Pin Chrome's shortcut to the Win10 Start menu on install and OS upgrade.
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / expr.c
blob4012f6c297ecc3c74f47ab039cbe129968782c11
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
18 ** Return the 'affinity' of the expression pExpr if any.
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op;
35 pExpr = sqlite3ExprSkipCollate(pExpr);
36 if( pExpr->flags & EP_Generic ) return 0;
37 op = pExpr->op;
38 if( op==TK_SELECT ){
39 assert( pExpr->flags&EP_xIsSelect );
40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
42 #ifndef SQLITE_OMIT_CAST
43 if( op==TK_CAST ){
44 assert( !ExprHasProperty(pExpr, EP_IntValue) );
45 return sqlite3AffinityType(pExpr->u.zToken, 0);
47 #endif
48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49 && pExpr->pTab!=0
51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52 ** a TK_COLUMN but was previously evaluated and cached in a register */
53 int j = pExpr->iColumn;
54 if( j<0 ) return SQLITE_AFF_INTEGER;
55 assert( pExpr->pTab && j<pExpr->pTab->nCol );
56 return pExpr->pTab->aCol[j].affinity;
58 return pExpr->affinity;
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken. Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
69 Expr *sqlite3ExprAddCollateToken(
70 Parse *pParse, /* Parsing context */
71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
72 const Token *pCollName /* Name of collating sequence */
74 if( pCollName->n>0 ){
75 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76 if( pNew ){
77 pNew->pLeft = pExpr;
78 pNew->flags |= EP_Collate|EP_Skip;
79 pExpr = pNew;
82 return pExpr;
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85 Token s;
86 assert( zC!=0 );
87 s.z = zC;
88 s.n = sqlite3Strlen30(s.z);
89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98 if( ExprHasProperty(pExpr, EP_Unlikely) ){
99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100 assert( pExpr->x.pList->nExpr>0 );
101 assert( pExpr->op==TK_FUNCTION );
102 pExpr = pExpr->x.pList->a[0].pExpr;
103 }else{
104 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105 pExpr = pExpr->pLeft;
108 return pExpr;
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence. Left operands take
118 ** precedence over right operands.
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121 sqlite3 *db = pParse->db;
122 CollSeq *pColl = 0;
123 Expr *p = pExpr;
124 while( p ){
125 int op = p->op;
126 if( p->flags & EP_Generic ) break;
127 if( op==TK_CAST || op==TK_UPLUS ){
128 p = p->pLeft;
129 continue;
131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133 break;
135 if( p->pTab!=0
136 && (op==TK_AGG_COLUMN || op==TK_COLUMN
137 || op==TK_REGISTER || op==TK_TRIGGER)
139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140 ** a TK_COLUMN but was previously evaluated and cached in a register */
141 int j = p->iColumn;
142 if( j>=0 ){
143 const char *zColl = p->pTab->aCol[j].zColl;
144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146 break;
148 if( p->flags & EP_Collate ){
149 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
150 p = p->pLeft;
151 }else{
152 p = p->pRight;
154 }else{
155 break;
158 if( sqlite3CheckCollSeq(pParse, pColl) ){
159 pColl = 0;
161 return pColl;
165 ** pExpr is an operand of a comparison operator. aff2 is the
166 ** type affinity of the other operand. This routine returns the
167 ** type affinity that should be used for the comparison operator.
169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
170 char aff1 = sqlite3ExprAffinity(pExpr);
171 if( aff1 && aff2 ){
172 /* Both sides of the comparison are columns. If one has numeric
173 ** affinity, use that. Otherwise use no affinity.
175 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
176 return SQLITE_AFF_NUMERIC;
177 }else{
178 return SQLITE_AFF_NONE;
180 }else if( !aff1 && !aff2 ){
181 /* Neither side of the comparison is a column. Compare the
182 ** results directly.
184 return SQLITE_AFF_NONE;
185 }else{
186 /* One side is a column, the other is not. Use the columns affinity. */
187 assert( aff1==0 || aff2==0 );
188 return (aff1 + aff2);
193 ** pExpr is a comparison operator. Return the type affinity that should
194 ** be applied to both operands prior to doing the comparison.
196 static char comparisonAffinity(Expr *pExpr){
197 char aff;
198 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
199 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
200 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
201 assert( pExpr->pLeft );
202 aff = sqlite3ExprAffinity(pExpr->pLeft);
203 if( pExpr->pRight ){
204 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
205 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
206 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
207 }else if( !aff ){
208 aff = SQLITE_AFF_NONE;
210 return aff;
214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
215 ** idx_affinity is the affinity of an indexed column. Return true
216 ** if the index with affinity idx_affinity may be used to implement
217 ** the comparison in pExpr.
219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
220 char aff = comparisonAffinity(pExpr);
221 switch( aff ){
222 case SQLITE_AFF_NONE:
223 return 1;
224 case SQLITE_AFF_TEXT:
225 return idx_affinity==SQLITE_AFF_TEXT;
226 default:
227 return sqlite3IsNumericAffinity(idx_affinity);
232 ** Return the P5 value that should be used for a binary comparison
233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
236 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
237 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
238 return aff;
242 ** Return a pointer to the collation sequence that should be used by
243 ** a binary comparison operator comparing pLeft and pRight.
245 ** If the left hand expression has a collating sequence type, then it is
246 ** used. Otherwise the collation sequence for the right hand expression
247 ** is used, or the default (BINARY) if neither expression has a collating
248 ** type.
250 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
251 ** it is not considered.
253 CollSeq *sqlite3BinaryCompareCollSeq(
254 Parse *pParse,
255 Expr *pLeft,
256 Expr *pRight
258 CollSeq *pColl;
259 assert( pLeft );
260 if( pLeft->flags & EP_Collate ){
261 pColl = sqlite3ExprCollSeq(pParse, pLeft);
262 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
263 pColl = sqlite3ExprCollSeq(pParse, pRight);
264 }else{
265 pColl = sqlite3ExprCollSeq(pParse, pLeft);
266 if( !pColl ){
267 pColl = sqlite3ExprCollSeq(pParse, pRight);
270 return pColl;
274 ** Generate code for a comparison operator.
276 static int codeCompare(
277 Parse *pParse, /* The parsing (and code generating) context */
278 Expr *pLeft, /* The left operand */
279 Expr *pRight, /* The right operand */
280 int opcode, /* The comparison opcode */
281 int in1, int in2, /* Register holding operands */
282 int dest, /* Jump here if true. */
283 int jumpIfNull /* If true, jump if either operand is NULL */
285 int p5;
286 int addr;
287 CollSeq *p4;
289 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
290 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
291 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
292 (void*)p4, P4_COLLSEQ);
293 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
294 return addr;
297 #if SQLITE_MAX_EXPR_DEPTH>0
299 ** Check that argument nHeight is less than or equal to the maximum
300 ** expression depth allowed. If it is not, leave an error message in
301 ** pParse.
303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
304 int rc = SQLITE_OK;
305 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
306 if( nHeight>mxHeight ){
307 sqlite3ErrorMsg(pParse,
308 "Expression tree is too large (maximum depth %d)", mxHeight
310 rc = SQLITE_ERROR;
312 return rc;
315 /* The following three functions, heightOfExpr(), heightOfExprList()
316 ** and heightOfSelect(), are used to determine the maximum height
317 ** of any expression tree referenced by the structure passed as the
318 ** first argument.
320 ** If this maximum height is greater than the current value pointed
321 ** to by pnHeight, the second parameter, then set *pnHeight to that
322 ** value.
324 static void heightOfExpr(Expr *p, int *pnHeight){
325 if( p ){
326 if( p->nHeight>*pnHeight ){
327 *pnHeight = p->nHeight;
331 static void heightOfExprList(ExprList *p, int *pnHeight){
332 if( p ){
333 int i;
334 for(i=0; i<p->nExpr; i++){
335 heightOfExpr(p->a[i].pExpr, pnHeight);
339 static void heightOfSelect(Select *p, int *pnHeight){
340 if( p ){
341 heightOfExpr(p->pWhere, pnHeight);
342 heightOfExpr(p->pHaving, pnHeight);
343 heightOfExpr(p->pLimit, pnHeight);
344 heightOfExpr(p->pOffset, pnHeight);
345 heightOfExprList(p->pEList, pnHeight);
346 heightOfExprList(p->pGroupBy, pnHeight);
347 heightOfExprList(p->pOrderBy, pnHeight);
348 heightOfSelect(p->pPrior, pnHeight);
353 ** Set the Expr.nHeight variable in the structure passed as an
354 ** argument. An expression with no children, Expr.pList or
355 ** Expr.pSelect member has a height of 1. Any other expression
356 ** has a height equal to the maximum height of any other
357 ** referenced Expr plus one.
359 static void exprSetHeight(Expr *p){
360 int nHeight = 0;
361 heightOfExpr(p->pLeft, &nHeight);
362 heightOfExpr(p->pRight, &nHeight);
363 if( ExprHasProperty(p, EP_xIsSelect) ){
364 heightOfSelect(p->x.pSelect, &nHeight);
365 }else{
366 heightOfExprList(p->x.pList, &nHeight);
368 p->nHeight = nHeight + 1;
372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
373 ** the height is greater than the maximum allowed expression depth,
374 ** leave an error in pParse.
376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
377 exprSetHeight(p);
378 sqlite3ExprCheckHeight(pParse, p->nHeight);
382 ** Return the maximum height of any expression tree referenced
383 ** by the select statement passed as an argument.
385 int sqlite3SelectExprHeight(Select *p){
386 int nHeight = 0;
387 heightOfSelect(p, &nHeight);
388 return nHeight;
390 #else
391 #define exprSetHeight(y)
392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
395 ** This routine is the core allocator for Expr nodes.
397 ** Construct a new expression node and return a pointer to it. Memory
398 ** for this node and for the pToken argument is a single allocation
399 ** obtained from sqlite3DbMalloc(). The calling function
400 ** is responsible for making sure the node eventually gets freed.
402 ** If dequote is true, then the token (if it exists) is dequoted.
403 ** If dequote is false, no dequoting is performance. The deQuote
404 ** parameter is ignored if pToken is NULL or if the token does not
405 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
406 ** then the EP_DblQuoted flag is set on the expression node.
408 ** Special case: If op==TK_INTEGER and pToken points to a string that
409 ** can be translated into a 32-bit integer, then the token is not
410 ** stored in u.zToken. Instead, the integer values is written
411 ** into u.iValue and the EP_IntValue flag is set. No extra storage
412 ** is allocated to hold the integer text and the dequote flag is ignored.
414 Expr *sqlite3ExprAlloc(
415 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
416 int op, /* Expression opcode */
417 const Token *pToken, /* Token argument. Might be NULL */
418 int dequote /* True to dequote */
420 Expr *pNew;
421 int nExtra = 0;
422 int iValue = 0;
424 if( pToken ){
425 if( op!=TK_INTEGER || pToken->z==0
426 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
427 nExtra = pToken->n+1;
428 assert( iValue>=0 );
431 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
432 if( pNew ){
433 pNew->op = (u8)op;
434 pNew->iAgg = -1;
435 if( pToken ){
436 if( nExtra==0 ){
437 pNew->flags |= EP_IntValue;
438 pNew->u.iValue = iValue;
439 }else{
440 int c;
441 pNew->u.zToken = (char*)&pNew[1];
442 assert( pToken->z!=0 || pToken->n==0 );
443 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
444 pNew->u.zToken[pToken->n] = 0;
445 if( dequote && nExtra>=3
446 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
447 sqlite3Dequote(pNew->u.zToken);
448 if( c=='"' ) pNew->flags |= EP_DblQuoted;
452 #if SQLITE_MAX_EXPR_DEPTH>0
453 pNew->nHeight = 1;
454 #endif
456 return pNew;
460 ** Allocate a new expression node from a zero-terminated token that has
461 ** already been dequoted.
463 Expr *sqlite3Expr(
464 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
465 int op, /* Expression opcode */
466 const char *zToken /* Token argument. Might be NULL */
468 Token x;
469 x.z = zToken;
470 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
471 return sqlite3ExprAlloc(db, op, &x, 0);
475 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
477 ** If pRoot==NULL that means that a memory allocation error has occurred.
478 ** In that case, delete the subtrees pLeft and pRight.
480 void sqlite3ExprAttachSubtrees(
481 sqlite3 *db,
482 Expr *pRoot,
483 Expr *pLeft,
484 Expr *pRight
486 if( pRoot==0 ){
487 assert( db->mallocFailed );
488 sqlite3ExprDelete(db, pLeft);
489 sqlite3ExprDelete(db, pRight);
490 }else{
491 if( pRight ){
492 pRoot->pRight = pRight;
493 pRoot->flags |= EP_Collate & pRight->flags;
495 if( pLeft ){
496 pRoot->pLeft = pLeft;
497 pRoot->flags |= EP_Collate & pLeft->flags;
499 exprSetHeight(pRoot);
504 ** Allocate an Expr node which joins as many as two subtrees.
506 ** One or both of the subtrees can be NULL. Return a pointer to the new
507 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
508 ** free the subtrees and return NULL.
510 Expr *sqlite3PExpr(
511 Parse *pParse, /* Parsing context */
512 int op, /* Expression opcode */
513 Expr *pLeft, /* Left operand */
514 Expr *pRight, /* Right operand */
515 const Token *pToken /* Argument token */
517 Expr *p;
518 if( op==TK_AND && pLeft && pRight ){
519 /* Take advantage of short-circuit false optimization for AND */
520 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
521 }else{
522 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
523 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
525 if( p ) {
526 sqlite3ExprCheckHeight(pParse, p->nHeight);
528 return p;
532 ** If the expression is always either TRUE or FALSE (respectively),
533 ** then return 1. If one cannot determine the truth value of the
534 ** expression at compile-time return 0.
536 ** This is an optimization. If is OK to return 0 here even if
537 ** the expression really is always false or false (a false negative).
538 ** But it is a bug to return 1 if the expression might have different
539 ** boolean values in different circumstances (a false positive.)
541 ** Note that if the expression is part of conditional for a
542 ** LEFT JOIN, then we cannot determine at compile-time whether or not
543 ** is it true or false, so always return 0.
545 static int exprAlwaysTrue(Expr *p){
546 int v = 0;
547 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549 return v!=0;
551 static int exprAlwaysFalse(Expr *p){
552 int v = 0;
553 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
554 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
555 return v==0;
559 ** Join two expressions using an AND operator. If either expression is
560 ** NULL, then just return the other expression.
562 ** If one side or the other of the AND is known to be false, then instead
563 ** of returning an AND expression, just return a constant expression with
564 ** a value of false.
566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
567 if( pLeft==0 ){
568 return pRight;
569 }else if( pRight==0 ){
570 return pLeft;
571 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
572 sqlite3ExprDelete(db, pLeft);
573 sqlite3ExprDelete(db, pRight);
574 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
575 }else{
576 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
577 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
578 return pNew;
583 ** Construct a new expression node for a function with multiple
584 ** arguments.
586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
587 Expr *pNew;
588 sqlite3 *db = pParse->db;
589 assert( pToken );
590 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
591 if( pNew==0 ){
592 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
593 return 0;
595 pNew->x.pList = pList;
596 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
597 sqlite3ExprSetHeight(pParse, pNew);
598 return pNew;
602 ** Assign a variable number to an expression that encodes a wildcard
603 ** in the original SQL statement.
605 ** Wildcards consisting of a single "?" are assigned the next sequential
606 ** variable number.
608 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
609 ** sure "nnn" is not too be to avoid a denial of service attack when
610 ** the SQL statement comes from an external source.
612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
613 ** as the previous instance of the same wildcard. Or if this is the first
614 ** instance of the wildcard, the next sequential variable number is
615 ** assigned.
617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
618 sqlite3 *db = pParse->db;
619 const char *z;
621 if( pExpr==0 ) return;
622 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
623 z = pExpr->u.zToken;
624 assert( z!=0 );
625 assert( z[0]!=0 );
626 if( z[1]==0 ){
627 /* Wildcard of the form "?". Assign the next variable number */
628 assert( z[0]=='?' );
629 pExpr->iColumn = (ynVar)(++pParse->nVar);
630 }else{
631 ynVar x = 0;
632 u32 n = sqlite3Strlen30(z);
633 if( z[0]=='?' ){
634 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
635 ** use it as the variable number */
636 i64 i;
637 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
638 pExpr->iColumn = x = (ynVar)i;
639 testcase( i==0 );
640 testcase( i==1 );
641 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
642 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
643 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
644 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
645 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
646 x = 0;
648 if( i>pParse->nVar ){
649 pParse->nVar = (int)i;
651 }else{
652 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
653 ** number as the prior appearance of the same name, or if the name
654 ** has never appeared before, reuse the same variable number
656 ynVar i;
657 for(i=0; i<pParse->nzVar; i++){
658 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
659 pExpr->iColumn = x = (ynVar)i+1;
660 break;
663 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
665 if( x>0 ){
666 if( x>pParse->nzVar ){
667 char **a;
668 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
669 if( a==0 ) return; /* Error reported through db->mallocFailed */
670 pParse->azVar = a;
671 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
672 pParse->nzVar = x;
674 if( z[0]!='?' || pParse->azVar[x-1]==0 ){
675 sqlite3DbFree(db, pParse->azVar[x-1]);
676 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
680 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
681 sqlite3ErrorMsg(pParse, "too many SQL variables");
686 ** Recursively delete an expression tree.
688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
689 if( p==0 ) return;
690 /* Sanity check: Assert that the IntValue is non-negative if it exists */
691 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
692 if( !ExprHasProperty(p, EP_TokenOnly) ){
693 /* The Expr.x union is never used at the same time as Expr.pRight */
694 assert( p->x.pList==0 || p->pRight==0 );
695 sqlite3ExprDelete(db, p->pLeft);
696 sqlite3ExprDelete(db, p->pRight);
697 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
698 if( ExprHasProperty(p, EP_xIsSelect) ){
699 sqlite3SelectDelete(db, p->x.pSelect);
700 }else{
701 sqlite3ExprListDelete(db, p->x.pList);
704 if( !ExprHasProperty(p, EP_Static) ){
705 sqlite3DbFree(db, p);
710 ** Return the number of bytes allocated for the expression structure
711 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
714 static int exprStructSize(Expr *p){
715 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
716 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
717 return EXPR_FULLSIZE;
721 ** The dupedExpr*Size() routines each return the number of bytes required
722 ** to store a copy of an expression or expression tree. They differ in
723 ** how much of the tree is measured.
725 ** dupedExprStructSize() Size of only the Expr structure
726 ** dupedExprNodeSize() Size of Expr + space for token
727 ** dupedExprSize() Expr + token + subtree components
729 ***************************************************************************
731 ** The dupedExprStructSize() function returns two values OR-ed together:
732 ** (1) the space required for a copy of the Expr structure only and
733 ** (2) the EP_xxx flags that indicate what the structure size should be.
734 ** The return values is always one of:
736 ** EXPR_FULLSIZE
737 ** EXPR_REDUCEDSIZE | EP_Reduced
738 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
740 ** The size of the structure can be found by masking the return value
741 ** of this routine with 0xfff. The flags can be found by masking the
742 ** return value with EP_Reduced|EP_TokenOnly.
744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
745 ** (unreduced) Expr objects as they or originally constructed by the parser.
746 ** During expression analysis, extra information is computed and moved into
747 ** later parts of teh Expr object and that extra information might get chopped
748 ** off if the expression is reduced. Note also that it does not work to
749 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
750 ** to reduce a pristine expression tree from the parser. The implementation
751 ** of dupedExprStructSize() contain multiple assert() statements that attempt
752 ** to enforce this constraint.
754 static int dupedExprStructSize(Expr *p, int flags){
755 int nSize;
756 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
757 assert( EXPR_FULLSIZE<=0xfff );
758 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
759 if( 0==(flags&EXPRDUP_REDUCE) ){
760 nSize = EXPR_FULLSIZE;
761 }else{
762 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
763 assert( !ExprHasProperty(p, EP_FromJoin) );
764 assert( !ExprHasProperty(p, EP_MemToken) );
765 assert( !ExprHasProperty(p, EP_NoReduce) );
766 if( p->pLeft || p->x.pList ){
767 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
768 }else{
769 assert( p->pRight==0 );
770 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
773 return nSize;
777 ** This function returns the space in bytes required to store the copy
778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
779 ** string is defined.)
781 static int dupedExprNodeSize(Expr *p, int flags){
782 int nByte = dupedExprStructSize(p, flags) & 0xfff;
783 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
784 nByte += sqlite3Strlen30(p->u.zToken)+1;
786 return ROUND8(nByte);
790 ** Return the number of bytes required to create a duplicate of the
791 ** expression passed as the first argument. The second argument is a
792 ** mask containing EXPRDUP_XXX flags.
794 ** The value returned includes space to create a copy of the Expr struct
795 ** itself and the buffer referred to by Expr.u.zToken, if any.
797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
799 ** and Expr.pRight variables (but not for any structures pointed to or
800 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
802 static int dupedExprSize(Expr *p, int flags){
803 int nByte = 0;
804 if( p ){
805 nByte = dupedExprNodeSize(p, flags);
806 if( flags&EXPRDUP_REDUCE ){
807 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
810 return nByte;
814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
816 ** to store the copy of expression p, the copies of p->u.zToken
817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
818 ** if any. Before returning, *pzBuffer is set to the first byte past the
819 ** portion of the buffer copied into by this function.
821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
822 Expr *pNew = 0; /* Value to return */
823 if( p ){
824 const int isReduced = (flags&EXPRDUP_REDUCE);
825 u8 *zAlloc;
826 u32 staticFlag = 0;
828 assert( pzBuffer==0 || isReduced );
830 /* Figure out where to write the new Expr structure. */
831 if( pzBuffer ){
832 zAlloc = *pzBuffer;
833 staticFlag = EP_Static;
834 }else{
835 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
837 pNew = (Expr *)zAlloc;
839 if( pNew ){
840 /* Set nNewSize to the size allocated for the structure pointed to
841 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
842 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
843 ** by the copy of the p->u.zToken string (if any).
845 const unsigned nStructSize = dupedExprStructSize(p, flags);
846 const int nNewSize = nStructSize & 0xfff;
847 int nToken;
848 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
849 nToken = sqlite3Strlen30(p->u.zToken) + 1;
850 }else{
851 nToken = 0;
853 if( isReduced ){
854 assert( ExprHasProperty(p, EP_Reduced)==0 );
855 memcpy(zAlloc, p, nNewSize);
856 }else{
857 int nSize = exprStructSize(p);
858 memcpy(zAlloc, p, nSize);
859 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
862 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
863 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
864 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
865 pNew->flags |= staticFlag;
867 /* Copy the p->u.zToken string, if any. */
868 if( nToken ){
869 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
870 memcpy(zToken, p->u.zToken, nToken);
873 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
874 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
875 if( ExprHasProperty(p, EP_xIsSelect) ){
876 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
877 }else{
878 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
882 /* Fill in pNew->pLeft and pNew->pRight. */
883 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
884 zAlloc += dupedExprNodeSize(p, flags);
885 if( ExprHasProperty(pNew, EP_Reduced) ){
886 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
887 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
889 if( pzBuffer ){
890 *pzBuffer = zAlloc;
892 }else{
893 if( !ExprHasProperty(p, EP_TokenOnly) ){
894 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
895 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
901 return pNew;
905 ** Create and return a deep copy of the object passed as the second
906 ** argument. If an OOM condition is encountered, NULL is returned
907 ** and the db->mallocFailed flag set.
909 #ifndef SQLITE_OMIT_CTE
910 static With *withDup(sqlite3 *db, With *p){
911 With *pRet = 0;
912 if( p ){
913 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
914 pRet = sqlite3DbMallocZero(db, nByte);
915 if( pRet ){
916 int i;
917 pRet->nCte = p->nCte;
918 for(i=0; i<p->nCte; i++){
919 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
920 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
921 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
925 return pRet;
927 #else
928 # define withDup(x,y) 0
929 #endif
932 ** The following group of routines make deep copies of expressions,
933 ** expression lists, ID lists, and select statements. The copies can
934 ** be deleted (by being passed to their respective ...Delete() routines)
935 ** without effecting the originals.
937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
939 ** by subsequent calls to sqlite*ListAppend() routines.
941 ** Any tables that the SrcList might point to are not duplicated.
943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
945 ** truncated version of the usual Expr structure that will be stored as
946 ** part of the in-memory representation of the database schema.
948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
949 return exprDup(db, p, flags, 0);
951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
952 ExprList *pNew;
953 struct ExprList_item *pItem, *pOldItem;
954 int i;
955 if( p==0 ) return 0;
956 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
957 if( pNew==0 ) return 0;
958 pNew->nExpr = i = p->nExpr;
959 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
960 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) );
961 if( pItem==0 ){
962 sqlite3DbFree(db, pNew);
963 return 0;
965 pOldItem = p->a;
966 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
967 Expr *pOldExpr = pOldItem->pExpr;
968 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
969 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
970 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
971 pItem->sortOrder = pOldItem->sortOrder;
972 pItem->done = 0;
973 pItem->bSpanIsTab = pOldItem->bSpanIsTab;
974 pItem->u = pOldItem->u;
976 return pNew;
980 ** If cursors, triggers, views and subqueries are all omitted from
981 ** the build, then none of the following routines, except for
982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
983 ** called with a NULL argument.
985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
986 || !defined(SQLITE_OMIT_SUBQUERY)
987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
988 SrcList *pNew;
989 int i;
990 int nByte;
991 if( p==0 ) return 0;
992 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
993 pNew = sqlite3DbMallocRaw(db, nByte );
994 if( pNew==0 ) return 0;
995 pNew->nSrc = pNew->nAlloc = p->nSrc;
996 for(i=0; i<p->nSrc; i++){
997 struct SrcList_item *pNewItem = &pNew->a[i];
998 struct SrcList_item *pOldItem = &p->a[i];
999 Table *pTab;
1000 pNewItem->pSchema = pOldItem->pSchema;
1001 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1002 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1004 pNewItem->jointype = pOldItem->jointype;
1005 pNewItem->iCursor = pOldItem->iCursor;
1006 pNewItem->addrFillSub = pOldItem->addrFillSub;
1007 pNewItem->regReturn = pOldItem->regReturn;
1008 pNewItem->isCorrelated = pOldItem->isCorrelated;
1009 pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1010 pNewItem->isRecursive = pOldItem->isRecursive;
1011 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1012 pNewItem->notIndexed = pOldItem->notIndexed;
1013 pNewItem->pIndex = pOldItem->pIndex;
1014 pTab = pNewItem->pTab = pOldItem->pTab;
1015 if( pTab ){
1016 pTab->nRef++;
1018 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1019 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1020 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1021 pNewItem->colUsed = pOldItem->colUsed;
1023 return pNew;
1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1026 IdList *pNew;
1027 int i;
1028 if( p==0 ) return 0;
1029 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1030 if( pNew==0 ) return 0;
1031 pNew->nId = p->nId;
1032 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1033 if( pNew->a==0 ){
1034 sqlite3DbFree(db, pNew);
1035 return 0;
1037 /* Note that because the size of the allocation for p->a[] is not
1038 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1039 ** on the duplicate created by this function. */
1040 for(i=0; i<p->nId; i++){
1041 struct IdList_item *pNewItem = &pNew->a[i];
1042 struct IdList_item *pOldItem = &p->a[i];
1043 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1044 pNewItem->idx = pOldItem->idx;
1046 return pNew;
1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1049 Select *pNew, *pPrior;
1050 if( p==0 ) return 0;
1051 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1052 if( pNew==0 ) return 0;
1053 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1054 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1055 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1056 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1057 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1058 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1059 pNew->op = p->op;
1060 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1061 if( pPrior ) pPrior->pNext = pNew;
1062 pNew->pNext = 0;
1063 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1064 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1065 pNew->iLimit = 0;
1066 pNew->iOffset = 0;
1067 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1068 pNew->addrOpenEphm[0] = -1;
1069 pNew->addrOpenEphm[1] = -1;
1070 pNew->nSelectRow = p->nSelectRow;
1071 pNew->pWith = withDup(db, p->pWith);
1072 sqlite3SelectSetName(pNew, p->zSelName);
1073 return pNew;
1075 #else
1076 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1077 assert( p==0 );
1078 return 0;
1080 #endif
1084 ** Add a new element to the end of an expression list. If pList is
1085 ** initially NULL, then create a new expression list.
1087 ** If a memory allocation error occurs, the entire list is freed and
1088 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1089 ** that the new entry was successfully appended.
1091 ExprList *sqlite3ExprListAppend(
1092 Parse *pParse, /* Parsing context */
1093 ExprList *pList, /* List to which to append. Might be NULL */
1094 Expr *pExpr /* Expression to be appended. Might be NULL */
1096 sqlite3 *db = pParse->db;
1097 if( pList==0 ){
1098 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1099 if( pList==0 ){
1100 goto no_mem;
1102 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1103 if( pList->a==0 ) goto no_mem;
1104 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1105 struct ExprList_item *a;
1106 assert( pList->nExpr>0 );
1107 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1108 if( a==0 ){
1109 goto no_mem;
1111 pList->a = a;
1113 assert( pList->a!=0 );
1114 if( 1 ){
1115 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1116 memset(pItem, 0, sizeof(*pItem));
1117 pItem->pExpr = pExpr;
1119 return pList;
1121 no_mem:
1122 /* Avoid leaking memory if malloc has failed. */
1123 sqlite3ExprDelete(db, pExpr);
1124 sqlite3ExprListDelete(db, pList);
1125 return 0;
1129 ** Set the ExprList.a[].zName element of the most recently added item
1130 ** on the expression list.
1132 ** pList might be NULL following an OOM error. But pName should never be
1133 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1134 ** is set.
1136 void sqlite3ExprListSetName(
1137 Parse *pParse, /* Parsing context */
1138 ExprList *pList, /* List to which to add the span. */
1139 Token *pName, /* Name to be added */
1140 int dequote /* True to cause the name to be dequoted */
1142 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1143 if( pList ){
1144 struct ExprList_item *pItem;
1145 assert( pList->nExpr>0 );
1146 pItem = &pList->a[pList->nExpr-1];
1147 assert( pItem->zName==0 );
1148 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1149 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1154 ** Set the ExprList.a[].zSpan element of the most recently added item
1155 ** on the expression list.
1157 ** pList might be NULL following an OOM error. But pSpan should never be
1158 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1159 ** is set.
1161 void sqlite3ExprListSetSpan(
1162 Parse *pParse, /* Parsing context */
1163 ExprList *pList, /* List to which to add the span. */
1164 ExprSpan *pSpan /* The span to be added */
1166 sqlite3 *db = pParse->db;
1167 assert( pList!=0 || db->mallocFailed!=0 );
1168 if( pList ){
1169 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1170 assert( pList->nExpr>0 );
1171 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1172 sqlite3DbFree(db, pItem->zSpan);
1173 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1174 (int)(pSpan->zEnd - pSpan->zStart));
1179 ** If the expression list pEList contains more than iLimit elements,
1180 ** leave an error message in pParse.
1182 void sqlite3ExprListCheckLength(
1183 Parse *pParse,
1184 ExprList *pEList,
1185 const char *zObject
1187 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1188 testcase( pEList && pEList->nExpr==mx );
1189 testcase( pEList && pEList->nExpr==mx+1 );
1190 if( pEList && pEList->nExpr>mx ){
1191 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1196 ** Delete an entire expression list.
1198 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1199 int i;
1200 struct ExprList_item *pItem;
1201 if( pList==0 ) return;
1202 assert( pList->a!=0 || pList->nExpr==0 );
1203 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1204 sqlite3ExprDelete(db, pItem->pExpr);
1205 sqlite3DbFree(db, pItem->zName);
1206 sqlite3DbFree(db, pItem->zSpan);
1208 sqlite3DbFree(db, pList->a);
1209 sqlite3DbFree(db, pList);
1213 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1214 ** to an integer. These routines are checking an expression to see
1215 ** if it is a constant. Set *Walker.u.i to 0 if the expression is
1216 ** not constant.
1218 ** These callback routines are used to implement the following:
1220 ** sqlite3ExprIsConstant() pWalker->u.i==1
1221 ** sqlite3ExprIsConstantNotJoin() pWalker->u.i==2
1222 ** sqlite3ExprIsConstantOrFunction() pWalker->u.i==3 or 4
1224 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1225 ** in a CREATE TABLE statement. The Walker.u.i value is 4 when parsing
1226 ** an existing schema and 3 when processing a new statement. A bound
1227 ** parameter raises an error for new statements, but is silently converted
1228 ** to NULL for existing schemas. This allows sqlite_master tables that
1229 ** contain a bound parameter because they were generated by older versions
1230 ** of SQLite to be parsed by newer versions of SQLite without raising a
1231 ** malformed schema error.
1233 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1235 /* If pWalker->u.i is 2 then any term of the expression that comes from
1236 ** the ON or USING clauses of a join disqualifies the expression
1237 ** from being considered constant. */
1238 if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1239 pWalker->u.i = 0;
1240 return WRC_Abort;
1243 switch( pExpr->op ){
1244 /* Consider functions to be constant if all their arguments are constant
1245 ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST
1246 ** flag. */
1247 case TK_FUNCTION:
1248 if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){
1249 return WRC_Continue;
1251 /* Fall through */
1252 case TK_ID:
1253 case TK_COLUMN:
1254 case TK_AGG_FUNCTION:
1255 case TK_AGG_COLUMN:
1256 testcase( pExpr->op==TK_ID );
1257 testcase( pExpr->op==TK_COLUMN );
1258 testcase( pExpr->op==TK_AGG_FUNCTION );
1259 testcase( pExpr->op==TK_AGG_COLUMN );
1260 pWalker->u.i = 0;
1261 return WRC_Abort;
1262 case TK_VARIABLE:
1263 if( pWalker->u.i==4 ){
1264 /* Silently convert bound parameters that appear inside of CREATE
1265 ** statements into a NULL when parsing the CREATE statement text out
1266 ** of the sqlite_master table */
1267 pExpr->op = TK_NULL;
1268 }else if( pWalker->u.i==3 ){
1269 /* A bound parameter in a CREATE statement that originates from
1270 ** sqlite3_prepare() causes an error */
1271 pWalker->u.i = 0;
1272 return WRC_Abort;
1274 /* Fall through */
1275 default:
1276 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1277 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1278 return WRC_Continue;
1281 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1282 UNUSED_PARAMETER(NotUsed);
1283 pWalker->u.i = 0;
1284 return WRC_Abort;
1286 static int exprIsConst(Expr *p, int initFlag){
1287 Walker w;
1288 memset(&w, 0, sizeof(w));
1289 w.u.i = initFlag;
1290 w.xExprCallback = exprNodeIsConstant;
1291 w.xSelectCallback = selectNodeIsConstant;
1292 sqlite3WalkExpr(&w, p);
1293 return w.u.i;
1297 ** Walk an expression tree. Return 1 if the expression is constant
1298 ** and 0 if it involves variables or function calls.
1300 ** For the purposes of this function, a double-quoted string (ex: "abc")
1301 ** is considered a variable but a single-quoted string (ex: 'abc') is
1302 ** a constant.
1304 int sqlite3ExprIsConstant(Expr *p){
1305 return exprIsConst(p, 1);
1309 ** Walk an expression tree. Return 1 if the expression is constant
1310 ** that does no originate from the ON or USING clauses of a join.
1311 ** Return 0 if it involves variables or function calls or terms from
1312 ** an ON or USING clause.
1314 int sqlite3ExprIsConstantNotJoin(Expr *p){
1315 return exprIsConst(p, 2);
1319 ** Walk an expression tree. Return 1 if the expression is constant
1320 ** or a function call with constant arguments. Return and 0 if there
1321 ** are any variables.
1323 ** For the purposes of this function, a double-quoted string (ex: "abc")
1324 ** is considered a variable but a single-quoted string (ex: 'abc') is
1325 ** a constant.
1327 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1328 assert( isInit==0 || isInit==1 );
1329 return exprIsConst(p, 3+isInit);
1333 ** If the expression p codes a constant integer that is small enough
1334 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1335 ** in *pValue. If the expression is not an integer or if it is too big
1336 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1338 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1339 int rc = 0;
1341 /* If an expression is an integer literal that fits in a signed 32-bit
1342 ** integer, then the EP_IntValue flag will have already been set */
1343 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1344 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1346 if( p->flags & EP_IntValue ){
1347 *pValue = p->u.iValue;
1348 return 1;
1350 switch( p->op ){
1351 case TK_UPLUS: {
1352 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1353 break;
1355 case TK_UMINUS: {
1356 int v;
1357 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1358 assert( v!=(-2147483647-1) );
1359 *pValue = -v;
1360 rc = 1;
1362 break;
1364 default: break;
1366 return rc;
1370 ** Return FALSE if there is no chance that the expression can be NULL.
1372 ** If the expression might be NULL or if the expression is too complex
1373 ** to tell return TRUE.
1375 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1376 ** when we know that a value cannot be NULL. Hence, a false positive
1377 ** (returning TRUE when in fact the expression can never be NULL) might
1378 ** be a small performance hit but is otherwise harmless. On the other
1379 ** hand, a false negative (returning FALSE when the result could be NULL)
1380 ** will likely result in an incorrect answer. So when in doubt, return
1381 ** TRUE.
1383 int sqlite3ExprCanBeNull(const Expr *p){
1384 u8 op;
1385 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1386 op = p->op;
1387 if( op==TK_REGISTER ) op = p->op2;
1388 switch( op ){
1389 case TK_INTEGER:
1390 case TK_STRING:
1391 case TK_FLOAT:
1392 case TK_BLOB:
1393 return 0;
1394 case TK_COLUMN:
1395 assert( p->pTab!=0 );
1396 return ExprHasProperty(p, EP_CanBeNull) ||
1397 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1398 default:
1399 return 1;
1404 ** Return TRUE if the given expression is a constant which would be
1405 ** unchanged by OP_Affinity with the affinity given in the second
1406 ** argument.
1408 ** This routine is used to determine if the OP_Affinity operation
1409 ** can be omitted. When in doubt return FALSE. A false negative
1410 ** is harmless. A false positive, however, can result in the wrong
1411 ** answer.
1413 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1414 u8 op;
1415 if( aff==SQLITE_AFF_NONE ) return 1;
1416 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1417 op = p->op;
1418 if( op==TK_REGISTER ) op = p->op2;
1419 switch( op ){
1420 case TK_INTEGER: {
1421 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1423 case TK_FLOAT: {
1424 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1426 case TK_STRING: {
1427 return aff==SQLITE_AFF_TEXT;
1429 case TK_BLOB: {
1430 return 1;
1432 case TK_COLUMN: {
1433 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
1434 return p->iColumn<0
1435 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1437 default: {
1438 return 0;
1444 ** Return TRUE if the given string is a row-id column name.
1446 int sqlite3IsRowid(const char *z){
1447 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1448 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1449 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1450 return 0;
1454 ** Return true if we are able to the IN operator optimization on a
1455 ** query of the form
1457 ** x IN (SELECT ...)
1459 ** Where the SELECT... clause is as specified by the parameter to this
1460 ** routine.
1462 ** The Select object passed in has already been preprocessed and no
1463 ** errors have been found.
1465 #ifndef SQLITE_OMIT_SUBQUERY
1466 static int isCandidateForInOpt(Select *p){
1467 SrcList *pSrc;
1468 ExprList *pEList;
1469 Table *pTab;
1470 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1471 if( p->pPrior ) return 0; /* Not a compound SELECT */
1472 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1473 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1474 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1475 return 0; /* No DISTINCT keyword and no aggregate functions */
1477 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
1478 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1479 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
1480 if( p->pWhere ) return 0; /* Has no WHERE clause */
1481 pSrc = p->pSrc;
1482 assert( pSrc!=0 );
1483 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
1484 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
1485 pTab = pSrc->a[0].pTab;
1486 if( NEVER(pTab==0) ) return 0;
1487 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1488 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1489 pEList = p->pEList;
1490 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1491 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1492 return 1;
1494 #endif /* SQLITE_OMIT_SUBQUERY */
1497 ** Code an OP_Once instruction and allocate space for its flag. Return the
1498 ** address of the new instruction.
1500 int sqlite3CodeOnce(Parse *pParse){
1501 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1502 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1506 ** Generate code that checks the left-most column of index table iCur to see if
1507 ** it contains any NULL entries. Cause the register at regHasNull to be set
1508 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
1509 ** to be set to NULL if iCur contains one or more NULL values.
1511 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1512 int j1;
1513 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1514 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1515 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1516 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1517 VdbeComment((v, "first_entry_in(%d)", iCur));
1518 sqlite3VdbeJumpHere(v, j1);
1522 #ifndef SQLITE_OMIT_SUBQUERY
1524 ** The argument is an IN operator with a list (not a subquery) on the
1525 ** right-hand side. Return TRUE if that list is constant.
1527 static int sqlite3InRhsIsConstant(Expr *pIn){
1528 Expr *pLHS;
1529 int res;
1530 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1531 pLHS = pIn->pLeft;
1532 pIn->pLeft = 0;
1533 res = sqlite3ExprIsConstant(pIn);
1534 pIn->pLeft = pLHS;
1535 return res;
1537 #endif
1540 ** This function is used by the implementation of the IN (...) operator.
1541 ** The pX parameter is the expression on the RHS of the IN operator, which
1542 ** might be either a list of expressions or a subquery.
1544 ** The job of this routine is to find or create a b-tree object that can
1545 ** be used either to test for membership in the RHS set or to iterate through
1546 ** all members of the RHS set, skipping duplicates.
1548 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1549 ** and pX->iTable is set to the index of that cursor.
1551 ** The returned value of this function indicates the b-tree type, as follows:
1553 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1554 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
1555 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1556 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1557 ** populated epheremal table.
1558 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
1559 ** implemented as a sequence of comparisons.
1561 ** An existing b-tree might be used if the RHS expression pX is a simple
1562 ** subquery such as:
1564 ** SELECT <column> FROM <table>
1566 ** If the RHS of the IN operator is a list or a more complex subquery, then
1567 ** an ephemeral table might need to be generated from the RHS and then
1568 ** pX->iTable made to point to the ephemeral table instead of an
1569 ** existing table.
1571 ** The inFlags parameter must contain exactly one of the bits
1572 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
1573 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1574 ** fast membership test. When the IN_INDEX_LOOP bit is set, the
1575 ** IN index will be used to loop over all values of the RHS of the
1576 ** IN operator.
1578 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1579 ** through the set members) then the b-tree must not contain duplicates.
1580 ** An epheremal table must be used unless the selected <column> is guaranteed
1581 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1582 ** has a UNIQUE constraint or UNIQUE index.
1584 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1585 ** for fast set membership tests) then an epheremal table must
1586 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1587 ** be found with <column> as its left-most column.
1589 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1590 ** if the RHS of the IN operator is a list (not a subquery) then this
1591 ** routine might decide that creating an ephemeral b-tree for membership
1592 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
1593 ** calling routine should implement the IN operator using a sequence
1594 ** of Eq or Ne comparison operations.
1596 ** When the b-tree is being used for membership tests, the calling function
1597 ** might need to know whether or not the RHS side of the IN operator
1598 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
1599 ** if there is any chance that the (...) might contain a NULL value at
1600 ** runtime, then a register is allocated and the register number written
1601 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1602 ** NULL value, then *prRhsHasNull is left unchanged.
1604 ** If a register is allocated and its location stored in *prRhsHasNull, then
1605 ** the value in that register will be NULL if the b-tree contains one or more
1606 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1607 ** NULL values.
1609 #ifndef SQLITE_OMIT_SUBQUERY
1610 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1611 Select *p; /* SELECT to the right of IN operator */
1612 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1613 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1614 int mustBeUnique; /* True if RHS must be unique */
1615 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1617 assert( pX->op==TK_IN );
1618 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1620 /* Check to see if an existing table or index can be used to
1621 ** satisfy the query. This is preferable to generating a new
1622 ** ephemeral table.
1624 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1625 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1626 sqlite3 *db = pParse->db; /* Database connection */
1627 Table *pTab; /* Table <table>. */
1628 Expr *pExpr; /* Expression <column> */
1629 i16 iCol; /* Index of column <column> */
1630 i16 iDb; /* Database idx for pTab */
1632 assert( p ); /* Because of isCandidateForInOpt(p) */
1633 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
1634 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1635 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
1636 pTab = p->pSrc->a[0].pTab;
1637 pExpr = p->pEList->a[0].pExpr;
1638 iCol = (i16)pExpr->iColumn;
1640 /* Code an OP_Transaction and OP_TableLock for <table>. */
1641 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1642 sqlite3CodeVerifySchema(pParse, iDb);
1643 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1645 /* This function is only called from two places. In both cases the vdbe
1646 ** has already been allocated. So assume sqlite3GetVdbe() is always
1647 ** successful here.
1649 assert(v);
1650 if( iCol<0 ){
1651 int iAddr = sqlite3CodeOnce(pParse);
1652 VdbeCoverage(v);
1654 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1655 eType = IN_INDEX_ROWID;
1657 sqlite3VdbeJumpHere(v, iAddr);
1658 }else{
1659 Index *pIdx; /* Iterator variable */
1661 /* The collation sequence used by the comparison. If an index is to
1662 ** be used in place of a temp-table, it must be ordered according
1663 ** to this collation sequence. */
1664 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1666 /* Check that the affinity that will be used to perform the
1667 ** comparison is the same as the affinity of the column. If
1668 ** it is not, it is not possible to use any index.
1670 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1672 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1673 if( (pIdx->aiColumn[0]==iCol)
1674 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1675 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1677 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1678 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1679 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1680 VdbeComment((v, "%s", pIdx->zName));
1681 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1682 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1684 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1685 *prRhsHasNull = ++pParse->nMem;
1686 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1688 sqlite3VdbeJumpHere(v, iAddr);
1694 /* If no preexisting index is available for the IN clause
1695 ** and IN_INDEX_NOOP is an allowed reply
1696 ** and the RHS of the IN operator is a list, not a subquery
1697 ** and the RHS is not contant or has two or fewer terms,
1698 ** then it is not worth creating an ephemeral table to evaluate
1699 ** the IN operator so return IN_INDEX_NOOP.
1701 if( eType==0
1702 && (inFlags & IN_INDEX_NOOP_OK)
1703 && !ExprHasProperty(pX, EP_xIsSelect)
1704 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1706 eType = IN_INDEX_NOOP;
1710 if( eType==0 ){
1711 /* Could not find an existing table or index to use as the RHS b-tree.
1712 ** We will have to generate an ephemeral table to do the job.
1714 u32 savedNQueryLoop = pParse->nQueryLoop;
1715 int rMayHaveNull = 0;
1716 eType = IN_INDEX_EPH;
1717 if( inFlags & IN_INDEX_LOOP ){
1718 pParse->nQueryLoop = 0;
1719 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1720 eType = IN_INDEX_ROWID;
1722 }else if( prRhsHasNull ){
1723 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1725 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1726 pParse->nQueryLoop = savedNQueryLoop;
1727 }else{
1728 pX->iTable = iTab;
1730 return eType;
1732 #endif
1735 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1736 ** or IN operators. Examples:
1738 ** (SELECT a FROM b) -- subquery
1739 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1740 ** x IN (4,5,11) -- IN operator with list on right-hand side
1741 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1743 ** The pExpr parameter describes the expression that contains the IN
1744 ** operator or subquery.
1746 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1747 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1748 ** to some integer key column of a table B-Tree. In this case, use an
1749 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1750 ** (slower) variable length keys B-Tree.
1752 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1753 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1754 ** All this routine does is initialize the register given by rMayHaveNull
1755 ** to NULL. Calling routines will take care of changing this register
1756 ** value to non-NULL if the RHS is NULL-free.
1758 ** For a SELECT or EXISTS operator, return the register that holds the
1759 ** result. For IN operators or if an error occurs, the return value is 0.
1761 #ifndef SQLITE_OMIT_SUBQUERY
1762 int sqlite3CodeSubselect(
1763 Parse *pParse, /* Parsing context */
1764 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1765 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
1766 int isRowid /* If true, LHS of IN operator is a rowid */
1768 int jmpIfDynamic = -1; /* One-time test address */
1769 int rReg = 0; /* Register storing resulting */
1770 Vdbe *v = sqlite3GetVdbe(pParse);
1771 if( NEVER(v==0) ) return 0;
1772 sqlite3ExprCachePush(pParse);
1774 /* This code must be run in its entirety every time it is encountered
1775 ** if any of the following is true:
1777 ** * The right-hand side is a correlated subquery
1778 ** * The right-hand side is an expression list containing variables
1779 ** * We are inside a trigger
1781 ** If all of the above are false, then we can run this code just once
1782 ** save the results, and reuse the same result on subsequent invocations.
1784 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1785 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1788 #ifndef SQLITE_OMIT_EXPLAIN
1789 if( pParse->explain==2 ){
1790 char *zMsg = sqlite3MPrintf(
1791 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1792 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1794 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1796 #endif
1798 switch( pExpr->op ){
1799 case TK_IN: {
1800 char affinity; /* Affinity of the LHS of the IN */
1801 int addr; /* Address of OP_OpenEphemeral instruction */
1802 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1803 KeyInfo *pKeyInfo = 0; /* Key information */
1805 affinity = sqlite3ExprAffinity(pLeft);
1807 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1808 ** expression it is handled the same way. An ephemeral table is
1809 ** filled with single-field index keys representing the results
1810 ** from the SELECT or the <exprlist>.
1812 ** If the 'x' expression is a column value, or the SELECT...
1813 ** statement returns a column value, then the affinity of that
1814 ** column is used to build the index keys. If both 'x' and the
1815 ** SELECT... statement are columns, then numeric affinity is used
1816 ** if either column has NUMERIC or INTEGER affinity. If neither
1817 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1818 ** is used.
1820 pExpr->iTable = pParse->nTab++;
1821 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1822 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1824 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1825 /* Case 1: expr IN (SELECT ...)
1827 ** Generate code to write the results of the select into the temporary
1828 ** table allocated and opened above.
1830 Select *pSelect = pExpr->x.pSelect;
1831 SelectDest dest;
1832 ExprList *pEList;
1834 assert( !isRowid );
1835 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1836 dest.affSdst = (u8)affinity;
1837 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1838 pSelect->iLimit = 0;
1839 testcase( pSelect->selFlags & SF_Distinct );
1840 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1841 if( sqlite3Select(pParse, pSelect, &dest) ){
1842 sqlite3KeyInfoUnref(pKeyInfo);
1843 return 0;
1845 pEList = pSelect->pEList;
1846 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1847 assert( pEList!=0 );
1848 assert( pEList->nExpr>0 );
1849 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1850 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1851 pEList->a[0].pExpr);
1852 }else if( ALWAYS(pExpr->x.pList!=0) ){
1853 /* Case 2: expr IN (exprlist)
1855 ** For each expression, build an index key from the evaluation and
1856 ** store it in the temporary table. If <expr> is a column, then use
1857 ** that columns affinity when building index keys. If <expr> is not
1858 ** a column, use numeric affinity.
1860 int i;
1861 ExprList *pList = pExpr->x.pList;
1862 struct ExprList_item *pItem;
1863 int r1, r2, r3;
1865 if( !affinity ){
1866 affinity = SQLITE_AFF_NONE;
1868 if( pKeyInfo ){
1869 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1870 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1873 /* Loop through each expression in <exprlist>. */
1874 r1 = sqlite3GetTempReg(pParse);
1875 r2 = sqlite3GetTempReg(pParse);
1876 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1877 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1878 Expr *pE2 = pItem->pExpr;
1879 int iValToIns;
1881 /* If the expression is not constant then we will need to
1882 ** disable the test that was generated above that makes sure
1883 ** this code only executes once. Because for a non-constant
1884 ** expression we need to rerun this code each time.
1886 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1887 sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1888 jmpIfDynamic = -1;
1891 /* Evaluate the expression and insert it into the temp table */
1892 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1893 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1894 }else{
1895 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1896 if( isRowid ){
1897 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1898 sqlite3VdbeCurrentAddr(v)+2);
1899 VdbeCoverage(v);
1900 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1901 }else{
1902 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1903 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1904 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1908 sqlite3ReleaseTempReg(pParse, r1);
1909 sqlite3ReleaseTempReg(pParse, r2);
1911 if( pKeyInfo ){
1912 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1914 break;
1917 case TK_EXISTS:
1918 case TK_SELECT:
1919 default: {
1920 /* If this has to be a scalar SELECT. Generate code to put the
1921 ** value of this select in a memory cell and record the number
1922 ** of the memory cell in iColumn. If this is an EXISTS, write
1923 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1924 ** and record that memory cell in iColumn.
1926 Select *pSel; /* SELECT statement to encode */
1927 SelectDest dest; /* How to deal with SELECt result */
1929 testcase( pExpr->op==TK_EXISTS );
1930 testcase( pExpr->op==TK_SELECT );
1931 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1933 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1934 pSel = pExpr->x.pSelect;
1935 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1936 if( pExpr->op==TK_SELECT ){
1937 dest.eDest = SRT_Mem;
1938 dest.iSdst = dest.iSDParm;
1939 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1940 VdbeComment((v, "Init subquery result"));
1941 }else{
1942 dest.eDest = SRT_Exists;
1943 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1944 VdbeComment((v, "Init EXISTS result"));
1946 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1947 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1948 &sqlite3IntTokens[1]);
1949 pSel->iLimit = 0;
1950 if( sqlite3Select(pParse, pSel, &dest) ){
1951 return 0;
1953 rReg = dest.iSDParm;
1954 ExprSetVVAProperty(pExpr, EP_NoReduce);
1955 break;
1959 if( rHasNullFlag ){
1960 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
1963 if( jmpIfDynamic>=0 ){
1964 sqlite3VdbeJumpHere(v, jmpIfDynamic);
1966 sqlite3ExprCachePop(pParse);
1968 return rReg;
1970 #endif /* SQLITE_OMIT_SUBQUERY */
1972 #ifndef SQLITE_OMIT_SUBQUERY
1974 ** Generate code for an IN expression.
1976 ** x IN (SELECT ...)
1977 ** x IN (value, value, ...)
1979 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
1980 ** is an array of zero or more values. The expression is true if the LHS is
1981 ** contained within the RHS. The value of the expression is unknown (NULL)
1982 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1983 ** RHS contains one or more NULL values.
1985 ** This routine generates code that jumps to destIfFalse if the LHS is not
1986 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
1987 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
1988 ** within the RHS then fall through.
1990 static void sqlite3ExprCodeIN(
1991 Parse *pParse, /* Parsing and code generating context */
1992 Expr *pExpr, /* The IN expression */
1993 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
1994 int destIfNull /* Jump here if the results are unknown due to NULLs */
1996 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
1997 char affinity; /* Comparison affinity to use */
1998 int eType; /* Type of the RHS */
1999 int r1; /* Temporary use register */
2000 Vdbe *v; /* Statement under construction */
2002 /* Compute the RHS. After this step, the table with cursor
2003 ** pExpr->iTable will contains the values that make up the RHS.
2005 v = pParse->pVdbe;
2006 assert( v!=0 ); /* OOM detected prior to this routine */
2007 VdbeNoopComment((v, "begin IN expr"));
2008 eType = sqlite3FindInIndex(pParse, pExpr,
2009 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2010 destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2012 /* Figure out the affinity to use to create a key from the results
2013 ** of the expression. affinityStr stores a static string suitable for
2014 ** P4 of OP_MakeRecord.
2016 affinity = comparisonAffinity(pExpr);
2018 /* Code the LHS, the <expr> from "<expr> IN (...)".
2020 sqlite3ExprCachePush(pParse);
2021 r1 = sqlite3GetTempReg(pParse);
2022 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2024 /* If sqlite3FindInIndex() did not find or create an index that is
2025 ** suitable for evaluating the IN operator, then evaluate using a
2026 ** sequence of comparisons.
2028 if( eType==IN_INDEX_NOOP ){
2029 ExprList *pList = pExpr->x.pList;
2030 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2031 int labelOk = sqlite3VdbeMakeLabel(v);
2032 int r2, regToFree;
2033 int regCkNull = 0;
2034 int ii;
2035 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2036 if( destIfNull!=destIfFalse ){
2037 regCkNull = sqlite3GetTempReg(pParse);
2038 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2040 for(ii=0; ii<pList->nExpr; ii++){
2041 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2042 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2043 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2045 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2046 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2047 (void*)pColl, P4_COLLSEQ);
2048 VdbeCoverageIf(v, ii<pList->nExpr-1);
2049 VdbeCoverageIf(v, ii==pList->nExpr-1);
2050 sqlite3VdbeChangeP5(v, affinity);
2051 }else{
2052 assert( destIfNull==destIfFalse );
2053 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2054 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2055 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2057 sqlite3ReleaseTempReg(pParse, regToFree);
2059 if( regCkNull ){
2060 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2061 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2063 sqlite3VdbeResolveLabel(v, labelOk);
2064 sqlite3ReleaseTempReg(pParse, regCkNull);
2065 }else{
2067 /* If the LHS is NULL, then the result is either false or NULL depending
2068 ** on whether the RHS is empty or not, respectively.
2070 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2071 if( destIfNull==destIfFalse ){
2072 /* Shortcut for the common case where the false and NULL outcomes are
2073 ** the same. */
2074 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2075 }else{
2076 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2077 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2078 VdbeCoverage(v);
2079 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2080 sqlite3VdbeJumpHere(v, addr1);
2084 if( eType==IN_INDEX_ROWID ){
2085 /* In this case, the RHS is the ROWID of table b-tree
2087 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2088 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2089 VdbeCoverage(v);
2090 }else{
2091 /* In this case, the RHS is an index b-tree.
2093 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2095 /* If the set membership test fails, then the result of the
2096 ** "x IN (...)" expression must be either 0 or NULL. If the set
2097 ** contains no NULL values, then the result is 0. If the set
2098 ** contains one or more NULL values, then the result of the
2099 ** expression is also NULL.
2101 assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2102 if( rRhsHasNull==0 ){
2103 /* This branch runs if it is known at compile time that the RHS
2104 ** cannot contain NULL values. This happens as the result
2105 ** of a "NOT NULL" constraint in the database schema.
2107 ** Also run this branch if NULL is equivalent to FALSE
2108 ** for this particular IN operator.
2110 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2111 VdbeCoverage(v);
2112 }else{
2113 /* In this branch, the RHS of the IN might contain a NULL and
2114 ** the presence of a NULL on the RHS makes a difference in the
2115 ** outcome.
2117 int j1;
2119 /* First check to see if the LHS is contained in the RHS. If so,
2120 ** then the answer is TRUE the presence of NULLs in the RHS does
2121 ** not matter. If the LHS is not contained in the RHS, then the
2122 ** answer is NULL if the RHS contains NULLs and the answer is
2123 ** FALSE if the RHS is NULL-free.
2125 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2126 VdbeCoverage(v);
2127 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2128 VdbeCoverage(v);
2129 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2130 sqlite3VdbeJumpHere(v, j1);
2134 sqlite3ReleaseTempReg(pParse, r1);
2135 sqlite3ExprCachePop(pParse);
2136 VdbeComment((v, "end IN expr"));
2138 #endif /* SQLITE_OMIT_SUBQUERY */
2141 ** Duplicate an 8-byte value
2143 static char *dup8bytes(Vdbe *v, const char *in){
2144 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2145 if( out ){
2146 memcpy(out, in, 8);
2148 return out;
2151 #ifndef SQLITE_OMIT_FLOATING_POINT
2153 ** Generate an instruction that will put the floating point
2154 ** value described by z[0..n-1] into register iMem.
2156 ** The z[] string will probably not be zero-terminated. But the
2157 ** z[n] character is guaranteed to be something that does not look
2158 ** like the continuation of the number.
2160 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2161 if( ALWAYS(z!=0) ){
2162 double value;
2163 char *zV;
2164 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2165 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2166 if( negateFlag ) value = -value;
2167 zV = dup8bytes(v, (char*)&value);
2168 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2171 #endif
2175 ** Generate an instruction that will put the integer describe by
2176 ** text z[0..n-1] into register iMem.
2178 ** Expr.u.zToken is always UTF8 and zero-terminated.
2180 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2181 Vdbe *v = pParse->pVdbe;
2182 if( pExpr->flags & EP_IntValue ){
2183 int i = pExpr->u.iValue;
2184 assert( i>=0 );
2185 if( negFlag ) i = -i;
2186 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2187 }else{
2188 int c;
2189 i64 value;
2190 const char *z = pExpr->u.zToken;
2191 assert( z!=0 );
2192 c = sqlite3DecOrHexToI64(z, &value);
2193 if( c==0 || (c==2 && negFlag) ){
2194 char *zV;
2195 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2196 zV = dup8bytes(v, (char*)&value);
2197 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2198 }else{
2199 #ifdef SQLITE_OMIT_FLOATING_POINT
2200 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2201 #else
2202 #ifndef SQLITE_OMIT_HEX_INTEGER
2203 if( sqlite3_strnicmp(z,"0x",2)==0 ){
2204 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2205 }else
2206 #endif
2208 codeReal(v, z, negFlag, iMem);
2210 #endif
2216 ** Clear a cache entry.
2218 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2219 if( p->tempReg ){
2220 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2221 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2223 p->tempReg = 0;
2229 ** Record in the column cache that a particular column from a
2230 ** particular table is stored in a particular register.
2232 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2233 int i;
2234 int minLru;
2235 int idxLru;
2236 struct yColCache *p;
2238 assert( iReg>0 ); /* Register numbers are always positive */
2239 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
2241 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2242 ** for testing only - to verify that SQLite always gets the same answer
2243 ** with and without the column cache.
2245 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2247 /* First replace any existing entry.
2249 ** Actually, the way the column cache is currently used, we are guaranteed
2250 ** that the object will never already be in cache. Verify this guarantee.
2252 #ifndef NDEBUG
2253 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2254 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2256 #endif
2258 /* Find an empty slot and replace it */
2259 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2260 if( p->iReg==0 ){
2261 p->iLevel = pParse->iCacheLevel;
2262 p->iTable = iTab;
2263 p->iColumn = iCol;
2264 p->iReg = iReg;
2265 p->tempReg = 0;
2266 p->lru = pParse->iCacheCnt++;
2267 return;
2271 /* Replace the last recently used */
2272 minLru = 0x7fffffff;
2273 idxLru = -1;
2274 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2275 if( p->lru<minLru ){
2276 idxLru = i;
2277 minLru = p->lru;
2280 if( ALWAYS(idxLru>=0) ){
2281 p = &pParse->aColCache[idxLru];
2282 p->iLevel = pParse->iCacheLevel;
2283 p->iTable = iTab;
2284 p->iColumn = iCol;
2285 p->iReg = iReg;
2286 p->tempReg = 0;
2287 p->lru = pParse->iCacheCnt++;
2288 return;
2293 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2294 ** Purge the range of registers from the column cache.
2296 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2297 int i;
2298 int iLast = iReg + nReg - 1;
2299 struct yColCache *p;
2300 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2301 int r = p->iReg;
2302 if( r>=iReg && r<=iLast ){
2303 cacheEntryClear(pParse, p);
2304 p->iReg = 0;
2310 ** Remember the current column cache context. Any new entries added
2311 ** added to the column cache after this call are removed when the
2312 ** corresponding pop occurs.
2314 void sqlite3ExprCachePush(Parse *pParse){
2315 pParse->iCacheLevel++;
2316 #ifdef SQLITE_DEBUG
2317 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2318 printf("PUSH to %d\n", pParse->iCacheLevel);
2320 #endif
2324 ** Remove from the column cache any entries that were added since the
2325 ** the previous sqlite3ExprCachePush operation. In other words, restore
2326 ** the cache to the state it was in prior the most recent Push.
2328 void sqlite3ExprCachePop(Parse *pParse){
2329 int i;
2330 struct yColCache *p;
2331 assert( pParse->iCacheLevel>=1 );
2332 pParse->iCacheLevel--;
2333 #ifdef SQLITE_DEBUG
2334 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2335 printf("POP to %d\n", pParse->iCacheLevel);
2337 #endif
2338 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2339 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2340 cacheEntryClear(pParse, p);
2341 p->iReg = 0;
2347 ** When a cached column is reused, make sure that its register is
2348 ** no longer available as a temp register. ticket #3879: that same
2349 ** register might be in the cache in multiple places, so be sure to
2350 ** get them all.
2352 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2353 int i;
2354 struct yColCache *p;
2355 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2356 if( p->iReg==iReg ){
2357 p->tempReg = 0;
2363 ** Generate code to extract the value of the iCol-th column of a table.
2365 void sqlite3ExprCodeGetColumnOfTable(
2366 Vdbe *v, /* The VDBE under construction */
2367 Table *pTab, /* The table containing the value */
2368 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
2369 int iCol, /* Index of the column to extract */
2370 int regOut /* Extract the value into this register */
2372 if( iCol<0 || iCol==pTab->iPKey ){
2373 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2374 }else{
2375 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2376 int x = iCol;
2377 if( !HasRowid(pTab) ){
2378 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2380 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2382 if( iCol>=0 ){
2383 sqlite3ColumnDefault(v, pTab, iCol, regOut);
2388 ** Generate code that will extract the iColumn-th column from
2389 ** table pTab and store the column value in a register. An effort
2390 ** is made to store the column value in register iReg, but this is
2391 ** not guaranteed. The location of the column value is returned.
2393 ** There must be an open cursor to pTab in iTable when this routine
2394 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2396 int sqlite3ExprCodeGetColumn(
2397 Parse *pParse, /* Parsing and code generating context */
2398 Table *pTab, /* Description of the table we are reading from */
2399 int iColumn, /* Index of the table column */
2400 int iTable, /* The cursor pointing to the table */
2401 int iReg, /* Store results here */
2402 u8 p5 /* P5 value for OP_Column */
2404 Vdbe *v = pParse->pVdbe;
2405 int i;
2406 struct yColCache *p;
2408 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2409 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2410 p->lru = pParse->iCacheCnt++;
2411 sqlite3ExprCachePinRegister(pParse, p->iReg);
2412 return p->iReg;
2415 assert( v!=0 );
2416 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2417 if( p5 ){
2418 sqlite3VdbeChangeP5(v, p5);
2419 }else{
2420 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2422 return iReg;
2426 ** Clear all column cache entries.
2428 void sqlite3ExprCacheClear(Parse *pParse){
2429 int i;
2430 struct yColCache *p;
2432 #if SQLITE_DEBUG
2433 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2434 printf("CLEAR\n");
2436 #endif
2437 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2438 if( p->iReg ){
2439 cacheEntryClear(pParse, p);
2440 p->iReg = 0;
2446 ** Record the fact that an affinity change has occurred on iCount
2447 ** registers starting with iStart.
2449 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2450 sqlite3ExprCacheRemove(pParse, iStart, iCount);
2454 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2455 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2457 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2458 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2459 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2460 sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2463 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2465 ** Return true if any register in the range iFrom..iTo (inclusive)
2466 ** is used as part of the column cache.
2468 ** This routine is used within assert() and testcase() macros only
2469 ** and does not appear in a normal build.
2471 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2472 int i;
2473 struct yColCache *p;
2474 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2475 int r = p->iReg;
2476 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
2478 return 0;
2480 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2483 ** Convert an expression node to a TK_REGISTER
2485 static void exprToRegister(Expr *p, int iReg){
2486 p->op2 = p->op;
2487 p->op = TK_REGISTER;
2488 p->iTable = iReg;
2489 ExprClearProperty(p, EP_Skip);
2493 ** Generate code into the current Vdbe to evaluate the given
2494 ** expression. Attempt to store the results in register "target".
2495 ** Return the register where results are stored.
2497 ** With this routine, there is no guarantee that results will
2498 ** be stored in target. The result might be stored in some other
2499 ** register if it is convenient to do so. The calling function
2500 ** must check the return code and move the results to the desired
2501 ** register.
2503 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2504 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2505 int op; /* The opcode being coded */
2506 int inReg = target; /* Results stored in register inReg */
2507 int regFree1 = 0; /* If non-zero free this temporary register */
2508 int regFree2 = 0; /* If non-zero free this temporary register */
2509 int r1, r2, r3, r4; /* Various register numbers */
2510 sqlite3 *db = pParse->db; /* The database connection */
2511 Expr tempX; /* Temporary expression node */
2513 assert( target>0 && target<=pParse->nMem );
2514 if( v==0 ){
2515 assert( pParse->db->mallocFailed );
2516 return 0;
2519 if( pExpr==0 ){
2520 op = TK_NULL;
2521 }else{
2522 op = pExpr->op;
2524 switch( op ){
2525 case TK_AGG_COLUMN: {
2526 AggInfo *pAggInfo = pExpr->pAggInfo;
2527 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2528 if( !pAggInfo->directMode ){
2529 assert( pCol->iMem>0 );
2530 inReg = pCol->iMem;
2531 break;
2532 }else if( pAggInfo->useSortingIdx ){
2533 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2534 pCol->iSorterColumn, target);
2535 break;
2537 /* Otherwise, fall thru into the TK_COLUMN case */
2539 case TK_COLUMN: {
2540 int iTab = pExpr->iTable;
2541 if( iTab<0 ){
2542 if( pParse->ckBase>0 ){
2543 /* Generating CHECK constraints or inserting into partial index */
2544 inReg = pExpr->iColumn + pParse->ckBase;
2545 break;
2546 }else{
2547 /* Deleting from a partial index */
2548 iTab = pParse->iPartIdxTab;
2551 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2552 pExpr->iColumn, iTab, target,
2553 pExpr->op2);
2554 break;
2556 case TK_INTEGER: {
2557 codeInteger(pParse, pExpr, 0, target);
2558 break;
2560 #ifndef SQLITE_OMIT_FLOATING_POINT
2561 case TK_FLOAT: {
2562 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2563 codeReal(v, pExpr->u.zToken, 0, target);
2564 break;
2566 #endif
2567 case TK_STRING: {
2568 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2569 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2570 break;
2572 case TK_NULL: {
2573 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2574 break;
2576 #ifndef SQLITE_OMIT_BLOB_LITERAL
2577 case TK_BLOB: {
2578 int n;
2579 const char *z;
2580 char *zBlob;
2581 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2582 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2583 assert( pExpr->u.zToken[1]=='\'' );
2584 z = &pExpr->u.zToken[2];
2585 n = sqlite3Strlen30(z) - 1;
2586 assert( z[n]=='\'' );
2587 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2588 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2589 break;
2591 #endif
2592 case TK_VARIABLE: {
2593 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2594 assert( pExpr->u.zToken!=0 );
2595 assert( pExpr->u.zToken[0]!=0 );
2596 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2597 if( pExpr->u.zToken[1]!=0 ){
2598 assert( pExpr->u.zToken[0]=='?'
2599 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2600 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2602 break;
2604 case TK_REGISTER: {
2605 inReg = pExpr->iTable;
2606 break;
2608 case TK_AS: {
2609 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2610 break;
2612 #ifndef SQLITE_OMIT_CAST
2613 case TK_CAST: {
2614 /* Expressions of the form: CAST(pLeft AS token) */
2615 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2616 if( inReg!=target ){
2617 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2618 inReg = target;
2620 sqlite3VdbeAddOp2(v, OP_Cast, target,
2621 sqlite3AffinityType(pExpr->u.zToken, 0));
2622 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2623 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2624 break;
2626 #endif /* SQLITE_OMIT_CAST */
2627 case TK_LT:
2628 case TK_LE:
2629 case TK_GT:
2630 case TK_GE:
2631 case TK_NE:
2632 case TK_EQ: {
2633 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2634 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2635 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2636 r1, r2, inReg, SQLITE_STOREP2);
2637 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2638 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2639 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2640 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2641 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2642 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2643 testcase( regFree1==0 );
2644 testcase( regFree2==0 );
2645 break;
2647 case TK_IS:
2648 case TK_ISNOT: {
2649 testcase( op==TK_IS );
2650 testcase( op==TK_ISNOT );
2651 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2652 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2653 op = (op==TK_IS) ? TK_EQ : TK_NE;
2654 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2655 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2656 VdbeCoverageIf(v, op==TK_EQ);
2657 VdbeCoverageIf(v, op==TK_NE);
2658 testcase( regFree1==0 );
2659 testcase( regFree2==0 );
2660 break;
2662 case TK_AND:
2663 case TK_OR:
2664 case TK_PLUS:
2665 case TK_STAR:
2666 case TK_MINUS:
2667 case TK_REM:
2668 case TK_BITAND:
2669 case TK_BITOR:
2670 case TK_SLASH:
2671 case TK_LSHIFT:
2672 case TK_RSHIFT:
2673 case TK_CONCAT: {
2674 assert( TK_AND==OP_And ); testcase( op==TK_AND );
2675 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
2676 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
2677 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
2678 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
2679 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
2680 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
2681 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
2682 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
2683 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
2684 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
2685 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2686 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2687 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2688 testcase( regFree1==0 );
2689 testcase( regFree2==0 );
2690 break;
2692 case TK_UMINUS: {
2693 Expr *pLeft = pExpr->pLeft;
2694 assert( pLeft );
2695 if( pLeft->op==TK_INTEGER ){
2696 codeInteger(pParse, pLeft, 1, target);
2697 #ifndef SQLITE_OMIT_FLOATING_POINT
2698 }else if( pLeft->op==TK_FLOAT ){
2699 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2700 codeReal(v, pLeft->u.zToken, 1, target);
2701 #endif
2702 }else{
2703 tempX.op = TK_INTEGER;
2704 tempX.flags = EP_IntValue|EP_TokenOnly;
2705 tempX.u.iValue = 0;
2706 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2707 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2708 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2709 testcase( regFree2==0 );
2711 inReg = target;
2712 break;
2714 case TK_BITNOT:
2715 case TK_NOT: {
2716 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
2717 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
2718 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2719 testcase( regFree1==0 );
2720 inReg = target;
2721 sqlite3VdbeAddOp2(v, op, r1, inReg);
2722 break;
2724 case TK_ISNULL:
2725 case TK_NOTNULL: {
2726 int addr;
2727 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
2728 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2729 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2730 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2731 testcase( regFree1==0 );
2732 addr = sqlite3VdbeAddOp1(v, op, r1);
2733 VdbeCoverageIf(v, op==TK_ISNULL);
2734 VdbeCoverageIf(v, op==TK_NOTNULL);
2735 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2736 sqlite3VdbeJumpHere(v, addr);
2737 break;
2739 case TK_AGG_FUNCTION: {
2740 AggInfo *pInfo = pExpr->pAggInfo;
2741 if( pInfo==0 ){
2742 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2743 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2744 }else{
2745 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2747 break;
2749 case TK_FUNCTION: {
2750 ExprList *pFarg; /* List of function arguments */
2751 int nFarg; /* Number of function arguments */
2752 FuncDef *pDef; /* The function definition object */
2753 int nId; /* Length of the function name in bytes */
2754 const char *zId; /* The function name */
2755 u32 constMask = 0; /* Mask of function arguments that are constant */
2756 int i; /* Loop counter */
2757 u8 enc = ENC(db); /* The text encoding used by this database */
2758 CollSeq *pColl = 0; /* A collating sequence */
2760 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2761 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2762 pFarg = 0;
2763 }else{
2764 pFarg = pExpr->x.pList;
2766 nFarg = pFarg ? pFarg->nExpr : 0;
2767 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2768 zId = pExpr->u.zToken;
2769 nId = sqlite3Strlen30(zId);
2770 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2771 if( pDef==0 || pDef->xFunc==0 ){
2772 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2773 break;
2776 /* Attempt a direct implementation of the built-in COALESCE() and
2777 ** IFNULL() functions. This avoids unnecessary evaluation of
2778 ** arguments past the first non-NULL argument.
2780 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2781 int endCoalesce = sqlite3VdbeMakeLabel(v);
2782 assert( nFarg>=2 );
2783 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2784 for(i=1; i<nFarg; i++){
2785 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2786 VdbeCoverage(v);
2787 sqlite3ExprCacheRemove(pParse, target, 1);
2788 sqlite3ExprCachePush(pParse);
2789 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2790 sqlite3ExprCachePop(pParse);
2792 sqlite3VdbeResolveLabel(v, endCoalesce);
2793 break;
2796 /* The UNLIKELY() function is a no-op. The result is the value
2797 ** of the first argument.
2799 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2800 assert( nFarg>=1 );
2801 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2802 break;
2805 for(i=0; i<nFarg; i++){
2806 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2807 testcase( i==31 );
2808 constMask |= MASKBIT32(i);
2810 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2811 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2814 if( pFarg ){
2815 if( constMask ){
2816 r1 = pParse->nMem+1;
2817 pParse->nMem += nFarg;
2818 }else{
2819 r1 = sqlite3GetTempRange(pParse, nFarg);
2822 /* For length() and typeof() functions with a column argument,
2823 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2824 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2825 ** loading.
2827 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2828 u8 exprOp;
2829 assert( nFarg==1 );
2830 assert( pFarg->a[0].pExpr!=0 );
2831 exprOp = pFarg->a[0].pExpr->op;
2832 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2833 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2834 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2835 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2836 pFarg->a[0].pExpr->op2 =
2837 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2841 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2842 sqlite3ExprCodeExprList(pParse, pFarg, r1,
2843 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2844 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
2845 }else{
2846 r1 = 0;
2848 #ifndef SQLITE_OMIT_VIRTUALTABLE
2849 /* Possibly overload the function if the first argument is
2850 ** a virtual table column.
2852 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2853 ** second argument, not the first, as the argument to test to
2854 ** see if it is a column in a virtual table. This is done because
2855 ** the left operand of infix functions (the operand we want to
2856 ** control overloading) ends up as the second argument to the
2857 ** function. The expression "A glob B" is equivalent to
2858 ** "glob(B,A). We want to use the A in "A glob B" to test
2859 ** for function overloading. But we use the B term in "glob(B,A)".
2861 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2862 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2863 }else if( nFarg>0 ){
2864 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2866 #endif
2867 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2868 if( !pColl ) pColl = db->pDfltColl;
2869 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2871 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2872 (char*)pDef, P4_FUNCDEF);
2873 sqlite3VdbeChangeP5(v, (u8)nFarg);
2874 if( nFarg && constMask==0 ){
2875 sqlite3ReleaseTempRange(pParse, r1, nFarg);
2877 break;
2879 #ifndef SQLITE_OMIT_SUBQUERY
2880 case TK_EXISTS:
2881 case TK_SELECT: {
2882 testcase( op==TK_EXISTS );
2883 testcase( op==TK_SELECT );
2884 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2885 break;
2887 case TK_IN: {
2888 int destIfFalse = sqlite3VdbeMakeLabel(v);
2889 int destIfNull = sqlite3VdbeMakeLabel(v);
2890 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2891 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2892 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2893 sqlite3VdbeResolveLabel(v, destIfFalse);
2894 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2895 sqlite3VdbeResolveLabel(v, destIfNull);
2896 break;
2898 #endif /* SQLITE_OMIT_SUBQUERY */
2902 ** x BETWEEN y AND z
2904 ** This is equivalent to
2906 ** x>=y AND x<=z
2908 ** X is stored in pExpr->pLeft.
2909 ** Y is stored in pExpr->pList->a[0].pExpr.
2910 ** Z is stored in pExpr->pList->a[1].pExpr.
2912 case TK_BETWEEN: {
2913 Expr *pLeft = pExpr->pLeft;
2914 struct ExprList_item *pLItem = pExpr->x.pList->a;
2915 Expr *pRight = pLItem->pExpr;
2917 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2918 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2919 testcase( regFree1==0 );
2920 testcase( regFree2==0 );
2921 r3 = sqlite3GetTempReg(pParse);
2922 r4 = sqlite3GetTempReg(pParse);
2923 codeCompare(pParse, pLeft, pRight, OP_Ge,
2924 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
2925 pLItem++;
2926 pRight = pLItem->pExpr;
2927 sqlite3ReleaseTempReg(pParse, regFree2);
2928 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2929 testcase( regFree2==0 );
2930 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2931 VdbeCoverage(v);
2932 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2933 sqlite3ReleaseTempReg(pParse, r3);
2934 sqlite3ReleaseTempReg(pParse, r4);
2935 break;
2937 case TK_COLLATE:
2938 case TK_UPLUS: {
2939 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2940 break;
2943 case TK_TRIGGER: {
2944 /* If the opcode is TK_TRIGGER, then the expression is a reference
2945 ** to a column in the new.* or old.* pseudo-tables available to
2946 ** trigger programs. In this case Expr.iTable is set to 1 for the
2947 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2948 ** is set to the column of the pseudo-table to read, or to -1 to
2949 ** read the rowid field.
2951 ** The expression is implemented using an OP_Param opcode. The p1
2952 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2953 ** to reference another column of the old.* pseudo-table, where
2954 ** i is the index of the column. For a new.rowid reference, p1 is
2955 ** set to (n+1), where n is the number of columns in each pseudo-table.
2956 ** For a reference to any other column in the new.* pseudo-table, p1
2957 ** is set to (n+2+i), where n and i are as defined previously. For
2958 ** example, if the table on which triggers are being fired is
2959 ** declared as:
2961 ** CREATE TABLE t1(a, b);
2963 ** Then p1 is interpreted as follows:
2965 ** p1==0 -> old.rowid p1==3 -> new.rowid
2966 ** p1==1 -> old.a p1==4 -> new.a
2967 ** p1==2 -> old.b p1==5 -> new.b
2969 Table *pTab = pExpr->pTab;
2970 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2972 assert( pExpr->iTable==0 || pExpr->iTable==1 );
2973 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2974 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2975 assert( p1>=0 && p1<(pTab->nCol*2+2) );
2977 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2978 VdbeComment((v, "%s.%s -> $%d",
2979 (pExpr->iTable ? "new" : "old"),
2980 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2981 target
2984 #ifndef SQLITE_OMIT_FLOATING_POINT
2985 /* If the column has REAL affinity, it may currently be stored as an
2986 ** integer. Use OP_RealAffinity to make sure it is really real. */
2987 if( pExpr->iColumn>=0
2988 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2990 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2992 #endif
2993 break;
2998 ** Form A:
2999 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3001 ** Form B:
3002 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3004 ** Form A is can be transformed into the equivalent form B as follows:
3005 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3006 ** WHEN x=eN THEN rN ELSE y END
3008 ** X (if it exists) is in pExpr->pLeft.
3009 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3010 ** odd. The Y is also optional. If the number of elements in x.pList
3011 ** is even, then Y is omitted and the "otherwise" result is NULL.
3012 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3014 ** The result of the expression is the Ri for the first matching Ei,
3015 ** or if there is no matching Ei, the ELSE term Y, or if there is
3016 ** no ELSE term, NULL.
3018 default: assert( op==TK_CASE ); {
3019 int endLabel; /* GOTO label for end of CASE stmt */
3020 int nextCase; /* GOTO label for next WHEN clause */
3021 int nExpr; /* 2x number of WHEN terms */
3022 int i; /* Loop counter */
3023 ExprList *pEList; /* List of WHEN terms */
3024 struct ExprList_item *aListelem; /* Array of WHEN terms */
3025 Expr opCompare; /* The X==Ei expression */
3026 Expr *pX; /* The X expression */
3027 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
3028 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3030 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3031 assert(pExpr->x.pList->nExpr > 0);
3032 pEList = pExpr->x.pList;
3033 aListelem = pEList->a;
3034 nExpr = pEList->nExpr;
3035 endLabel = sqlite3VdbeMakeLabel(v);
3036 if( (pX = pExpr->pLeft)!=0 ){
3037 tempX = *pX;
3038 testcase( pX->op==TK_COLUMN );
3039 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3040 testcase( regFree1==0 );
3041 opCompare.op = TK_EQ;
3042 opCompare.pLeft = &tempX;
3043 pTest = &opCompare;
3044 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3045 ** The value in regFree1 might get SCopy-ed into the file result.
3046 ** So make sure that the regFree1 register is not reused for other
3047 ** purposes and possibly overwritten. */
3048 regFree1 = 0;
3050 for(i=0; i<nExpr-1; i=i+2){
3051 sqlite3ExprCachePush(pParse);
3052 if( pX ){
3053 assert( pTest!=0 );
3054 opCompare.pRight = aListelem[i].pExpr;
3055 }else{
3056 pTest = aListelem[i].pExpr;
3058 nextCase = sqlite3VdbeMakeLabel(v);
3059 testcase( pTest->op==TK_COLUMN );
3060 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3061 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3062 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3063 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3064 sqlite3ExprCachePop(pParse);
3065 sqlite3VdbeResolveLabel(v, nextCase);
3067 if( (nExpr&1)!=0 ){
3068 sqlite3ExprCachePush(pParse);
3069 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3070 sqlite3ExprCachePop(pParse);
3071 }else{
3072 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3074 assert( db->mallocFailed || pParse->nErr>0
3075 || pParse->iCacheLevel==iCacheLevel );
3076 sqlite3VdbeResolveLabel(v, endLabel);
3077 break;
3079 #ifndef SQLITE_OMIT_TRIGGER
3080 case TK_RAISE: {
3081 assert( pExpr->affinity==OE_Rollback
3082 || pExpr->affinity==OE_Abort
3083 || pExpr->affinity==OE_Fail
3084 || pExpr->affinity==OE_Ignore
3086 if( !pParse->pTriggerTab ){
3087 sqlite3ErrorMsg(pParse,
3088 "RAISE() may only be used within a trigger-program");
3089 return 0;
3091 if( pExpr->affinity==OE_Abort ){
3092 sqlite3MayAbort(pParse);
3094 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3095 if( pExpr->affinity==OE_Ignore ){
3096 sqlite3VdbeAddOp4(
3097 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3098 VdbeCoverage(v);
3099 }else{
3100 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3101 pExpr->affinity, pExpr->u.zToken, 0, 0);
3104 break;
3106 #endif
3108 sqlite3ReleaseTempReg(pParse, regFree1);
3109 sqlite3ReleaseTempReg(pParse, regFree2);
3110 return inReg;
3114 ** Factor out the code of the given expression to initialization time.
3116 void sqlite3ExprCodeAtInit(
3117 Parse *pParse, /* Parsing context */
3118 Expr *pExpr, /* The expression to code when the VDBE initializes */
3119 int regDest, /* Store the value in this register */
3120 u8 reusable /* True if this expression is reusable */
3122 ExprList *p;
3123 assert( ConstFactorOk(pParse) );
3124 p = pParse->pConstExpr;
3125 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3126 p = sqlite3ExprListAppend(pParse, p, pExpr);
3127 if( p ){
3128 struct ExprList_item *pItem = &p->a[p->nExpr-1];
3129 pItem->u.iConstExprReg = regDest;
3130 pItem->reusable = reusable;
3132 pParse->pConstExpr = p;
3136 ** Generate code to evaluate an expression and store the results
3137 ** into a register. Return the register number where the results
3138 ** are stored.
3140 ** If the register is a temporary register that can be deallocated,
3141 ** then write its number into *pReg. If the result register is not
3142 ** a temporary, then set *pReg to zero.
3144 ** If pExpr is a constant, then this routine might generate this
3145 ** code to fill the register in the initialization section of the
3146 ** VDBE program, in order to factor it out of the evaluation loop.
3148 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3149 int r2;
3150 pExpr = sqlite3ExprSkipCollate(pExpr);
3151 if( ConstFactorOk(pParse)
3152 && pExpr->op!=TK_REGISTER
3153 && sqlite3ExprIsConstantNotJoin(pExpr)
3155 ExprList *p = pParse->pConstExpr;
3156 int i;
3157 *pReg = 0;
3158 if( p ){
3159 struct ExprList_item *pItem;
3160 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3161 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3162 return pItem->u.iConstExprReg;
3166 r2 = ++pParse->nMem;
3167 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3168 }else{
3169 int r1 = sqlite3GetTempReg(pParse);
3170 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3171 if( r2==r1 ){
3172 *pReg = r1;
3173 }else{
3174 sqlite3ReleaseTempReg(pParse, r1);
3175 *pReg = 0;
3178 return r2;
3182 ** Generate code that will evaluate expression pExpr and store the
3183 ** results in register target. The results are guaranteed to appear
3184 ** in register target.
3186 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3187 int inReg;
3189 assert( target>0 && target<=pParse->nMem );
3190 if( pExpr && pExpr->op==TK_REGISTER ){
3191 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3192 }else{
3193 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3194 assert( pParse->pVdbe || pParse->db->mallocFailed );
3195 if( inReg!=target && pParse->pVdbe ){
3196 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3202 ** Generate code that will evaluate expression pExpr and store the
3203 ** results in register target. The results are guaranteed to appear
3204 ** in register target. If the expression is constant, then this routine
3205 ** might choose to code the expression at initialization time.
3207 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3208 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3209 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3210 }else{
3211 sqlite3ExprCode(pParse, pExpr, target);
3216 ** Generate code that evaluates the given expression and puts the result
3217 ** in register target.
3219 ** Also make a copy of the expression results into another "cache" register
3220 ** and modify the expression so that the next time it is evaluated,
3221 ** the result is a copy of the cache register.
3223 ** This routine is used for expressions that are used multiple
3224 ** times. They are evaluated once and the results of the expression
3225 ** are reused.
3227 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3228 Vdbe *v = pParse->pVdbe;
3229 int iMem;
3231 assert( target>0 );
3232 assert( pExpr->op!=TK_REGISTER );
3233 sqlite3ExprCode(pParse, pExpr, target);
3234 iMem = ++pParse->nMem;
3235 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3236 exprToRegister(pExpr, iMem);
3239 #ifdef SQLITE_DEBUG
3241 ** Generate a human-readable explanation of an expression tree.
3243 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
3244 const char *zBinOp = 0; /* Binary operator */
3245 const char *zUniOp = 0; /* Unary operator */
3246 pView = sqlite3TreeViewPush(pView, moreToFollow);
3247 if( pExpr==0 ){
3248 sqlite3TreeViewLine(pView, "nil");
3249 sqlite3TreeViewPop(pView);
3250 return;
3252 switch( pExpr->op ){
3253 case TK_AGG_COLUMN: {
3254 sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3255 pExpr->iTable, pExpr->iColumn);
3256 break;
3258 case TK_COLUMN: {
3259 if( pExpr->iTable<0 ){
3260 /* This only happens when coding check constraints */
3261 sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3262 }else{
3263 sqlite3TreeViewLine(pView, "{%d:%d}",
3264 pExpr->iTable, pExpr->iColumn);
3266 break;
3268 case TK_INTEGER: {
3269 if( pExpr->flags & EP_IntValue ){
3270 sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3271 }else{
3272 sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3274 break;
3276 #ifndef SQLITE_OMIT_FLOATING_POINT
3277 case TK_FLOAT: {
3278 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3279 break;
3281 #endif
3282 case TK_STRING: {
3283 sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3284 break;
3286 case TK_NULL: {
3287 sqlite3TreeViewLine(pView,"NULL");
3288 break;
3290 #ifndef SQLITE_OMIT_BLOB_LITERAL
3291 case TK_BLOB: {
3292 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3293 break;
3295 #endif
3296 case TK_VARIABLE: {
3297 sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
3298 pExpr->u.zToken, pExpr->iColumn);
3299 break;
3301 case TK_REGISTER: {
3302 sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
3303 break;
3305 case TK_AS: {
3306 sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
3307 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3308 break;
3310 case TK_ID: {
3311 sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
3312 break;
3314 #ifndef SQLITE_OMIT_CAST
3315 case TK_CAST: {
3316 /* Expressions of the form: CAST(pLeft AS token) */
3317 sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
3318 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3319 break;
3321 #endif /* SQLITE_OMIT_CAST */
3322 case TK_LT: zBinOp = "LT"; break;
3323 case TK_LE: zBinOp = "LE"; break;
3324 case TK_GT: zBinOp = "GT"; break;
3325 case TK_GE: zBinOp = "GE"; break;
3326 case TK_NE: zBinOp = "NE"; break;
3327 case TK_EQ: zBinOp = "EQ"; break;
3328 case TK_IS: zBinOp = "IS"; break;
3329 case TK_ISNOT: zBinOp = "ISNOT"; break;
3330 case TK_AND: zBinOp = "AND"; break;
3331 case TK_OR: zBinOp = "OR"; break;
3332 case TK_PLUS: zBinOp = "ADD"; break;
3333 case TK_STAR: zBinOp = "MUL"; break;
3334 case TK_MINUS: zBinOp = "SUB"; break;
3335 case TK_REM: zBinOp = "REM"; break;
3336 case TK_BITAND: zBinOp = "BITAND"; break;
3337 case TK_BITOR: zBinOp = "BITOR"; break;
3338 case TK_SLASH: zBinOp = "DIV"; break;
3339 case TK_LSHIFT: zBinOp = "LSHIFT"; break;
3340 case TK_RSHIFT: zBinOp = "RSHIFT"; break;
3341 case TK_CONCAT: zBinOp = "CONCAT"; break;
3342 case TK_DOT: zBinOp = "DOT"; break;
3344 case TK_UMINUS: zUniOp = "UMINUS"; break;
3345 case TK_UPLUS: zUniOp = "UPLUS"; break;
3346 case TK_BITNOT: zUniOp = "BITNOT"; break;
3347 case TK_NOT: zUniOp = "NOT"; break;
3348 case TK_ISNULL: zUniOp = "ISNULL"; break;
3349 case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3351 case TK_COLLATE: {
3352 sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3353 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3354 break;
3357 case TK_AGG_FUNCTION:
3358 case TK_FUNCTION: {
3359 ExprList *pFarg; /* List of function arguments */
3360 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3361 pFarg = 0;
3362 }else{
3363 pFarg = pExpr->x.pList;
3365 if( pExpr->op==TK_AGG_FUNCTION ){
3366 sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3367 pExpr->op2, pExpr->u.zToken);
3368 }else{
3369 sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3371 if( pFarg ){
3372 sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3374 break;
3376 #ifndef SQLITE_OMIT_SUBQUERY
3377 case TK_EXISTS: {
3378 sqlite3TreeViewLine(pView, "EXISTS-expr");
3379 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3380 break;
3382 case TK_SELECT: {
3383 sqlite3TreeViewLine(pView, "SELECT-expr");
3384 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3385 break;
3387 case TK_IN: {
3388 sqlite3TreeViewLine(pView, "IN");
3389 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3390 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3391 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3392 }else{
3393 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3395 break;
3397 #endif /* SQLITE_OMIT_SUBQUERY */
3400 ** x BETWEEN y AND z
3402 ** This is equivalent to
3404 ** x>=y AND x<=z
3406 ** X is stored in pExpr->pLeft.
3407 ** Y is stored in pExpr->pList->a[0].pExpr.
3408 ** Z is stored in pExpr->pList->a[1].pExpr.
3410 case TK_BETWEEN: {
3411 Expr *pX = pExpr->pLeft;
3412 Expr *pY = pExpr->x.pList->a[0].pExpr;
3413 Expr *pZ = pExpr->x.pList->a[1].pExpr;
3414 sqlite3TreeViewLine(pView, "BETWEEN");
3415 sqlite3TreeViewExpr(pView, pX, 1);
3416 sqlite3TreeViewExpr(pView, pY, 1);
3417 sqlite3TreeViewExpr(pView, pZ, 0);
3418 break;
3420 case TK_TRIGGER: {
3421 /* If the opcode is TK_TRIGGER, then the expression is a reference
3422 ** to a column in the new.* or old.* pseudo-tables available to
3423 ** trigger programs. In this case Expr.iTable is set to 1 for the
3424 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3425 ** is set to the column of the pseudo-table to read, or to -1 to
3426 ** read the rowid field.
3428 sqlite3TreeViewLine(pView, "%s(%d)",
3429 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3430 break;
3432 case TK_CASE: {
3433 sqlite3TreeViewLine(pView, "CASE");
3434 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3435 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3436 break;
3438 #ifndef SQLITE_OMIT_TRIGGER
3439 case TK_RAISE: {
3440 const char *zType = "unk";
3441 switch( pExpr->affinity ){
3442 case OE_Rollback: zType = "rollback"; break;
3443 case OE_Abort: zType = "abort"; break;
3444 case OE_Fail: zType = "fail"; break;
3445 case OE_Ignore: zType = "ignore"; break;
3447 sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3448 break;
3450 #endif
3451 default: {
3452 sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
3453 break;
3456 if( zBinOp ){
3457 sqlite3TreeViewLine(pView, "%s", zBinOp);
3458 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3459 sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3460 }else if( zUniOp ){
3461 sqlite3TreeViewLine(pView, "%s", zUniOp);
3462 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3464 sqlite3TreeViewPop(pView);
3466 #endif /* SQLITE_DEBUG */
3468 #ifdef SQLITE_DEBUG
3470 ** Generate a human-readable explanation of an expression list.
3472 void sqlite3TreeViewExprList(
3473 TreeView *pView,
3474 const ExprList *pList,
3475 u8 moreToFollow,
3476 const char *zLabel
3478 int i;
3479 pView = sqlite3TreeViewPush(pView, moreToFollow);
3480 if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3481 if( pList==0 ){
3482 sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3483 }else{
3484 sqlite3TreeViewLine(pView, "%s", zLabel);
3485 for(i=0; i<pList->nExpr; i++){
3486 sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3487 #if 0
3488 if( pList->a[i].zName ){
3489 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3491 if( pList->a[i].bSpanIsTab ){
3492 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3494 #endif
3497 sqlite3TreeViewPop(pView);
3499 #endif /* SQLITE_DEBUG */
3502 ** Generate code that pushes the value of every element of the given
3503 ** expression list into a sequence of registers beginning at target.
3505 ** Return the number of elements evaluated.
3507 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3508 ** filled using OP_SCopy. OP_Copy must be used instead.
3510 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3511 ** factored out into initialization code.
3513 int sqlite3ExprCodeExprList(
3514 Parse *pParse, /* Parsing context */
3515 ExprList *pList, /* The expression list to be coded */
3516 int target, /* Where to write results */
3517 u8 flags /* SQLITE_ECEL_* flags */
3519 struct ExprList_item *pItem;
3520 int i, n;
3521 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3522 assert( pList!=0 );
3523 assert( target>0 );
3524 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
3525 n = pList->nExpr;
3526 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3527 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3528 Expr *pExpr = pItem->pExpr;
3529 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3530 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3531 }else{
3532 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3533 if( inReg!=target+i ){
3534 VdbeOp *pOp;
3535 Vdbe *v = pParse->pVdbe;
3536 if( copyOp==OP_Copy
3537 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3538 && pOp->p1+pOp->p3+1==inReg
3539 && pOp->p2+pOp->p3+1==target+i
3541 pOp->p3++;
3542 }else{
3543 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3548 return n;
3552 ** Generate code for a BETWEEN operator.
3554 ** x BETWEEN y AND z
3556 ** The above is equivalent to
3558 ** x>=y AND x<=z
3560 ** Code it as such, taking care to do the common subexpression
3561 ** elimination of x.
3563 static void exprCodeBetween(
3564 Parse *pParse, /* Parsing and code generating context */
3565 Expr *pExpr, /* The BETWEEN expression */
3566 int dest, /* Jump here if the jump is taken */
3567 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
3568 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
3570 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
3571 Expr compLeft; /* The x>=y term */
3572 Expr compRight; /* The x<=z term */
3573 Expr exprX; /* The x subexpression */
3574 int regFree1 = 0; /* Temporary use register */
3576 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3577 exprX = *pExpr->pLeft;
3578 exprAnd.op = TK_AND;
3579 exprAnd.pLeft = &compLeft;
3580 exprAnd.pRight = &compRight;
3581 compLeft.op = TK_GE;
3582 compLeft.pLeft = &exprX;
3583 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3584 compRight.op = TK_LE;
3585 compRight.pLeft = &exprX;
3586 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3587 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3588 if( jumpIfTrue ){
3589 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3590 }else{
3591 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3593 sqlite3ReleaseTempReg(pParse, regFree1);
3595 /* Ensure adequate test coverage */
3596 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3597 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3598 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3599 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3600 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3601 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3602 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3603 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3607 ** Generate code for a boolean expression such that a jump is made
3608 ** to the label "dest" if the expression is true but execution
3609 ** continues straight thru if the expression is false.
3611 ** If the expression evaluates to NULL (neither true nor false), then
3612 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3614 ** This code depends on the fact that certain token values (ex: TK_EQ)
3615 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3616 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3617 ** the make process cause these values to align. Assert()s in the code
3618 ** below verify that the numbers are aligned correctly.
3620 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3621 Vdbe *v = pParse->pVdbe;
3622 int op = 0;
3623 int regFree1 = 0;
3624 int regFree2 = 0;
3625 int r1, r2;
3627 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3628 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3629 if( NEVER(pExpr==0) ) return; /* No way this can happen */
3630 op = pExpr->op;
3631 switch( op ){
3632 case TK_AND: {
3633 int d2 = sqlite3VdbeMakeLabel(v);
3634 testcase( jumpIfNull==0 );
3635 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3636 sqlite3ExprCachePush(pParse);
3637 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3638 sqlite3VdbeResolveLabel(v, d2);
3639 sqlite3ExprCachePop(pParse);
3640 break;
3642 case TK_OR: {
3643 testcase( jumpIfNull==0 );
3644 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3645 sqlite3ExprCachePush(pParse);
3646 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3647 sqlite3ExprCachePop(pParse);
3648 break;
3650 case TK_NOT: {
3651 testcase( jumpIfNull==0 );
3652 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3653 break;
3655 case TK_LT:
3656 case TK_LE:
3657 case TK_GT:
3658 case TK_GE:
3659 case TK_NE:
3660 case TK_EQ: {
3661 testcase( jumpIfNull==0 );
3662 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3663 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3664 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3665 r1, r2, dest, jumpIfNull);
3666 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3667 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3668 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3669 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3670 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3671 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3672 testcase( regFree1==0 );
3673 testcase( regFree2==0 );
3674 break;
3676 case TK_IS:
3677 case TK_ISNOT: {
3678 testcase( op==TK_IS );
3679 testcase( op==TK_ISNOT );
3680 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3681 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3682 op = (op==TK_IS) ? TK_EQ : TK_NE;
3683 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3684 r1, r2, dest, SQLITE_NULLEQ);
3685 VdbeCoverageIf(v, op==TK_EQ);
3686 VdbeCoverageIf(v, op==TK_NE);
3687 testcase( regFree1==0 );
3688 testcase( regFree2==0 );
3689 break;
3691 case TK_ISNULL:
3692 case TK_NOTNULL: {
3693 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
3694 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3695 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3696 sqlite3VdbeAddOp2(v, op, r1, dest);
3697 VdbeCoverageIf(v, op==TK_ISNULL);
3698 VdbeCoverageIf(v, op==TK_NOTNULL);
3699 testcase( regFree1==0 );
3700 break;
3702 case TK_BETWEEN: {
3703 testcase( jumpIfNull==0 );
3704 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3705 break;
3707 #ifndef SQLITE_OMIT_SUBQUERY
3708 case TK_IN: {
3709 int destIfFalse = sqlite3VdbeMakeLabel(v);
3710 int destIfNull = jumpIfNull ? dest : destIfFalse;
3711 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3712 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3713 sqlite3VdbeResolveLabel(v, destIfFalse);
3714 break;
3716 #endif
3717 default: {
3718 if( exprAlwaysTrue(pExpr) ){
3719 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3720 }else if( exprAlwaysFalse(pExpr) ){
3721 /* No-op */
3722 }else{
3723 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3724 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3725 VdbeCoverage(v);
3726 testcase( regFree1==0 );
3727 testcase( jumpIfNull==0 );
3729 break;
3732 sqlite3ReleaseTempReg(pParse, regFree1);
3733 sqlite3ReleaseTempReg(pParse, regFree2);
3737 ** Generate code for a boolean expression such that a jump is made
3738 ** to the label "dest" if the expression is false but execution
3739 ** continues straight thru if the expression is true.
3741 ** If the expression evaluates to NULL (neither true nor false) then
3742 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3743 ** is 0.
3745 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3746 Vdbe *v = pParse->pVdbe;
3747 int op = 0;
3748 int regFree1 = 0;
3749 int regFree2 = 0;
3750 int r1, r2;
3752 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3753 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3754 if( pExpr==0 ) return;
3756 /* The value of pExpr->op and op are related as follows:
3758 ** pExpr->op op
3759 ** --------- ----------
3760 ** TK_ISNULL OP_NotNull
3761 ** TK_NOTNULL OP_IsNull
3762 ** TK_NE OP_Eq
3763 ** TK_EQ OP_Ne
3764 ** TK_GT OP_Le
3765 ** TK_LE OP_Gt
3766 ** TK_GE OP_Lt
3767 ** TK_LT OP_Ge
3769 ** For other values of pExpr->op, op is undefined and unused.
3770 ** The value of TK_ and OP_ constants are arranged such that we
3771 ** can compute the mapping above using the following expression.
3772 ** Assert()s verify that the computation is correct.
3774 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3776 /* Verify correct alignment of TK_ and OP_ constants
3778 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3779 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3780 assert( pExpr->op!=TK_NE || op==OP_Eq );
3781 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3782 assert( pExpr->op!=TK_LT || op==OP_Ge );
3783 assert( pExpr->op!=TK_LE || op==OP_Gt );
3784 assert( pExpr->op!=TK_GT || op==OP_Le );
3785 assert( pExpr->op!=TK_GE || op==OP_Lt );
3787 switch( pExpr->op ){
3788 case TK_AND: {
3789 testcase( jumpIfNull==0 );
3790 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3791 sqlite3ExprCachePush(pParse);
3792 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3793 sqlite3ExprCachePop(pParse);
3794 break;
3796 case TK_OR: {
3797 int d2 = sqlite3VdbeMakeLabel(v);
3798 testcase( jumpIfNull==0 );
3799 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3800 sqlite3ExprCachePush(pParse);
3801 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3802 sqlite3VdbeResolveLabel(v, d2);
3803 sqlite3ExprCachePop(pParse);
3804 break;
3806 case TK_NOT: {
3807 testcase( jumpIfNull==0 );
3808 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3809 break;
3811 case TK_LT:
3812 case TK_LE:
3813 case TK_GT:
3814 case TK_GE:
3815 case TK_NE:
3816 case TK_EQ: {
3817 testcase( jumpIfNull==0 );
3818 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3819 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3820 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3821 r1, r2, dest, jumpIfNull);
3822 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3823 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3824 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3825 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3826 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3827 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3828 testcase( regFree1==0 );
3829 testcase( regFree2==0 );
3830 break;
3832 case TK_IS:
3833 case TK_ISNOT: {
3834 testcase( pExpr->op==TK_IS );
3835 testcase( pExpr->op==TK_ISNOT );
3836 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3837 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3838 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3839 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3840 r1, r2, dest, SQLITE_NULLEQ);
3841 VdbeCoverageIf(v, op==TK_EQ);
3842 VdbeCoverageIf(v, op==TK_NE);
3843 testcase( regFree1==0 );
3844 testcase( regFree2==0 );
3845 break;
3847 case TK_ISNULL:
3848 case TK_NOTNULL: {
3849 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3850 sqlite3VdbeAddOp2(v, op, r1, dest);
3851 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
3852 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
3853 testcase( regFree1==0 );
3854 break;
3856 case TK_BETWEEN: {
3857 testcase( jumpIfNull==0 );
3858 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3859 break;
3861 #ifndef SQLITE_OMIT_SUBQUERY
3862 case TK_IN: {
3863 if( jumpIfNull ){
3864 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3865 }else{
3866 int destIfNull = sqlite3VdbeMakeLabel(v);
3867 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3868 sqlite3VdbeResolveLabel(v, destIfNull);
3870 break;
3872 #endif
3873 default: {
3874 if( exprAlwaysFalse(pExpr) ){
3875 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3876 }else if( exprAlwaysTrue(pExpr) ){
3877 /* no-op */
3878 }else{
3879 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3880 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3881 VdbeCoverage(v);
3882 testcase( regFree1==0 );
3883 testcase( jumpIfNull==0 );
3885 break;
3888 sqlite3ReleaseTempReg(pParse, regFree1);
3889 sqlite3ReleaseTempReg(pParse, regFree2);
3893 ** Do a deep comparison of two expression trees. Return 0 if the two
3894 ** expressions are completely identical. Return 1 if they differ only
3895 ** by a COLLATE operator at the top level. Return 2 if there are differences
3896 ** other than the top-level COLLATE operator.
3898 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3899 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3901 ** The pA side might be using TK_REGISTER. If that is the case and pB is
3902 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3904 ** Sometimes this routine will return 2 even if the two expressions
3905 ** really are equivalent. If we cannot prove that the expressions are
3906 ** identical, we return 2 just to be safe. So if this routine
3907 ** returns 2, then you do not really know for certain if the two
3908 ** expressions are the same. But if you get a 0 or 1 return, then you
3909 ** can be sure the expressions are the same. In the places where
3910 ** this routine is used, it does not hurt to get an extra 2 - that
3911 ** just might result in some slightly slower code. But returning
3912 ** an incorrect 0 or 1 could lead to a malfunction.
3914 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3915 u32 combinedFlags;
3916 if( pA==0 || pB==0 ){
3917 return pB==pA ? 0 : 2;
3919 combinedFlags = pA->flags | pB->flags;
3920 if( combinedFlags & EP_IntValue ){
3921 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3922 return 0;
3924 return 2;
3926 if( pA->op!=pB->op ){
3927 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3928 return 1;
3930 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3931 return 1;
3933 return 2;
3935 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3936 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3937 return pA->op==TK_COLLATE ? 1 : 2;
3940 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3941 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3942 if( combinedFlags & EP_xIsSelect ) return 2;
3943 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3944 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3945 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3946 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3947 if( pA->iColumn!=pB->iColumn ) return 2;
3948 if( pA->iTable!=pB->iTable
3949 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3952 return 0;
3956 ** Compare two ExprList objects. Return 0 if they are identical and
3957 ** non-zero if they differ in any way.
3959 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3960 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3962 ** This routine might return non-zero for equivalent ExprLists. The
3963 ** only consequence will be disabled optimizations. But this routine
3964 ** must never return 0 if the two ExprList objects are different, or
3965 ** a malfunction will result.
3967 ** Two NULL pointers are considered to be the same. But a NULL pointer
3968 ** always differs from a non-NULL pointer.
3970 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3971 int i;
3972 if( pA==0 && pB==0 ) return 0;
3973 if( pA==0 || pB==0 ) return 1;
3974 if( pA->nExpr!=pB->nExpr ) return 1;
3975 for(i=0; i<pA->nExpr; i++){
3976 Expr *pExprA = pA->a[i].pExpr;
3977 Expr *pExprB = pB->a[i].pExpr;
3978 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3979 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3981 return 0;
3985 ** Return true if we can prove the pE2 will always be true if pE1 is
3986 ** true. Return false if we cannot complete the proof or if pE2 might
3987 ** be false. Examples:
3989 ** pE1: x==5 pE2: x==5 Result: true
3990 ** pE1: x>0 pE2: x==5 Result: false
3991 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
3992 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
3993 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
3994 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
3995 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
3997 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3998 ** Expr.iTable<0 then assume a table number given by iTab.
4000 ** When in doubt, return false. Returning true might give a performance
4001 ** improvement. Returning false might cause a performance reduction, but
4002 ** it will always give the correct answer and is hence always safe.
4004 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4005 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4006 return 1;
4008 if( pE2->op==TK_OR
4009 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4010 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4012 return 1;
4014 if( pE2->op==TK_NOTNULL
4015 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4016 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4018 return 1;
4020 return 0;
4024 ** An instance of the following structure is used by the tree walker
4025 ** to count references to table columns in the arguments of an
4026 ** aggregate function, in order to implement the
4027 ** sqlite3FunctionThisSrc() routine.
4029 struct SrcCount {
4030 SrcList *pSrc; /* One particular FROM clause in a nested query */
4031 int nThis; /* Number of references to columns in pSrcList */
4032 int nOther; /* Number of references to columns in other FROM clauses */
4036 ** Count the number of references to columns.
4038 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4039 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4040 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4041 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
4042 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4043 ** NEVER() will need to be removed. */
4044 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4045 int i;
4046 struct SrcCount *p = pWalker->u.pSrcCount;
4047 SrcList *pSrc = p->pSrc;
4048 for(i=0; i<pSrc->nSrc; i++){
4049 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4051 if( i<pSrc->nSrc ){
4052 p->nThis++;
4053 }else{
4054 p->nOther++;
4057 return WRC_Continue;
4061 ** Determine if any of the arguments to the pExpr Function reference
4062 ** pSrcList. Return true if they do. Also return true if the function
4063 ** has no arguments or has only constant arguments. Return false if pExpr
4064 ** references columns but not columns of tables found in pSrcList.
4066 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4067 Walker w;
4068 struct SrcCount cnt;
4069 assert( pExpr->op==TK_AGG_FUNCTION );
4070 memset(&w, 0, sizeof(w));
4071 w.xExprCallback = exprSrcCount;
4072 w.u.pSrcCount = &cnt;
4073 cnt.pSrc = pSrcList;
4074 cnt.nThis = 0;
4075 cnt.nOther = 0;
4076 sqlite3WalkExprList(&w, pExpr->x.pList);
4077 return cnt.nThis>0 || cnt.nOther==0;
4081 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
4082 ** the new element. Return a negative number if malloc fails.
4084 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4085 int i;
4086 pInfo->aCol = sqlite3ArrayAllocate(
4088 pInfo->aCol,
4089 sizeof(pInfo->aCol[0]),
4090 &pInfo->nColumn,
4093 return i;
4097 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
4098 ** the new element. Return a negative number if malloc fails.
4100 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4101 int i;
4102 pInfo->aFunc = sqlite3ArrayAllocate(
4103 db,
4104 pInfo->aFunc,
4105 sizeof(pInfo->aFunc[0]),
4106 &pInfo->nFunc,
4109 return i;
4113 ** This is the xExprCallback for a tree walker. It is used to
4114 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
4115 ** for additional information.
4117 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4118 int i;
4119 NameContext *pNC = pWalker->u.pNC;
4120 Parse *pParse = pNC->pParse;
4121 SrcList *pSrcList = pNC->pSrcList;
4122 AggInfo *pAggInfo = pNC->pAggInfo;
4124 switch( pExpr->op ){
4125 case TK_AGG_COLUMN:
4126 case TK_COLUMN: {
4127 testcase( pExpr->op==TK_AGG_COLUMN );
4128 testcase( pExpr->op==TK_COLUMN );
4129 /* Check to see if the column is in one of the tables in the FROM
4130 ** clause of the aggregate query */
4131 if( ALWAYS(pSrcList!=0) ){
4132 struct SrcList_item *pItem = pSrcList->a;
4133 for(i=0; i<pSrcList->nSrc; i++, pItem++){
4134 struct AggInfo_col *pCol;
4135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4136 if( pExpr->iTable==pItem->iCursor ){
4137 /* If we reach this point, it means that pExpr refers to a table
4138 ** that is in the FROM clause of the aggregate query.
4140 ** Make an entry for the column in pAggInfo->aCol[] if there
4141 ** is not an entry there already.
4143 int k;
4144 pCol = pAggInfo->aCol;
4145 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4146 if( pCol->iTable==pExpr->iTable &&
4147 pCol->iColumn==pExpr->iColumn ){
4148 break;
4151 if( (k>=pAggInfo->nColumn)
4152 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4154 pCol = &pAggInfo->aCol[k];
4155 pCol->pTab = pExpr->pTab;
4156 pCol->iTable = pExpr->iTable;
4157 pCol->iColumn = pExpr->iColumn;
4158 pCol->iMem = ++pParse->nMem;
4159 pCol->iSorterColumn = -1;
4160 pCol->pExpr = pExpr;
4161 if( pAggInfo->pGroupBy ){
4162 int j, n;
4163 ExprList *pGB = pAggInfo->pGroupBy;
4164 struct ExprList_item *pTerm = pGB->a;
4165 n = pGB->nExpr;
4166 for(j=0; j<n; j++, pTerm++){
4167 Expr *pE = pTerm->pExpr;
4168 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4169 pE->iColumn==pExpr->iColumn ){
4170 pCol->iSorterColumn = j;
4171 break;
4175 if( pCol->iSorterColumn<0 ){
4176 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4179 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4180 ** because it was there before or because we just created it).
4181 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4182 ** pAggInfo->aCol[] entry.
4184 ExprSetVVAProperty(pExpr, EP_NoReduce);
4185 pExpr->pAggInfo = pAggInfo;
4186 pExpr->op = TK_AGG_COLUMN;
4187 pExpr->iAgg = (i16)k;
4188 break;
4189 } /* endif pExpr->iTable==pItem->iCursor */
4190 } /* end loop over pSrcList */
4192 return WRC_Prune;
4194 case TK_AGG_FUNCTION: {
4195 if( (pNC->ncFlags & NC_InAggFunc)==0
4196 && pWalker->walkerDepth==pExpr->op2
4198 /* Check to see if pExpr is a duplicate of another aggregate
4199 ** function that is already in the pAggInfo structure
4201 struct AggInfo_func *pItem = pAggInfo->aFunc;
4202 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4203 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4204 break;
4207 if( i>=pAggInfo->nFunc ){
4208 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
4210 u8 enc = ENC(pParse->db);
4211 i = addAggInfoFunc(pParse->db, pAggInfo);
4212 if( i>=0 ){
4213 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4214 pItem = &pAggInfo->aFunc[i];
4215 pItem->pExpr = pExpr;
4216 pItem->iMem = ++pParse->nMem;
4217 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4218 pItem->pFunc = sqlite3FindFunction(pParse->db,
4219 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4220 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4221 if( pExpr->flags & EP_Distinct ){
4222 pItem->iDistinct = pParse->nTab++;
4223 }else{
4224 pItem->iDistinct = -1;
4228 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4230 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4231 ExprSetVVAProperty(pExpr, EP_NoReduce);
4232 pExpr->iAgg = (i16)i;
4233 pExpr->pAggInfo = pAggInfo;
4234 return WRC_Prune;
4235 }else{
4236 return WRC_Continue;
4240 return WRC_Continue;
4242 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4243 UNUSED_PARAMETER(pWalker);
4244 UNUSED_PARAMETER(pSelect);
4245 return WRC_Continue;
4249 ** Analyze the pExpr expression looking for aggregate functions and
4250 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4251 ** points to. Additional entries are made on the AggInfo object as
4252 ** necessary.
4254 ** This routine should only be called after the expression has been
4255 ** analyzed by sqlite3ResolveExprNames().
4257 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4258 Walker w;
4259 memset(&w, 0, sizeof(w));
4260 w.xExprCallback = analyzeAggregate;
4261 w.xSelectCallback = analyzeAggregatesInSelect;
4262 w.u.pNC = pNC;
4263 assert( pNC->pSrcList!=0 );
4264 sqlite3WalkExpr(&w, pExpr);
4268 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4269 ** expression list. Return the number of errors.
4271 ** If an error is found, the analysis is cut short.
4273 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4274 struct ExprList_item *pItem;
4275 int i;
4276 if( pList ){
4277 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4278 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4284 ** Allocate a single new register for use to hold some intermediate result.
4286 int sqlite3GetTempReg(Parse *pParse){
4287 if( pParse->nTempReg==0 ){
4288 return ++pParse->nMem;
4290 return pParse->aTempReg[--pParse->nTempReg];
4294 ** Deallocate a register, making available for reuse for some other
4295 ** purpose.
4297 ** If a register is currently being used by the column cache, then
4298 ** the deallocation is deferred until the column cache line that uses
4299 ** the register becomes stale.
4301 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4302 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4303 int i;
4304 struct yColCache *p;
4305 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4306 if( p->iReg==iReg ){
4307 p->tempReg = 1;
4308 return;
4311 pParse->aTempReg[pParse->nTempReg++] = iReg;
4316 ** Allocate or deallocate a block of nReg consecutive registers
4318 int sqlite3GetTempRange(Parse *pParse, int nReg){
4319 int i, n;
4320 i = pParse->iRangeReg;
4321 n = pParse->nRangeReg;
4322 if( nReg<=n ){
4323 assert( !usedAsColumnCache(pParse, i, i+n-1) );
4324 pParse->iRangeReg += nReg;
4325 pParse->nRangeReg -= nReg;
4326 }else{
4327 i = pParse->nMem+1;
4328 pParse->nMem += nReg;
4330 return i;
4332 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4333 sqlite3ExprCacheRemove(pParse, iReg, nReg);
4334 if( nReg>pParse->nRangeReg ){
4335 pParse->nRangeReg = nReg;
4336 pParse->iRangeReg = iReg;
4341 ** Mark all temporary registers as being unavailable for reuse.
4343 void sqlite3ClearTempRegCache(Parse *pParse){
4344 pParse->nTempReg = 0;
4345 pParse->nRangeReg = 0;