Pin Chrome's shortcut to the Win10 Start menu on install and OS upgrade.
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / select.c
blob3b422f1100349609920c592ba6ab4e096d1ef2ff
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
61 ** Delete all the content of a Select structure but do not deallocate
62 ** the select structure itself.
64 static void clearSelect(sqlite3 *db, Select *p){
65 sqlite3ExprListDelete(db, p->pEList);
66 sqlite3SrcListDelete(db, p->pSrc);
67 sqlite3ExprDelete(db, p->pWhere);
68 sqlite3ExprListDelete(db, p->pGroupBy);
69 sqlite3ExprDelete(db, p->pHaving);
70 sqlite3ExprListDelete(db, p->pOrderBy);
71 sqlite3SelectDelete(db, p->pPrior);
72 sqlite3ExprDelete(db, p->pLimit);
73 sqlite3ExprDelete(db, p->pOffset);
74 sqlite3WithDelete(db, p->pWith);
78 ** Initialize a SelectDest structure.
80 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
81 pDest->eDest = (u8)eDest;
82 pDest->iSDParm = iParm;
83 pDest->affSdst = 0;
84 pDest->iSdst = 0;
85 pDest->nSdst = 0;
90 ** Allocate a new Select structure and return a pointer to that
91 ** structure.
93 Select *sqlite3SelectNew(
94 Parse *pParse, /* Parsing context */
95 ExprList *pEList, /* which columns to include in the result */
96 SrcList *pSrc, /* the FROM clause -- which tables to scan */
97 Expr *pWhere, /* the WHERE clause */
98 ExprList *pGroupBy, /* the GROUP BY clause */
99 Expr *pHaving, /* the HAVING clause */
100 ExprList *pOrderBy, /* the ORDER BY clause */
101 u16 selFlags, /* Flag parameters, such as SF_Distinct */
102 Expr *pLimit, /* LIMIT value. NULL means not used */
103 Expr *pOffset /* OFFSET value. NULL means no offset */
105 Select *pNew;
106 Select standin;
107 sqlite3 *db = pParse->db;
108 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
109 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
110 if( pNew==0 ){
111 assert( db->mallocFailed );
112 pNew = &standin;
113 memset(pNew, 0, sizeof(*pNew));
115 if( pEList==0 ){
116 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
118 pNew->pEList = pEList;
119 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
120 pNew->pSrc = pSrc;
121 pNew->pWhere = pWhere;
122 pNew->pGroupBy = pGroupBy;
123 pNew->pHaving = pHaving;
124 pNew->pOrderBy = pOrderBy;
125 pNew->selFlags = selFlags;
126 pNew->op = TK_SELECT;
127 pNew->pLimit = pLimit;
128 pNew->pOffset = pOffset;
129 assert( pOffset==0 || pLimit!=0 );
130 pNew->addrOpenEphm[0] = -1;
131 pNew->addrOpenEphm[1] = -1;
132 if( db->mallocFailed ) {
133 clearSelect(db, pNew);
134 if( pNew!=&standin ) sqlite3DbFree(db, pNew);
135 pNew = 0;
136 }else{
137 assert( pNew->pSrc!=0 || pParse->nErr>0 );
139 assert( pNew!=&standin );
140 return pNew;
143 #if SELECTTRACE_ENABLED
145 ** Set the name of a Select object
147 void sqlite3SelectSetName(Select *p, const char *zName){
148 if( p && zName ){
149 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
152 #endif
156 ** Delete the given Select structure and all of its substructures.
158 void sqlite3SelectDelete(sqlite3 *db, Select *p){
159 if( p ){
160 clearSelect(db, p);
161 sqlite3DbFree(db, p);
166 ** Return a pointer to the right-most SELECT statement in a compound.
168 static Select *findRightmost(Select *p){
169 while( p->pNext ) p = p->pNext;
170 return p;
174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
175 ** type of join. Return an integer constant that expresses that type
176 ** in terms of the following bit values:
178 ** JT_INNER
179 ** JT_CROSS
180 ** JT_OUTER
181 ** JT_NATURAL
182 ** JT_LEFT
183 ** JT_RIGHT
185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 ** If an illegal or unsupported join type is seen, then still return
188 ** a join type, but put an error in the pParse structure.
190 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
191 int jointype = 0;
192 Token *apAll[3];
193 Token *p;
194 /* 0123456789 123456789 123456789 123 */
195 static const char zKeyText[] = "naturaleftouterightfullinnercross";
196 static const struct {
197 u8 i; /* Beginning of keyword text in zKeyText[] */
198 u8 nChar; /* Length of the keyword in characters */
199 u8 code; /* Join type mask */
200 } aKeyword[] = {
201 /* natural */ { 0, 7, JT_NATURAL },
202 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
203 /* outer */ { 10, 5, JT_OUTER },
204 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
205 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
206 /* inner */ { 23, 5, JT_INNER },
207 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
209 int i, j;
210 apAll[0] = pA;
211 apAll[1] = pB;
212 apAll[2] = pC;
213 for(i=0; i<3 && apAll[i]; i++){
214 p = apAll[i];
215 for(j=0; j<ArraySize(aKeyword); j++){
216 if( p->n==aKeyword[j].nChar
217 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
218 jointype |= aKeyword[j].code;
219 break;
222 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
223 if( j>=ArraySize(aKeyword) ){
224 jointype |= JT_ERROR;
225 break;
229 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
230 (jointype & JT_ERROR)!=0
232 const char *zSp = " ";
233 assert( pB!=0 );
234 if( pC==0 ){ zSp++; }
235 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
236 "%T %T%s%T", pA, pB, zSp, pC);
237 jointype = JT_INNER;
238 }else if( (jointype & JT_OUTER)!=0
239 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
240 sqlite3ErrorMsg(pParse,
241 "RIGHT and FULL OUTER JOINs are not currently supported");
242 jointype = JT_INNER;
244 return jointype;
248 ** Return the index of a column in a table. Return -1 if the column
249 ** is not contained in the table.
251 static int columnIndex(Table *pTab, const char *zCol){
252 int i;
253 for(i=0; i<pTab->nCol; i++){
254 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256 return -1;
260 ** Search the first N tables in pSrc, from left to right, looking for a
261 ** table that has a column named zCol.
263 ** When found, set *piTab and *piCol to the table index and column index
264 ** of the matching column and return TRUE.
266 ** If not found, return FALSE.
268 static int tableAndColumnIndex(
269 SrcList *pSrc, /* Array of tables to search */
270 int N, /* Number of tables in pSrc->a[] to search */
271 const char *zCol, /* Name of the column we are looking for */
272 int *piTab, /* Write index of pSrc->a[] here */
273 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 int i; /* For looping over tables in pSrc */
276 int iCol; /* Index of column matching zCol */
278 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
279 for(i=0; i<N; i++){
280 iCol = columnIndex(pSrc->a[i].pTab, zCol);
281 if( iCol>=0 ){
282 if( piTab ){
283 *piTab = i;
284 *piCol = iCol;
286 return 1;
289 return 0;
293 ** This function is used to add terms implied by JOIN syntax to the
294 ** WHERE clause expression of a SELECT statement. The new term, which
295 ** is ANDed with the existing WHERE clause, is of the form:
297 ** (tab1.col1 = tab2.col2)
299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
301 ** column iColRight of tab2.
303 static void addWhereTerm(
304 Parse *pParse, /* Parsing context */
305 SrcList *pSrc, /* List of tables in FROM clause */
306 int iLeft, /* Index of first table to join in pSrc */
307 int iColLeft, /* Index of column in first table */
308 int iRight, /* Index of second table in pSrc */
309 int iColRight, /* Index of column in second table */
310 int isOuterJoin, /* True if this is an OUTER join */
311 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
313 sqlite3 *db = pParse->db;
314 Expr *pE1;
315 Expr *pE2;
316 Expr *pEq;
318 assert( iLeft<iRight );
319 assert( pSrc->nSrc>iRight );
320 assert( pSrc->a[iLeft].pTab );
321 assert( pSrc->a[iRight].pTab );
323 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
324 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
327 if( pEq && isOuterJoin ){
328 ExprSetProperty(pEq, EP_FromJoin);
329 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
330 ExprSetVVAProperty(pEq, EP_NoReduce);
331 pEq->iRightJoinTable = (i16)pE2->iTable;
333 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
337 ** Set the EP_FromJoin property on all terms of the given expression.
338 ** And set the Expr.iRightJoinTable to iTable for every term in the
339 ** expression.
341 ** The EP_FromJoin property is used on terms of an expression to tell
342 ** the LEFT OUTER JOIN processing logic that this term is part of the
343 ** join restriction specified in the ON or USING clause and not a part
344 ** of the more general WHERE clause. These terms are moved over to the
345 ** WHERE clause during join processing but we need to remember that they
346 ** originated in the ON or USING clause.
348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
349 ** expression depends on table iRightJoinTable even if that table is not
350 ** explicitly mentioned in the expression. That information is needed
351 ** for cases like this:
353 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 ** The where clause needs to defer the handling of the t1.x=5
356 ** term until after the t2 loop of the join. In that way, a
357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
358 ** defer the handling of t1.x=5, it will be processed immediately
359 ** after the t1 loop and rows with t1.x!=5 will never appear in
360 ** the output, which is incorrect.
362 static void setJoinExpr(Expr *p, int iTable){
363 while( p ){
364 ExprSetProperty(p, EP_FromJoin);
365 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
366 ExprSetVVAProperty(p, EP_NoReduce);
367 p->iRightJoinTable = (i16)iTable;
368 setJoinExpr(p->pLeft, iTable);
369 p = p->pRight;
374 ** This routine processes the join information for a SELECT statement.
375 ** ON and USING clauses are converted into extra terms of the WHERE clause.
376 ** NATURAL joins also create extra WHERE clause terms.
378 ** The terms of a FROM clause are contained in the Select.pSrc structure.
379 ** The left most table is the first entry in Select.pSrc. The right-most
380 ** table is the last entry. The join operator is held in the entry to
381 ** the left. Thus entry 0 contains the join operator for the join between
382 ** entries 0 and 1. Any ON or USING clauses associated with the join are
383 ** also attached to the left entry.
385 ** This routine returns the number of errors encountered.
387 static int sqliteProcessJoin(Parse *pParse, Select *p){
388 SrcList *pSrc; /* All tables in the FROM clause */
389 int i, j; /* Loop counters */
390 struct SrcList_item *pLeft; /* Left table being joined */
391 struct SrcList_item *pRight; /* Right table being joined */
393 pSrc = p->pSrc;
394 pLeft = &pSrc->a[0];
395 pRight = &pLeft[1];
396 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
397 Table *pLeftTab = pLeft->pTab;
398 Table *pRightTab = pRight->pTab;
399 int isOuter;
401 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
402 isOuter = (pRight->jointype & JT_OUTER)!=0;
404 /* When the NATURAL keyword is present, add WHERE clause terms for
405 ** every column that the two tables have in common.
407 if( pRight->jointype & JT_NATURAL ){
408 if( pRight->pOn || pRight->pUsing ){
409 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
410 "an ON or USING clause", 0);
411 return 1;
413 for(j=0; j<pRightTab->nCol; j++){
414 char *zName; /* Name of column in the right table */
415 int iLeft; /* Matching left table */
416 int iLeftCol; /* Matching column in the left table */
418 zName = pRightTab->aCol[j].zName;
419 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
420 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
421 isOuter, &p->pWhere);
426 /* Disallow both ON and USING clauses in the same join
428 if( pRight->pOn && pRight->pUsing ){
429 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
430 "clauses in the same join");
431 return 1;
434 /* Add the ON clause to the end of the WHERE clause, connected by
435 ** an AND operator.
437 if( pRight->pOn ){
438 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
439 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
440 pRight->pOn = 0;
443 /* Create extra terms on the WHERE clause for each column named
444 ** in the USING clause. Example: If the two tables to be joined are
445 ** A and B and the USING clause names X, Y, and Z, then add this
446 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
447 ** Report an error if any column mentioned in the USING clause is
448 ** not contained in both tables to be joined.
450 if( pRight->pUsing ){
451 IdList *pList = pRight->pUsing;
452 for(j=0; j<pList->nId; j++){
453 char *zName; /* Name of the term in the USING clause */
454 int iLeft; /* Table on the left with matching column name */
455 int iLeftCol; /* Column number of matching column on the left */
456 int iRightCol; /* Column number of matching column on the right */
458 zName = pList->a[j].zName;
459 iRightCol = columnIndex(pRightTab, zName);
460 if( iRightCol<0
461 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
463 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
464 "not present in both tables", zName);
465 return 1;
467 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
468 isOuter, &p->pWhere);
472 return 0;
475 /* Forward reference */
476 static KeyInfo *keyInfoFromExprList(
477 Parse *pParse, /* Parsing context */
478 ExprList *pList, /* Form the KeyInfo object from this ExprList */
479 int iStart, /* Begin with this column of pList */
480 int nExtra /* Add this many extra columns to the end */
484 ** Generate code that will push the record in registers regData
485 ** through regData+nData-1 onto the sorter.
487 static void pushOntoSorter(
488 Parse *pParse, /* Parser context */
489 SortCtx *pSort, /* Information about the ORDER BY clause */
490 Select *pSelect, /* The whole SELECT statement */
491 int regData, /* First register holding data to be sorted */
492 int nData, /* Number of elements in the data array */
493 int nPrefixReg /* No. of reg prior to regData available for use */
495 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
496 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
497 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
498 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
499 int regBase; /* Regs for sorter record */
500 int regRecord = ++pParse->nMem; /* Assembled sorter record */
501 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
502 int op; /* Opcode to add sorter record to sorter */
504 assert( bSeq==0 || bSeq==1 );
505 if( nPrefixReg ){
506 assert( nPrefixReg==nExpr+bSeq );
507 regBase = regData - nExpr - bSeq;
508 }else{
509 regBase = pParse->nMem + 1;
510 pParse->nMem += nBase;
512 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
513 if( bSeq ){
514 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
516 if( nPrefixReg==0 ){
517 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
520 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
521 if( nOBSat>0 ){
522 int regPrevKey; /* The first nOBSat columns of the previous row */
523 int addrFirst; /* Address of the OP_IfNot opcode */
524 int addrJmp; /* Address of the OP_Jump opcode */
525 VdbeOp *pOp; /* Opcode that opens the sorter */
526 int nKey; /* Number of sorting key columns, including OP_Sequence */
527 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
529 regPrevKey = pParse->nMem+1;
530 pParse->nMem += pSort->nOBSat;
531 nKey = nExpr - pSort->nOBSat + bSeq;
532 if( bSeq ){
533 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
534 }else{
535 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
537 VdbeCoverage(v);
538 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
539 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
540 if( pParse->db->mallocFailed ) return;
541 pOp->p2 = nKey + nData;
542 pKI = pOp->p4.pKeyInfo;
543 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
544 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
545 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
546 addrJmp = sqlite3VdbeCurrentAddr(v);
547 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
548 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
549 pSort->regReturn = ++pParse->nMem;
550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
551 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
552 sqlite3VdbeJumpHere(v, addrFirst);
553 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
554 sqlite3VdbeJumpHere(v, addrJmp);
556 if( pSort->sortFlags & SORTFLAG_UseSorter ){
557 op = OP_SorterInsert;
558 }else{
559 op = OP_IdxInsert;
561 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
562 if( pSelect->iLimit ){
563 int addr1, addr2;
564 int iLimit;
565 if( pSelect->iOffset ){
566 iLimit = pSelect->iOffset+1;
567 }else{
568 iLimit = pSelect->iLimit;
570 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
571 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
572 addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
573 sqlite3VdbeJumpHere(v, addr1);
574 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
575 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
576 sqlite3VdbeJumpHere(v, addr2);
581 ** Add code to implement the OFFSET
583 static void codeOffset(
584 Vdbe *v, /* Generate code into this VM */
585 int iOffset, /* Register holding the offset counter */
586 int iContinue /* Jump here to skip the current record */
588 if( iOffset>0 ){
589 int addr;
590 addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v);
591 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
592 VdbeComment((v, "skip OFFSET records"));
593 sqlite3VdbeJumpHere(v, addr);
598 ** Add code that will check to make sure the N registers starting at iMem
599 ** form a distinct entry. iTab is a sorting index that holds previously
600 ** seen combinations of the N values. A new entry is made in iTab
601 ** if the current N values are new.
603 ** A jump to addrRepeat is made and the N+1 values are popped from the
604 ** stack if the top N elements are not distinct.
606 static void codeDistinct(
607 Parse *pParse, /* Parsing and code generating context */
608 int iTab, /* A sorting index used to test for distinctness */
609 int addrRepeat, /* Jump to here if not distinct */
610 int N, /* Number of elements */
611 int iMem /* First element */
613 Vdbe *v;
614 int r1;
616 v = pParse->pVdbe;
617 r1 = sqlite3GetTempReg(pParse);
618 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
619 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
620 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
621 sqlite3ReleaseTempReg(pParse, r1);
624 #ifndef SQLITE_OMIT_SUBQUERY
626 ** Generate an error message when a SELECT is used within a subexpression
627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
628 ** column. We do this in a subroutine because the error used to occur
629 ** in multiple places. (The error only occurs in one place now, but we
630 ** retain the subroutine to minimize code disruption.)
632 static int checkForMultiColumnSelectError(
633 Parse *pParse, /* Parse context. */
634 SelectDest *pDest, /* Destination of SELECT results */
635 int nExpr /* Number of result columns returned by SELECT */
637 int eDest = pDest->eDest;
638 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
639 sqlite3ErrorMsg(pParse, "only a single result allowed for "
640 "a SELECT that is part of an expression");
641 return 1;
642 }else{
643 return 0;
646 #endif
649 ** This routine generates the code for the inside of the inner loop
650 ** of a SELECT.
652 ** If srcTab is negative, then the pEList expressions
653 ** are evaluated in order to get the data for this row. If srcTab is
654 ** zero or more, then data is pulled from srcTab and pEList is used only
655 ** to get number columns and the datatype for each column.
657 static void selectInnerLoop(
658 Parse *pParse, /* The parser context */
659 Select *p, /* The complete select statement being coded */
660 ExprList *pEList, /* List of values being extracted */
661 int srcTab, /* Pull data from this table */
662 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
663 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
664 SelectDest *pDest, /* How to dispose of the results */
665 int iContinue, /* Jump here to continue with next row */
666 int iBreak /* Jump here to break out of the inner loop */
668 Vdbe *v = pParse->pVdbe;
669 int i;
670 int hasDistinct; /* True if the DISTINCT keyword is present */
671 int regResult; /* Start of memory holding result set */
672 int eDest = pDest->eDest; /* How to dispose of results */
673 int iParm = pDest->iSDParm; /* First argument to disposal method */
674 int nResultCol; /* Number of result columns */
675 int nPrefixReg = 0; /* Number of extra registers before regResult */
677 assert( v );
678 assert( pEList!=0 );
679 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
680 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
681 if( pSort==0 && !hasDistinct ){
682 assert( iContinue!=0 );
683 codeOffset(v, p->iOffset, iContinue);
686 /* Pull the requested columns.
688 nResultCol = pEList->nExpr;
690 if( pDest->iSdst==0 ){
691 if( pSort ){
692 nPrefixReg = pSort->pOrderBy->nExpr;
693 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
694 pParse->nMem += nPrefixReg;
696 pDest->iSdst = pParse->nMem+1;
697 pParse->nMem += nResultCol;
698 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
699 /* This is an error condition that can result, for example, when a SELECT
700 ** on the right-hand side of an INSERT contains more result columns than
701 ** there are columns in the table on the left. The error will be caught
702 ** and reported later. But we need to make sure enough memory is allocated
703 ** to avoid other spurious errors in the meantime. */
704 pParse->nMem += nResultCol;
706 pDest->nSdst = nResultCol;
707 regResult = pDest->iSdst;
708 if( srcTab>=0 ){
709 for(i=0; i<nResultCol; i++){
710 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
711 VdbeComment((v, "%s", pEList->a[i].zName));
713 }else if( eDest!=SRT_Exists ){
714 /* If the destination is an EXISTS(...) expression, the actual
715 ** values returned by the SELECT are not required.
717 sqlite3ExprCodeExprList(pParse, pEList, regResult,
718 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
721 /* If the DISTINCT keyword was present on the SELECT statement
722 ** and this row has been seen before, then do not make this row
723 ** part of the result.
725 if( hasDistinct ){
726 switch( pDistinct->eTnctType ){
727 case WHERE_DISTINCT_ORDERED: {
728 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
729 int iJump; /* Jump destination */
730 int regPrev; /* Previous row content */
732 /* Allocate space for the previous row */
733 regPrev = pParse->nMem+1;
734 pParse->nMem += nResultCol;
736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
737 ** sets the MEM_Cleared bit on the first register of the
738 ** previous value. This will cause the OP_Ne below to always
739 ** fail on the first iteration of the loop even if the first
740 ** row is all NULLs.
742 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
743 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
744 pOp->opcode = OP_Null;
745 pOp->p1 = 1;
746 pOp->p2 = regPrev;
748 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
749 for(i=0; i<nResultCol; i++){
750 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
751 if( i<nResultCol-1 ){
752 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
753 VdbeCoverage(v);
754 }else{
755 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
756 VdbeCoverage(v);
758 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
759 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
761 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
762 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
763 break;
766 case WHERE_DISTINCT_UNIQUE: {
767 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
768 break;
771 default: {
772 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
773 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
774 break;
777 if( pSort==0 ){
778 codeOffset(v, p->iOffset, iContinue);
782 switch( eDest ){
783 /* In this mode, write each query result to the key of the temporary
784 ** table iParm.
786 #ifndef SQLITE_OMIT_COMPOUND_SELECT
787 case SRT_Union: {
788 int r1;
789 r1 = sqlite3GetTempReg(pParse);
790 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
791 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
792 sqlite3ReleaseTempReg(pParse, r1);
793 break;
796 /* Construct a record from the query result, but instead of
797 ** saving that record, use it as a key to delete elements from
798 ** the temporary table iParm.
800 case SRT_Except: {
801 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
802 break;
804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
806 /* Store the result as data using a unique key.
808 case SRT_Fifo:
809 case SRT_DistFifo:
810 case SRT_Table:
811 case SRT_EphemTab: {
812 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
813 testcase( eDest==SRT_Table );
814 testcase( eDest==SRT_EphemTab );
815 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
816 #ifndef SQLITE_OMIT_CTE
817 if( eDest==SRT_DistFifo ){
818 /* If the destination is DistFifo, then cursor (iParm+1) is open
819 ** on an ephemeral index. If the current row is already present
820 ** in the index, do not write it to the output. If not, add the
821 ** current row to the index and proceed with writing it to the
822 ** output table as well. */
823 int addr = sqlite3VdbeCurrentAddr(v) + 4;
824 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
825 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
826 assert( pSort==0 );
828 #endif
829 if( pSort ){
830 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg);
831 }else{
832 int r2 = sqlite3GetTempReg(pParse);
833 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
835 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
836 sqlite3ReleaseTempReg(pParse, r2);
838 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
839 break;
842 #ifndef SQLITE_OMIT_SUBQUERY
843 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
844 ** then there should be a single item on the stack. Write this
845 ** item into the set table with bogus data.
847 case SRT_Set: {
848 assert( nResultCol==1 );
849 pDest->affSdst =
850 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
851 if( pSort ){
852 /* At first glance you would think we could optimize out the
853 ** ORDER BY in this case since the order of entries in the set
854 ** does not matter. But there might be a LIMIT clause, in which
855 ** case the order does matter */
856 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
857 }else{
858 int r1 = sqlite3GetTempReg(pParse);
859 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
860 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
861 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
862 sqlite3ReleaseTempReg(pParse, r1);
864 break;
867 /* If any row exist in the result set, record that fact and abort.
869 case SRT_Exists: {
870 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
871 /* The LIMIT clause will terminate the loop for us */
872 break;
875 /* If this is a scalar select that is part of an expression, then
876 ** store the results in the appropriate memory cell and break out
877 ** of the scan loop.
879 case SRT_Mem: {
880 assert( nResultCol==1 );
881 if( pSort ){
882 pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg);
883 }else{
884 assert( regResult==iParm );
885 /* The LIMIT clause will jump out of the loop for us */
887 break;
889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
891 case SRT_Coroutine: /* Send data to a co-routine */
892 case SRT_Output: { /* Return the results */
893 testcase( eDest==SRT_Coroutine );
894 testcase( eDest==SRT_Output );
895 if( pSort ){
896 pushOntoSorter(pParse, pSort, p, regResult, nResultCol, nPrefixReg);
897 }else if( eDest==SRT_Coroutine ){
898 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
899 }else{
900 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
901 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
903 break;
906 #ifndef SQLITE_OMIT_CTE
907 /* Write the results into a priority queue that is order according to
908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
910 ** pSO->nExpr columns, then make sure all keys are unique by adding a
911 ** final OP_Sequence column. The last column is the record as a blob.
913 case SRT_DistQueue:
914 case SRT_Queue: {
915 int nKey;
916 int r1, r2, r3;
917 int addrTest = 0;
918 ExprList *pSO;
919 pSO = pDest->pOrderBy;
920 assert( pSO );
921 nKey = pSO->nExpr;
922 r1 = sqlite3GetTempReg(pParse);
923 r2 = sqlite3GetTempRange(pParse, nKey+2);
924 r3 = r2+nKey+1;
925 if( eDest==SRT_DistQueue ){
926 /* If the destination is DistQueue, then cursor (iParm+1) is open
927 ** on a second ephemeral index that holds all values every previously
928 ** added to the queue. */
929 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
930 regResult, nResultCol);
931 VdbeCoverage(v);
933 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
934 if( eDest==SRT_DistQueue ){
935 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
936 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
938 for(i=0; i<nKey; i++){
939 sqlite3VdbeAddOp2(v, OP_SCopy,
940 regResult + pSO->a[i].u.x.iOrderByCol - 1,
941 r2+i);
943 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
944 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
945 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
946 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
947 sqlite3ReleaseTempReg(pParse, r1);
948 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
949 break;
951 #endif /* SQLITE_OMIT_CTE */
955 #if !defined(SQLITE_OMIT_TRIGGER)
956 /* Discard the results. This is used for SELECT statements inside
957 ** the body of a TRIGGER. The purpose of such selects is to call
958 ** user-defined functions that have side effects. We do not care
959 ** about the actual results of the select.
961 default: {
962 assert( eDest==SRT_Discard );
963 break;
965 #endif
968 /* Jump to the end of the loop if the LIMIT is reached. Except, if
969 ** there is a sorter, in which case the sorter has already limited
970 ** the output for us.
972 if( pSort==0 && p->iLimit ){
973 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
978 ** Allocate a KeyInfo object sufficient for an index of N key columns and
979 ** X extra columns.
981 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
982 KeyInfo *p = sqlite3DbMallocZero(0,
983 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
984 if( p ){
985 p->aSortOrder = (u8*)&p->aColl[N+X];
986 p->nField = (u16)N;
987 p->nXField = (u16)X;
988 p->enc = ENC(db);
989 p->db = db;
990 p->nRef = 1;
991 }else{
992 db->mallocFailed = 1;
994 return p;
998 ** Deallocate a KeyInfo object
1000 void sqlite3KeyInfoUnref(KeyInfo *p){
1001 if( p ){
1002 assert( p->nRef>0 );
1003 p->nRef--;
1004 if( p->nRef==0 ) sqlite3DbFree(0, p);
1009 ** Make a new pointer to a KeyInfo object
1011 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1012 if( p ){
1013 assert( p->nRef>0 );
1014 p->nRef++;
1016 return p;
1019 #ifdef SQLITE_DEBUG
1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1022 ** can only be changed if this is just a single reference to the object.
1024 ** This routine is used only inside of assert() statements.
1026 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1027 #endif /* SQLITE_DEBUG */
1030 ** Given an expression list, generate a KeyInfo structure that records
1031 ** the collating sequence for each expression in that expression list.
1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1034 ** KeyInfo structure is appropriate for initializing a virtual index to
1035 ** implement that clause. If the ExprList is the result set of a SELECT
1036 ** then the KeyInfo structure is appropriate for initializing a virtual
1037 ** index to implement a DISTINCT test.
1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1040 ** function is responsible for seeing that this structure is eventually
1041 ** freed.
1043 static KeyInfo *keyInfoFromExprList(
1044 Parse *pParse, /* Parsing context */
1045 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1046 int iStart, /* Begin with this column of pList */
1047 int nExtra /* Add this many extra columns to the end */
1049 int nExpr;
1050 KeyInfo *pInfo;
1051 struct ExprList_item *pItem;
1052 sqlite3 *db = pParse->db;
1053 int i;
1055 nExpr = pList->nExpr;
1056 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1057 if( pInfo ){
1058 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1059 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1060 CollSeq *pColl;
1061 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1062 if( !pColl ) pColl = db->pDfltColl;
1063 pInfo->aColl[i-iStart] = pColl;
1064 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1067 return pInfo;
1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072 ** Name of the connection operator, used for error messages.
1074 static const char *selectOpName(int id){
1075 char *z;
1076 switch( id ){
1077 case TK_ALL: z = "UNION ALL"; break;
1078 case TK_INTERSECT: z = "INTERSECT"; break;
1079 case TK_EXCEPT: z = "EXCEPT"; break;
1080 default: z = "UNION"; break;
1082 return z;
1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1086 #ifndef SQLITE_OMIT_EXPLAIN
1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1090 ** where the caption is of the form:
1092 ** "USE TEMP B-TREE FOR xxx"
1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1095 ** is determined by the zUsage argument.
1097 static void explainTempTable(Parse *pParse, const char *zUsage){
1098 if( pParse->explain==2 ){
1099 Vdbe *v = pParse->pVdbe;
1100 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1101 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1108 ** in sqlite3Select() to assign values to structure member variables that
1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1110 ** code with #ifndef directives.
1112 # define explainSetInteger(a, b) a = b
1114 #else
1115 /* No-op versions of the explainXXX() functions and macros. */
1116 # define explainTempTable(y,z)
1117 # define explainSetInteger(y,z)
1118 #endif
1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1124 ** where the caption is of one of the two forms:
1126 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1127 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1129 ** where iSub1 and iSub2 are the integers passed as the corresponding
1130 ** function parameters, and op is the text representation of the parameter
1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1133 ** false, or the second form if it is true.
1135 static void explainComposite(
1136 Parse *pParse, /* Parse context */
1137 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1138 int iSub1, /* Subquery id 1 */
1139 int iSub2, /* Subquery id 2 */
1140 int bUseTmp /* True if a temp table was used */
1142 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1143 if( pParse->explain==2 ){
1144 Vdbe *v = pParse->pVdbe;
1145 char *zMsg = sqlite3MPrintf(
1146 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1147 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1149 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1152 #else
1153 /* No-op versions of the explainXXX() functions and macros. */
1154 # define explainComposite(v,w,x,y,z)
1155 #endif
1158 ** If the inner loop was generated using a non-null pOrderBy argument,
1159 ** then the results were placed in a sorter. After the loop is terminated
1160 ** we need to run the sorter and output the results. The following
1161 ** routine generates the code needed to do that.
1163 static void generateSortTail(
1164 Parse *pParse, /* Parsing context */
1165 Select *p, /* The SELECT statement */
1166 SortCtx *pSort, /* Information on the ORDER BY clause */
1167 int nColumn, /* Number of columns of data */
1168 SelectDest *pDest /* Write the sorted results here */
1170 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1171 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
1172 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1173 int addr;
1174 int addrOnce = 0;
1175 int iTab;
1176 ExprList *pOrderBy = pSort->pOrderBy;
1177 int eDest = pDest->eDest;
1178 int iParm = pDest->iSDParm;
1179 int regRow;
1180 int regRowid;
1181 int nKey;
1182 int iSortTab; /* Sorter cursor to read from */
1183 int nSortData; /* Trailing values to read from sorter */
1184 int i;
1185 int bSeq; /* True if sorter record includes seq. no. */
1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1187 struct ExprList_item *aOutEx = p->pEList->a;
1188 #endif
1190 if( pSort->labelBkOut ){
1191 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1192 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1193 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1195 iTab = pSort->iECursor;
1196 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1197 regRowid = 0;
1198 regRow = pDest->iSdst;
1199 nSortData = nColumn;
1200 }else{
1201 regRowid = sqlite3GetTempReg(pParse);
1202 regRow = sqlite3GetTempReg(pParse);
1203 nSortData = 1;
1205 nKey = pOrderBy->nExpr - pSort->nOBSat;
1206 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1207 int regSortOut = ++pParse->nMem;
1208 iSortTab = pParse->nTab++;
1209 if( pSort->labelBkOut ){
1210 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1212 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1213 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1214 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1215 VdbeCoverage(v);
1216 codeOffset(v, p->iOffset, addrContinue);
1217 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1218 bSeq = 0;
1219 }else{
1220 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1221 codeOffset(v, p->iOffset, addrContinue);
1222 iSortTab = iTab;
1223 bSeq = 1;
1225 for(i=0; i<nSortData; i++){
1226 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1227 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1229 switch( eDest ){
1230 case SRT_Table:
1231 case SRT_EphemTab: {
1232 testcase( eDest==SRT_Table );
1233 testcase( eDest==SRT_EphemTab );
1234 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1236 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1237 break;
1239 #ifndef SQLITE_OMIT_SUBQUERY
1240 case SRT_Set: {
1241 assert( nColumn==1 );
1242 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1243 &pDest->affSdst, 1);
1244 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1245 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1246 break;
1248 case SRT_Mem: {
1249 assert( nColumn==1 );
1250 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1251 /* The LIMIT clause will terminate the loop for us */
1252 break;
1254 #endif
1255 default: {
1256 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1257 testcase( eDest==SRT_Output );
1258 testcase( eDest==SRT_Coroutine );
1259 if( eDest==SRT_Output ){
1260 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1261 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1262 }else{
1263 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1265 break;
1268 if( regRowid ){
1269 sqlite3ReleaseTempReg(pParse, regRow);
1270 sqlite3ReleaseTempReg(pParse, regRowid);
1272 /* The bottom of the loop
1274 sqlite3VdbeResolveLabel(v, addrContinue);
1275 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1276 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1277 }else{
1278 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1280 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1281 sqlite3VdbeResolveLabel(v, addrBreak);
1285 ** Return a pointer to a string containing the 'declaration type' of the
1286 ** expression pExpr. The string may be treated as static by the caller.
1288 ** Also try to estimate the size of the returned value and return that
1289 ** result in *pEstWidth.
1291 ** The declaration type is the exact datatype definition extracted from the
1292 ** original CREATE TABLE statement if the expression is a column. The
1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1294 ** is considered a column can be complex in the presence of subqueries. The
1295 ** result-set expression in all of the following SELECT statements is
1296 ** considered a column by this function.
1298 ** SELECT col FROM tbl;
1299 ** SELECT (SELECT col FROM tbl;
1300 ** SELECT (SELECT col FROM tbl);
1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1303 ** The declaration type for any expression other than a column is NULL.
1305 ** This routine has either 3 or 6 parameters depending on whether or not
1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1310 static const char *columnTypeImpl(
1311 NameContext *pNC,
1312 Expr *pExpr,
1313 const char **pzOrigDb,
1314 const char **pzOrigTab,
1315 const char **pzOrigCol,
1316 u8 *pEstWidth
1318 char const *zOrigDb = 0;
1319 char const *zOrigTab = 0;
1320 char const *zOrigCol = 0;
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1323 static const char *columnTypeImpl(
1324 NameContext *pNC,
1325 Expr *pExpr,
1326 u8 *pEstWidth
1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1329 char const *zType = 0;
1330 int j;
1331 u8 estWidth = 1;
1333 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1334 switch( pExpr->op ){
1335 case TK_AGG_COLUMN:
1336 case TK_COLUMN: {
1337 /* The expression is a column. Locate the table the column is being
1338 ** extracted from in NameContext.pSrcList. This table may be real
1339 ** database table or a subquery.
1341 Table *pTab = 0; /* Table structure column is extracted from */
1342 Select *pS = 0; /* Select the column is extracted from */
1343 int iCol = pExpr->iColumn; /* Index of column in pTab */
1344 testcase( pExpr->op==TK_AGG_COLUMN );
1345 testcase( pExpr->op==TK_COLUMN );
1346 while( pNC && !pTab ){
1347 SrcList *pTabList = pNC->pSrcList;
1348 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1349 if( j<pTabList->nSrc ){
1350 pTab = pTabList->a[j].pTab;
1351 pS = pTabList->a[j].pSelect;
1352 }else{
1353 pNC = pNC->pNext;
1357 if( pTab==0 ){
1358 /* At one time, code such as "SELECT new.x" within a trigger would
1359 ** cause this condition to run. Since then, we have restructured how
1360 ** trigger code is generated and so this condition is no longer
1361 ** possible. However, it can still be true for statements like
1362 ** the following:
1364 ** CREATE TABLE t1(col INTEGER);
1365 ** SELECT (SELECT t1.col) FROM FROM t1;
1367 ** when columnType() is called on the expression "t1.col" in the
1368 ** sub-select. In this case, set the column type to NULL, even
1369 ** though it should really be "INTEGER".
1371 ** This is not a problem, as the column type of "t1.col" is never
1372 ** used. When columnType() is called on the expression
1373 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1374 ** branch below. */
1375 break;
1378 assert( pTab && pExpr->pTab==pTab );
1379 if( pS ){
1380 /* The "table" is actually a sub-select or a view in the FROM clause
1381 ** of the SELECT statement. Return the declaration type and origin
1382 ** data for the result-set column of the sub-select.
1384 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1385 /* If iCol is less than zero, then the expression requests the
1386 ** rowid of the sub-select or view. This expression is legal (see
1387 ** test case misc2.2.2) - it always evaluates to NULL.
1389 NameContext sNC;
1390 Expr *p = pS->pEList->a[iCol].pExpr;
1391 sNC.pSrcList = pS->pSrc;
1392 sNC.pNext = pNC;
1393 sNC.pParse = pNC->pParse;
1394 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1396 }else if( pTab->pSchema ){
1397 /* A real table */
1398 assert( !pS );
1399 if( iCol<0 ) iCol = pTab->iPKey;
1400 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1402 if( iCol<0 ){
1403 zType = "INTEGER";
1404 zOrigCol = "rowid";
1405 }else{
1406 zType = pTab->aCol[iCol].zType;
1407 zOrigCol = pTab->aCol[iCol].zName;
1408 estWidth = pTab->aCol[iCol].szEst;
1410 zOrigTab = pTab->zName;
1411 if( pNC->pParse ){
1412 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1413 zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1415 #else
1416 if( iCol<0 ){
1417 zType = "INTEGER";
1418 }else{
1419 zType = pTab->aCol[iCol].zType;
1420 estWidth = pTab->aCol[iCol].szEst;
1422 #endif
1424 break;
1426 #ifndef SQLITE_OMIT_SUBQUERY
1427 case TK_SELECT: {
1428 /* The expression is a sub-select. Return the declaration type and
1429 ** origin info for the single column in the result set of the SELECT
1430 ** statement.
1432 NameContext sNC;
1433 Select *pS = pExpr->x.pSelect;
1434 Expr *p = pS->pEList->a[0].pExpr;
1435 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1436 sNC.pSrcList = pS->pSrc;
1437 sNC.pNext = pNC;
1438 sNC.pParse = pNC->pParse;
1439 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1440 break;
1442 #endif
1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1446 if( pzOrigDb ){
1447 assert( pzOrigTab && pzOrigCol );
1448 *pzOrigDb = zOrigDb;
1449 *pzOrigTab = zOrigTab;
1450 *pzOrigCol = zOrigCol;
1452 #endif
1453 if( pEstWidth ) *pEstWidth = estWidth;
1454 return zType;
1458 ** Generate code that will tell the VDBE the declaration types of columns
1459 ** in the result set.
1461 static void generateColumnTypes(
1462 Parse *pParse, /* Parser context */
1463 SrcList *pTabList, /* List of tables */
1464 ExprList *pEList /* Expressions defining the result set */
1466 #ifndef SQLITE_OMIT_DECLTYPE
1467 Vdbe *v = pParse->pVdbe;
1468 int i;
1469 NameContext sNC;
1470 sNC.pSrcList = pTabList;
1471 sNC.pParse = pParse;
1472 for(i=0; i<pEList->nExpr; i++){
1473 Expr *p = pEList->a[i].pExpr;
1474 const char *zType;
1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1476 const char *zOrigDb = 0;
1477 const char *zOrigTab = 0;
1478 const char *zOrigCol = 0;
1479 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1481 /* The vdbe must make its own copy of the column-type and other
1482 ** column specific strings, in case the schema is reset before this
1483 ** virtual machine is deleted.
1485 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1486 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1487 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1488 #else
1489 zType = columnType(&sNC, p, 0, 0, 0, 0);
1490 #endif
1491 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1497 ** Generate code that will tell the VDBE the names of columns
1498 ** in the result set. This information is used to provide the
1499 ** azCol[] values in the callback.
1501 static void generateColumnNames(
1502 Parse *pParse, /* Parser context */
1503 SrcList *pTabList, /* List of tables */
1504 ExprList *pEList /* Expressions defining the result set */
1506 Vdbe *v = pParse->pVdbe;
1507 int i, j;
1508 sqlite3 *db = pParse->db;
1509 int fullNames, shortNames;
1511 #ifndef SQLITE_OMIT_EXPLAIN
1512 /* If this is an EXPLAIN, skip this step */
1513 if( pParse->explain ){
1514 return;
1516 #endif
1518 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1519 pParse->colNamesSet = 1;
1520 fullNames = (db->flags & SQLITE_FullColNames)!=0;
1521 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1522 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1523 for(i=0; i<pEList->nExpr; i++){
1524 Expr *p;
1525 p = pEList->a[i].pExpr;
1526 if( NEVER(p==0) ) continue;
1527 if( pEList->a[i].zName ){
1528 char *zName = pEList->a[i].zName;
1529 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1530 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1531 Table *pTab;
1532 char *zCol;
1533 int iCol = p->iColumn;
1534 for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1535 if( pTabList->a[j].iCursor==p->iTable ) break;
1537 assert( j<pTabList->nSrc );
1538 pTab = pTabList->a[j].pTab;
1539 if( iCol<0 ) iCol = pTab->iPKey;
1540 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1541 if( iCol<0 ){
1542 zCol = "rowid";
1543 }else{
1544 zCol = pTab->aCol[iCol].zName;
1546 if( !shortNames && !fullNames ){
1547 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1548 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1549 }else if( fullNames ){
1550 char *zName = 0;
1551 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1552 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1553 }else{
1554 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1556 }else{
1557 const char *z = pEList->a[i].zSpan;
1558 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1559 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1562 generateColumnTypes(pParse, pTabList, pEList);
1566 ** Given an expression list (which is really the list of expressions
1567 ** that form the result set of a SELECT statement) compute appropriate
1568 ** column names for a table that would hold the expression list.
1570 ** All column names will be unique.
1572 ** Only the column names are computed. Column.zType, Column.zColl,
1573 ** and other fields of Column are zeroed.
1575 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1578 static int selectColumnsFromExprList(
1579 Parse *pParse, /* Parsing context */
1580 ExprList *pEList, /* Expr list from which to derive column names */
1581 i16 *pnCol, /* Write the number of columns here */
1582 Column **paCol /* Write the new column list here */
1584 sqlite3 *db = pParse->db; /* Database connection */
1585 int i, j; /* Loop counters */
1586 int cnt; /* Index added to make the name unique */
1587 Column *aCol, *pCol; /* For looping over result columns */
1588 int nCol; /* Number of columns in the result set */
1589 Expr *p; /* Expression for a single result column */
1590 char *zName; /* Column name */
1591 int nName; /* Size of name in zName[] */
1593 if( pEList ){
1594 nCol = pEList->nExpr;
1595 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1596 testcase( aCol==0 );
1597 }else{
1598 nCol = 0;
1599 aCol = 0;
1601 *pnCol = nCol;
1602 *paCol = aCol;
1604 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1605 /* Get an appropriate name for the column
1607 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1608 if( (zName = pEList->a[i].zName)!=0 ){
1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1610 zName = sqlite3DbStrDup(db, zName);
1611 }else{
1612 Expr *pColExpr = p; /* The expression that is the result column name */
1613 Table *pTab; /* Table associated with this expression */
1614 while( pColExpr->op==TK_DOT ){
1615 pColExpr = pColExpr->pRight;
1616 assert( pColExpr!=0 );
1618 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1619 /* For columns use the column name name */
1620 int iCol = pColExpr->iColumn;
1621 pTab = pColExpr->pTab;
1622 if( iCol<0 ) iCol = pTab->iPKey;
1623 zName = sqlite3MPrintf(db, "%s",
1624 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1625 }else if( pColExpr->op==TK_ID ){
1626 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1627 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1628 }else{
1629 /* Use the original text of the column expression as its name */
1630 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1633 if( db->mallocFailed ){
1634 sqlite3DbFree(db, zName);
1635 break;
1638 /* Make sure the column name is unique. If the name is not unique,
1639 ** append an integer to the name so that it becomes unique.
1641 nName = sqlite3Strlen30(zName);
1642 for(j=cnt=0; j<i; j++){
1643 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1644 char *zNewName;
1645 int k;
1646 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1647 if( k>=0 && zName[k]==':' ) nName = k;
1648 zName[nName] = 0;
1649 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1650 sqlite3DbFree(db, zName);
1651 zName = zNewName;
1652 j = -1;
1653 if( zName==0 ) break;
1656 pCol->zName = zName;
1658 if( db->mallocFailed ){
1659 for(j=0; j<i; j++){
1660 sqlite3DbFree(db, aCol[j].zName);
1662 sqlite3DbFree(db, aCol);
1663 *paCol = 0;
1664 *pnCol = 0;
1665 return SQLITE_NOMEM;
1667 return SQLITE_OK;
1671 ** Add type and collation information to a column list based on
1672 ** a SELECT statement.
1674 ** The column list presumably came from selectColumnNamesFromExprList().
1675 ** The column list has only names, not types or collations. This
1676 ** routine goes through and adds the types and collations.
1678 ** This routine requires that all identifiers in the SELECT
1679 ** statement be resolved.
1681 static void selectAddColumnTypeAndCollation(
1682 Parse *pParse, /* Parsing contexts */
1683 Table *pTab, /* Add column type information to this table */
1684 Select *pSelect /* SELECT used to determine types and collations */
1686 sqlite3 *db = pParse->db;
1687 NameContext sNC;
1688 Column *pCol;
1689 CollSeq *pColl;
1690 int i;
1691 Expr *p;
1692 struct ExprList_item *a;
1693 u64 szAll = 0;
1695 assert( pSelect!=0 );
1696 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1697 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1698 if( db->mallocFailed ) return;
1699 memset(&sNC, 0, sizeof(sNC));
1700 sNC.pSrcList = pSelect->pSrc;
1701 a = pSelect->pEList->a;
1702 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1703 p = a[i].pExpr;
1704 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1705 szAll += pCol->szEst;
1706 pCol->affinity = sqlite3ExprAffinity(p);
1707 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1708 pColl = sqlite3ExprCollSeq(pParse, p);
1709 if( pColl ){
1710 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1713 pTab->szTabRow = sqlite3LogEst(szAll*4);
1717 ** Given a SELECT statement, generate a Table structure that describes
1718 ** the result set of that SELECT.
1720 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1721 Table *pTab;
1722 sqlite3 *db = pParse->db;
1723 int savedFlags;
1725 savedFlags = db->flags;
1726 db->flags &= ~SQLITE_FullColNames;
1727 db->flags |= SQLITE_ShortColNames;
1728 sqlite3SelectPrep(pParse, pSelect, 0);
1729 if( pParse->nErr ) return 0;
1730 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1731 db->flags = savedFlags;
1732 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1733 if( pTab==0 ){
1734 return 0;
1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1737 ** is disabled */
1738 assert( db->lookaside.bEnabled==0 );
1739 pTab->nRef = 1;
1740 pTab->zName = 0;
1741 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1742 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1743 selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1744 pTab->iPKey = -1;
1745 if( db->mallocFailed ){
1746 sqlite3DeleteTable(db, pTab);
1747 return 0;
1749 return pTab;
1753 ** Get a VDBE for the given parser context. Create a new one if necessary.
1754 ** If an error occurs, return NULL and leave a message in pParse.
1756 Vdbe *sqlite3GetVdbe(Parse *pParse){
1757 Vdbe *v = pParse->pVdbe;
1758 if( v==0 ){
1759 v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1760 if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1761 if( pParse->pToplevel==0
1762 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1764 pParse->okConstFactor = 1;
1768 return v;
1773 ** Compute the iLimit and iOffset fields of the SELECT based on the
1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1775 ** that appear in the original SQL statement after the LIMIT and OFFSET
1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1777 ** are the integer memory register numbers for counters used to compute
1778 ** the limit and offset. If there is no limit and/or offset, then
1779 ** iLimit and iOffset are negative.
1781 ** This routine changes the values of iLimit and iOffset only if
1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1783 ** iOffset should have been preset to appropriate default values (zero)
1784 ** prior to calling this routine.
1786 ** The iOffset register (if it exists) is initialized to the value
1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1788 ** iOffset+1 is initialized to LIMIT+OFFSET.
1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1791 ** redefined. The UNION ALL operator uses this property to force
1792 ** the reuse of the same limit and offset registers across multiple
1793 ** SELECT statements.
1795 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1796 Vdbe *v = 0;
1797 int iLimit = 0;
1798 int iOffset;
1799 int addr1, n;
1800 if( p->iLimit ) return;
1803 ** "LIMIT -1" always shows all rows. There is some
1804 ** controversy about what the correct behavior should be.
1805 ** The current implementation interprets "LIMIT 0" to mean
1806 ** no rows.
1808 sqlite3ExprCacheClear(pParse);
1809 assert( p->pOffset==0 || p->pLimit!=0 );
1810 if( p->pLimit ){
1811 p->iLimit = iLimit = ++pParse->nMem;
1812 v = sqlite3GetVdbe(pParse);
1813 assert( v!=0 );
1814 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1815 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1816 VdbeComment((v, "LIMIT counter"));
1817 if( n==0 ){
1818 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1819 }else if( n>=0 && p->nSelectRow>(u64)n ){
1820 p->nSelectRow = n;
1822 }else{
1823 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1824 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1825 VdbeComment((v, "LIMIT counter"));
1826 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1828 if( p->pOffset ){
1829 p->iOffset = iOffset = ++pParse->nMem;
1830 pParse->nMem++; /* Allocate an extra register for limit+offset */
1831 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1832 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1833 VdbeComment((v, "OFFSET counter"));
1834 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1836 sqlite3VdbeJumpHere(v, addr1);
1837 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1838 VdbeComment((v, "LIMIT+OFFSET"));
1839 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1840 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1841 sqlite3VdbeJumpHere(v, addr1);
1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1848 ** Return the appropriate collating sequence for the iCol-th column of
1849 ** the result set for the compound-select statement "p". Return NULL if
1850 ** the column has no default collating sequence.
1852 ** The collating sequence for the compound select is taken from the
1853 ** left-most term of the select that has a collating sequence.
1855 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1856 CollSeq *pRet;
1857 if( p->pPrior ){
1858 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1859 }else{
1860 pRet = 0;
1862 assert( iCol>=0 );
1863 if( pRet==0 && iCol<p->pEList->nExpr ){
1864 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1866 return pRet;
1870 ** The select statement passed as the second parameter is a compound SELECT
1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1872 ** structure suitable for implementing the ORDER BY.
1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1875 ** function is responsible for ensuring that this structure is eventually
1876 ** freed.
1878 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1879 ExprList *pOrderBy = p->pOrderBy;
1880 int nOrderBy = p->pOrderBy->nExpr;
1881 sqlite3 *db = pParse->db;
1882 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1883 if( pRet ){
1884 int i;
1885 for(i=0; i<nOrderBy; i++){
1886 struct ExprList_item *pItem = &pOrderBy->a[i];
1887 Expr *pTerm = pItem->pExpr;
1888 CollSeq *pColl;
1890 if( pTerm->flags & EP_Collate ){
1891 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1892 }else{
1893 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1894 if( pColl==0 ) pColl = db->pDfltColl;
1895 pOrderBy->a[i].pExpr =
1896 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1898 assert( sqlite3KeyInfoIsWriteable(pRet) );
1899 pRet->aColl[i] = pColl;
1900 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1904 return pRet;
1907 #ifndef SQLITE_OMIT_CTE
1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1910 ** query of the form:
1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1913 ** \___________/ \_______________/
1914 ** p->pPrior p
1917 ** There is exactly one reference to the recursive-table in the FROM clause
1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1920 ** The setup-query runs once to generate an initial set of rows that go
1921 ** into a Queue table. Rows are extracted from the Queue table one by
1922 ** one. Each row extracted from Queue is output to pDest. Then the single
1923 ** extracted row (now in the iCurrent table) becomes the content of the
1924 ** recursive-table for a recursive-query run. The output of the recursive-query
1925 ** is added back into the Queue table. Then another row is extracted from Queue
1926 ** and the iteration continues until the Queue table is empty.
1928 ** If the compound query operator is UNION then no duplicate rows are ever
1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
1930 ** that have ever been inserted into Queue and causes duplicates to be
1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1934 ** ORDER BY order and the first entry is extracted for each cycle. Without
1935 ** an ORDER BY, the Queue table is just a FIFO.
1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a
1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
1940 ** with a positive value, then the first OFFSET outputs are discarded rather
1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
1942 ** rows have been skipped.
1944 static void generateWithRecursiveQuery(
1945 Parse *pParse, /* Parsing context */
1946 Select *p, /* The recursive SELECT to be coded */
1947 SelectDest *pDest /* What to do with query results */
1949 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
1950 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
1951 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
1952 Select *pSetup = p->pPrior; /* The setup query */
1953 int addrTop; /* Top of the loop */
1954 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
1955 int iCurrent = 0; /* The Current table */
1956 int regCurrent; /* Register holding Current table */
1957 int iQueue; /* The Queue table */
1958 int iDistinct = 0; /* To ensure unique results if UNION */
1959 int eDest = SRT_Fifo; /* How to write to Queue */
1960 SelectDest destQueue; /* SelectDest targetting the Queue table */
1961 int i; /* Loop counter */
1962 int rc; /* Result code */
1963 ExprList *pOrderBy; /* The ORDER BY clause */
1964 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */
1965 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
1967 /* Obtain authorization to do a recursive query */
1968 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1970 /* Process the LIMIT and OFFSET clauses, if they exist */
1971 addrBreak = sqlite3VdbeMakeLabel(v);
1972 computeLimitRegisters(pParse, p, addrBreak);
1973 pLimit = p->pLimit;
1974 pOffset = p->pOffset;
1975 regLimit = p->iLimit;
1976 regOffset = p->iOffset;
1977 p->pLimit = p->pOffset = 0;
1978 p->iLimit = p->iOffset = 0;
1979 pOrderBy = p->pOrderBy;
1981 /* Locate the cursor number of the Current table */
1982 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1983 if( pSrc->a[i].isRecursive ){
1984 iCurrent = pSrc->a[i].iCursor;
1985 break;
1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
1990 ** the Distinct table must be exactly one greater than Queue in order
1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1992 iQueue = pParse->nTab++;
1993 if( p->op==TK_UNION ){
1994 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1995 iDistinct = pParse->nTab++;
1996 }else{
1997 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1999 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2001 /* Allocate cursors for Current, Queue, and Distinct. */
2002 regCurrent = ++pParse->nMem;
2003 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2004 if( pOrderBy ){
2005 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2006 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2007 (char*)pKeyInfo, P4_KEYINFO);
2008 destQueue.pOrderBy = pOrderBy;
2009 }else{
2010 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2012 VdbeComment((v, "Queue table"));
2013 if( iDistinct ){
2014 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2015 p->selFlags |= SF_UsesEphemeral;
2018 /* Detach the ORDER BY clause from the compound SELECT */
2019 p->pOrderBy = 0;
2021 /* Store the results of the setup-query in Queue. */
2022 pSetup->pNext = 0;
2023 rc = sqlite3Select(pParse, pSetup, &destQueue);
2024 pSetup->pNext = p;
2025 if( rc ) goto end_of_recursive_query;
2027 /* Find the next row in the Queue and output that row */
2028 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2030 /* Transfer the next row in Queue over to Current */
2031 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2032 if( pOrderBy ){
2033 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2034 }else{
2035 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2037 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2039 /* Output the single row in Current */
2040 addrCont = sqlite3VdbeMakeLabel(v);
2041 codeOffset(v, regOffset, addrCont);
2042 selectInnerLoop(pParse, p, p->pEList, iCurrent,
2043 0, 0, pDest, addrCont, addrBreak);
2044 if( regLimit ){
2045 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
2046 VdbeCoverage(v);
2048 sqlite3VdbeResolveLabel(v, addrCont);
2050 /* Execute the recursive SELECT taking the single row in Current as
2051 ** the value for the recursive-table. Store the results in the Queue.
2053 p->pPrior = 0;
2054 sqlite3Select(pParse, p, &destQueue);
2055 assert( p->pPrior==0 );
2056 p->pPrior = pSetup;
2058 /* Keep running the loop until the Queue is empty */
2059 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2060 sqlite3VdbeResolveLabel(v, addrBreak);
2062 end_of_recursive_query:
2063 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2064 p->pOrderBy = pOrderBy;
2065 p->pLimit = pLimit;
2066 p->pOffset = pOffset;
2067 return;
2069 #endif /* SQLITE_OMIT_CTE */
2071 /* Forward references */
2072 static int multiSelectOrderBy(
2073 Parse *pParse, /* Parsing context */
2074 Select *p, /* The right-most of SELECTs to be coded */
2075 SelectDest *pDest /* What to do with query results */
2080 ** This routine is called to process a compound query form from
2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2082 ** INTERSECT
2084 ** "p" points to the right-most of the two queries. the query on the
2085 ** left is p->pPrior. The left query could also be a compound query
2086 ** in which case this routine will be called recursively.
2088 ** The results of the total query are to be written into a destination
2089 ** of type eDest with parameter iParm.
2091 ** Example 1: Consider a three-way compound SQL statement.
2093 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2095 ** This statement is parsed up as follows:
2097 ** SELECT c FROM t3
2098 ** |
2099 ** `-----> SELECT b FROM t2
2100 ** |
2101 ** `------> SELECT a FROM t1
2103 ** The arrows in the diagram above represent the Select.pPrior pointer.
2104 ** So if this routine is called with p equal to the t3 query, then
2105 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2107 ** Notice that because of the way SQLite parses compound SELECTs, the
2108 ** individual selects always group from left to right.
2110 static int multiSelect(
2111 Parse *pParse, /* Parsing context */
2112 Select *p, /* The right-most of SELECTs to be coded */
2113 SelectDest *pDest /* What to do with query results */
2115 int rc = SQLITE_OK; /* Success code from a subroutine */
2116 Select *pPrior; /* Another SELECT immediately to our left */
2117 Vdbe *v; /* Generate code to this VDBE */
2118 SelectDest dest; /* Alternative data destination */
2119 Select *pDelete = 0; /* Chain of simple selects to delete */
2120 sqlite3 *db; /* Database connection */
2121 #ifndef SQLITE_OMIT_EXPLAIN
2122 int iSub1 = 0; /* EQP id of left-hand query */
2123 int iSub2 = 0; /* EQP id of right-hand query */
2124 #endif
2126 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2127 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2129 assert( p && p->pPrior ); /* Calling function guarantees this much */
2130 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2131 db = pParse->db;
2132 pPrior = p->pPrior;
2133 dest = *pDest;
2134 if( pPrior->pOrderBy ){
2135 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2136 selectOpName(p->op));
2137 rc = 1;
2138 goto multi_select_end;
2140 if( pPrior->pLimit ){
2141 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2142 selectOpName(p->op));
2143 rc = 1;
2144 goto multi_select_end;
2147 v = sqlite3GetVdbe(pParse);
2148 assert( v!=0 ); /* The VDBE already created by calling function */
2150 /* Create the destination temporary table if necessary
2152 if( dest.eDest==SRT_EphemTab ){
2153 assert( p->pEList );
2154 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2155 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2156 dest.eDest = SRT_Table;
2159 /* Make sure all SELECTs in the statement have the same number of elements
2160 ** in their result sets.
2162 assert( p->pEList && pPrior->pEList );
2163 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2164 if( p->selFlags & SF_Values ){
2165 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2166 }else{
2167 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2168 " do not have the same number of result columns", selectOpName(p->op));
2170 rc = 1;
2171 goto multi_select_end;
2174 #ifndef SQLITE_OMIT_CTE
2175 if( p->selFlags & SF_Recursive ){
2176 generateWithRecursiveQuery(pParse, p, &dest);
2177 }else
2178 #endif
2180 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2182 if( p->pOrderBy ){
2183 return multiSelectOrderBy(pParse, p, pDest);
2184 }else
2186 /* Generate code for the left and right SELECT statements.
2188 switch( p->op ){
2189 case TK_ALL: {
2190 int addr = 0;
2191 int nLimit;
2192 assert( !pPrior->pLimit );
2193 pPrior->iLimit = p->iLimit;
2194 pPrior->iOffset = p->iOffset;
2195 pPrior->pLimit = p->pLimit;
2196 pPrior->pOffset = p->pOffset;
2197 explainSetInteger(iSub1, pParse->iNextSelectId);
2198 rc = sqlite3Select(pParse, pPrior, &dest);
2199 p->pLimit = 0;
2200 p->pOffset = 0;
2201 if( rc ){
2202 goto multi_select_end;
2204 p->pPrior = 0;
2205 p->iLimit = pPrior->iLimit;
2206 p->iOffset = pPrior->iOffset;
2207 if( p->iLimit ){
2208 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2209 VdbeComment((v, "Jump ahead if LIMIT reached"));
2211 explainSetInteger(iSub2, pParse->iNextSelectId);
2212 rc = sqlite3Select(pParse, p, &dest);
2213 testcase( rc!=SQLITE_OK );
2214 pDelete = p->pPrior;
2215 p->pPrior = pPrior;
2216 p->nSelectRow += pPrior->nSelectRow;
2217 if( pPrior->pLimit
2218 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2219 && nLimit>0 && p->nSelectRow > (u64)nLimit
2221 p->nSelectRow = nLimit;
2223 if( addr ){
2224 sqlite3VdbeJumpHere(v, addr);
2226 break;
2228 case TK_EXCEPT:
2229 case TK_UNION: {
2230 int unionTab; /* Cursor number of the temporary table holding result */
2231 u8 op = 0; /* One of the SRT_ operations to apply to self */
2232 int priorOp; /* The SRT_ operation to apply to prior selects */
2233 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2234 int addr;
2235 SelectDest uniondest;
2237 testcase( p->op==TK_EXCEPT );
2238 testcase( p->op==TK_UNION );
2239 priorOp = SRT_Union;
2240 if( dest.eDest==priorOp ){
2241 /* We can reuse a temporary table generated by a SELECT to our
2242 ** right.
2244 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2245 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
2246 unionTab = dest.iSDParm;
2247 }else{
2248 /* We will need to create our own temporary table to hold the
2249 ** intermediate results.
2251 unionTab = pParse->nTab++;
2252 assert( p->pOrderBy==0 );
2253 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2254 assert( p->addrOpenEphm[0] == -1 );
2255 p->addrOpenEphm[0] = addr;
2256 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2257 assert( p->pEList );
2260 /* Code the SELECT statements to our left
2262 assert( !pPrior->pOrderBy );
2263 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2264 explainSetInteger(iSub1, pParse->iNextSelectId);
2265 rc = sqlite3Select(pParse, pPrior, &uniondest);
2266 if( rc ){
2267 goto multi_select_end;
2270 /* Code the current SELECT statement
2272 if( p->op==TK_EXCEPT ){
2273 op = SRT_Except;
2274 }else{
2275 assert( p->op==TK_UNION );
2276 op = SRT_Union;
2278 p->pPrior = 0;
2279 pLimit = p->pLimit;
2280 p->pLimit = 0;
2281 pOffset = p->pOffset;
2282 p->pOffset = 0;
2283 uniondest.eDest = op;
2284 explainSetInteger(iSub2, pParse->iNextSelectId);
2285 rc = sqlite3Select(pParse, p, &uniondest);
2286 testcase( rc!=SQLITE_OK );
2287 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2288 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2289 sqlite3ExprListDelete(db, p->pOrderBy);
2290 pDelete = p->pPrior;
2291 p->pPrior = pPrior;
2292 p->pOrderBy = 0;
2293 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2294 sqlite3ExprDelete(db, p->pLimit);
2295 p->pLimit = pLimit;
2296 p->pOffset = pOffset;
2297 p->iLimit = 0;
2298 p->iOffset = 0;
2300 /* Convert the data in the temporary table into whatever form
2301 ** it is that we currently need.
2303 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2304 if( dest.eDest!=priorOp ){
2305 int iCont, iBreak, iStart;
2306 assert( p->pEList );
2307 if( dest.eDest==SRT_Output ){
2308 Select *pFirst = p;
2309 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2310 generateColumnNames(pParse, 0, pFirst->pEList);
2312 iBreak = sqlite3VdbeMakeLabel(v);
2313 iCont = sqlite3VdbeMakeLabel(v);
2314 computeLimitRegisters(pParse, p, iBreak);
2315 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2316 iStart = sqlite3VdbeCurrentAddr(v);
2317 selectInnerLoop(pParse, p, p->pEList, unionTab,
2318 0, 0, &dest, iCont, iBreak);
2319 sqlite3VdbeResolveLabel(v, iCont);
2320 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2321 sqlite3VdbeResolveLabel(v, iBreak);
2322 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2324 break;
2326 default: assert( p->op==TK_INTERSECT ); {
2327 int tab1, tab2;
2328 int iCont, iBreak, iStart;
2329 Expr *pLimit, *pOffset;
2330 int addr;
2331 SelectDest intersectdest;
2332 int r1;
2334 /* INTERSECT is different from the others since it requires
2335 ** two temporary tables. Hence it has its own case. Begin
2336 ** by allocating the tables we will need.
2338 tab1 = pParse->nTab++;
2339 tab2 = pParse->nTab++;
2340 assert( p->pOrderBy==0 );
2342 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2343 assert( p->addrOpenEphm[0] == -1 );
2344 p->addrOpenEphm[0] = addr;
2345 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2346 assert( p->pEList );
2348 /* Code the SELECTs to our left into temporary table "tab1".
2350 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2351 explainSetInteger(iSub1, pParse->iNextSelectId);
2352 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2353 if( rc ){
2354 goto multi_select_end;
2357 /* Code the current SELECT into temporary table "tab2"
2359 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2360 assert( p->addrOpenEphm[1] == -1 );
2361 p->addrOpenEphm[1] = addr;
2362 p->pPrior = 0;
2363 pLimit = p->pLimit;
2364 p->pLimit = 0;
2365 pOffset = p->pOffset;
2366 p->pOffset = 0;
2367 intersectdest.iSDParm = tab2;
2368 explainSetInteger(iSub2, pParse->iNextSelectId);
2369 rc = sqlite3Select(pParse, p, &intersectdest);
2370 testcase( rc!=SQLITE_OK );
2371 pDelete = p->pPrior;
2372 p->pPrior = pPrior;
2373 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2374 sqlite3ExprDelete(db, p->pLimit);
2375 p->pLimit = pLimit;
2376 p->pOffset = pOffset;
2378 /* Generate code to take the intersection of the two temporary
2379 ** tables.
2381 assert( p->pEList );
2382 if( dest.eDest==SRT_Output ){
2383 Select *pFirst = p;
2384 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2385 generateColumnNames(pParse, 0, pFirst->pEList);
2387 iBreak = sqlite3VdbeMakeLabel(v);
2388 iCont = sqlite3VdbeMakeLabel(v);
2389 computeLimitRegisters(pParse, p, iBreak);
2390 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2391 r1 = sqlite3GetTempReg(pParse);
2392 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2393 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2394 sqlite3ReleaseTempReg(pParse, r1);
2395 selectInnerLoop(pParse, p, p->pEList, tab1,
2396 0, 0, &dest, iCont, iBreak);
2397 sqlite3VdbeResolveLabel(v, iCont);
2398 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2399 sqlite3VdbeResolveLabel(v, iBreak);
2400 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2401 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2402 break;
2406 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2408 /* Compute collating sequences used by
2409 ** temporary tables needed to implement the compound select.
2410 ** Attach the KeyInfo structure to all temporary tables.
2412 ** This section is run by the right-most SELECT statement only.
2413 ** SELECT statements to the left always skip this part. The right-most
2414 ** SELECT might also skip this part if it has no ORDER BY clause and
2415 ** no temp tables are required.
2417 if( p->selFlags & SF_UsesEphemeral ){
2418 int i; /* Loop counter */
2419 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2420 Select *pLoop; /* For looping through SELECT statements */
2421 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2422 int nCol; /* Number of columns in result set */
2424 assert( p->pNext==0 );
2425 nCol = p->pEList->nExpr;
2426 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2427 if( !pKeyInfo ){
2428 rc = SQLITE_NOMEM;
2429 goto multi_select_end;
2431 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2432 *apColl = multiSelectCollSeq(pParse, p, i);
2433 if( 0==*apColl ){
2434 *apColl = db->pDfltColl;
2438 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2439 for(i=0; i<2; i++){
2440 int addr = pLoop->addrOpenEphm[i];
2441 if( addr<0 ){
2442 /* If [0] is unused then [1] is also unused. So we can
2443 ** always safely abort as soon as the first unused slot is found */
2444 assert( pLoop->addrOpenEphm[1]<0 );
2445 break;
2447 sqlite3VdbeChangeP2(v, addr, nCol);
2448 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2449 P4_KEYINFO);
2450 pLoop->addrOpenEphm[i] = -1;
2453 sqlite3KeyInfoUnref(pKeyInfo);
2456 multi_select_end:
2457 pDest->iSdst = dest.iSdst;
2458 pDest->nSdst = dest.nSdst;
2459 sqlite3SelectDelete(db, pDelete);
2460 return rc;
2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2465 ** Code an output subroutine for a coroutine implementation of a
2466 ** SELECT statment.
2468 ** The data to be output is contained in pIn->iSdst. There are
2469 ** pIn->nSdst columns to be output. pDest is where the output should
2470 ** be sent.
2472 ** regReturn is the number of the register holding the subroutine
2473 ** return address.
2475 ** If regPrev>0 then it is the first register in a vector that
2476 ** records the previous output. mem[regPrev] is a flag that is false
2477 ** if there has been no previous output. If regPrev>0 then code is
2478 ** generated to suppress duplicates. pKeyInfo is used for comparing
2479 ** keys.
2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2482 ** iBreak.
2484 static int generateOutputSubroutine(
2485 Parse *pParse, /* Parsing context */
2486 Select *p, /* The SELECT statement */
2487 SelectDest *pIn, /* Coroutine supplying data */
2488 SelectDest *pDest, /* Where to send the data */
2489 int regReturn, /* The return address register */
2490 int regPrev, /* Previous result register. No uniqueness if 0 */
2491 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2492 int iBreak /* Jump here if we hit the LIMIT */
2494 Vdbe *v = pParse->pVdbe;
2495 int iContinue;
2496 int addr;
2498 addr = sqlite3VdbeCurrentAddr(v);
2499 iContinue = sqlite3VdbeMakeLabel(v);
2501 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2503 if( regPrev ){
2504 int j1, j2;
2505 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2506 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2507 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2508 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2509 sqlite3VdbeJumpHere(v, j1);
2510 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2511 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2513 if( pParse->db->mallocFailed ) return 0;
2515 /* Suppress the first OFFSET entries if there is an OFFSET clause
2517 codeOffset(v, p->iOffset, iContinue);
2519 switch( pDest->eDest ){
2520 /* Store the result as data using a unique key.
2522 case SRT_Table:
2523 case SRT_EphemTab: {
2524 int r1 = sqlite3GetTempReg(pParse);
2525 int r2 = sqlite3GetTempReg(pParse);
2526 testcase( pDest->eDest==SRT_Table );
2527 testcase( pDest->eDest==SRT_EphemTab );
2528 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2529 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2530 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2531 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2532 sqlite3ReleaseTempReg(pParse, r2);
2533 sqlite3ReleaseTempReg(pParse, r1);
2534 break;
2537 #ifndef SQLITE_OMIT_SUBQUERY
2538 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2539 ** then there should be a single item on the stack. Write this
2540 ** item into the set table with bogus data.
2542 case SRT_Set: {
2543 int r1;
2544 assert( pIn->nSdst==1 );
2545 pDest->affSdst =
2546 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2547 r1 = sqlite3GetTempReg(pParse);
2548 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2549 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2550 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2551 sqlite3ReleaseTempReg(pParse, r1);
2552 break;
2555 #if 0 /* Never occurs on an ORDER BY query */
2556 /* If any row exist in the result set, record that fact and abort.
2558 case SRT_Exists: {
2559 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2560 /* The LIMIT clause will terminate the loop for us */
2561 break;
2563 #endif
2565 /* If this is a scalar select that is part of an expression, then
2566 ** store the results in the appropriate memory cell and break out
2567 ** of the scan loop.
2569 case SRT_Mem: {
2570 assert( pIn->nSdst==1 );
2571 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2572 /* The LIMIT clause will jump out of the loop for us */
2573 break;
2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2577 /* The results are stored in a sequence of registers
2578 ** starting at pDest->iSdst. Then the co-routine yields.
2580 case SRT_Coroutine: {
2581 if( pDest->iSdst==0 ){
2582 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2583 pDest->nSdst = pIn->nSdst;
2585 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2586 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2587 break;
2590 /* If none of the above, then the result destination must be
2591 ** SRT_Output. This routine is never called with any other
2592 ** destination other than the ones handled above or SRT_Output.
2594 ** For SRT_Output, results are stored in a sequence of registers.
2595 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2596 ** return the next row of result.
2598 default: {
2599 assert( pDest->eDest==SRT_Output );
2600 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2601 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2602 break;
2606 /* Jump to the end of the loop if the LIMIT is reached.
2608 if( p->iLimit ){
2609 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2612 /* Generate the subroutine return
2614 sqlite3VdbeResolveLabel(v, iContinue);
2615 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2617 return addr;
2621 ** Alternative compound select code generator for cases when there
2622 ** is an ORDER BY clause.
2624 ** We assume a query of the following form:
2626 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2628 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2629 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2630 ** co-routines. Then run the co-routines in parallel and merge the results
2631 ** into the output. In addition to the two coroutines (called selectA and
2632 ** selectB) there are 7 subroutines:
2634 ** outA: Move the output of the selectA coroutine into the output
2635 ** of the compound query.
2637 ** outB: Move the output of the selectB coroutine into the output
2638 ** of the compound query. (Only generated for UNION and
2639 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2640 ** appears only in B.)
2642 ** AltB: Called when there is data from both coroutines and A<B.
2644 ** AeqB: Called when there is data from both coroutines and A==B.
2646 ** AgtB: Called when there is data from both coroutines and A>B.
2648 ** EofA: Called when data is exhausted from selectA.
2650 ** EofB: Called when data is exhausted from selectB.
2652 ** The implementation of the latter five subroutines depend on which
2653 ** <operator> is used:
2656 ** UNION ALL UNION EXCEPT INTERSECT
2657 ** ------------- ----------------- -------------- -----------------
2658 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2660 ** AeqB: outA, nextA nextA nextA outA, nextA
2662 ** AgtB: outB, nextB outB, nextB nextB nextB
2664 ** EofA: outB, nextB outB, nextB halt halt
2666 ** EofB: outA, nextA outA, nextA outA, nextA halt
2668 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2669 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2670 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2671 ** following nextX causes a jump to the end of the select processing.
2673 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2674 ** within the output subroutine. The regPrev register set holds the previously
2675 ** output value. A comparison is made against this value and the output
2676 ** is skipped if the next results would be the same as the previous.
2678 ** The implementation plan is to implement the two coroutines and seven
2679 ** subroutines first, then put the control logic at the bottom. Like this:
2681 ** goto Init
2682 ** coA: coroutine for left query (A)
2683 ** coB: coroutine for right query (B)
2684 ** outA: output one row of A
2685 ** outB: output one row of B (UNION and UNION ALL only)
2686 ** EofA: ...
2687 ** EofB: ...
2688 ** AltB: ...
2689 ** AeqB: ...
2690 ** AgtB: ...
2691 ** Init: initialize coroutine registers
2692 ** yield coA
2693 ** if eof(A) goto EofA
2694 ** yield coB
2695 ** if eof(B) goto EofB
2696 ** Cmpr: Compare A, B
2697 ** Jump AltB, AeqB, AgtB
2698 ** End: ...
2700 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2701 ** actually called using Gosub and they do not Return. EofA and EofB loop
2702 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2703 ** and AgtB jump to either L2 or to one of EofA or EofB.
2705 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2706 static int multiSelectOrderBy(
2707 Parse *pParse, /* Parsing context */
2708 Select *p, /* The right-most of SELECTs to be coded */
2709 SelectDest *pDest /* What to do with query results */
2711 int i, j; /* Loop counters */
2712 Select *pPrior; /* Another SELECT immediately to our left */
2713 Vdbe *v; /* Generate code to this VDBE */
2714 SelectDest destA; /* Destination for coroutine A */
2715 SelectDest destB; /* Destination for coroutine B */
2716 int regAddrA; /* Address register for select-A coroutine */
2717 int regAddrB; /* Address register for select-B coroutine */
2718 int addrSelectA; /* Address of the select-A coroutine */
2719 int addrSelectB; /* Address of the select-B coroutine */
2720 int regOutA; /* Address register for the output-A subroutine */
2721 int regOutB; /* Address register for the output-B subroutine */
2722 int addrOutA; /* Address of the output-A subroutine */
2723 int addrOutB = 0; /* Address of the output-B subroutine */
2724 int addrEofA; /* Address of the select-A-exhausted subroutine */
2725 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2726 int addrEofB; /* Address of the select-B-exhausted subroutine */
2727 int addrAltB; /* Address of the A<B subroutine */
2728 int addrAeqB; /* Address of the A==B subroutine */
2729 int addrAgtB; /* Address of the A>B subroutine */
2730 int regLimitA; /* Limit register for select-A */
2731 int regLimitB; /* Limit register for select-A */
2732 int regPrev; /* A range of registers to hold previous output */
2733 int savedLimit; /* Saved value of p->iLimit */
2734 int savedOffset; /* Saved value of p->iOffset */
2735 int labelCmpr; /* Label for the start of the merge algorithm */
2736 int labelEnd; /* Label for the end of the overall SELECT stmt */
2737 int j1; /* Jump instructions that get retargetted */
2738 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2739 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2740 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2741 sqlite3 *db; /* Database connection */
2742 ExprList *pOrderBy; /* The ORDER BY clause */
2743 int nOrderBy; /* Number of terms in the ORDER BY clause */
2744 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2745 #ifndef SQLITE_OMIT_EXPLAIN
2746 int iSub1; /* EQP id of left-hand query */
2747 int iSub2; /* EQP id of right-hand query */
2748 #endif
2750 assert( p->pOrderBy!=0 );
2751 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2752 db = pParse->db;
2753 v = pParse->pVdbe;
2754 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2755 labelEnd = sqlite3VdbeMakeLabel(v);
2756 labelCmpr = sqlite3VdbeMakeLabel(v);
2759 /* Patch up the ORDER BY clause
2761 op = p->op;
2762 pPrior = p->pPrior;
2763 assert( pPrior->pOrderBy==0 );
2764 pOrderBy = p->pOrderBy;
2765 assert( pOrderBy );
2766 nOrderBy = pOrderBy->nExpr;
2768 /* For operators other than UNION ALL we have to make sure that
2769 ** the ORDER BY clause covers every term of the result set. Add
2770 ** terms to the ORDER BY clause as necessary.
2772 if( op!=TK_ALL ){
2773 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2774 struct ExprList_item *pItem;
2775 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2776 assert( pItem->u.x.iOrderByCol>0 );
2777 if( pItem->u.x.iOrderByCol==i ) break;
2779 if( j==nOrderBy ){
2780 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2781 if( pNew==0 ) return SQLITE_NOMEM;
2782 pNew->flags |= EP_IntValue;
2783 pNew->u.iValue = i;
2784 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2785 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2790 /* Compute the comparison permutation and keyinfo that is used with
2791 ** the permutation used to determine if the next
2792 ** row of results comes from selectA or selectB. Also add explicit
2793 ** collations to the ORDER BY clause terms so that when the subqueries
2794 ** to the right and the left are evaluated, they use the correct
2795 ** collation.
2797 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2798 if( aPermute ){
2799 struct ExprList_item *pItem;
2800 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2801 assert( pItem->u.x.iOrderByCol>0
2802 && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2803 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2805 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2806 }else{
2807 pKeyMerge = 0;
2810 /* Reattach the ORDER BY clause to the query.
2812 p->pOrderBy = pOrderBy;
2813 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2815 /* Allocate a range of temporary registers and the KeyInfo needed
2816 ** for the logic that removes duplicate result rows when the
2817 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2819 if( op==TK_ALL ){
2820 regPrev = 0;
2821 }else{
2822 int nExpr = p->pEList->nExpr;
2823 assert( nOrderBy>=nExpr || db->mallocFailed );
2824 regPrev = pParse->nMem+1;
2825 pParse->nMem += nExpr+1;
2826 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2827 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2828 if( pKeyDup ){
2829 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2830 for(i=0; i<nExpr; i++){
2831 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2832 pKeyDup->aSortOrder[i] = 0;
2837 /* Separate the left and the right query from one another
2839 p->pPrior = 0;
2840 pPrior->pNext = 0;
2841 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2842 if( pPrior->pPrior==0 ){
2843 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2846 /* Compute the limit registers */
2847 computeLimitRegisters(pParse, p, labelEnd);
2848 if( p->iLimit && op==TK_ALL ){
2849 regLimitA = ++pParse->nMem;
2850 regLimitB = ++pParse->nMem;
2851 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2852 regLimitA);
2853 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2854 }else{
2855 regLimitA = regLimitB = 0;
2857 sqlite3ExprDelete(db, p->pLimit);
2858 p->pLimit = 0;
2859 sqlite3ExprDelete(db, p->pOffset);
2860 p->pOffset = 0;
2862 regAddrA = ++pParse->nMem;
2863 regAddrB = ++pParse->nMem;
2864 regOutA = ++pParse->nMem;
2865 regOutB = ++pParse->nMem;
2866 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2867 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2869 /* Generate a coroutine to evaluate the SELECT statement to the
2870 ** left of the compound operator - the "A" select.
2872 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2873 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2874 VdbeComment((v, "left SELECT"));
2875 pPrior->iLimit = regLimitA;
2876 explainSetInteger(iSub1, pParse->iNextSelectId);
2877 sqlite3Select(pParse, pPrior, &destA);
2878 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2879 sqlite3VdbeJumpHere(v, j1);
2881 /* Generate a coroutine to evaluate the SELECT statement on
2882 ** the right - the "B" select
2884 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2885 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2886 VdbeComment((v, "right SELECT"));
2887 savedLimit = p->iLimit;
2888 savedOffset = p->iOffset;
2889 p->iLimit = regLimitB;
2890 p->iOffset = 0;
2891 explainSetInteger(iSub2, pParse->iNextSelectId);
2892 sqlite3Select(pParse, p, &destB);
2893 p->iLimit = savedLimit;
2894 p->iOffset = savedOffset;
2895 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2897 /* Generate a subroutine that outputs the current row of the A
2898 ** select as the next output row of the compound select.
2900 VdbeNoopComment((v, "Output routine for A"));
2901 addrOutA = generateOutputSubroutine(pParse,
2902 p, &destA, pDest, regOutA,
2903 regPrev, pKeyDup, labelEnd);
2905 /* Generate a subroutine that outputs the current row of the B
2906 ** select as the next output row of the compound select.
2908 if( op==TK_ALL || op==TK_UNION ){
2909 VdbeNoopComment((v, "Output routine for B"));
2910 addrOutB = generateOutputSubroutine(pParse,
2911 p, &destB, pDest, regOutB,
2912 regPrev, pKeyDup, labelEnd);
2914 sqlite3KeyInfoUnref(pKeyDup);
2916 /* Generate a subroutine to run when the results from select A
2917 ** are exhausted and only data in select B remains.
2919 if( op==TK_EXCEPT || op==TK_INTERSECT ){
2920 addrEofA_noB = addrEofA = labelEnd;
2921 }else{
2922 VdbeNoopComment((v, "eof-A subroutine"));
2923 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2924 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2925 VdbeCoverage(v);
2926 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2927 p->nSelectRow += pPrior->nSelectRow;
2930 /* Generate a subroutine to run when the results from select B
2931 ** are exhausted and only data in select A remains.
2933 if( op==TK_INTERSECT ){
2934 addrEofB = addrEofA;
2935 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2936 }else{
2937 VdbeNoopComment((v, "eof-B subroutine"));
2938 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2939 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2940 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2943 /* Generate code to handle the case of A<B
2945 VdbeNoopComment((v, "A-lt-B subroutine"));
2946 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2947 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2948 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2950 /* Generate code to handle the case of A==B
2952 if( op==TK_ALL ){
2953 addrAeqB = addrAltB;
2954 }else if( op==TK_INTERSECT ){
2955 addrAeqB = addrAltB;
2956 addrAltB++;
2957 }else{
2958 VdbeNoopComment((v, "A-eq-B subroutine"));
2959 addrAeqB =
2960 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2961 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2964 /* Generate code to handle the case of A>B
2966 VdbeNoopComment((v, "A-gt-B subroutine"));
2967 addrAgtB = sqlite3VdbeCurrentAddr(v);
2968 if( op==TK_ALL || op==TK_UNION ){
2969 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2971 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2974 /* This code runs once to initialize everything.
2976 sqlite3VdbeJumpHere(v, j1);
2977 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2978 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2980 /* Implement the main merge loop
2982 sqlite3VdbeResolveLabel(v, labelCmpr);
2983 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2984 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2985 (char*)pKeyMerge, P4_KEYINFO);
2986 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2987 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2989 /* Jump to the this point in order to terminate the query.
2991 sqlite3VdbeResolveLabel(v, labelEnd);
2993 /* Set the number of output columns
2995 if( pDest->eDest==SRT_Output ){
2996 Select *pFirst = pPrior;
2997 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2998 generateColumnNames(pParse, 0, pFirst->pEList);
3001 /* Reassembly the compound query so that it will be freed correctly
3002 ** by the calling function */
3003 if( p->pPrior ){
3004 sqlite3SelectDelete(db, p->pPrior);
3006 p->pPrior = pPrior;
3007 pPrior->pNext = p;
3009 /*** TBD: Insert subroutine calls to close cursors on incomplete
3010 **** subqueries ****/
3011 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3012 return SQLITE_OK;
3014 #endif
3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3017 /* Forward Declarations */
3018 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3019 static void substSelect(sqlite3*, Select *, int, ExprList *);
3022 ** Scan through the expression pExpr. Replace every reference to
3023 ** a column in table number iTable with a copy of the iColumn-th
3024 ** entry in pEList. (But leave references to the ROWID column
3025 ** unchanged.)
3027 ** This routine is part of the flattening procedure. A subquery
3028 ** whose result set is defined by pEList appears as entry in the
3029 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3030 ** FORM clause entry is iTable. This routine make the necessary
3031 ** changes to pExpr so that it refers directly to the source table
3032 ** of the subquery rather the result set of the subquery.
3034 static Expr *substExpr(
3035 sqlite3 *db, /* Report malloc errors to this connection */
3036 Expr *pExpr, /* Expr in which substitution occurs */
3037 int iTable, /* Table to be substituted */
3038 ExprList *pEList /* Substitute expressions */
3040 if( pExpr==0 ) return 0;
3041 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3042 if( pExpr->iColumn<0 ){
3043 pExpr->op = TK_NULL;
3044 }else{
3045 Expr *pNew;
3046 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3047 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3048 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3049 sqlite3ExprDelete(db, pExpr);
3050 pExpr = pNew;
3052 }else{
3053 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3054 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3055 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3056 substSelect(db, pExpr->x.pSelect, iTable, pEList);
3057 }else{
3058 substExprList(db, pExpr->x.pList, iTable, pEList);
3061 return pExpr;
3063 static void substExprList(
3064 sqlite3 *db, /* Report malloc errors here */
3065 ExprList *pList, /* List to scan and in which to make substitutes */
3066 int iTable, /* Table to be substituted */
3067 ExprList *pEList /* Substitute values */
3069 int i;
3070 if( pList==0 ) return;
3071 for(i=0; i<pList->nExpr; i++){
3072 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3075 static void substSelect(
3076 sqlite3 *db, /* Report malloc errors here */
3077 Select *p, /* SELECT statement in which to make substitutions */
3078 int iTable, /* Table to be replaced */
3079 ExprList *pEList /* Substitute values */
3081 SrcList *pSrc;
3082 struct SrcList_item *pItem;
3083 int i;
3084 if( !p ) return;
3085 substExprList(db, p->pEList, iTable, pEList);
3086 substExprList(db, p->pGroupBy, iTable, pEList);
3087 substExprList(db, p->pOrderBy, iTable, pEList);
3088 p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3089 p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3090 substSelect(db, p->pPrior, iTable, pEList);
3091 pSrc = p->pSrc;
3092 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3093 if( ALWAYS(pSrc) ){
3094 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3095 substSelect(db, pItem->pSelect, iTable, pEList);
3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3103 ** This routine attempts to flatten subqueries as a performance optimization.
3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3106 ** To understand the concept of flattening, consider the following
3107 ** query:
3109 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3111 ** The default way of implementing this query is to execute the
3112 ** subquery first and store the results in a temporary table, then
3113 ** run the outer query on that temporary table. This requires two
3114 ** passes over the data. Furthermore, because the temporary table
3115 ** has no indices, the WHERE clause on the outer query cannot be
3116 ** optimized.
3118 ** This routine attempts to rewrite queries such as the above into
3119 ** a single flat select, like this:
3121 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3123 ** The code generated for this simplification gives the same result
3124 ** but only has to scan the data once. And because indices might
3125 ** exist on the table t1, a complete scan of the data might be
3126 ** avoided.
3128 ** Flattening is only attempted if all of the following are true:
3130 ** (1) The subquery and the outer query do not both use aggregates.
3132 ** (2) The subquery is not an aggregate or the outer query is not a join.
3134 ** (3) The subquery is not the right operand of a left outer join
3135 ** (Originally ticket #306. Strengthened by ticket #3300)
3137 ** (4) The subquery is not DISTINCT.
3139 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3140 ** sub-queries that were excluded from this optimization. Restriction
3141 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3143 ** (6) The subquery does not use aggregates or the outer query is not
3144 ** DISTINCT.
3146 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3147 ** A FROM clause, consider adding a FROM close with the special
3148 ** table sqlite_once that consists of a single row containing a
3149 ** single NULL.
3151 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3153 ** (9) The subquery does not use LIMIT or the outer query does not use
3154 ** aggregates.
3156 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3157 ** accidently carried the comment forward until 2014-09-15. Original
3158 ** text: "The subquery does not use aggregates or the outer query does not
3159 ** use LIMIT."
3161 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3163 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3164 ** a separate restriction deriving from ticket #350.
3166 ** (13) The subquery and outer query do not both use LIMIT.
3168 ** (14) The subquery does not use OFFSET.
3170 ** (15) The outer query is not part of a compound select or the
3171 ** subquery does not have a LIMIT clause.
3172 ** (See ticket #2339 and ticket [02a8e81d44]).
3174 ** (16) The outer query is not an aggregate or the subquery does
3175 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3176 ** until we introduced the group_concat() function.
3178 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3179 ** compound clause made up entirely of non-aggregate queries, and
3180 ** the parent query:
3182 ** * is not itself part of a compound select,
3183 ** * is not an aggregate or DISTINCT query, and
3184 ** * is not a join
3186 ** The parent and sub-query may contain WHERE clauses. Subject to
3187 ** rules (11), (13) and (14), they may also contain ORDER BY,
3188 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3189 ** operator other than UNION ALL because all the other compound
3190 ** operators have an implied DISTINCT which is disallowed by
3191 ** restriction (4).
3193 ** Also, each component of the sub-query must return the same number
3194 ** of result columns. This is actually a requirement for any compound
3195 ** SELECT statement, but all the code here does is make sure that no
3196 ** such (illegal) sub-query is flattened. The caller will detect the
3197 ** syntax error and return a detailed message.
3199 ** (18) If the sub-query is a compound select, then all terms of the
3200 ** ORDER by clause of the parent must be simple references to
3201 ** columns of the sub-query.
3203 ** (19) The subquery does not use LIMIT or the outer query does not
3204 ** have a WHERE clause.
3206 ** (20) If the sub-query is a compound select, then it must not use
3207 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3208 ** somewhat by saying that the terms of the ORDER BY clause must
3209 ** appear as unmodified result columns in the outer query. But we
3210 ** have other optimizations in mind to deal with that case.
3212 ** (21) The subquery does not use LIMIT or the outer query is not
3213 ** DISTINCT. (See ticket [752e1646fc]).
3215 ** (22) The subquery is not a recursive CTE.
3217 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3218 ** compound query. This restriction is because transforming the
3219 ** parent to a compound query confuses the code that handles
3220 ** recursive queries in multiSelect().
3222 ** (24) The subquery is not an aggregate that uses the built-in min() or
3223 ** or max() functions. (Without this restriction, a query like:
3224 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3225 ** return the value X for which Y was maximal.)
3228 ** In this routine, the "p" parameter is a pointer to the outer query.
3229 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3232 ** If flattening is not attempted, this routine is a no-op and returns 0.
3233 ** If flattening is attempted this routine returns 1.
3235 ** All of the expression analysis must occur on both the outer query and
3236 ** the subquery before this routine runs.
3238 static int flattenSubquery(
3239 Parse *pParse, /* Parsing context */
3240 Select *p, /* The parent or outer SELECT statement */
3241 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3242 int isAgg, /* True if outer SELECT uses aggregate functions */
3243 int subqueryIsAgg /* True if the subquery uses aggregate functions */
3245 const char *zSavedAuthContext = pParse->zAuthContext;
3246 Select *pParent;
3247 Select *pSub; /* The inner query or "subquery" */
3248 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3249 SrcList *pSrc; /* The FROM clause of the outer query */
3250 SrcList *pSubSrc; /* The FROM clause of the subquery */
3251 ExprList *pList; /* The result set of the outer query */
3252 int iParent; /* VDBE cursor number of the pSub result set temp table */
3253 int i; /* Loop counter */
3254 Expr *pWhere; /* The WHERE clause */
3255 struct SrcList_item *pSubitem; /* The subquery */
3256 sqlite3 *db = pParse->db;
3258 /* Check to see if flattening is permitted. Return 0 if not.
3260 assert( p!=0 );
3261 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
3262 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3263 pSrc = p->pSrc;
3264 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3265 pSubitem = &pSrc->a[iFrom];
3266 iParent = pSubitem->iCursor;
3267 pSub = pSubitem->pSelect;
3268 assert( pSub!=0 );
3269 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
3270 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
3271 pSubSrc = pSub->pSrc;
3272 assert( pSubSrc );
3273 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3274 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3275 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3276 ** became arbitrary expressions, we were forced to add restrictions (13)
3277 ** and (14). */
3278 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3279 if( pSub->pOffset ) return 0; /* Restriction (14) */
3280 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3281 return 0; /* Restriction (15) */
3283 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3284 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
3285 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3286 return 0; /* Restrictions (8)(9) */
3288 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3289 return 0; /* Restriction (6) */
3291 if( p->pOrderBy && pSub->pOrderBy ){
3292 return 0; /* Restriction (11) */
3294 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3295 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3296 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3297 return 0; /* Restriction (21) */
3299 testcase( pSub->selFlags & SF_Recursive );
3300 testcase( pSub->selFlags & SF_MinMaxAgg );
3301 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3302 return 0; /* Restrictions (22) and (24) */
3304 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3305 return 0; /* Restriction (23) */
3308 /* OBSOLETE COMMENT 1:
3309 ** Restriction 3: If the subquery is a join, make sure the subquery is
3310 ** not used as the right operand of an outer join. Examples of why this
3311 ** is not allowed:
3313 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3315 ** If we flatten the above, we would get
3317 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3319 ** which is not at all the same thing.
3321 ** OBSOLETE COMMENT 2:
3322 ** Restriction 12: If the subquery is the right operand of a left outer
3323 ** join, make sure the subquery has no WHERE clause.
3324 ** An examples of why this is not allowed:
3326 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3328 ** If we flatten the above, we would get
3330 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3332 ** But the t2.x>0 test will always fail on a NULL row of t2, which
3333 ** effectively converts the OUTER JOIN into an INNER JOIN.
3335 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3336 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3337 ** is fraught with danger. Best to avoid the whole thing. If the
3338 ** subquery is the right term of a LEFT JOIN, then do not flatten.
3340 if( (pSubitem->jointype & JT_OUTER)!=0 ){
3341 return 0;
3344 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3345 ** use only the UNION ALL operator. And none of the simple select queries
3346 ** that make up the compound SELECT are allowed to be aggregate or distinct
3347 ** queries.
3349 if( pSub->pPrior ){
3350 if( pSub->pOrderBy ){
3351 return 0; /* Restriction 20 */
3353 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3354 return 0;
3356 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3357 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3358 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3359 assert( pSub->pSrc!=0 );
3360 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3361 || (pSub1->pPrior && pSub1->op!=TK_ALL)
3362 || pSub1->pSrc->nSrc<1
3363 || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3365 return 0;
3367 testcase( pSub1->pSrc->nSrc>1 );
3370 /* Restriction 18. */
3371 if( p->pOrderBy ){
3372 int ii;
3373 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3374 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3379 /***** If we reach this point, flattening is permitted. *****/
3380 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3381 pSub->zSelName, pSub, iFrom));
3383 /* Authorize the subquery */
3384 pParse->zAuthContext = pSubitem->zName;
3385 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3386 testcase( i==SQLITE_DENY );
3387 pParse->zAuthContext = zSavedAuthContext;
3389 /* If the sub-query is a compound SELECT statement, then (by restrictions
3390 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3391 ** be of the form:
3393 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3395 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3396 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3397 ** OFFSET clauses and joins them to the left-hand-side of the original
3398 ** using UNION ALL operators. In this case N is the number of simple
3399 ** select statements in the compound sub-query.
3401 ** Example:
3403 ** SELECT a+1 FROM (
3404 ** SELECT x FROM tab
3405 ** UNION ALL
3406 ** SELECT y FROM tab
3407 ** UNION ALL
3408 ** SELECT abs(z*2) FROM tab2
3409 ** ) WHERE a!=5 ORDER BY 1
3411 ** Transformed into:
3413 ** SELECT x+1 FROM tab WHERE x+1!=5
3414 ** UNION ALL
3415 ** SELECT y+1 FROM tab WHERE y+1!=5
3416 ** UNION ALL
3417 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3418 ** ORDER BY 1
3420 ** We call this the "compound-subquery flattening".
3422 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3423 Select *pNew;
3424 ExprList *pOrderBy = p->pOrderBy;
3425 Expr *pLimit = p->pLimit;
3426 Expr *pOffset = p->pOffset;
3427 Select *pPrior = p->pPrior;
3428 p->pOrderBy = 0;
3429 p->pSrc = 0;
3430 p->pPrior = 0;
3431 p->pLimit = 0;
3432 p->pOffset = 0;
3433 pNew = sqlite3SelectDup(db, p, 0);
3434 sqlite3SelectSetName(pNew, pSub->zSelName);
3435 p->pOffset = pOffset;
3436 p->pLimit = pLimit;
3437 p->pOrderBy = pOrderBy;
3438 p->pSrc = pSrc;
3439 p->op = TK_ALL;
3440 if( pNew==0 ){
3441 p->pPrior = pPrior;
3442 }else{
3443 pNew->pPrior = pPrior;
3444 if( pPrior ) pPrior->pNext = pNew;
3445 pNew->pNext = p;
3446 p->pPrior = pNew;
3447 SELECTTRACE(2,pParse,p,
3448 ("compound-subquery flattener creates %s.%p as peer\n",
3449 pNew->zSelName, pNew));
3451 if( db->mallocFailed ) return 1;
3454 /* Begin flattening the iFrom-th entry of the FROM clause
3455 ** in the outer query.
3457 pSub = pSub1 = pSubitem->pSelect;
3459 /* Delete the transient table structure associated with the
3460 ** subquery
3462 sqlite3DbFree(db, pSubitem->zDatabase);
3463 sqlite3DbFree(db, pSubitem->zName);
3464 sqlite3DbFree(db, pSubitem->zAlias);
3465 pSubitem->zDatabase = 0;
3466 pSubitem->zName = 0;
3467 pSubitem->zAlias = 0;
3468 pSubitem->pSelect = 0;
3470 /* Defer deleting the Table object associated with the
3471 ** subquery until code generation is
3472 ** complete, since there may still exist Expr.pTab entries that
3473 ** refer to the subquery even after flattening. Ticket #3346.
3475 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3477 if( ALWAYS(pSubitem->pTab!=0) ){
3478 Table *pTabToDel = pSubitem->pTab;
3479 if( pTabToDel->nRef==1 ){
3480 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3481 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3482 pToplevel->pZombieTab = pTabToDel;
3483 }else{
3484 pTabToDel->nRef--;
3486 pSubitem->pTab = 0;
3489 /* The following loop runs once for each term in a compound-subquery
3490 ** flattening (as described above). If we are doing a different kind
3491 ** of flattening - a flattening other than a compound-subquery flattening -
3492 ** then this loop only runs once.
3494 ** This loop moves all of the FROM elements of the subquery into the
3495 ** the FROM clause of the outer query. Before doing this, remember
3496 ** the cursor number for the original outer query FROM element in
3497 ** iParent. The iParent cursor will never be used. Subsequent code
3498 ** will scan expressions looking for iParent references and replace
3499 ** those references with expressions that resolve to the subquery FROM
3500 ** elements we are now copying in.
3502 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3503 int nSubSrc;
3504 u8 jointype = 0;
3505 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3506 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3507 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3509 if( pSrc ){
3510 assert( pParent==p ); /* First time through the loop */
3511 jointype = pSubitem->jointype;
3512 }else{
3513 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3514 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3515 if( pSrc==0 ){
3516 assert( db->mallocFailed );
3517 break;
3521 /* The subquery uses a single slot of the FROM clause of the outer
3522 ** query. If the subquery has more than one element in its FROM clause,
3523 ** then expand the outer query to make space for it to hold all elements
3524 ** of the subquery.
3526 ** Example:
3528 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3530 ** The outer query has 3 slots in its FROM clause. One slot of the
3531 ** outer query (the middle slot) is used by the subquery. The next
3532 ** block of code will expand the out query to 4 slots. The middle
3533 ** slot is expanded to two slots in order to make space for the
3534 ** two elements in the FROM clause of the subquery.
3536 if( nSubSrc>1 ){
3537 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3538 if( db->mallocFailed ){
3539 break;
3543 /* Transfer the FROM clause terms from the subquery into the
3544 ** outer query.
3546 for(i=0; i<nSubSrc; i++){
3547 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3548 pSrc->a[i+iFrom] = pSubSrc->a[i];
3549 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3551 pSrc->a[iFrom].jointype = jointype;
3553 /* Now begin substituting subquery result set expressions for
3554 ** references to the iParent in the outer query.
3556 ** Example:
3558 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3559 ** \ \_____________ subquery __________/ /
3560 ** \_____________________ outer query ______________________________/
3562 ** We look at every expression in the outer query and every place we see
3563 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3565 pList = pParent->pEList;
3566 for(i=0; i<pList->nExpr; i++){
3567 if( pList->a[i].zName==0 ){
3568 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3569 sqlite3Dequote(zName);
3570 pList->a[i].zName = zName;
3573 substExprList(db, pParent->pEList, iParent, pSub->pEList);
3574 if( isAgg ){
3575 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3576 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3578 if( pSub->pOrderBy ){
3579 /* At this point, any non-zero iOrderByCol values indicate that the
3580 ** ORDER BY column expression is identical to the iOrderByCol'th
3581 ** expression returned by SELECT statement pSub. Since these values
3582 ** do not necessarily correspond to columns in SELECT statement pParent,
3583 ** zero them before transfering the ORDER BY clause.
3585 ** Not doing this may cause an error if a subsequent call to this
3586 ** function attempts to flatten a compound sub-query into pParent
3587 ** (the only way this can happen is if the compound sub-query is
3588 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3589 ExprList *pOrderBy = pSub->pOrderBy;
3590 for(i=0; i<pOrderBy->nExpr; i++){
3591 pOrderBy->a[i].u.x.iOrderByCol = 0;
3593 assert( pParent->pOrderBy==0 );
3594 assert( pSub->pPrior==0 );
3595 pParent->pOrderBy = pOrderBy;
3596 pSub->pOrderBy = 0;
3597 }else if( pParent->pOrderBy ){
3598 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3600 if( pSub->pWhere ){
3601 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3602 }else{
3603 pWhere = 0;
3605 if( subqueryIsAgg ){
3606 assert( pParent->pHaving==0 );
3607 pParent->pHaving = pParent->pWhere;
3608 pParent->pWhere = pWhere;
3609 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3610 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3611 sqlite3ExprDup(db, pSub->pHaving, 0));
3612 assert( pParent->pGroupBy==0 );
3613 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3614 }else{
3615 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3616 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3619 /* The flattened query is distinct if either the inner or the
3620 ** outer query is distinct.
3622 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3625 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3627 ** One is tempted to try to add a and b to combine the limits. But this
3628 ** does not work if either limit is negative.
3630 if( pSub->pLimit ){
3631 pParent->pLimit = pSub->pLimit;
3632 pSub->pLimit = 0;
3636 /* Finially, delete what is left of the subquery and return
3637 ** success.
3639 sqlite3SelectDelete(db, pSub1);
3641 #if SELECTTRACE_ENABLED
3642 if( sqlite3SelectTrace & 0x100 ){
3643 sqlite3DebugPrintf("After flattening:\n");
3644 sqlite3TreeViewSelect(0, p, 0);
3646 #endif
3648 return 1;
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3653 ** Based on the contents of the AggInfo structure indicated by the first
3654 ** argument, this function checks if the following are true:
3656 ** * the query contains just a single aggregate function,
3657 ** * the aggregate function is either min() or max(), and
3658 ** * the argument to the aggregate function is a column value.
3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3662 ** list of arguments passed to the aggregate before returning.
3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3665 ** WHERE_ORDERBY_NORMAL is returned.
3667 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3668 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3670 *ppMinMax = 0;
3671 if( pAggInfo->nFunc==1 ){
3672 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3673 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
3675 assert( pExpr->op==TK_AGG_FUNCTION );
3676 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3677 const char *zFunc = pExpr->u.zToken;
3678 if( sqlite3StrICmp(zFunc, "min")==0 ){
3679 eRet = WHERE_ORDERBY_MIN;
3680 *ppMinMax = pEList;
3681 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3682 eRet = WHERE_ORDERBY_MAX;
3683 *ppMinMax = pEList;
3688 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3689 return eRet;
3693 ** The select statement passed as the first argument is an aggregate query.
3694 ** The second argument is the associated aggregate-info object. This
3695 ** function tests if the SELECT is of the form:
3697 ** SELECT count(*) FROM <tbl>
3699 ** where table is a database table, not a sub-select or view. If the query
3700 ** does match this pattern, then a pointer to the Table object representing
3701 ** <tbl> is returned. Otherwise, 0 is returned.
3703 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3704 Table *pTab;
3705 Expr *pExpr;
3707 assert( !p->pGroupBy );
3709 if( p->pWhere || p->pEList->nExpr!=1
3710 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3712 return 0;
3714 pTab = p->pSrc->a[0].pTab;
3715 pExpr = p->pEList->a[0].pExpr;
3716 assert( pTab && !pTab->pSelect && pExpr );
3718 if( IsVirtual(pTab) ) return 0;
3719 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3720 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3721 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3722 if( pExpr->flags&EP_Distinct ) return 0;
3724 return pTab;
3728 ** If the source-list item passed as an argument was augmented with an
3729 ** INDEXED BY clause, then try to locate the specified index. If there
3730 ** was such a clause and the named index cannot be found, return
3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3732 ** pFrom->pIndex and return SQLITE_OK.
3734 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3735 if( pFrom->pTab && pFrom->zIndex ){
3736 Table *pTab = pFrom->pTab;
3737 char *zIndex = pFrom->zIndex;
3738 Index *pIdx;
3739 for(pIdx=pTab->pIndex;
3740 pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3741 pIdx=pIdx->pNext
3743 if( !pIdx ){
3744 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3745 pParse->checkSchema = 1;
3746 return SQLITE_ERROR;
3748 pFrom->pIndex = pIdx;
3750 return SQLITE_OK;
3753 ** Detect compound SELECT statements that use an ORDER BY clause with
3754 ** an alternative collating sequence.
3756 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3758 ** These are rewritten as a subquery:
3760 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3761 ** ORDER BY ... COLLATE ...
3763 ** This transformation is necessary because the multiSelectOrderBy() routine
3764 ** above that generates the code for a compound SELECT with an ORDER BY clause
3765 ** uses a merge algorithm that requires the same collating sequence on the
3766 ** result columns as on the ORDER BY clause. See ticket
3767 ** http://www.sqlite.org/src/info/6709574d2a
3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3771 ** there are COLLATE terms in the ORDER BY.
3773 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3774 int i;
3775 Select *pNew;
3776 Select *pX;
3777 sqlite3 *db;
3778 struct ExprList_item *a;
3779 SrcList *pNewSrc;
3780 Parse *pParse;
3781 Token dummy;
3783 if( p->pPrior==0 ) return WRC_Continue;
3784 if( p->pOrderBy==0 ) return WRC_Continue;
3785 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3786 if( pX==0 ) return WRC_Continue;
3787 a = p->pOrderBy->a;
3788 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3789 if( a[i].pExpr->flags & EP_Collate ) break;
3791 if( i<0 ) return WRC_Continue;
3793 /* If we reach this point, that means the transformation is required. */
3795 pParse = pWalker->pParse;
3796 db = pParse->db;
3797 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3798 if( pNew==0 ) return WRC_Abort;
3799 memset(&dummy, 0, sizeof(dummy));
3800 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3801 if( pNewSrc==0 ) return WRC_Abort;
3802 *pNew = *p;
3803 p->pSrc = pNewSrc;
3804 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3805 p->op = TK_SELECT;
3806 p->pWhere = 0;
3807 pNew->pGroupBy = 0;
3808 pNew->pHaving = 0;
3809 pNew->pOrderBy = 0;
3810 p->pPrior = 0;
3811 p->pNext = 0;
3812 p->selFlags &= ~SF_Compound;
3813 assert( pNew->pPrior!=0 );
3814 pNew->pPrior->pNext = pNew;
3815 pNew->pLimit = 0;
3816 pNew->pOffset = 0;
3817 return WRC_Continue;
3820 #ifndef SQLITE_OMIT_CTE
3822 ** Argument pWith (which may be NULL) points to a linked list of nested
3823 ** WITH contexts, from inner to outermost. If the table identified by
3824 ** FROM clause element pItem is really a common-table-expression (CTE)
3825 ** then return a pointer to the CTE definition for that table. Otherwise
3826 ** return NULL.
3828 ** If a non-NULL value is returned, set *ppContext to point to the With
3829 ** object that the returned CTE belongs to.
3831 static struct Cte *searchWith(
3832 With *pWith, /* Current outermost WITH clause */
3833 struct SrcList_item *pItem, /* FROM clause element to resolve */
3834 With **ppContext /* OUT: WITH clause return value belongs to */
3836 const char *zName;
3837 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3838 With *p;
3839 for(p=pWith; p; p=p->pOuter){
3840 int i;
3841 for(i=0; i<p->nCte; i++){
3842 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3843 *ppContext = p;
3844 return &p->a[i];
3849 return 0;
3852 /* The code generator maintains a stack of active WITH clauses
3853 ** with the inner-most WITH clause being at the top of the stack.
3855 ** This routine pushes the WITH clause passed as the second argument
3856 ** onto the top of the stack. If argument bFree is true, then this
3857 ** WITH clause will never be popped from the stack. In this case it
3858 ** should be freed along with the Parse object. In other cases, when
3859 ** bFree==0, the With object will be freed along with the SELECT
3860 ** statement with which it is associated.
3862 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3863 assert( bFree==0 || pParse->pWith==0 );
3864 if( pWith ){
3865 pWith->pOuter = pParse->pWith;
3866 pParse->pWith = pWith;
3867 pParse->bFreeWith = bFree;
3872 ** This function checks if argument pFrom refers to a CTE declared by
3873 ** a WITH clause on the stack currently maintained by the parser. And,
3874 ** if currently processing a CTE expression, if it is a recursive
3875 ** reference to the current CTE.
3877 ** If pFrom falls into either of the two categories above, pFrom->pTab
3878 ** and other fields are populated accordingly. The caller should check
3879 ** (pFrom->pTab!=0) to determine whether or not a successful match
3880 ** was found.
3882 ** Whether or not a match is found, SQLITE_OK is returned if no error
3883 ** occurs. If an error does occur, an error message is stored in the
3884 ** parser and some error code other than SQLITE_OK returned.
3886 static int withExpand(
3887 Walker *pWalker,
3888 struct SrcList_item *pFrom
3890 Parse *pParse = pWalker->pParse;
3891 sqlite3 *db = pParse->db;
3892 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
3893 With *pWith; /* WITH clause that pCte belongs to */
3895 assert( pFrom->pTab==0 );
3897 pCte = searchWith(pParse->pWith, pFrom, &pWith);
3898 if( pCte ){
3899 Table *pTab;
3900 ExprList *pEList;
3901 Select *pSel;
3902 Select *pLeft; /* Left-most SELECT statement */
3903 int bMayRecursive; /* True if compound joined by UNION [ALL] */
3904 With *pSavedWith; /* Initial value of pParse->pWith */
3906 /* If pCte->zErr is non-NULL at this point, then this is an illegal
3907 ** recursive reference to CTE pCte. Leave an error in pParse and return
3908 ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3909 ** In this case, proceed. */
3910 if( pCte->zErr ){
3911 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3912 return SQLITE_ERROR;
3915 assert( pFrom->pTab==0 );
3916 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3917 if( pTab==0 ) return WRC_Abort;
3918 pTab->nRef = 1;
3919 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3920 pTab->iPKey = -1;
3921 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3922 pTab->tabFlags |= TF_Ephemeral;
3923 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3924 if( db->mallocFailed ) return SQLITE_NOMEM;
3925 assert( pFrom->pSelect );
3927 /* Check if this is a recursive CTE. */
3928 pSel = pFrom->pSelect;
3929 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3930 if( bMayRecursive ){
3931 int i;
3932 SrcList *pSrc = pFrom->pSelect->pSrc;
3933 for(i=0; i<pSrc->nSrc; i++){
3934 struct SrcList_item *pItem = &pSrc->a[i];
3935 if( pItem->zDatabase==0
3936 && pItem->zName!=0
3937 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3939 pItem->pTab = pTab;
3940 pItem->isRecursive = 1;
3941 pTab->nRef++;
3942 pSel->selFlags |= SF_Recursive;
3947 /* Only one recursive reference is permitted. */
3948 if( pTab->nRef>2 ){
3949 sqlite3ErrorMsg(
3950 pParse, "multiple references to recursive table: %s", pCte->zName
3952 return SQLITE_ERROR;
3954 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3956 pCte->zErr = "circular reference: %s";
3957 pSavedWith = pParse->pWith;
3958 pParse->pWith = pWith;
3959 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3961 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3962 pEList = pLeft->pEList;
3963 if( pCte->pCols ){
3964 if( pEList->nExpr!=pCte->pCols->nExpr ){
3965 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3966 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3968 pParse->pWith = pSavedWith;
3969 return SQLITE_ERROR;
3971 pEList = pCte->pCols;
3974 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3975 if( bMayRecursive ){
3976 if( pSel->selFlags & SF_Recursive ){
3977 pCte->zErr = "multiple recursive references: %s";
3978 }else{
3979 pCte->zErr = "recursive reference in a subquery: %s";
3981 sqlite3WalkSelect(pWalker, pSel);
3983 pCte->zErr = 0;
3984 pParse->pWith = pSavedWith;
3987 return SQLITE_OK;
3989 #endif
3991 #ifndef SQLITE_OMIT_CTE
3993 ** If the SELECT passed as the second argument has an associated WITH
3994 ** clause, pop it from the stack stored as part of the Parse object.
3996 ** This function is used as the xSelectCallback2() callback by
3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3998 ** names and other FROM clause elements.
4000 static void selectPopWith(Walker *pWalker, Select *p){
4001 Parse *pParse = pWalker->pParse;
4002 With *pWith = findRightmost(p)->pWith;
4003 if( pWith!=0 ){
4004 assert( pParse->pWith==pWith );
4005 pParse->pWith = pWith->pOuter;
4008 #else
4009 #define selectPopWith 0
4010 #endif
4013 ** This routine is a Walker callback for "expanding" a SELECT statement.
4014 ** "Expanding" means to do the following:
4016 ** (1) Make sure VDBE cursor numbers have been assigned to every
4017 ** element of the FROM clause.
4019 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4020 ** defines FROM clause. When views appear in the FROM clause,
4021 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4022 ** that implements the view. A copy is made of the view's SELECT
4023 ** statement so that we can freely modify or delete that statement
4024 ** without worrying about messing up the persistent representation
4025 ** of the view.
4027 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4028 ** on joins and the ON and USING clause of joins.
4030 ** (4) Scan the list of columns in the result set (pEList) looking
4031 ** for instances of the "*" operator or the TABLE.* operator.
4032 ** If found, expand each "*" to be every column in every table
4033 ** and TABLE.* to be every column in TABLE.
4036 static int selectExpander(Walker *pWalker, Select *p){
4037 Parse *pParse = pWalker->pParse;
4038 int i, j, k;
4039 SrcList *pTabList;
4040 ExprList *pEList;
4041 struct SrcList_item *pFrom;
4042 sqlite3 *db = pParse->db;
4043 Expr *pE, *pRight, *pExpr;
4044 u16 selFlags = p->selFlags;
4046 p->selFlags |= SF_Expanded;
4047 if( db->mallocFailed ){
4048 return WRC_Abort;
4050 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4051 return WRC_Prune;
4053 pTabList = p->pSrc;
4054 pEList = p->pEList;
4055 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4057 /* Make sure cursor numbers have been assigned to all entries in
4058 ** the FROM clause of the SELECT statement.
4060 sqlite3SrcListAssignCursors(pParse, pTabList);
4062 /* Look up every table named in the FROM clause of the select. If
4063 ** an entry of the FROM clause is a subquery instead of a table or view,
4064 ** then create a transient table structure to describe the subquery.
4066 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4067 Table *pTab;
4068 assert( pFrom->isRecursive==0 || pFrom->pTab );
4069 if( pFrom->isRecursive ) continue;
4070 if( pFrom->pTab!=0 ){
4071 /* This statement has already been prepared. There is no need
4072 ** to go further. */
4073 assert( i==0 );
4074 #ifndef SQLITE_OMIT_CTE
4075 selectPopWith(pWalker, p);
4076 #endif
4077 return WRC_Prune;
4079 #ifndef SQLITE_OMIT_CTE
4080 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4081 if( pFrom->pTab ) {} else
4082 #endif
4083 if( pFrom->zName==0 ){
4084 #ifndef SQLITE_OMIT_SUBQUERY
4085 Select *pSel = pFrom->pSelect;
4086 /* A sub-query in the FROM clause of a SELECT */
4087 assert( pSel!=0 );
4088 assert( pFrom->pTab==0 );
4089 sqlite3WalkSelect(pWalker, pSel);
4090 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4091 if( pTab==0 ) return WRC_Abort;
4092 pTab->nRef = 1;
4093 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4094 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4095 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4096 pTab->iPKey = -1;
4097 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4098 pTab->tabFlags |= TF_Ephemeral;
4099 #endif
4100 }else{
4101 /* An ordinary table or view name in the FROM clause */
4102 assert( pFrom->pTab==0 );
4103 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4104 if( pTab==0 ) return WRC_Abort;
4105 if( pTab->nRef==0xffff ){
4106 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4107 pTab->zName);
4108 pFrom->pTab = 0;
4109 return WRC_Abort;
4111 pTab->nRef++;
4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4113 if( pTab->pSelect || IsVirtual(pTab) ){
4114 /* We reach here if the named table is a really a view */
4115 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4116 assert( pFrom->pSelect==0 );
4117 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4118 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4119 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4121 #endif
4124 /* Locate the index named by the INDEXED BY clause, if any. */
4125 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4126 return WRC_Abort;
4130 /* Process NATURAL keywords, and ON and USING clauses of joins.
4132 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4133 return WRC_Abort;
4136 /* For every "*" that occurs in the column list, insert the names of
4137 ** all columns in all tables. And for every TABLE.* insert the names
4138 ** of all columns in TABLE. The parser inserted a special expression
4139 ** with the TK_ALL operator for each "*" that it found in the column list.
4140 ** The following code just has to locate the TK_ALL expressions and expand
4141 ** each one to the list of all columns in all tables.
4143 ** The first loop just checks to see if there are any "*" operators
4144 ** that need expanding.
4146 for(k=0; k<pEList->nExpr; k++){
4147 pE = pEList->a[k].pExpr;
4148 if( pE->op==TK_ALL ) break;
4149 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4150 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4151 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4153 if( k<pEList->nExpr ){
4155 ** If we get here it means the result set contains one or more "*"
4156 ** operators that need to be expanded. Loop through each expression
4157 ** in the result set and expand them one by one.
4159 struct ExprList_item *a = pEList->a;
4160 ExprList *pNew = 0;
4161 int flags = pParse->db->flags;
4162 int longNames = (flags & SQLITE_FullColNames)!=0
4163 && (flags & SQLITE_ShortColNames)==0;
4165 /* When processing FROM-clause subqueries, it is always the case
4166 ** that full_column_names=OFF and short_column_names=ON. The
4167 ** sqlite3ResultSetOfSelect() routine makes it so. */
4168 assert( (p->selFlags & SF_NestedFrom)==0
4169 || ((flags & SQLITE_FullColNames)==0 &&
4170 (flags & SQLITE_ShortColNames)!=0) );
4172 for(k=0; k<pEList->nExpr; k++){
4173 pE = a[k].pExpr;
4174 pRight = pE->pRight;
4175 assert( pE->op!=TK_DOT || pRight!=0 );
4176 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4177 /* This particular expression does not need to be expanded.
4179 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4180 if( pNew ){
4181 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4182 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4183 a[k].zName = 0;
4184 a[k].zSpan = 0;
4186 a[k].pExpr = 0;
4187 }else{
4188 /* This expression is a "*" or a "TABLE.*" and needs to be
4189 ** expanded. */
4190 int tableSeen = 0; /* Set to 1 when TABLE matches */
4191 char *zTName = 0; /* text of name of TABLE */
4192 if( pE->op==TK_DOT ){
4193 assert( pE->pLeft!=0 );
4194 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4195 zTName = pE->pLeft->u.zToken;
4197 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4198 Table *pTab = pFrom->pTab;
4199 Select *pSub = pFrom->pSelect;
4200 char *zTabName = pFrom->zAlias;
4201 const char *zSchemaName = 0;
4202 int iDb;
4203 if( zTabName==0 ){
4204 zTabName = pTab->zName;
4206 if( db->mallocFailed ) break;
4207 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4208 pSub = 0;
4209 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4210 continue;
4212 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4213 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4215 for(j=0; j<pTab->nCol; j++){
4216 char *zName = pTab->aCol[j].zName;
4217 char *zColname; /* The computed column name */
4218 char *zToFree; /* Malloced string that needs to be freed */
4219 Token sColname; /* Computed column name as a token */
4221 assert( zName );
4222 if( zTName && pSub
4223 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4225 continue;
4228 /* If a column is marked as 'hidden' (currently only possible
4229 ** for virtual tables), do not include it in the expanded
4230 ** result-set list.
4232 if( IsHiddenColumn(&pTab->aCol[j]) ){
4233 assert(IsVirtual(pTab));
4234 continue;
4236 tableSeen = 1;
4238 if( i>0 && zTName==0 ){
4239 if( (pFrom->jointype & JT_NATURAL)!=0
4240 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4242 /* In a NATURAL join, omit the join columns from the
4243 ** table to the right of the join */
4244 continue;
4246 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4247 /* In a join with a USING clause, omit columns in the
4248 ** using clause from the table on the right. */
4249 continue;
4252 pRight = sqlite3Expr(db, TK_ID, zName);
4253 zColname = zName;
4254 zToFree = 0;
4255 if( longNames || pTabList->nSrc>1 ){
4256 Expr *pLeft;
4257 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4258 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4259 if( zSchemaName ){
4260 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4261 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4263 if( longNames ){
4264 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4265 zToFree = zColname;
4267 }else{
4268 pExpr = pRight;
4270 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4271 sColname.z = zColname;
4272 sColname.n = sqlite3Strlen30(zColname);
4273 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4274 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4275 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4276 if( pSub ){
4277 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4278 testcase( pX->zSpan==0 );
4279 }else{
4280 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4281 zSchemaName, zTabName, zColname);
4282 testcase( pX->zSpan==0 );
4284 pX->bSpanIsTab = 1;
4286 sqlite3DbFree(db, zToFree);
4289 if( !tableSeen ){
4290 if( zTName ){
4291 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4292 }else{
4293 sqlite3ErrorMsg(pParse, "no tables specified");
4298 sqlite3ExprListDelete(db, pEList);
4299 p->pEList = pNew;
4301 #if SQLITE_MAX_COLUMN
4302 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4303 sqlite3ErrorMsg(pParse, "too many columns in result set");
4305 #endif
4306 return WRC_Continue;
4310 ** No-op routine for the parse-tree walker.
4312 ** When this routine is the Walker.xExprCallback then expression trees
4313 ** are walked without any actions being taken at each node. Presumably,
4314 ** when this routine is used for Walker.xExprCallback then
4315 ** Walker.xSelectCallback is set to do something useful for every
4316 ** subquery in the parser tree.
4318 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4319 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4320 return WRC_Continue;
4324 ** This routine "expands" a SELECT statement and all of its subqueries.
4325 ** For additional information on what it means to "expand" a SELECT
4326 ** statement, see the comment on the selectExpand worker callback above.
4328 ** Expanding a SELECT statement is the first step in processing a
4329 ** SELECT statement. The SELECT statement must be expanded before
4330 ** name resolution is performed.
4332 ** If anything goes wrong, an error message is written into pParse.
4333 ** The calling function can detect the problem by looking at pParse->nErr
4334 ** and/or pParse->db->mallocFailed.
4336 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4337 Walker w;
4338 memset(&w, 0, sizeof(w));
4339 w.xExprCallback = exprWalkNoop;
4340 w.pParse = pParse;
4341 if( pParse->hasCompound ){
4342 w.xSelectCallback = convertCompoundSelectToSubquery;
4343 sqlite3WalkSelect(&w, pSelect);
4345 w.xSelectCallback = selectExpander;
4346 w.xSelectCallback2 = selectPopWith;
4347 sqlite3WalkSelect(&w, pSelect);
4351 #ifndef SQLITE_OMIT_SUBQUERY
4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4354 ** interface.
4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4357 ** information to the Table structure that represents the result set
4358 ** of that subquery.
4360 ** The Table structure that represents the result set was constructed
4361 ** by selectExpander() but the type and collation information was omitted
4362 ** at that point because identifiers had not yet been resolved. This
4363 ** routine is called after identifier resolution.
4365 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4366 Parse *pParse;
4367 int i;
4368 SrcList *pTabList;
4369 struct SrcList_item *pFrom;
4371 assert( p->selFlags & SF_Resolved );
4372 if( (p->selFlags & SF_HasTypeInfo)==0 ){
4373 p->selFlags |= SF_HasTypeInfo;
4374 pParse = pWalker->pParse;
4375 pTabList = p->pSrc;
4376 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4377 Table *pTab = pFrom->pTab;
4378 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4379 /* A sub-query in the FROM clause of a SELECT */
4380 Select *pSel = pFrom->pSelect;
4381 if( pSel ){
4382 while( pSel->pPrior ) pSel = pSel->pPrior;
4383 selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4389 #endif
4393 ** This routine adds datatype and collating sequence information to
4394 ** the Table structures of all FROM-clause subqueries in a
4395 ** SELECT statement.
4397 ** Use this routine after name resolution.
4399 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4400 #ifndef SQLITE_OMIT_SUBQUERY
4401 Walker w;
4402 memset(&w, 0, sizeof(w));
4403 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4404 w.xExprCallback = exprWalkNoop;
4405 w.pParse = pParse;
4406 sqlite3WalkSelect(&w, pSelect);
4407 #endif
4412 ** This routine sets up a SELECT statement for processing. The
4413 ** following is accomplished:
4415 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4416 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4417 ** * ON and USING clauses are shifted into WHERE statements
4418 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4419 ** * Identifiers in expression are matched to tables.
4421 ** This routine acts recursively on all subqueries within the SELECT.
4423 void sqlite3SelectPrep(
4424 Parse *pParse, /* The parser context */
4425 Select *p, /* The SELECT statement being coded. */
4426 NameContext *pOuterNC /* Name context for container */
4428 sqlite3 *db;
4429 if( NEVER(p==0) ) return;
4430 db = pParse->db;
4431 if( db->mallocFailed ) return;
4432 if( p->selFlags & SF_HasTypeInfo ) return;
4433 sqlite3SelectExpand(pParse, p);
4434 if( pParse->nErr || db->mallocFailed ) return;
4435 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4436 if( pParse->nErr || db->mallocFailed ) return;
4437 sqlite3SelectAddTypeInfo(pParse, p);
4441 ** Reset the aggregate accumulator.
4443 ** The aggregate accumulator is a set of memory cells that hold
4444 ** intermediate results while calculating an aggregate. This
4445 ** routine generates code that stores NULLs in all of those memory
4446 ** cells.
4448 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4449 Vdbe *v = pParse->pVdbe;
4450 int i;
4451 struct AggInfo_func *pFunc;
4452 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4453 if( nReg==0 ) return;
4454 #ifdef SQLITE_DEBUG
4455 /* Verify that all AggInfo registers are within the range specified by
4456 ** AggInfo.mnReg..AggInfo.mxReg */
4457 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4458 for(i=0; i<pAggInfo->nColumn; i++){
4459 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4460 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4462 for(i=0; i<pAggInfo->nFunc; i++){
4463 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4464 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4466 #endif
4467 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4468 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4469 if( pFunc->iDistinct>=0 ){
4470 Expr *pE = pFunc->pExpr;
4471 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4472 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4473 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4474 "argument");
4475 pFunc->iDistinct = -1;
4476 }else{
4477 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4478 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4479 (char*)pKeyInfo, P4_KEYINFO);
4486 ** Invoke the OP_AggFinalize opcode for every aggregate function
4487 ** in the AggInfo structure.
4489 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4490 Vdbe *v = pParse->pVdbe;
4491 int i;
4492 struct AggInfo_func *pF;
4493 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4494 ExprList *pList = pF->pExpr->x.pList;
4495 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4496 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4497 (void*)pF->pFunc, P4_FUNCDEF);
4502 ** Update the accumulator memory cells for an aggregate based on
4503 ** the current cursor position.
4505 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4506 Vdbe *v = pParse->pVdbe;
4507 int i;
4508 int regHit = 0;
4509 int addrHitTest = 0;
4510 struct AggInfo_func *pF;
4511 struct AggInfo_col *pC;
4513 pAggInfo->directMode = 1;
4514 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4515 int nArg;
4516 int addrNext = 0;
4517 int regAgg;
4518 ExprList *pList = pF->pExpr->x.pList;
4519 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4520 if( pList ){
4521 nArg = pList->nExpr;
4522 regAgg = sqlite3GetTempRange(pParse, nArg);
4523 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4524 }else{
4525 nArg = 0;
4526 regAgg = 0;
4528 if( pF->iDistinct>=0 ){
4529 addrNext = sqlite3VdbeMakeLabel(v);
4530 assert( nArg==1 );
4531 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4533 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4534 CollSeq *pColl = 0;
4535 struct ExprList_item *pItem;
4536 int j;
4537 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4538 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4539 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4541 if( !pColl ){
4542 pColl = pParse->db->pDfltColl;
4544 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4545 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4547 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4548 (void*)pF->pFunc, P4_FUNCDEF);
4549 sqlite3VdbeChangeP5(v, (u8)nArg);
4550 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4551 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4552 if( addrNext ){
4553 sqlite3VdbeResolveLabel(v, addrNext);
4554 sqlite3ExprCacheClear(pParse);
4558 /* Before populating the accumulator registers, clear the column cache.
4559 ** Otherwise, if any of the required column values are already present
4560 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4561 ** to pC->iMem. But by the time the value is used, the original register
4562 ** may have been used, invalidating the underlying buffer holding the
4563 ** text or blob value. See ticket [883034dcb5].
4565 ** Another solution would be to change the OP_SCopy used to copy cached
4566 ** values to an OP_Copy.
4568 if( regHit ){
4569 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4571 sqlite3ExprCacheClear(pParse);
4572 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4573 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4575 pAggInfo->directMode = 0;
4576 sqlite3ExprCacheClear(pParse);
4577 if( addrHitTest ){
4578 sqlite3VdbeJumpHere(v, addrHitTest);
4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4584 ** count(*) query ("SELECT count(*) FROM pTab").
4586 #ifndef SQLITE_OMIT_EXPLAIN
4587 static void explainSimpleCount(
4588 Parse *pParse, /* Parse context */
4589 Table *pTab, /* Table being queried */
4590 Index *pIdx /* Index used to optimize scan, or NULL */
4592 if( pParse->explain==2 ){
4593 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4594 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4595 pTab->zName,
4596 bCover ? " USING COVERING INDEX " : "",
4597 bCover ? pIdx->zName : ""
4599 sqlite3VdbeAddOp4(
4600 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4604 #else
4605 # define explainSimpleCount(a,b,c)
4606 #endif
4609 ** Generate code for the SELECT statement given in the p argument.
4611 ** The results are returned according to the SelectDest structure.
4612 ** See comments in sqliteInt.h for further information.
4614 ** This routine returns the number of errors. If any errors are
4615 ** encountered, then an appropriate error message is left in
4616 ** pParse->zErrMsg.
4618 ** This routine does NOT free the Select structure passed in. The
4619 ** calling function needs to do that.
4621 int sqlite3Select(
4622 Parse *pParse, /* The parser context */
4623 Select *p, /* The SELECT statement being coded. */
4624 SelectDest *pDest /* What to do with the query results */
4626 int i, j; /* Loop counters */
4627 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
4628 Vdbe *v; /* The virtual machine under construction */
4629 int isAgg; /* True for select lists like "count(*)" */
4630 ExprList *pEList; /* List of columns to extract. */
4631 SrcList *pTabList; /* List of tables to select from */
4632 Expr *pWhere; /* The WHERE clause. May be NULL */
4633 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
4634 Expr *pHaving; /* The HAVING clause. May be NULL */
4635 int rc = 1; /* Value to return from this function */
4636 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4637 SortCtx sSort; /* Info on how to code the ORDER BY clause */
4638 AggInfo sAggInfo; /* Information used by aggregate queries */
4639 int iEnd; /* Address of the end of the query */
4640 sqlite3 *db; /* The database connection */
4642 #ifndef SQLITE_OMIT_EXPLAIN
4643 int iRestoreSelectId = pParse->iSelectId;
4644 pParse->iSelectId = pParse->iNextSelectId++;
4645 #endif
4647 db = pParse->db;
4648 if( p==0 || db->mallocFailed || pParse->nErr ){
4649 return 1;
4651 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4652 memset(&sAggInfo, 0, sizeof(sAggInfo));
4653 #if SELECTTRACE_ENABLED
4654 pParse->nSelectIndent++;
4655 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4656 if( sqlite3SelectTrace & 0x100 ){
4657 sqlite3TreeViewSelect(0, p, 0);
4659 #endif
4661 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4662 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4663 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4664 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4665 if( IgnorableOrderby(pDest) ){
4666 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4667 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4668 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
4669 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4670 /* If ORDER BY makes no difference in the output then neither does
4671 ** DISTINCT so it can be removed too. */
4672 sqlite3ExprListDelete(db, p->pOrderBy);
4673 p->pOrderBy = 0;
4674 p->selFlags &= ~SF_Distinct;
4676 sqlite3SelectPrep(pParse, p, 0);
4677 memset(&sSort, 0, sizeof(sSort));
4678 sSort.pOrderBy = p->pOrderBy;
4679 pTabList = p->pSrc;
4680 pEList = p->pEList;
4681 if( pParse->nErr || db->mallocFailed ){
4682 goto select_end;
4684 isAgg = (p->selFlags & SF_Aggregate)!=0;
4685 assert( pEList!=0 );
4687 /* Begin generating code.
4689 v = sqlite3GetVdbe(pParse);
4690 if( v==0 ) goto select_end;
4692 /* If writing to memory or generating a set
4693 ** only a single column may be output.
4695 #ifndef SQLITE_OMIT_SUBQUERY
4696 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4697 goto select_end;
4699 #endif
4701 /* Generate code for all sub-queries in the FROM clause
4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4704 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4705 struct SrcList_item *pItem = &pTabList->a[i];
4706 SelectDest dest;
4707 Select *pSub = pItem->pSelect;
4708 int isAggSub;
4710 if( pSub==0 ) continue;
4712 /* Sometimes the code for a subquery will be generated more than
4713 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4714 ** for example. In that case, do not regenerate the code to manifest
4715 ** a view or the co-routine to implement a view. The first instance
4716 ** is sufficient, though the subroutine to manifest the view does need
4717 ** to be invoked again. */
4718 if( pItem->addrFillSub ){
4719 if( pItem->viaCoroutine==0 ){
4720 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4722 continue;
4725 /* Increment Parse.nHeight by the height of the largest expression
4726 ** tree referred to by this, the parent select. The child select
4727 ** may contain expression trees of at most
4728 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4729 ** more conservative than necessary, but much easier than enforcing
4730 ** an exact limit.
4732 pParse->nHeight += sqlite3SelectExprHeight(p);
4734 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4735 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4736 /* This subquery can be absorbed into its parent. */
4737 if( isAggSub ){
4738 isAgg = 1;
4739 p->selFlags |= SF_Aggregate;
4741 i = -1;
4742 }else if( pTabList->nSrc==1
4743 && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4745 /* Implement a co-routine that will return a single row of the result
4746 ** set on each invocation.
4748 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4749 pItem->regReturn = ++pParse->nMem;
4750 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4751 VdbeComment((v, "%s", pItem->pTab->zName));
4752 pItem->addrFillSub = addrTop;
4753 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4754 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4755 sqlite3Select(pParse, pSub, &dest);
4756 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4757 pItem->viaCoroutine = 1;
4758 pItem->regResult = dest.iSdst;
4759 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4760 sqlite3VdbeJumpHere(v, addrTop-1);
4761 sqlite3ClearTempRegCache(pParse);
4762 }else{
4763 /* Generate a subroutine that will fill an ephemeral table with
4764 ** the content of this subquery. pItem->addrFillSub will point
4765 ** to the address of the generated subroutine. pItem->regReturn
4766 ** is a register allocated to hold the subroutine return address
4768 int topAddr;
4769 int onceAddr = 0;
4770 int retAddr;
4771 assert( pItem->addrFillSub==0 );
4772 pItem->regReturn = ++pParse->nMem;
4773 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4774 pItem->addrFillSub = topAddr+1;
4775 if( pItem->isCorrelated==0 ){
4776 /* If the subquery is not correlated and if we are not inside of
4777 ** a trigger, then we only need to compute the value of the subquery
4778 ** once. */
4779 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4780 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4781 }else{
4782 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4784 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4785 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4786 sqlite3Select(pParse, pSub, &dest);
4787 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4788 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4789 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4790 VdbeComment((v, "end %s", pItem->pTab->zName));
4791 sqlite3VdbeChangeP1(v, topAddr, retAddr);
4792 sqlite3ClearTempRegCache(pParse);
4794 if( /*pParse->nErr ||*/ db->mallocFailed ){
4795 goto select_end;
4797 pParse->nHeight -= sqlite3SelectExprHeight(p);
4798 pTabList = p->pSrc;
4799 if( !IgnorableOrderby(pDest) ){
4800 sSort.pOrderBy = p->pOrderBy;
4803 pEList = p->pEList;
4804 #endif
4805 pWhere = p->pWhere;
4806 pGroupBy = p->pGroupBy;
4807 pHaving = p->pHaving;
4808 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4811 /* If there is are a sequence of queries, do the earlier ones first.
4813 if( p->pPrior ){
4814 rc = multiSelect(pParse, p, pDest);
4815 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4816 #if SELECTTRACE_ENABLED
4817 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4818 pParse->nSelectIndent--;
4819 #endif
4820 return rc;
4822 #endif
4824 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4825 ** if the select-list is the same as the ORDER BY list, then this query
4826 ** can be rewritten as a GROUP BY. In other words, this:
4828 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
4830 ** is transformed to:
4832 ** SELECT xyz FROM ... GROUP BY xyz
4834 ** The second form is preferred as a single index (or temp-table) may be
4835 ** used for both the ORDER BY and DISTINCT processing. As originally
4836 ** written the query must use a temp-table for at least one of the ORDER
4837 ** BY and DISTINCT, and an index or separate temp-table for the other.
4839 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4840 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4842 p->selFlags &= ~SF_Distinct;
4843 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4844 pGroupBy = p->pGroupBy;
4845 sSort.pOrderBy = 0;
4846 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4847 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
4848 ** original setting of the SF_Distinct flag, not the current setting */
4849 assert( sDistinct.isTnct );
4852 /* If there is an ORDER BY clause, then this sorting
4853 ** index might end up being unused if the data can be
4854 ** extracted in pre-sorted order. If that is the case, then the
4855 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4856 ** we figure out that the sorting index is not needed. The addrSortIndex
4857 ** variable is used to facilitate that change.
4859 if( sSort.pOrderBy ){
4860 KeyInfo *pKeyInfo;
4861 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4862 sSort.iECursor = pParse->nTab++;
4863 sSort.addrSortIndex =
4864 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4865 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
4866 (char*)pKeyInfo, P4_KEYINFO
4868 }else{
4869 sSort.addrSortIndex = -1;
4872 /* If the output is destined for a temporary table, open that table.
4874 if( pDest->eDest==SRT_EphemTab ){
4875 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4878 /* Set the limiter.
4880 iEnd = sqlite3VdbeMakeLabel(v);
4881 p->nSelectRow = LARGEST_INT64;
4882 computeLimitRegisters(pParse, p, iEnd);
4883 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4884 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4885 sSort.sortFlags |= SORTFLAG_UseSorter;
4888 /* Open a virtual index to use for the distinct set.
4890 if( p->selFlags & SF_Distinct ){
4891 sDistinct.tabTnct = pParse->nTab++;
4892 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4893 sDistinct.tabTnct, 0, 0,
4894 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4895 P4_KEYINFO);
4896 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4897 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4898 }else{
4899 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4902 if( !isAgg && pGroupBy==0 ){
4903 /* No aggregate functions and no GROUP BY clause */
4904 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4906 /* Begin the database scan. */
4907 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4908 p->pEList, wctrlFlags, 0);
4909 if( pWInfo==0 ) goto select_end;
4910 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4911 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4913 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4914 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4916 if( sSort.pOrderBy ){
4917 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4918 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4919 sSort.pOrderBy = 0;
4923 /* If sorting index that was created by a prior OP_OpenEphemeral
4924 ** instruction ended up not being needed, then change the OP_OpenEphemeral
4925 ** into an OP_Noop.
4927 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4928 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4931 /* Use the standard inner loop. */
4932 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4933 sqlite3WhereContinueLabel(pWInfo),
4934 sqlite3WhereBreakLabel(pWInfo));
4936 /* End the database scan loop.
4938 sqlite3WhereEnd(pWInfo);
4939 }else{
4940 /* This case when there exist aggregate functions or a GROUP BY clause
4941 ** or both */
4942 NameContext sNC; /* Name context for processing aggregate information */
4943 int iAMem; /* First Mem address for storing current GROUP BY */
4944 int iBMem; /* First Mem address for previous GROUP BY */
4945 int iUseFlag; /* Mem address holding flag indicating that at least
4946 ** one row of the input to the aggregator has been
4947 ** processed */
4948 int iAbortFlag; /* Mem address which causes query abort if positive */
4949 int groupBySort; /* Rows come from source in GROUP BY order */
4950 int addrEnd; /* End of processing for this SELECT */
4951 int sortPTab = 0; /* Pseudotable used to decode sorting results */
4952 int sortOut = 0; /* Output register from the sorter */
4953 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
4955 /* Remove any and all aliases between the result set and the
4956 ** GROUP BY clause.
4958 if( pGroupBy ){
4959 int k; /* Loop counter */
4960 struct ExprList_item *pItem; /* For looping over expression in a list */
4962 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4963 pItem->u.x.iAlias = 0;
4965 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4966 pItem->u.x.iAlias = 0;
4968 if( p->nSelectRow>100 ) p->nSelectRow = 100;
4969 }else{
4970 p->nSelectRow = 1;
4974 /* If there is both a GROUP BY and an ORDER BY clause and they are
4975 ** identical, then it may be possible to disable the ORDER BY clause
4976 ** on the grounds that the GROUP BY will cause elements to come out
4977 ** in the correct order. It also may not - the GROUP BY may use a
4978 ** database index that causes rows to be grouped together as required
4979 ** but not actually sorted. Either way, record the fact that the
4980 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4981 ** variable. */
4982 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4983 orderByGrp = 1;
4986 /* Create a label to jump to when we want to abort the query */
4987 addrEnd = sqlite3VdbeMakeLabel(v);
4989 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4990 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4991 ** SELECT statement.
4993 memset(&sNC, 0, sizeof(sNC));
4994 sNC.pParse = pParse;
4995 sNC.pSrcList = pTabList;
4996 sNC.pAggInfo = &sAggInfo;
4997 sAggInfo.mnReg = pParse->nMem+1;
4998 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
4999 sAggInfo.pGroupBy = pGroupBy;
5000 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5001 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5002 if( pHaving ){
5003 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5005 sAggInfo.nAccumulator = sAggInfo.nColumn;
5006 for(i=0; i<sAggInfo.nFunc; i++){
5007 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5008 sNC.ncFlags |= NC_InAggFunc;
5009 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5010 sNC.ncFlags &= ~NC_InAggFunc;
5012 sAggInfo.mxReg = pParse->nMem;
5013 if( db->mallocFailed ) goto select_end;
5015 /* Processing for aggregates with GROUP BY is very different and
5016 ** much more complex than aggregates without a GROUP BY.
5018 if( pGroupBy ){
5019 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5020 int j1; /* A-vs-B comparision jump */
5021 int addrOutputRow; /* Start of subroutine that outputs a result row */
5022 int regOutputRow; /* Return address register for output subroutine */
5023 int addrSetAbort; /* Set the abort flag and return */
5024 int addrTopOfLoop; /* Top of the input loop */
5025 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5026 int addrReset; /* Subroutine for resetting the accumulator */
5027 int regReset; /* Return address register for reset subroutine */
5029 /* If there is a GROUP BY clause we might need a sorting index to
5030 ** implement it. Allocate that sorting index now. If it turns out
5031 ** that we do not need it after all, the OP_SorterOpen instruction
5032 ** will be converted into a Noop.
5034 sAggInfo.sortingIdx = pParse->nTab++;
5035 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
5036 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5037 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5038 0, (char*)pKeyInfo, P4_KEYINFO);
5040 /* Initialize memory locations used by GROUP BY aggregate processing
5042 iUseFlag = ++pParse->nMem;
5043 iAbortFlag = ++pParse->nMem;
5044 regOutputRow = ++pParse->nMem;
5045 addrOutputRow = sqlite3VdbeMakeLabel(v);
5046 regReset = ++pParse->nMem;
5047 addrReset = sqlite3VdbeMakeLabel(v);
5048 iAMem = pParse->nMem + 1;
5049 pParse->nMem += pGroupBy->nExpr;
5050 iBMem = pParse->nMem + 1;
5051 pParse->nMem += pGroupBy->nExpr;
5052 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5053 VdbeComment((v, "clear abort flag"));
5054 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5055 VdbeComment((v, "indicate accumulator empty"));
5056 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5058 /* Begin a loop that will extract all source rows in GROUP BY order.
5059 ** This might involve two separate loops with an OP_Sort in between, or
5060 ** it might be a single loop that uses an index to extract information
5061 ** in the right order to begin with.
5063 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5064 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5065 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5067 if( pWInfo==0 ) goto select_end;
5068 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5069 /* The optimizer is able to deliver rows in group by order so
5070 ** we do not have to sort. The OP_OpenEphemeral table will be
5071 ** cancelled later because we still need to use the pKeyInfo
5073 groupBySort = 0;
5074 }else{
5075 /* Rows are coming out in undetermined order. We have to push
5076 ** each row into a sorting index, terminate the first loop,
5077 ** then loop over the sorting index in order to get the output
5078 ** in sorted order
5080 int regBase;
5081 int regRecord;
5082 int nCol;
5083 int nGroupBy;
5085 explainTempTable(pParse,
5086 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5087 "DISTINCT" : "GROUP BY");
5089 groupBySort = 1;
5090 nGroupBy = pGroupBy->nExpr;
5091 nCol = nGroupBy;
5092 j = nGroupBy;
5093 for(i=0; i<sAggInfo.nColumn; i++){
5094 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5095 nCol++;
5096 j++;
5099 regBase = sqlite3GetTempRange(pParse, nCol);
5100 sqlite3ExprCacheClear(pParse);
5101 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
5102 j = nGroupBy;
5103 for(i=0; i<sAggInfo.nColumn; i++){
5104 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5105 if( pCol->iSorterColumn>=j ){
5106 int r1 = j + regBase;
5107 int r2;
5109 r2 = sqlite3ExprCodeGetColumn(pParse,
5110 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5111 if( r1!=r2 ){
5112 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5114 j++;
5117 regRecord = sqlite3GetTempReg(pParse);
5118 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5119 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5120 sqlite3ReleaseTempReg(pParse, regRecord);
5121 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5122 sqlite3WhereEnd(pWInfo);
5123 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5124 sortOut = sqlite3GetTempReg(pParse);
5125 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5126 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5127 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5128 sAggInfo.useSortingIdx = 1;
5129 sqlite3ExprCacheClear(pParse);
5133 /* If the index or temporary table used by the GROUP BY sort
5134 ** will naturally deliver rows in the order required by the ORDER BY
5135 ** clause, cancel the ephemeral table open coded earlier.
5137 ** This is an optimization - the correct answer should result regardless.
5138 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5139 ** disable this optimization for testing purposes. */
5140 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5141 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5143 sSort.pOrderBy = 0;
5144 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5147 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5148 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5149 ** Then compare the current GROUP BY terms against the GROUP BY terms
5150 ** from the previous row currently stored in a0, a1, a2...
5152 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5153 sqlite3ExprCacheClear(pParse);
5154 if( groupBySort ){
5155 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab);
5157 for(j=0; j<pGroupBy->nExpr; j++){
5158 if( groupBySort ){
5159 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5160 }else{
5161 sAggInfo.directMode = 1;
5162 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5165 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5166 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5167 j1 = sqlite3VdbeCurrentAddr(v);
5168 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5170 /* Generate code that runs whenever the GROUP BY changes.
5171 ** Changes in the GROUP BY are detected by the previous code
5172 ** block. If there were no changes, this block is skipped.
5174 ** This code copies current group by terms in b0,b1,b2,...
5175 ** over to a0,a1,a2. It then calls the output subroutine
5176 ** and resets the aggregate accumulator registers in preparation
5177 ** for the next GROUP BY batch.
5179 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5180 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5181 VdbeComment((v, "output one row"));
5182 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5183 VdbeComment((v, "check abort flag"));
5184 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5185 VdbeComment((v, "reset accumulator"));
5187 /* Update the aggregate accumulators based on the content of
5188 ** the current row
5190 sqlite3VdbeJumpHere(v, j1);
5191 updateAccumulator(pParse, &sAggInfo);
5192 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5193 VdbeComment((v, "indicate data in accumulator"));
5195 /* End of the loop
5197 if( groupBySort ){
5198 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5199 VdbeCoverage(v);
5200 }else{
5201 sqlite3WhereEnd(pWInfo);
5202 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5205 /* Output the final row of result
5207 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5208 VdbeComment((v, "output final row"));
5210 /* Jump over the subroutines
5212 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5214 /* Generate a subroutine that outputs a single row of the result
5215 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5216 ** is less than or equal to zero, the subroutine is a no-op. If
5217 ** the processing calls for the query to abort, this subroutine
5218 ** increments the iAbortFlag memory location before returning in
5219 ** order to signal the caller to abort.
5221 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5222 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5223 VdbeComment((v, "set abort flag"));
5224 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5225 sqlite3VdbeResolveLabel(v, addrOutputRow);
5226 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5227 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5228 VdbeComment((v, "Groupby result generator entry point"));
5229 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5230 finalizeAggFunctions(pParse, &sAggInfo);
5231 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5232 selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5233 &sDistinct, pDest,
5234 addrOutputRow+1, addrSetAbort);
5235 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5236 VdbeComment((v, "end groupby result generator"));
5238 /* Generate a subroutine that will reset the group-by accumulator
5240 sqlite3VdbeResolveLabel(v, addrReset);
5241 resetAccumulator(pParse, &sAggInfo);
5242 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5244 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5245 else {
5246 ExprList *pDel = 0;
5247 #ifndef SQLITE_OMIT_BTREECOUNT
5248 Table *pTab;
5249 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5250 /* If isSimpleCount() returns a pointer to a Table structure, then
5251 ** the SQL statement is of the form:
5253 ** SELECT count(*) FROM <tbl>
5255 ** where the Table structure returned represents table <tbl>.
5257 ** This statement is so common that it is optimized specially. The
5258 ** OP_Count instruction is executed either on the intkey table that
5259 ** contains the data for table <tbl> or on one of its indexes. It
5260 ** is better to execute the op on an index, as indexes are almost
5261 ** always spread across less pages than their corresponding tables.
5263 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5264 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5265 Index *pIdx; /* Iterator variable */
5266 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5267 Index *pBest = 0; /* Best index found so far */
5268 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5270 sqlite3CodeVerifySchema(pParse, iDb);
5271 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5273 /* Search for the index that has the lowest scan cost.
5275 ** (2011-04-15) Do not do a full scan of an unordered index.
5277 ** (2013-10-03) Do not count the entries in a partial index.
5279 ** In practice the KeyInfo structure will not be used. It is only
5280 ** passed to keep OP_OpenRead happy.
5282 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5283 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5284 if( pIdx->bUnordered==0
5285 && pIdx->szIdxRow<pTab->szTabRow
5286 && pIdx->pPartIdxWhere==0
5287 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5289 pBest = pIdx;
5292 if( pBest ){
5293 iRoot = pBest->tnum;
5294 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5297 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5298 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5299 if( pKeyInfo ){
5300 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5302 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5303 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5304 explainSimpleCount(pParse, pTab, pBest);
5305 }else
5306 #endif /* SQLITE_OMIT_BTREECOUNT */
5308 /* Check if the query is of one of the following forms:
5310 ** SELECT min(x) FROM ...
5311 ** SELECT max(x) FROM ...
5313 ** If it is, then ask the code in where.c to attempt to sort results
5314 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5315 ** If where.c is able to produce results sorted in this order, then
5316 ** add vdbe code to break out of the processing loop after the
5317 ** first iteration (since the first iteration of the loop is
5318 ** guaranteed to operate on the row with the minimum or maximum
5319 ** value of x, the only row required).
5321 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5322 ** modify behavior as follows:
5324 ** + If the query is a "SELECT min(x)", then the loop coded by
5325 ** where.c should not iterate over any values with a NULL value
5326 ** for x.
5328 ** + The optimizer code in where.c (the thing that decides which
5329 ** index or indices to use) should place a different priority on
5330 ** satisfying the 'ORDER BY' clause than it does in other cases.
5331 ** Refer to code and comments in where.c for details.
5333 ExprList *pMinMax = 0;
5334 u8 flag = WHERE_ORDERBY_NORMAL;
5336 assert( p->pGroupBy==0 );
5337 assert( flag==0 );
5338 if( p->pHaving==0 ){
5339 flag = minMaxQuery(&sAggInfo, &pMinMax);
5341 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5343 if( flag ){
5344 pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5345 pDel = pMinMax;
5346 if( pMinMax && !db->mallocFailed ){
5347 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5348 pMinMax->a[0].pExpr->op = TK_COLUMN;
5352 /* This case runs if the aggregate has no GROUP BY clause. The
5353 ** processing is much simpler since there is only a single row
5354 ** of output.
5356 resetAccumulator(pParse, &sAggInfo);
5357 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5358 if( pWInfo==0 ){
5359 sqlite3ExprListDelete(db, pDel);
5360 goto select_end;
5362 updateAccumulator(pParse, &sAggInfo);
5363 assert( pMinMax==0 || pMinMax->nExpr==1 );
5364 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5365 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5366 VdbeComment((v, "%s() by index",
5367 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5369 sqlite3WhereEnd(pWInfo);
5370 finalizeAggFunctions(pParse, &sAggInfo);
5373 sSort.pOrderBy = 0;
5374 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5375 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5376 pDest, addrEnd, addrEnd);
5377 sqlite3ExprListDelete(db, pDel);
5379 sqlite3VdbeResolveLabel(v, addrEnd);
5381 } /* endif aggregate query */
5383 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5384 explainTempTable(pParse, "DISTINCT");
5387 /* If there is an ORDER BY clause, then we need to sort the results
5388 ** and send them to the callback one by one.
5390 if( sSort.pOrderBy ){
5391 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5392 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5395 /* Jump here to skip this query
5397 sqlite3VdbeResolveLabel(v, iEnd);
5399 /* The SELECT was successfully coded. Set the return code to 0
5400 ** to indicate no errors.
5402 rc = 0;
5404 /* Control jumps to here if an error is encountered above, or upon
5405 ** successful coding of the SELECT.
5407 select_end:
5408 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5410 /* Identify column names if results of the SELECT are to be output.
5412 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5413 generateColumnNames(pParse, pTabList, pEList);
5416 sqlite3DbFree(db, sAggInfo.aCol);
5417 sqlite3DbFree(db, sAggInfo.aFunc);
5418 #if SELECTTRACE_ENABLED
5419 SELECTTRACE(1,pParse,p,("end processing\n"));
5420 pParse->nSelectIndent--;
5421 #endif
5422 return rc;
5425 #ifdef SQLITE_DEBUG
5427 ** Generate a human-readable description of a the Select object.
5429 void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
5430 int n = 0;
5431 pView = sqlite3TreeViewPush(pView, moreToFollow);
5432 sqlite3TreeViewLine(pView, "SELECT%s%s",
5433 ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
5434 ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
5436 if( p->pSrc && p->pSrc->nSrc ) n++;
5437 if( p->pWhere ) n++;
5438 if( p->pGroupBy ) n++;
5439 if( p->pHaving ) n++;
5440 if( p->pOrderBy ) n++;
5441 if( p->pLimit ) n++;
5442 if( p->pOffset ) n++;
5443 if( p->pPrior ) n++;
5444 sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set");
5445 if( p->pSrc && p->pSrc->nSrc ){
5446 int i;
5447 pView = sqlite3TreeViewPush(pView, (n--)>0);
5448 sqlite3TreeViewLine(pView, "FROM");
5449 for(i=0; i<p->pSrc->nSrc; i++){
5450 struct SrcList_item *pItem = &p->pSrc->a[i];
5451 StrAccum x;
5452 char zLine[100];
5453 sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0);
5454 sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor);
5455 if( pItem->zDatabase ){
5456 sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName);
5457 }else if( pItem->zName ){
5458 sqlite3XPrintf(&x, 0, " %s", pItem->zName);
5460 if( pItem->pTab ){
5461 sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName);
5463 if( pItem->zAlias ){
5464 sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias);
5466 if( pItem->jointype & JT_LEFT ){
5467 sqlite3XPrintf(&x, 0, " LEFT-JOIN");
5469 sqlite3StrAccumFinish(&x);
5470 sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1);
5471 if( pItem->pSelect ){
5472 sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
5474 sqlite3TreeViewPop(pView);
5476 sqlite3TreeViewPop(pView);
5478 if( p->pWhere ){
5479 sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
5480 sqlite3TreeViewExpr(pView, p->pWhere, 0);
5481 sqlite3TreeViewPop(pView);
5483 if( p->pGroupBy ){
5484 sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY");
5486 if( p->pHaving ){
5487 sqlite3TreeViewItem(pView, "HAVING", (n--)>0);
5488 sqlite3TreeViewExpr(pView, p->pHaving, 0);
5489 sqlite3TreeViewPop(pView);
5491 if( p->pOrderBy ){
5492 sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY");
5494 if( p->pLimit ){
5495 sqlite3TreeViewItem(pView, "LIMIT", (n--)>0);
5496 sqlite3TreeViewExpr(pView, p->pLimit, 0);
5497 sqlite3TreeViewPop(pView);
5499 if( p->pOffset ){
5500 sqlite3TreeViewItem(pView, "OFFSET", (n--)>0);
5501 sqlite3TreeViewExpr(pView, p->pOffset, 0);
5502 sqlite3TreeViewPop(pView);
5504 if( p->pPrior ){
5505 const char *zOp = "UNION";
5506 switch( p->op ){
5507 case TK_ALL: zOp = "UNION ALL"; break;
5508 case TK_INTERSECT: zOp = "INTERSECT"; break;
5509 case TK_EXCEPT: zOp = "EXCEPT"; break;
5511 sqlite3TreeViewItem(pView, zOp, (n--)>0);
5512 sqlite3TreeViewSelect(pView, p->pPrior, 0);
5513 sqlite3TreeViewPop(pView);
5515 sqlite3TreeViewPop(pView);
5517 #endif /* SQLITE_DEBUG */