1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/time/time.h"
12 #include "base/float_util.h"
13 #include "base/lazy_instance.h"
14 #include "base/logging.h"
15 #include "base/strings/stringprintf.h"
16 #include "base/third_party/nspr/prtime.h"
20 // TimeDelta ------------------------------------------------------------------
23 TimeDelta
TimeDelta::Max() {
24 return TimeDelta(std::numeric_limits
<int64
>::max());
27 int TimeDelta::InDays() const {
29 // Preserve max to prevent overflow.
30 return std::numeric_limits
<int>::max();
32 return static_cast<int>(delta_
/ Time::kMicrosecondsPerDay
);
35 int TimeDelta::InHours() const {
37 // Preserve max to prevent overflow.
38 return std::numeric_limits
<int>::max();
40 return static_cast<int>(delta_
/ Time::kMicrosecondsPerHour
);
43 int TimeDelta::InMinutes() const {
45 // Preserve max to prevent overflow.
46 return std::numeric_limits
<int>::max();
48 return static_cast<int>(delta_
/ Time::kMicrosecondsPerMinute
);
51 double TimeDelta::InSecondsF() const {
53 // Preserve max to prevent overflow.
54 return std::numeric_limits
<double>::infinity();
56 return static_cast<double>(delta_
) / Time::kMicrosecondsPerSecond
;
59 int64
TimeDelta::InSeconds() const {
61 // Preserve max to prevent overflow.
62 return std::numeric_limits
<int64
>::max();
64 return delta_
/ Time::kMicrosecondsPerSecond
;
67 double TimeDelta::InMillisecondsF() const {
69 // Preserve max to prevent overflow.
70 return std::numeric_limits
<double>::infinity();
72 return static_cast<double>(delta_
) / Time::kMicrosecondsPerMillisecond
;
75 int64
TimeDelta::InMilliseconds() const {
77 // Preserve max to prevent overflow.
78 return std::numeric_limits
<int64
>::max();
80 return delta_
/ Time::kMicrosecondsPerMillisecond
;
83 int64
TimeDelta::InMillisecondsRoundedUp() const {
85 // Preserve max to prevent overflow.
86 return std::numeric_limits
<int64
>::max();
88 return (delta_
+ Time::kMicrosecondsPerMillisecond
- 1) /
89 Time::kMicrosecondsPerMillisecond
;
92 int64
TimeDelta::InMicroseconds() const {
94 // Preserve max to prevent overflow.
95 return std::numeric_limits
<int64
>::max();
100 std::ostream
& operator<<(std::ostream
& os
, TimeDelta time_delta
) {
101 return os
<< time_delta
.InSecondsF() << "s";
104 // Time -----------------------------------------------------------------------
108 return Time(std::numeric_limits
<int64
>::max());
112 Time
Time::FromTimeT(time_t tt
) {
114 return Time(); // Preserve 0 so we can tell it doesn't exist.
115 if (tt
== std::numeric_limits
<time_t>::max())
117 return Time((tt
* kMicrosecondsPerSecond
) + kTimeTToMicrosecondsOffset
);
120 time_t Time::ToTimeT() const {
122 return 0; // Preserve 0 so we can tell it doesn't exist.
124 // Preserve max without offset to prevent overflow.
125 return std::numeric_limits
<time_t>::max();
127 if (std::numeric_limits
<int64
>::max() - kTimeTToMicrosecondsOffset
<= us_
) {
128 DLOG(WARNING
) << "Overflow when converting base::Time with internal " <<
129 "value " << us_
<< " to time_t.";
130 return std::numeric_limits
<time_t>::max();
132 return (us_
- kTimeTToMicrosecondsOffset
) / kMicrosecondsPerSecond
;
136 Time
Time::FromDoubleT(double dt
) {
137 if (dt
== 0 || IsNaN(dt
))
138 return Time(); // Preserve 0 so we can tell it doesn't exist.
139 if (dt
== std::numeric_limits
<double>::infinity())
141 return Time(static_cast<int64
>((dt
*
142 static_cast<double>(kMicrosecondsPerSecond
)) +
143 kTimeTToMicrosecondsOffset
));
146 double Time::ToDoubleT() const {
148 return 0; // Preserve 0 so we can tell it doesn't exist.
150 // Preserve max without offset to prevent overflow.
151 return std::numeric_limits
<double>::infinity();
153 return (static_cast<double>(us_
- kTimeTToMicrosecondsOffset
) /
154 static_cast<double>(kMicrosecondsPerSecond
));
157 #if defined(OS_POSIX)
159 Time
Time::FromTimeSpec(const timespec
& ts
) {
160 return FromDoubleT(ts
.tv_sec
+
161 static_cast<double>(ts
.tv_nsec
) /
162 base::Time::kNanosecondsPerSecond
);
167 Time
Time::FromJsTime(double ms_since_epoch
) {
168 // The epoch is a valid time, so this constructor doesn't interpret
169 // 0 as the null time.
170 if (ms_since_epoch
== std::numeric_limits
<double>::infinity())
172 return Time(static_cast<int64
>(ms_since_epoch
* kMicrosecondsPerMillisecond
) +
173 kTimeTToMicrosecondsOffset
);
176 double Time::ToJsTime() const {
178 // Preserve 0 so the invalid result doesn't depend on the platform.
182 // Preserve max without offset to prevent overflow.
183 return std::numeric_limits
<double>::infinity();
185 return (static_cast<double>(us_
- kTimeTToMicrosecondsOffset
) /
186 kMicrosecondsPerMillisecond
);
189 int64
Time::ToJavaTime() const {
191 // Preserve 0 so the invalid result doesn't depend on the platform.
195 // Preserve max without offset to prevent overflow.
196 return std::numeric_limits
<int64
>::max();
198 return ((us_
- kTimeTToMicrosecondsOffset
) /
199 kMicrosecondsPerMillisecond
);
203 Time
Time::UnixEpoch() {
205 time
.us_
= kTimeTToMicrosecondsOffset
;
209 Time
Time::LocalMidnight() const {
211 LocalExplode(&exploded
);
215 exploded
.millisecond
= 0;
216 return FromLocalExploded(exploded
);
220 bool Time::FromStringInternal(const char* time_string
,
223 DCHECK((time_string
!= NULL
) && (parsed_time
!= NULL
));
225 if (time_string
[0] == '\0')
228 PRTime result_time
= 0;
229 PRStatus result
= PR_ParseTimeString(time_string
,
230 is_local
? PR_FALSE
: PR_TRUE
,
232 if (PR_SUCCESS
!= result
)
235 result_time
+= kTimeTToMicrosecondsOffset
;
236 *parsed_time
= Time(result_time
);
240 std::ostream
& operator<<(std::ostream
& os
, Time time
) {
241 Time::Exploded exploded
;
242 time
.UTCExplode(&exploded
);
243 // Use StringPrintf because iostreams formatting is painful.
244 return os
<< StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
247 exploded
.day_of_month
,
251 exploded
.millisecond
);
254 // Local helper class to hold the conversion from Time to TickTime at the
255 // time of the Unix epoch.
256 class UnixEpochSingleton
{
259 : unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}
261 TimeTicks
unix_epoch() const { return unix_epoch_
; }
264 const TimeTicks unix_epoch_
;
266 DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton
);
269 static LazyInstance
<UnixEpochSingleton
>::Leaky
270 leaky_unix_epoch_singleton_instance
= LAZY_INSTANCE_INITIALIZER
;
273 TimeTicks
TimeTicks::UnixEpoch() {
274 return leaky_unix_epoch_singleton_instance
.Get().unix_epoch();
277 std::ostream
& operator<<(std::ostream
& os
, TimeTicks time_ticks
) {
278 // This function formats a TimeTicks object as "bogo-microseconds".
279 // The origin and granularity of the count are platform-specific, and may very
280 // from run to run. Although bogo-microseconds usually roughly correspond to
281 // real microseconds, the only real guarantee is that the number never goes
282 // down during a single run.
283 const TimeDelta as_time_delta
= time_ticks
- TimeTicks();
284 return os
<< as_time_delta
.InMicroseconds() << " bogo-microseconds";
287 // Time::Exploded -------------------------------------------------------------
289 inline bool is_in_range(int value
, int lo
, int hi
) {
290 return lo
<= value
&& value
<= hi
;
293 bool Time::Exploded::HasValidValues() const {
294 return is_in_range(month
, 1, 12) &&
295 is_in_range(day_of_week
, 0, 6) &&
296 is_in_range(day_of_month
, 1, 31) &&
297 is_in_range(hour
, 0, 23) &&
298 is_in_range(minute
, 0, 59) &&
299 is_in_range(second
, 0, 60) &&
300 is_in_range(millisecond
, 0, 999);