Pin Chrome's shortcut to the Win10 Start menu on install and OS upgrade.
[chromium-blink-merge.git] / third_party / tcmalloc / chromium / src / windows / mini_disassembler.cc
blob9e336ba4f9a8a40d9579d88b7b8f6c8791652ce0
1 /* Copyright (c) 2007, Google Inc.
2 * All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met:
7 *
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above
11 * copyright notice, this list of conditions and the following disclaimer
12 * in the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google Inc. nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * ---
31 * Author: Joi Sigurdsson
33 * Implementation of MiniDisassembler.
36 #include "mini_disassembler.h"
38 namespace sidestep {
40 MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits,
41 bool address_default_is_32_bits)
42 : operand_default_is_32_bits_(operand_default_is_32_bits),
43 address_default_is_32_bits_(address_default_is_32_bits) {
44 Initialize();
47 MiniDisassembler::MiniDisassembler()
48 : operand_default_is_32_bits_(true),
49 address_default_is_32_bits_(true) {
50 Initialize();
53 InstructionType MiniDisassembler::Disassemble(
54 unsigned char* start_byte,
55 unsigned int& instruction_bytes) {
56 // Clean up any state from previous invocations.
57 Initialize();
59 // Start by processing any prefixes.
60 unsigned char* current_byte = start_byte;
61 unsigned int size = 0;
62 InstructionType instruction_type = ProcessPrefixes(current_byte, size);
64 if (IT_UNKNOWN == instruction_type)
65 return instruction_type;
67 current_byte += size;
68 size = 0;
70 // Invariant: We have stripped all prefixes, and the operand_is_32_bits_
71 // and address_is_32_bits_ flags are correctly set.
73 instruction_type = ProcessOpcode(current_byte, 0, size);
75 // Check for error processing instruction
76 if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) {
77 return IT_UNKNOWN;
80 current_byte += size;
82 // Invariant: operand_bytes_ indicates the total size of operands
83 // specified by the opcode and/or ModR/M byte and/or SIB byte.
84 // pCurrentByte points to the first byte after the ModR/M byte, or after
85 // the SIB byte if it is present (i.e. the first byte of any operands
86 // encoded in the instruction).
88 // We get the total length of any prefixes, the opcode, and the ModR/M and
89 // SIB bytes if present, by taking the difference of the original starting
90 // address and the current byte (which points to the first byte of the
91 // operands if present, or to the first byte of the next instruction if
92 // they are not). Adding the count of bytes in the operands encoded in
93 // the instruction gives us the full length of the instruction in bytes.
94 instruction_bytes += operand_bytes_ + (current_byte - start_byte);
96 // Return the instruction type, which was set by ProcessOpcode().
97 return instruction_type_;
100 void MiniDisassembler::Initialize() {
101 operand_is_32_bits_ = operand_default_is_32_bits_;
102 address_is_32_bits_ = address_default_is_32_bits_;
103 #ifdef _M_X64
104 operand_default_support_64_bits_ = true;
105 #else
106 operand_default_support_64_bits_ = false;
107 #endif
108 operand_is_64_bits_ = false;
109 operand_bytes_ = 0;
110 have_modrm_ = false;
111 should_decode_modrm_ = false;
112 instruction_type_ = IT_UNKNOWN;
113 got_f2_prefix_ = false;
114 got_f3_prefix_ = false;
115 got_66_prefix_ = false;
118 InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte,
119 unsigned int& size) {
120 InstructionType instruction_type = IT_GENERIC;
121 const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte];
123 switch (opcode.type_) {
124 case IT_PREFIX_ADDRESS:
125 address_is_32_bits_ = !address_default_is_32_bits_;
126 goto nochangeoperand;
127 case IT_PREFIX_OPERAND:
128 operand_is_32_bits_ = !operand_default_is_32_bits_;
129 nochangeoperand:
130 case IT_PREFIX:
132 if (0xF2 == (*start_byte))
133 got_f2_prefix_ = true;
134 else if (0xF3 == (*start_byte))
135 got_f3_prefix_ = true;
136 else if (0x66 == (*start_byte))
137 got_66_prefix_ = true;
138 else if (operand_default_support_64_bits_ && (*start_byte) & 0x48)
139 operand_is_64_bits_ = true;
141 instruction_type = opcode.type_;
142 size ++;
143 // we got a prefix, so add one and check next byte
144 ProcessPrefixes(start_byte + 1, size);
145 default:
146 break; // not a prefix byte
149 return instruction_type;
152 InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte,
153 unsigned int table_index,
154 unsigned int& size) {
155 const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table
156 unsigned char current_byte = (*start_byte) >> table.shift_;
157 current_byte = current_byte & table.mask_; // Mask out the bits we will use
159 // Check whether the byte we have is inside the table we have.
160 if (current_byte < table.min_lim_ || current_byte > table.max_lim_) {
161 instruction_type_ = IT_UNKNOWN;
162 return instruction_type_;
165 const Opcode& opcode = table.table_[current_byte];
166 if (IT_UNUSED == opcode.type_) {
167 // This instruction is not used by the IA-32 ISA, so we indicate
168 // this to the user. Probably means that we were pointed to
169 // a byte in memory that was not the start of an instruction.
170 instruction_type_ = IT_UNUSED;
171 return instruction_type_;
172 } else if (IT_REFERENCE == opcode.type_) {
173 // We are looking at an opcode that has more bytes (or is continued
174 // in the ModR/M byte). Recursively find the opcode definition in
175 // the table for the opcode's next byte.
176 size++;
177 ProcessOpcode(start_byte + 1, opcode.table_index_, size);
178 return instruction_type_;
181 const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode;
182 if (opcode.is_prefix_dependent_) {
183 if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) {
184 specific_opcode = &opcode.opcode_if_f2_prefix_;
185 } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) {
186 specific_opcode = &opcode.opcode_if_f3_prefix_;
187 } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) {
188 specific_opcode = &opcode.opcode_if_66_prefix_;
192 // Inv: The opcode type is known.
193 instruction_type_ = specific_opcode->type_;
195 // Let's process the operand types to see if we have any immediate
196 // operands, and/or a ModR/M byte.
198 ProcessOperand(specific_opcode->flag_dest_);
199 ProcessOperand(specific_opcode->flag_source_);
200 ProcessOperand(specific_opcode->flag_aux_);
202 // Inv: We have processed the opcode and incremented operand_bytes_
203 // by the number of bytes of any operands specified by the opcode
204 // that are stored in the instruction (not registers etc.). Now
205 // we need to return the total number of bytes for the opcode and
206 // for the ModR/M or SIB bytes if they are present.
208 if (table.mask_ != 0xff) {
209 if (have_modrm_) {
210 // we're looking at a ModR/M byte so we're not going to
211 // count that into the opcode size
212 ProcessModrm(start_byte, size);
213 return IT_GENERIC;
214 } else {
215 // need to count the ModR/M byte even if it's just being
216 // used for opcode extension
217 size++;
218 return IT_GENERIC;
220 } else {
221 if (have_modrm_) {
222 // The ModR/M byte is the next byte.
223 size++;
224 ProcessModrm(start_byte + 1, size);
225 return IT_GENERIC;
226 } else {
227 size++;
228 return IT_GENERIC;
233 bool MiniDisassembler::ProcessOperand(int flag_operand) {
234 bool succeeded = true;
235 if (AM_NOT_USED == flag_operand)
236 return succeeded;
238 // Decide what to do based on the addressing mode.
239 switch (flag_operand & AM_MASK) {
240 // No ModR/M byte indicated by these addressing modes, and no
241 // additional (e.g. immediate) parameters.
242 case AM_A: // Direct address
243 case AM_F: // EFLAGS register
244 case AM_X: // Memory addressed by the DS:SI register pair
245 case AM_Y: // Memory addressed by the ES:DI register pair
246 case AM_IMPLICIT: // Parameter is implicit, occupies no space in
247 // instruction
248 break;
250 // There is a ModR/M byte but it does not necessarily need
251 // to be decoded.
252 case AM_C: // reg field of ModR/M selects a control register
253 case AM_D: // reg field of ModR/M selects a debug register
254 case AM_G: // reg field of ModR/M selects a general register
255 case AM_P: // reg field of ModR/M selects an MMX register
256 case AM_R: // mod field of ModR/M may refer only to a general register
257 case AM_S: // reg field of ModR/M selects a segment register
258 case AM_T: // reg field of ModR/M selects a test register
259 case AM_V: // reg field of ModR/M selects a 128-bit XMM register
260 have_modrm_ = true;
261 break;
263 // In these addressing modes, there is a ModR/M byte and it needs to be
264 // decoded. No other (e.g. immediate) params than indicated in ModR/M.
265 case AM_E: // Operand is either a general-purpose register or memory,
266 // specified by ModR/M byte
267 case AM_M: // ModR/M byte will refer only to memory
268 case AM_Q: // Operand is either an MMX register or memory (complex
269 // evaluation), specified by ModR/M byte
270 case AM_W: // Operand is either a 128-bit XMM register or memory (complex
271 // eval), specified by ModR/M byte
272 have_modrm_ = true;
273 should_decode_modrm_ = true;
274 break;
276 // These addressing modes specify an immediate or an offset value
277 // directly, so we need to look at the operand type to see how many
278 // bytes.
279 case AM_I: // Immediate data.
280 case AM_J: // Jump to offset.
281 case AM_O: // Operand is at offset.
282 switch (flag_operand & OT_MASK) {
283 case OT_B: // Byte regardless of operand-size attribute.
284 operand_bytes_ += OS_BYTE;
285 break;
286 case OT_C: // Byte or word, depending on operand-size attribute.
287 if (operand_is_32_bits_)
288 operand_bytes_ += OS_WORD;
289 else
290 operand_bytes_ += OS_BYTE;
291 break;
292 case OT_D: // Doubleword, regardless of operand-size attribute.
293 operand_bytes_ += OS_DOUBLE_WORD;
294 break;
295 case OT_DQ: // Double-quadword, regardless of operand-size attribute.
296 operand_bytes_ += OS_DOUBLE_QUAD_WORD;
297 break;
298 case OT_P: // 32-bit or 48-bit pointer, depending on operand-size
299 // attribute.
300 if (operand_is_32_bits_)
301 operand_bytes_ += OS_48_BIT_POINTER;
302 else
303 operand_bytes_ += OS_32_BIT_POINTER;
304 break;
305 case OT_PS: // 128-bit packed single-precision floating-point data.
306 operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING;
307 break;
308 case OT_Q: // Quadword, regardless of operand-size attribute.
309 operand_bytes_ += OS_QUAD_WORD;
310 break;
311 case OT_S: // 6-byte pseudo-descriptor.
312 operand_bytes_ += OS_PSEUDO_DESCRIPTOR;
313 break;
314 case OT_SD: // Scalar Double-Precision Floating-Point Value
315 case OT_PD: // Unaligned packed double-precision floating point value
316 operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING;
317 break;
318 case OT_SS:
319 // Scalar element of a 128-bit packed single-precision
320 // floating data.
321 // We simply return enItUnknown since we don't have to support
322 // floating point
323 succeeded = false;
324 break;
325 case OT_V: // Word, doubleword or quadword, depending on operand-size
326 // attribute.
327 if (operand_is_64_bits_ && flag_operand & AM_I &&
328 flag_operand & IOS_64)
329 operand_bytes_ += OS_QUAD_WORD;
330 else if (operand_is_32_bits_)
331 operand_bytes_ += OS_DOUBLE_WORD;
332 else
333 operand_bytes_ += OS_WORD;
334 break;
335 case OT_W: // Word, regardless of operand-size attribute.
336 operand_bytes_ += OS_WORD;
337 break;
339 // Can safely ignore these.
340 case OT_A: // Two one-word operands in memory or two double-word
341 // operands in memory
342 case OT_PI: // Quadword MMX technology register (e.g. mm0)
343 case OT_SI: // Doubleword integer register (e.g., eax)
344 break;
346 default:
347 break;
349 break;
351 default:
352 break;
355 return succeeded;
358 bool MiniDisassembler::ProcessModrm(unsigned char* start_byte,
359 unsigned int& size) {
360 // If we don't need to decode, we just return the size of the ModR/M
361 // byte (there is never a SIB byte in this case).
362 if (!should_decode_modrm_) {
363 size++;
364 return true;
367 // We never care about the reg field, only the combination of the mod
368 // and r/m fields, so let's start by packing those fields together into
369 // 5 bits.
370 unsigned char modrm = (*start_byte);
371 unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field
372 modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field
373 mod = mod >> 3; // shift the mod field to the right place
374 modrm = mod | modrm; // combine the r/m and mod fields as discussed
375 mod = mod >> 3; // shift the mod field to bits 2..0
377 // Invariant: modrm contains the mod field in bits 4..3 and the r/m field
378 // in bits 2..0, and mod contains the mod field in bits 2..0
380 const ModrmEntry* modrm_entry = 0;
381 if (address_is_32_bits_)
382 modrm_entry = &s_ia32_modrm_map_[modrm];
383 else
384 modrm_entry = &s_ia16_modrm_map_[modrm];
386 // Invariant: modrm_entry points to information that we need to decode
387 // the ModR/M byte.
389 // Add to the count of operand bytes, if the ModR/M byte indicates
390 // that some operands are encoded in the instruction.
391 if (modrm_entry->is_encoded_in_instruction_)
392 operand_bytes_ += modrm_entry->operand_size_;
394 // Process the SIB byte if necessary, and return the count
395 // of ModR/M and SIB bytes.
396 if (modrm_entry->use_sib_byte_) {
397 size++;
398 return ProcessSib(start_byte + 1, mod, size);
399 } else {
400 size++;
401 return true;
405 bool MiniDisassembler::ProcessSib(unsigned char* start_byte,
406 unsigned char mod,
407 unsigned int& size) {
408 // get the mod field from the 2..0 bits of the SIB byte
409 unsigned char sib_base = (*start_byte) & 0x07;
410 if (0x05 == sib_base) {
411 switch (mod) {
412 case 0x00: // mod == 00
413 case 0x02: // mod == 10
414 operand_bytes_ += OS_DOUBLE_WORD;
415 break;
416 case 0x01: // mod == 01
417 operand_bytes_ += OS_BYTE;
418 break;
419 case 0x03: // mod == 11
420 // According to the IA-32 docs, there does not seem to be a disp
421 // value for this value of mod
422 default:
423 break;
427 size++;
428 return true;
431 }; // namespace sidestep