case WINDOW_UPDATE_FRAME:
400 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
401 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
402 return nullptr;
404 break;
405 case BLOCKED_FRAME:
406 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
407 LOG(DFATAL) << "AppendBlockedFrame failed";
408 return nullptr;
410 break;
411 default:
412 RaiseError(QUIC_INVALID_FRAME_DATA);
413 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
414 return nullptr;
416 ++i;
419 QuicPacket* packet =
420 new QuicPacket(writer.data(), writer.length(), false,
421 header.public_header.connection_id_length,
422 header.public_header.version_flag,
423 header.public_header.sequence_number_length);
425 return packet;
428 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
429 const QuicFecData& fec) {
430 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
431 DCHECK_NE(0u, header.fec_group);
432 size_t len = GetPacketHeaderSize(header);
433 len += fec.redundancy.length();
435 scoped_ptr<char[]> buffer(new char[len]);
436 QuicDataWriter writer(len, buffer.get());
437 if (!AppendPacketHeader(header, &writer)) {
438 LOG(DFATAL) << "AppendPacketHeader failed";
439 return nullptr;
442 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
443 LOG(DFATAL) << "Failed to add FEC";
444 return nullptr;
447 return new QuicPacket(buffer.release(), len, true,
448 header.public_header.connection_id_length,
449 header.public_header.version_flag,
450 header.public_header.sequence_number_length);
453 // static
454 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
455 const QuicPublicResetPacket& packet) {
456 DCHECK(packet.public_header.reset_flag);
458 CryptoHandshakeMessage reset;
459 reset.set_tag(kPRST);
460 reset.SetValue(kRNON, packet.nonce_proof);
461 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
462 if (!packet.client_address.address().empty()) {
463 // packet.client_address is non-empty.
464 QuicSocketAddressCoder address_coder(packet.client_address);
465 string serialized_address = address_coder.Encode();
466 if (serialized_address.empty()) {
467 return nullptr;
469 reset.SetStringPiece(kCADR, serialized_address);
471 const QuicData& reset_serialized = reset.GetSerialized();
473 size_t len =
474 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
475 scoped_ptr<char[]> buffer(new char[len]);
476 QuicDataWriter writer(len, buffer.get());
478 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
479 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
480 if (!writer.WriteUInt8(flags)) {
481 return nullptr;
484 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
485 return nullptr;
488 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
489 return nullptr;
492 return new QuicEncryptedPacket(buffer.release(), len, true);
495 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
496 const QuicPacketPublicHeader& header,
497 const QuicVersionVector& supported_versions) {
498 DCHECK(header.version_flag);
499 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
500 scoped_ptr<char[]> buffer(new char[len]);
501 QuicDataWriter writer(len, buffer.get());
503 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
504 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
505 if (!writer.WriteUInt8(flags)) {
506 return nullptr;
509 if (!writer.WriteUInt64(header.connection_id)) {
510 return nullptr;
513 for (size_t i = 0; i < supported_versions.size(); ++i) {
514 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
515 return nullptr;
519 return new QuicEncryptedPacket(buffer.release(), len, true);
522 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
523 DCHECK(!reader_.get());
524 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
526 visitor_->OnPacket();
528 // First parse the public header.
529 QuicPacketPublicHeader public_header;
530 if (!ProcessPublicHeader(&public_header)) {
531 DLOG(WARNING) << "Unable to process public header.";
532 DCHECK_NE("", detailed_error_);
533 return RaiseError(QUIC_INVALID_PACKET_HEADER);
536 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
537 // The visitor suppresses further processing of the packet.
538 reader_.reset(nullptr);
539 return true;
542 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
543 public_header.versions[0] != quic_version_) {
544 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
545 reader_.reset(nullptr);
546 return true;
550 bool rv;
551 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
552 rv = ProcessVersionNegotiationPacket(&public_header);
553 } else if (public_header.reset_flag) {
554 rv = ProcessPublicResetPacket(public_header);
555 } else if (packet.length() <= kMaxPacketSize) {
556 char buffer[kMaxPacketSize];
557 rv = ProcessDataPacket(public_header, packet, buffer, kMaxPacketSize);
558 } else {
559 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
560 rv = ProcessDataPacket(public_header, packet, large_buffer.get(),
561 packet.length());
562 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
563 << "larger than kMaxPacketSize. packet size:"
564 << packet.length();
567 reader_.reset(nullptr);
568 return rv;
571 bool QuicFramer::ProcessVersionNegotiationPacket(
572 QuicPacketPublicHeader* public_header) {
573 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
574 // Try reading at least once to raise error if the packet is invalid.
575 do {
576 QuicTag version;
577 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
578 set_detailed_error("Unable to read supported version in negotiation.");
579 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
581 public_header->versions.push_back(QuicTagToQuicVersion(version));
582 } while (!reader_->IsDoneReading());
584 visitor_->OnVersionNegotiationPacket(*public_header);
585 return true;
588 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader& public_header,
589 const QuicEncryptedPacket& packet,
590 char* decrypted_buffer,
591 size_t buffer_length) {
592 QuicPacketHeader header(public_header);
593 if (!ProcessPacketHeader(&header, packet, decrypted_buffer, buffer_length)) {
594 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
595 return false;
598 if (!visitor_->OnPacketHeader(header)) {
599 // The visitor suppresses further processing of the packet.
600 return true;
603 if (packet.length() > kMaxPacketSize) {
604 DLOG(WARNING) << "Packet too large: " << packet.length();
605 return RaiseError(QUIC_PACKET_TOO_LARGE);
608 // Handle the payload.
609 if (!header.fec_flag) {
610 if (header.is_in_fec_group == IN_FEC_GROUP) {
611 StringPiece payload = reader_->PeekRemainingPayload();
612 visitor_->OnFecProtectedPayload(payload);
614 if (!ProcessFrameData(header)) {
615 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
616 DLOG(WARNING) << "Unable to process frame data.";
617 return false;
619 } else {
620 QuicFecData fec_data;
621 fec_data.fec_group = header.fec_group;
622 fec_data.redundancy = reader_->ReadRemainingPayload();
623 visitor_->OnFecData(fec_data);
626 visitor_->OnPacketComplete();
627 return true;
630 bool QuicFramer::ProcessPublicResetPacket(
631 const QuicPacketPublicHeader& public_header) {
632 QuicPublicResetPacket packet(public_header);
634 scoped_ptr<CryptoHandshakeMessage> reset(
635 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
636 if (!reset.get()) {
637 set_detailed_error("Unable to read reset message.");
638 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
640 if (reset->tag() != kPRST) {
641 set_detailed_error("Incorrect message tag.");
642 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
645 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
646 set_detailed_error("Unable to read nonce proof.");
647 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
649 // TODO(satyamshekhar): validate nonce to protect against DoS.
651 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
652 QUIC_NO_ERROR) {
653 set_detailed_error("Unable to read rejected sequence number.");
654 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
657 StringPiece address;
658 if (reset->GetStringPiece(kCADR, &address)) {
659 QuicSocketAddressCoder address_coder;
660 if (address_coder.Decode(address.data(), address.length())) {
661 packet.client_address = IPEndPoint(address_coder.ip(),
662 address_coder.port());
666 visitor_->OnPublicResetPacket(packet);
667 return true;
670 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
671 StringPiece payload) {
672 DCHECK(!reader_.get());
674 visitor_->OnRevivedPacket();
676 header->entropy_hash = GetPacketEntropyHash(*header);
678 if (!visitor_->OnPacketHeader(*header)) {
679 return true;
682 if (payload.length() > kMaxPacketSize) {
683 set_detailed_error("Revived packet too large.");
684 return RaiseError(QUIC_PACKET_TOO_LARGE);
687 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
688 if (!ProcessFrameData(*header)) {
689 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
690 DLOG(WARNING) << "Unable to process frame data.";
691 return false;
694 visitor_->OnPacketComplete();
695 reader_.reset(nullptr);
696 return true;
699 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
700 QuicDataWriter* writer) {
701 DVLOG(1) << "Appending header: " << header;
702 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
703 uint8 public_flags = 0;
704 if (header.public_header.reset_flag) {
705 public_flags |= PACKET_PUBLIC_FLAGS_RST;
707 if (header.public_header.version_flag) {
708 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
711 public_flags |=
712 GetSequenceNumberFlags(header.public_header.sequence_number_length)
713 << kPublicHeaderSequenceNumberShift;
715 switch (header.public_header.connection_id_length) {
716 case PACKET_0BYTE_CONNECTION_ID:
717 if (!writer->WriteUInt8(
718 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
719 return false;
721 break;
722 case PACKET_1BYTE_CONNECTION_ID:
723 if (!writer->WriteUInt8(
724 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
725 return false;
727 if (!writer->WriteUInt8(
728 header.public_header.connection_id & k1ByteConnectionIdMask)) {
729 return false;
731 break;
732 case PACKET_4BYTE_CONNECTION_ID:
733 if (!writer->WriteUInt8(
734 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
735 return false;
737 if (!writer->WriteUInt32(
738 header.public_header.connection_id & k4ByteConnectionIdMask)) {
739 return false;
741 break;
742 case PACKET_8BYTE_CONNECTION_ID:
743 if (!writer->WriteUInt8(
744 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
745 return false;
747 if (!writer->WriteUInt64(header.public_header.connection_id)) {
748 return false;
750 break;
752 last_serialized_connection_id_ = header.public_header.connection_id;
754 if (header.public_header.version_flag) {
755 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
756 QuicTag tag = QuicVersionToQuicTag(quic_version_);
757 writer->WriteUInt32(tag);
758 DVLOG(1) << "version = " << quic_version_ << ", tag = '"
759 << QuicUtils::TagToString(tag) << "'";
762 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
763 header.packet_sequence_number, writer)) {
764 return false;
767 uint8 private_flags = 0;
768 if (header.entropy_flag) {
769 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
771 if (header.is_in_fec_group == IN_FEC_GROUP) {
772 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
774 if (header.fec_flag) {
775 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
777 if (!writer->WriteUInt8(private_flags)) {
778 return false;
781 // The FEC group number is the sequence number of the first fec
782 // protected packet, or 0 if this packet is not protected.
783 if (header.is_in_fec_group == IN_FEC_GROUP) {
784 DCHECK_LE(header.fec_group, header.packet_sequence_number);
785 DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
786 // Offset from the current packet sequence number to the first fec
787 // protected packet.
788 uint8 first_fec_protected_packet_offset =
789 static_cast<uint8>(header.packet_sequence_number - header.fec_group);
790 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
791 return false;
795 return true;
798 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
799 uint32 time_delta_us) {
800 // The new time_delta might have wrapped to the next epoch, or it
801 // might have reverse wrapped to the previous epoch, or it might
802 // remain in the same epoch. Select the time closest to the previous
803 // time.
805 // epoch_delta is the delta between epochs. A delta is 4 bytes of
806 // microseconds.
807 const uint64 epoch_delta = UINT64_C(1) << 32;
808 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
809 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
810 uint64 prev_epoch = epoch - epoch_delta;
811 uint64 next_epoch = epoch + epoch_delta;
813 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
814 epoch + time_delta_us,
815 ClosestTo(last_timestamp_.ToMicroseconds(),
816 prev_epoch + time_delta_us,
817 next_epoch + time_delta_us));
819 return QuicTime::Delta::FromMicroseconds(time);
822 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
823 QuicSequenceNumberLength sequence_number_length,
824 QuicPacketSequenceNumber packet_sequence_number) const {
825 // The new sequence number might have wrapped to the next epoch, or
826 // it might have reverse wrapped to the previous epoch, or it might
827 // remain in the same epoch. Select the sequence number closest to the
828 // next expected sequence number, the previous sequence number plus 1.
830 // epoch_delta is the delta between epochs the sequence number was serialized
831 // with, so the correct value is likely the same epoch as the last sequence
832 // number or an adjacent epoch.
833 const QuicPacketSequenceNumber epoch_delta =
834 UINT64_C(1) << (8 * sequence_number_length);
835 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
836 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
837 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
838 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
840 return ClosestTo(next_sequence_number,
841 epoch + packet_sequence_number,
842 ClosestTo(next_sequence_number,
843 prev_epoch + packet_sequence_number,
844 next_epoch + packet_sequence_number));
847 bool QuicFramer::ProcessPublicHeader(
848 QuicPacketPublicHeader* public_header) {
849 uint8 public_flags;
850 if (!reader_->ReadBytes(&public_flags, 1)) {
851 set_detailed_error("Unable to read public flags.");
852 return false;
855 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
856 public_header->version_flag =
857 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
859 if (validate_flags_ &&
860 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
861 set_detailed_error("Illegal public flags value.");
862 return false;
865 if (public_header->reset_flag && public_header->version_flag) {
866 set_detailed_error("Got version flag in reset packet");
867 return false;
870 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
871 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
872 if (!reader_->ReadUInt64(&public_header->connection_id)) {
873 set_detailed_error("Unable to read ConnectionId.");
874 return false;
876 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
877 break;
878 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
879 // If the connection_id is truncated, expect to read the last serialized
880 // connection_id.
881 if (!reader_->ReadBytes(&public_header->connection_id,
882 PACKET_4BYTE_CONNECTION_ID)) {
883 set_detailed_error("Unable to read ConnectionId.");
884 return false;
886 if (last_serialized_connection_id_ &&
887 (public_header->connection_id & k4ByteConnectionIdMask) !=
888 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
889 set_detailed_error("Truncated 4 byte ConnectionId does not match "
890 "previous connection_id.");
891 return false;
893 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
894 public_header->connection_id = last_serialized_connection_id_;
895 break;
896 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
897 if (!reader_->ReadBytes(&public_header->connection_id,
898 PACKET_1BYTE_CONNECTION_ID)) {
899 set_detailed_error("Unable to read ConnectionId.");
900 return false;
902 if (last_serialized_connection_id_ &&
903 (public_header->connection_id & k1ByteConnectionIdMask) !=
904 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
905 set_detailed_error("Truncated 1 byte ConnectionId does not match "
906 "previous connection_id.");
907 return false;
909 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
910 public_header->connection_id = last_serialized_connection_id_;
911 break;
912 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
913 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
914 public_header->connection_id = last_serialized_connection_id_;
915 break;
918 public_header->sequence_number_length =
919 ReadSequenceNumberLength(
920 public_flags >> kPublicHeaderSequenceNumberShift);
922 // Read the version only if the packet is from the client.
923 // version flag from the server means version negotiation packet.
924 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
925 QuicTag version_tag;
926 if (!reader_->ReadUInt32(&version_tag)) {
927 set_detailed_error("Unable to read protocol version.");
928 return false;
931 // If the version from the new packet is the same as the version of this
932 // framer, then the public flags should be set to something we understand.
933 // If not, this raises an error.
934 QuicVersion version = QuicTagToQuicVersion(version_tag);
935 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
936 set_detailed_error("Illegal public flags value.");
937 return false;
939 public_header->versions.push_back(version);
941 return true;
944 // static
945 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
946 QuicPacketSequenceNumber sequence_number) {
947 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
948 return PACKET_1BYTE_SEQUENCE_NUMBER;
949 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
950 return PACKET_2BYTE_SEQUENCE_NUMBER;
951 } else if (sequence_number <
952 UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
953 return PACKET_4BYTE_SEQUENCE_NUMBER;
954 } else {
955 return PACKET_6BYTE_SEQUENCE_NUMBER;
959 // static
960 uint8 QuicFramer::GetSequenceNumberFlags(
961 QuicSequenceNumberLength sequence_number_length) {
962 switch (sequence_number_length) {
963 case PACKET_1BYTE_SEQUENCE_NUMBER:
964 return PACKET_FLAGS_1BYTE_SEQUENCE;
965 case PACKET_2BYTE_SEQUENCE_NUMBER:
966 return PACKET_FLAGS_2BYTE_SEQUENCE;
967 case PACKET_4BYTE_SEQUENCE_NUMBER:
968 return PACKET_FLAGS_4BYTE_SEQUENCE;
969 case PACKET_6BYTE_SEQUENCE_NUMBER:
970 return PACKET_FLAGS_6BYTE_SEQUENCE;
971 default:
972 LOG(DFATAL) << "Unreachable case statement.";
973 return PACKET_FLAGS_6BYTE_SEQUENCE;
977 // static
978 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
979 const QuicAckFrame& frame) {
980 AckFrameInfo ack_info;
981 if (frame.missing_packets.empty()) {
982 return ack_info;
984 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
985 size_t cur_range_length = 0;
986 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
987 QuicPacketSequenceNumber last_missing = *iter;
988 ++iter;
989 for (; iter != frame.missing_packets.end(); ++iter) {
990 if (cur_range_length < numeric_limits<uint8>::max() &&
991 *iter == (last_missing + 1)) {
992 ++cur_range_length;
993 } else {
994 ack_info.nack_ranges[last_missing - cur_range_length] =
995 static_cast<uint8>(cur_range_length);
996 cur_range_length = 0;
998 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
999 last_missing = *iter;
1001 // Include the last nack range.
1002 ack_info.nack_ranges[last_missing - cur_range_length] =
1003 static_cast<uint8>(cur_range_length);
1004 // Include the range to the largest observed.
1005 ack_info.max_delta =
1006 max(ack_info.max_delta, frame.largest_observed - last_missing);
1007 return ack_info;
1010 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header,
1011 const QuicEncryptedPacket& packet,
1012 char* decrypted_buffer,
1013 size_t buffer_length) {
1014 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1015 &header->packet_sequence_number)) {
1016 set_detailed_error("Unable to read sequence number.");
1017 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1020 if (header->packet_sequence_number == 0u) {
1021 set_detailed_error("Packet sequence numbers cannot be 0.");
1022 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1025 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1026 return false;
1029 if (!DecryptPayload(*header, packet, decrypted_buffer, buffer_length)) {
1030 set_detailed_error("Unable to decrypt payload.");
1031 return RaiseError(QUIC_DECRYPTION_FAILURE);
1034 uint8 private_flags;
1035 if (!reader_->ReadBytes(&private_flags, 1)) {
1036 set_detailed_error("Unable to read private flags.");
1037 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1040 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1041 set_detailed_error("Illegal private flags value.");
1042 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1045 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1046 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1048 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1049 header->is_in_fec_group = IN_FEC_GROUP;
1050 uint8 first_fec_protected_packet_offset;
1051 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1052 set_detailed_error("Unable to read first fec protected packet offset.");
1053 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1055 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1056 set_detailed_error("First fec protected packet offset must be less "
1057 "than the sequence number.");
1058 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1060 header->fec_group =
1061 header->packet_sequence_number - first_fec_protected_packet_offset;
1064 header->entropy_hash = GetPacketEntropyHash(*header);
1065 // Set the last sequence number after we have decrypted the packet
1066 // so we are confident is not attacker controlled.
1067 last_sequence_number_ = header->packet_sequence_number;
1068 return true;
1071 bool QuicFramer::ProcessPacketSequenceNumber(
1072 QuicSequenceNumberLength sequence_number_length,
1073 QuicPacketSequenceNumber* sequence_number) {
1074 QuicPacketSequenceNumber wire_sequence_number = 0u;
1075 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1076 return false;
1079 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1080 // in case the first guess is incorrect.
1081 *sequence_number =
1082 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1083 wire_sequence_number);
1084 return true;
1087 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1088 if (reader_->IsDoneReading()) {
1089 set_detailed_error("Packet has no frames.");
1090 return RaiseError(QUIC_MISSING_PAYLOAD);
1092 while (!reader_->IsDoneReading()) {
1093 uint8 frame_type;
1094 if (!reader_->ReadBytes(&frame_type, 1)) {
1095 set_detailed_error("Unable to read frame type.");
1096 return RaiseError(QUIC_INVALID_FRAME_DATA);
1099 if (frame_type & kQuicFrameTypeSpecialMask) {
1100 // Stream Frame
1101 if (frame_type & kQuicFrameTypeStreamMask) {
1102 QuicStreamFrame frame;
1103 if (!ProcessStreamFrame(frame_type, &frame)) {
1104 return RaiseError(QUIC_INVALID_STREAM_DATA);
1106 if (!visitor_->OnStreamFrame(frame)) {
1107 DVLOG(1) << "Visitor asked to stop further processing.";
1108 // Returning true since there was no parsing error.
1109 return true;
1111 continue;
1114 // Ack Frame
1115 if (frame_type & kQuicFrameTypeAckMask) {
1116 QuicAckFrame frame;
1117 if (!ProcessAckFrame(frame_type, &frame)) {
1118 return RaiseError(QUIC_INVALID_ACK_DATA);
1120 if (!visitor_->OnAckFrame(frame)) {
1121 DVLOG(1) << "Visitor asked to stop further processing.";
1122 // Returning true since there was no parsing error.
1123 return true;
1125 continue;
1128 // This was a special frame type that did not match any
1129 // of the known ones. Error.
1130 set_detailed_error("Illegal frame type.");
1131 DLOG(WARNING) << "Illegal frame type: "
1132 << static_cast<int>(frame_type);
1133 return RaiseError(QUIC_INVALID_FRAME_DATA);
1136 switch (frame_type) {
1137 case PADDING_FRAME:
1138 // We're done with the packet.
1139 return true;
1141 case RST_STREAM_FRAME: {
1142 QuicRstStreamFrame frame;
1143 if (!ProcessRstStreamFrame(&frame)) {
1144 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1146 if (!visitor_->OnRstStreamFrame(frame)) {
1147 DVLOG(1) << "Visitor asked to stop further processing.";
1148 // Returning true since there was no parsing error.
1149 return true;
1151 continue;
1154 case CONNECTION_CLOSE_FRAME: {
1155 QuicConnectionCloseFrame frame;
1156 if (!ProcessConnectionCloseFrame(&frame)) {
1157 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1160 if (!visitor_->OnConnectionCloseFrame(frame)) {
1161 DVLOG(1) << "Visitor asked to stop further processing.";
1162 // Returning true since there was no parsing error.
1163 return true;
1165 continue;
1168 case GOAWAY_FRAME: {
1169 QuicGoAwayFrame goaway_frame;
1170 if (!ProcessGoAwayFrame(&goaway_frame)) {
1171 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1173 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1174 DVLOG(1) << "Visitor asked to stop further processing.";
1175 // Returning true since there was no parsing error.
1176 return true;
1178 continue;
1181 case WINDOW_UPDATE_FRAME: {
1182 QuicWindowUpdateFrame window_update_frame;
1183 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1184 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1186 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1187 DVLOG(1) << "Visitor asked to stop further processing.";
1188 // Returning true since there was no parsing error.
1189 return true;
1191 continue;
1194 case BLOCKED_FRAME: {
1195 QuicBlockedFrame blocked_frame;
1196 if (!ProcessBlockedFrame(&blocked_frame)) {
1197 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1199 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1200 DVLOG(1) << "Visitor asked to stop further processing.";
1201 // Returning true since there was no parsing error.
1202 return true;
1204 continue;
1207 case STOP_WAITING_FRAME: {
1208 QuicStopWaitingFrame stop_waiting_frame;
1209 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1210 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1212 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1213 DVLOG(1) << "Visitor asked to stop further processing.";
1214 // Returning true since there was no parsing error.
1215 return true;
1217 continue;
1219 case PING_FRAME: {
1220 // Ping has no payload.
1221 QuicPingFrame ping_frame;
1222 if (!visitor_->OnPingFrame(ping_frame)) {
1223 DVLOG(1) << "Visitor asked to stop further processing.";
1224 // Returning true since there was no parsing error.
1225 return true;
1227 continue;
1230 default:
1231 set_detailed_error("Illegal frame type.");
1232 DLOG(WARNING) << "Illegal frame type: "
1233 << static_cast<int>(frame_type);
1234 return RaiseError(QUIC_INVALID_FRAME_DATA);
1238 return true;
1241 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1242 QuicStreamFrame* frame) {
1243 uint8 stream_flags = frame_type;
1245 stream_flags &= ~kQuicFrameTypeStreamMask;
1247 // Read from right to left: StreamID, Offset, Data Length, Fin.
1248 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1249 stream_flags >>= kQuicStreamIdShift;
1251 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1252 // There is no encoding for 1 byte, only 0 and 2 through 8.
1253 if (offset_length > 0) {
1254 offset_length += 1;
1256 stream_flags >>= kQuicStreamOffsetShift;
1258 bool has_data_length =
1259 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1260 stream_flags >>= kQuicStreamDataLengthShift;
1262 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1264 frame->stream_id = 0;
1265 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1266 set_detailed_error("Unable to read stream_id.");
1267 return false;
1270 frame->offset = 0;
1271 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1272 set_detailed_error("Unable to read offset.");
1273 return false;
1276 if (has_data_length) {
1277 if (!reader_->ReadStringPiece16(&frame->data)) {
1278 set_detailed_error("Unable to read frame data.");
1279 return false;
1281 } else {
1282 if (!reader_->ReadStringPiece(&frame->data, reader_->BytesRemaining())) {
1283 set_detailed_error("Unable to read frame data.");
1284 return false;
1288 return true;
1291 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1292 // Determine the three lengths from the frame type: largest observed length,
1293 // missing sequence number length, and missing range length.
1294 const QuicSequenceNumberLength missing_sequence_number_length =
1295 ReadSequenceNumberLength(frame_type);
1296 frame_type >>= kQuicSequenceNumberLengthShift;
1297 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1298 ReadSequenceNumberLength(frame_type);
1299 frame_type >>= kQuicSequenceNumberLengthShift;
1300 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1301 frame_type >>= kQuicAckTruncatedShift;
1302 bool has_nacks = frame_type & kQuicHasNacksMask;
1304 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1305 set_detailed_error("Unable to read entropy hash for received packets.");
1306 return false;
1309 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1310 largest_observed_sequence_number_length)) {
1311 set_detailed_error("Unable to read largest observed.");
1312 return false;
1315 uint64 delta_time_largest_observed_us;
1316 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1317 set_detailed_error("Unable to read delta time largest observed.");
1318 return false;
1321 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1322 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1323 } else {
1324 ack_frame->delta_time_largest_observed =
1325 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1328 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1329 return false;
1332 if (!has_nacks) {
1333 return true;
1336 uint8 num_missing_ranges;
1337 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1338 set_detailed_error("Unable to read num missing packet ranges.");
1339 return false;
1342 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1343 for (size_t i = 0; i < num_missing_ranges; ++i) {
1344 QuicPacketSequenceNumber missing_delta = 0;
1345 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1346 set_detailed_error("Unable to read missing sequence number delta.");
1347 return false;
1349 last_sequence_number -= missing_delta;
1350 QuicPacketSequenceNumber range_length = 0;
1351 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1352 set_detailed_error("Unable to read missing sequence number range.");
1353 return false;
1355 for (size_t j = 0; j <= range_length; ++j) {
1356 ack_frame->missing_packets.insert(last_sequence_number - j);
1358 // Subtract an extra 1 to ensure ranges are represented efficiently and
1359 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1360 // to represent an adjacent nack range.
1361 last_sequence_number -= (range_length + 1);
1364 // Parse the revived packets list.
1365 uint8 num_revived_packets;
1366 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1367 set_detailed_error("Unable to read num revived packets.");
1368 return false;
1371 for (size_t i = 0; i < num_revived_packets; ++i) {
1372 QuicPacketSequenceNumber revived_packet = 0;
1373 if (!reader_->ReadBytes(&revived_packet,
1374 largest_observed_sequence_number_length)) {
1375 set_detailed_error("Unable to read revived packet.");
1376 return false;
1379 ack_frame->revived_packets.insert(revived_packet);
1382 return true;
1385 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1386 if (ack_frame->is_truncated) {
1387 return true;
1389 uint8 num_received_packets;
1390 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1391 set_detailed_error("Unable to read num received packets.");
1392 return false;
1395 if (num_received_packets > 0) {
1396 uint8 delta_from_largest_observed;
1397 if (!reader_->ReadBytes(&delta_from_largest_observed,
1398 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1399 set_detailed_error("Unable to read sequence delta in received packets.");
1400 return false;
1402 QuicPacketSequenceNumber seq_num =
1403 ack_frame->largest_observed - delta_from_largest_observed;
1405 // Time delta from the framer creation.
1406 uint32 time_delta_us;
1407 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1408 set_detailed_error("Unable to read time delta in received packets.");
1409 return false;
1412 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1414 ack_frame->received_packet_times.push_back(
1415 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1417 for (uint8 i = 1; i < num_received_packets; ++i) {
1418 if (!reader_->ReadBytes(&delta_from_largest_observed,
1419 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1420 set_detailed_error(
1421 "Unable to read sequence delta in received packets.");
1422 return false;
1424 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1426 // Time delta from the previous timestamp.
1427 uint64 incremental_time_delta_us;
1428 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1429 set_detailed_error(
1430 "Unable to read incremental time delta in received packets.");
1431 return false;
1434 last_timestamp_ = last_timestamp_.Add(
1435 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1436 ack_frame->received_packet_times.push_back(
1437 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1440 return true;
1443 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1444 QuicStopWaitingFrame* stop_waiting) {
1445 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1446 set_detailed_error("Unable to read entropy hash for sent packets.");
1447 return false;
1450 QuicPacketSequenceNumber least_unacked_delta = 0;
1451 if (!reader_->ReadBytes(&least_unacked_delta,
1452 header.public_header.sequence_number_length)) {
1453 set_detailed_error("Unable to read least unacked delta.");
1454 return false;
1456 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1457 stop_waiting->least_unacked =
1458 header.packet_sequence_number - least_unacked_delta;
1460 return true;
1463 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1464 if (!reader_->ReadUInt32(&frame->stream_id)) {
1465 set_detailed_error("Unable to read stream_id.");
1466 return false;
1469 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1470 set_detailed_error("Unable to read rst stream sent byte offset.");
1471 return false;
1474 uint32 error_code;
1475 if (!reader_->ReadUInt32(&error_code)) {
1476 set_detailed_error("Unable to read rst stream error code.");
1477 return false;
1480 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1481 set_detailed_error("Invalid rst stream error code.");
1482 return false;
1485 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1486 if (quic_version_ <= QUIC_VERSION_24) {
1487 StringPiece error_details;
1488 if (!reader_->ReadStringPiece16(&error_details)) {
1489 set_detailed_error("Unable to read rst stream error details.");
1490 return false;
1492 frame->error_details = error_details.as_string();
1495 return true;
1498 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1499 uint32 error_code;
1500 if (!reader_->ReadUInt32(&error_code)) {
1501 set_detailed_error("Unable to read connection close error code.");
1502 return false;
1505 if (error_code >= QUIC_LAST_ERROR) {
1506 set_detailed_error("Invalid error code.");
1507 return false;
1510 frame->error_code = static_cast<QuicErrorCode>(error_code);
1512 StringPiece error_details;
1513 if (!reader_->ReadStringPiece16(&error_details)) {
1514 set_detailed_error("Unable to read connection close error details.");
1515 return false;
1517 frame->error_details = error_details.as_string();
1519 return true;
1522 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1523 uint32 error_code;
1524 if (!reader_->ReadUInt32(&error_code)) {
1525 set_detailed_error("Unable to read go away error code.");
1526 return false;
1528 frame->error_code = static_cast<QuicErrorCode>(error_code);
1530 if (error_code >= QUIC_LAST_ERROR) {
1531 set_detailed_error("Invalid error code.");
1532 return false;
1535 uint32 stream_id;
1536 if (!reader_->ReadUInt32(&stream_id)) {
1537 set_detailed_error("Unable to read last good stream id.");
1538 return false;
1540 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1542 StringPiece reason_phrase;
1543 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1544 set_detailed_error("Unable to read goaway reason.");
1545 return false;
1547 frame->reason_phrase = reason_phrase.as_string();
1549 return true;
1552 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1553 if (!reader_->ReadUInt32(&frame->stream_id)) {
1554 set_detailed_error("Unable to read stream_id.");
1555 return false;
1558 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1559 set_detailed_error("Unable to read window byte_offset.");
1560 return false;
1563 return true;
1566 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1567 if (!reader_->ReadUInt32(&frame->stream_id)) {
1568 set_detailed_error("Unable to read stream_id.");
1569 return false;
1572 return true;
1575 // static
1576 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1577 const QuicEncryptedPacket& encrypted,
1578 QuicConnectionIdLength connection_id_length,
1579 bool includes_version,
1580 QuicSequenceNumberLength sequence_number_length) {
1581 return StringPiece(
1582 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1583 connection_id_length, includes_version, sequence_number_length)
1584 - kStartOfHashData);
1587 void QuicFramer::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) {
1588 DCHECK(alternative_decrypter_.get() == nullptr);
1589 DCHECK_GE(level, decrypter_level_);
1590 decrypter_.reset(decrypter);
1591 decrypter_level_ = level;
1594 void QuicFramer::SetAlternativeDecrypter(EncryptionLevel level,
1595 QuicDecrypter* decrypter,
1596 bool latch_once_used) {
1597 alternative_decrypter_.reset(decrypter);
1598 alternative_decrypter_level_ = level;
1599 alternative_decrypter_latch_ = latch_once_used;
1602 const QuicDecrypter* QuicFramer::decrypter() const {
1603 return decrypter_.get();
1606 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1607 return alternative_decrypter_.get();
1610 void QuicFramer::SetEncrypter(EncryptionLevel level,
1611 QuicEncrypter* encrypter) {
1612 DCHECK_GE(level, 0);
1613 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1614 encrypter_[level].reset(encrypter);
1617 QuicEncryptedPacket* QuicFramer::EncryptPayload(
1618 EncryptionLevel level,
1619 QuicPacketSequenceNumber packet_sequence_number,
1620 const QuicPacket& packet,
1621 char* buffer,
1622 size_t buffer_len) {
1623 DCHECK(encrypter_[level].get() != nullptr);
1625 const size_t encrypted_len =
1626 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1627 StringPiece header_data = packet.BeforePlaintext();
1628 const size_t total_len = header_data.length() + encrypted_len;
1630 char* encryption_buffer = buffer;
1631 // Allocate a large enough buffer for the header and the encrypted data.
1632 const bool is_new_buffer = total_len > buffer_len;
1633 if (is_new_buffer) {
1634 if (!FLAGS_quic_allow_oversized_packets_for_test) {
1635 LOG(DFATAL) << "Buffer of length:" << buffer_len
1636 << " is not large enough to encrypt length " << total_len;
1637 return nullptr;
1639 encryption_buffer = new char[total_len];
1641 // Copy in the header, because the encrypter only populates the encrypted
1642 // plaintext content.
1643 memcpy(encryption_buffer, header_data.data(), header_data.length());
1644 // Encrypt the plaintext into the buffer.
1645 size_t output_length = 0;
1646 if (!encrypter_[level]->EncryptPacket(
1647 packet_sequence_number, packet.AssociatedData(), packet.Plaintext(),
1648 encryption_buffer + header_data.length(), &output_length,
1649 encrypted_len)) {
1650 RaiseError(QUIC_ENCRYPTION_FAILURE);
1651 return nullptr;
1654 return new QuicEncryptedPacket(
1655 encryption_buffer, header_data.length() + output_length, is_new_buffer);
1658 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1659 // In order to keep the code simple, we don't have the current encryption
1660 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1661 size_t min_plaintext_size = ciphertext_size;
1663 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1664 if (encrypter_[i].get() != nullptr) {
1665 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1666 if (size < min_plaintext_size) {
1667 min_plaintext_size = size;
1672 return min_plaintext_size;
1675 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1676 const QuicEncryptedPacket& packet,
1677 char* decrypted_buffer,
1678 size_t buffer_length) {
1679 StringPiece encrypted = reader_->ReadRemainingPayload();
1680 DCHECK(decrypter_.get() != nullptr);
1681 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1682 packet, header.public_header.connection_id_length,
1683 header.public_header.version_flag,
1684 header.public_header.sequence_number_length);
1685 size_t decrypted_length = 0;
1686 bool success = decrypter_->DecryptPacket(
1687 header.packet_sequence_number, associated_data, encrypted,
1688 decrypted_buffer, &decrypted_length, buffer_length);
1689 if (success) {
1690 visitor_->OnDecryptedPacket(decrypter_level_);
1691 } else if (alternative_decrypter_.get() != nullptr) {
1692 success = alternative_decrypter_->DecryptPacket(
1693 header.packet_sequence_number, associated_data, encrypted,
1694 decrypted_buffer, &decrypted_length, buffer_length);
1695 if (success) {
1696 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1697 if (alternative_decrypter_latch_) {
1698 // Switch to the alternative decrypter and latch so that we cannot
1699 // switch back.
1700 decrypter_.reset(alternative_decrypter_.release());
1701 decrypter_level_ = alternative_decrypter_level_;
1702 alternative_decrypter_level_ = ENCRYPTION_NONE;
1703 } else {
1704 // Switch the alternative decrypter so that we use it first next time.
1705 decrypter_.swap(alternative_decrypter_);
1706 EncryptionLevel level = alternative_decrypter_level_;
1707 alternative_decrypter_level_ = decrypter_level_;
1708 decrypter_level_ = level;
1713 if (!success) {
1714 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1715 << header.packet_sequence_number;
1716 return false;
1719 reader_.reset(new QuicDataReader(decrypted_buffer, decrypted_length));
1720 return true;
1723 size_t QuicFramer::GetAckFrameSize(
1724 const QuicAckFrame& ack,
1725 QuicSequenceNumberLength sequence_number_length) {
1726 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1727 QuicSequenceNumberLength largest_observed_length =
1728 GetMinSequenceNumberLength(ack.largest_observed);
1729 QuicSequenceNumberLength missing_sequence_number_length =
1730 GetMinSequenceNumberLength(ack_info.max_delta);
1732 size_t ack_size = GetMinAckFrameSize(largest_observed_length);
1733 if (!ack_info.nack_ranges.empty()) {
1734 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1735 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1736 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1737 ack_size += min(ack.revived_packets.size(),
1738 kMaxRevivedPackets) * largest_observed_length;
1741 // In version 23, if the ack will be truncated due to too many nack ranges,
1742 // then do not include the number of timestamps (1 byte).
1743 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1744 // 1 byte for the number of timestamps.
1745 ack_size += 1;
1746 if (ack.received_packet_times.size() > 0) {
1747 // 1 byte for sequence number, 4 bytes for timestamp for the first
1748 // packet.
1749 ack_size += 5;
1751 // 1 byte for sequence number, 2 bytes for timestamp for the other
1752 // packets.
1753 ack_size += 3 * (ack.received_packet_times.size() - 1);
1757 return ack_size;
1760 size_t QuicFramer::ComputeFrameLength(
1761 const QuicFrame& frame,
1762 bool last_frame_in_packet,
1763 InFecGroup is_in_fec_group,
1764 QuicSequenceNumberLength sequence_number_length) {
1765 switch (frame.type) {
1766 case STREAM_FRAME:
1767 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1768 frame.stream_frame->offset,
1769 last_frame_in_packet, is_in_fec_group) +
1770 frame.stream_frame->data.length();
1771 case ACK_FRAME: {
1772 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1774 case STOP_WAITING_FRAME:
1775 return GetStopWaitingFrameSize(sequence_number_length);
1776 case MTU_DISCOVERY_FRAME:
1777 // MTU discovery frames are serialized as ping frames.
1778 case PING_FRAME:
1779 // Ping has no payload.
1780 return kQuicFrameTypeSize;
1781 case RST_STREAM_FRAME:
1782 if (quic_version_ <= QUIC_VERSION_24) {
1783 return GetMinRstStreamFrameSize() +
1784 frame.rst_stream_frame->error_details.size();
1786 return GetRstStreamFrameSize();
1787 case CONNECTION_CLOSE_FRAME:
1788 return GetMinConnectionCloseFrameSize() +
1789 frame.connection_close_frame->error_details.size();
1790 case GOAWAY_FRAME:
1791 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1792 case WINDOW_UPDATE_FRAME:
1793 return GetWindowUpdateFrameSize();
1794 case BLOCKED_FRAME:
1795 return GetBlockedFrameSize();
1796 case PADDING_FRAME:
1797 DCHECK(false);
1798 return 0;
1799 case NUM_FRAME_TYPES:
1800 DCHECK(false);
1801 return 0;
1804 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1805 DCHECK(false);
1806 return 0;
1809 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1810 bool no_stream_frame_length,
1811 QuicDataWriter* writer) {
1812 uint8 type_byte = 0;
1813 switch (frame.type) {
1814 case STREAM_FRAME: {
1815 if (frame.stream_frame == nullptr) {
1816 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1818 // Fin bit.
1819 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1821 // Data Length bit.
1822 type_byte <<= kQuicStreamDataLengthShift;
1823 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1825 // Offset 3 bits.
1826 type_byte <<= kQuicStreamOffsetShift;
1827 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1828 if (offset_len > 0) {
1829 type_byte |= offset_len - 1;
1832 // stream id 2 bits.
1833 type_byte <<= kQuicStreamIdShift;
1834 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1835 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1836 break;
1838 case ACK_FRAME:
1839 return true;
1840 case MTU_DISCOVERY_FRAME:
1841 type_byte = static_cast<uint8>(PING_FRAME);
1842 break;
1843 default:
1844 type_byte = static_cast<uint8>(frame.type);
1845 break;
1848 return writer->WriteUInt8(type_byte);
1851 // static
1852 bool QuicFramer::AppendPacketSequenceNumber(
1853 QuicSequenceNumberLength sequence_number_length,
1854 QuicPacketSequenceNumber packet_sequence_number,
1855 QuicDataWriter* writer) {
1856 // Ensure the entire sequence number can be written.
1857 if (writer->capacity() - writer->length() <
1858 static_cast<size_t>(sequence_number_length)) {
1859 return false;
1861 switch (sequence_number_length) {
1862 case PACKET_1BYTE_SEQUENCE_NUMBER:
1863 return writer->WriteUInt8(
1864 packet_sequence_number & k1ByteSequenceNumberMask);
1865 break;
1866 case PACKET_2BYTE_SEQUENCE_NUMBER:
1867 return writer->WriteUInt16(
1868 packet_sequence_number & k2ByteSequenceNumberMask);
1869 break;
1870 case PACKET_4BYTE_SEQUENCE_NUMBER:
1871 return writer->WriteUInt32(
1872 packet_sequence_number & k4ByteSequenceNumberMask);
1873 break;
1874 case PACKET_6BYTE_SEQUENCE_NUMBER:
1875 return writer->WriteUInt48(
1876 packet_sequence_number & k6ByteSequenceNumberMask);
1877 break;
1878 default:
1879 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1880 return false;
1884 bool QuicFramer::AppendStreamFrame(
1885 const QuicStreamFrame& frame,
1886 bool no_stream_frame_length,
1887 QuicDataWriter* writer) {
1888 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1889 LOG(DFATAL) << "Writing stream id size failed.";
1890 return false;
1892 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1893 LOG(DFATAL) << "Writing offset size failed.";
1894 return false;
1896 if (!no_stream_frame_length) {
1897 if ((frame.data.size() > numeric_limits<uint16>::max()) ||
1898 !writer->WriteUInt16(static_cast<uint16>(frame.data.size()))) {
1899 LOG(DFATAL) << "Writing stream frame length failed";
1900 return false;
1904 if (!writer->WriteBytes(frame.data.data(), frame.data.size())) {
1905 LOG(DFATAL) << "Writing frame data failed.";
1906 return false;
1908 return true;
1911 void QuicFramer::set_version(const QuicVersion version) {
1912 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1913 quic_version_ = version;
1916 bool QuicFramer::AppendAckFrameAndTypeByte(
1917 const QuicPacketHeader& header,
1918 const QuicAckFrame& frame,
1919 QuicDataWriter* writer) {
1920 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1921 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1922 QuicSequenceNumberLength largest_observed_length =
1923 GetMinSequenceNumberLength(ack_largest_observed);
1924 QuicSequenceNumberLength missing_sequence_number_length =
1925 GetMinSequenceNumberLength(ack_info.max_delta);
1926 // Determine whether we need to truncate ranges.
1927 size_t available_range_bytes =
1928 writer->capacity() - writer->length() - kNumberOfRevivedPacketsSize -
1929 kNumberOfNackRangesSize - GetMinAckFrameSize(largest_observed_length);
1930 size_t max_num_ranges = available_range_bytes /
1931 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1932 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1933 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1934 DVLOG_IF(1, truncated) << "Truncating ack from "
1935 << ack_info.nack_ranges.size() << " ranges to "
1936 << max_num_ranges;
1937 // Write out the type byte by setting the low order bits and doing shifts
1938 // to make room for the next bit flags to be set.
1939 // Whether there are any nacks.
1940 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1942 // truncating bit.
1943 type_byte <<= kQuicAckTruncatedShift;
1944 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1946 // Largest observed sequence number length.
1947 type_byte <<= kQuicSequenceNumberLengthShift;
1948 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1950 // Missing sequence number length.
1951 type_byte <<= kQuicSequenceNumberLengthShift;
1952 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1954 type_byte |= kQuicFrameTypeAckMask;
1956 if (!writer->WriteUInt8(type_byte)) {
1957 return false;
1960 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1961 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1962 if (truncated) {
1963 // Skip the nack ranges which the truncated ack won't include and set
1964 // a correct largest observed for the truncated ack.
1965 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1966 ++i) {
1967 ++ack_iter;
1969 // If the last range is followed by acks, include them.
1970 // If the last range is followed by another range, specify the end of the
1971 // range as the largest_observed.
1972 ack_largest_observed = ack_iter->first - 1;
1973 // Also update the entropy so it matches the largest observed.
1974 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1975 ++ack_iter;
1978 if (!writer->WriteUInt8(ack_entropy_hash)) {
1979 return false;
1982 if (!AppendPacketSequenceNumber(largest_observed_length,
1983 ack_largest_observed, writer)) {
1984 return false;
1987 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
1988 if (!frame.delta_time_largest_observed.IsInfinite()) {
1989 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
1990 delta_time_largest_observed_us =
1991 frame.delta_time_largest_observed.ToMicroseconds();
1994 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
1995 return false;
1998 // Timestamp goes at the end of the required fields.
1999 if (!truncated) {
2000 if (!AppendTimestampToAckFrame(frame, writer)) {
2001 return false;
2005 if (ack_info.nack_ranges.empty()) {
2006 return true;
2009 const uint8 num_missing_ranges =
2010 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
2011 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2012 return false;
2015 int num_ranges_written = 0;
2016 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2017 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2018 // Calculate the delta to the last number in the range.
2019 QuicPacketSequenceNumber missing_delta =
2020 last_sequence_written - (ack_iter->first + ack_iter->second);
2021 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2022 missing_delta, writer)) {
2023 return false;
2025 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2026 ack_iter->second, writer)) {
2027 return false;
2029 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2030 last_sequence_written = ack_iter->first - 1;
2031 ++num_ranges_written;
2033 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2035 // Append revived packets.
2036 // If not all the revived packets fit, only mention the ones that do.
2037 uint8 num_revived_packets =
2038 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2039 num_revived_packets = static_cast<uint8>(min(
2040 static_cast<size_t>(num_revived_packets),
2041 (writer->capacity() - writer->length()) / largest_observed_length));
2042 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2043 return false;
2046 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2047 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2048 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2049 if (!AppendPacketSequenceNumber(largest_observed_length,
2050 *iter, writer)) {
2051 return false;
2055 return true;
2058 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2059 QuicDataWriter* writer) {
2060 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2061 // num_received_packets is only 1 byte.
2062 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2063 return false;
2066 uint8 num_received_packets = frame.received_packet_times.size();
2068 if (!writer->WriteBytes(&num_received_packets, 1)) {
2069 return false;
2071 if (num_received_packets == 0) {
2072 return true;
2075 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2076 QuicPacketSequenceNumber sequence_number = it->first;
2077 QuicPacketSequenceNumber delta_from_largest_observed =
2078 frame.largest_observed - sequence_number;
2080 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2081 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2082 return false;
2085 if (!writer->WriteUInt8(
2086 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2087 return false;
2090 // Use the lowest 4 bytes of the time delta from the creation_time_.
2091 const uint64 time_epoch_delta_us = UINT64_C(1) << 32;
2092 uint32 time_delta_us =
2093 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2094 & (time_epoch_delta_us - 1));
2095 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2096 return false;
2099 QuicTime prev_time = it->second;
2101 for (++it; it != frame.received_packet_times.end(); ++it) {
2102 sequence_number = it->first;
2103 delta_from_largest_observed = frame.largest_observed - sequence_number;
2105 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2106 return false;
2109 if (!writer->WriteUInt8(
2110 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2111 return false;
2114 uint64 frame_time_delta_us =
2115 it->second.Subtract(prev_time).ToMicroseconds();
2116 prev_time = it->second;
2117 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2118 return false;
2121 return true;
2124 bool QuicFramer::AppendStopWaitingFrame(
2125 const QuicPacketHeader& header,
2126 const QuicStopWaitingFrame& frame,
2127 QuicDataWriter* writer) {
2128 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2129 const QuicPacketSequenceNumber least_unacked_delta =
2130 header.packet_sequence_number - frame.least_unacked;
2131 const QuicPacketSequenceNumber length_shift =
2132 header.public_header.sequence_number_length * 8;
2133 if (!writer->WriteUInt8(frame.entropy_hash)) {
2134 LOG(DFATAL) << " hash failed";
2135 return false;
2138 if (least_unacked_delta >> length_shift > 0) {
2139 LOG(DFATAL) << "sequence_number_length "
2140 << header.public_header.sequence_number_length
2141 << " is too small for least_unacked_delta: "
2142 << least_unacked_delta;
2143 return false;
2145 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2146 least_unacked_delta, writer)) {
2147 LOG(DFATAL) << " seq failed: "
2148 << header.public_header.sequence_number_length;
2149 return false;
2152 return true;
2155 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
2156 QuicDataWriter* writer) {
2157 if (!writer->WriteUInt32(frame.stream_id)) {
2158 return false;
2161 if (!writer->WriteUInt64(frame.byte_offset)) {
2162 return false;
2165 uint32 error_code = static_cast<uint32>(frame.error_code);
2166 if (!writer->WriteUInt32(error_code)) {
2167 return false;
2170 if (quic_version_ <= QUIC_VERSION_24) {
2171 if (!writer->WriteStringPiece16(frame.error_details)) {
2172 return false;
2175 return true;
2178 bool QuicFramer::AppendConnectionCloseFrame(
2179 const QuicConnectionCloseFrame& frame,
2180 QuicDataWriter* writer) {
2181 uint32 error_code = static_cast<uint32>(frame.error_code);
2182 if (!writer->WriteUInt32(error_code)) {
2183 return false;
2185 if (!writer->WriteStringPiece16(frame.error_details)) {
2186 return false;
2188 return true;
2191 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2192 QuicDataWriter* writer) {
2193 uint32 error_code = static_cast<uint32>(frame.error_code);
2194 if (!writer->WriteUInt32(error_code)) {
2195 return false;
2197 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2198 if (!writer->WriteUInt32(stream_id)) {
2199 return false;
2201 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2202 return false;
2204 return true;
2207 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2208 QuicDataWriter* writer) {
2209 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2210 if (!writer->WriteUInt32(stream_id)) {
2211 return false;
2213 if (!writer->WriteUInt64(frame.byte_offset)) {
2214 return false;
2216 return true;
2219 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2220 QuicDataWriter* writer) {
2221 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2222 if (!writer->WriteUInt32(stream_id)) {
2223 return false;
2225 return true;
2228 bool QuicFramer::RaiseError(QuicErrorCode error) {
2229 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error)
2230 << " detail: " << detailed_error_;
2231 set_error(error);
2232 visitor_->OnError(this);
2233 reader_.reset(nullptr);
2234 return false;
2237 } // namespace net