Changes to RenderFrameProxy:
[chromium-blink-merge.git] / media / cast / cast_defines.h
blob07be3b3f9ef25d3d2ebcefc80bf0fd5b00457c18
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef MEDIA_CAST_CAST_DEFINES_H_
6 #define MEDIA_CAST_CAST_DEFINES_H_
8 #include <stdint.h>
10 #include <map>
11 #include <set>
13 #include "base/basictypes.h"
14 #include "base/compiler_specific.h"
15 #include "base/logging.h"
16 #include "base/time/time.h"
17 #include "media/cast/net/cast_transport_config.h"
19 namespace media {
20 namespace cast {
22 const int64 kDontShowTimeoutMs = 33;
23 const float kDefaultCongestionControlBackOff = 0.875f;
24 const uint32 kVideoFrequency = 90000;
25 const uint32 kStartFrameId = UINT32_C(0xffffffff);
27 // This is an important system-wide constant. This limits how much history the
28 // implementation must retain in order to process the acknowledgements of past
29 // frames.
30 const int kMaxUnackedFrames = 255;
32 const int kStartRttMs = 20;
33 const int64 kCastMessageUpdateIntervalMs = 33;
34 const int64 kNackRepeatIntervalMs = 30;
36 enum CastInitializationStatus {
37 STATUS_AUDIO_UNINITIALIZED,
38 STATUS_VIDEO_UNINITIALIZED,
39 STATUS_AUDIO_INITIALIZED,
40 STATUS_VIDEO_INITIALIZED,
41 STATUS_INVALID_CAST_ENVIRONMENT,
42 STATUS_INVALID_CRYPTO_CONFIGURATION,
43 STATUS_UNSUPPORTED_AUDIO_CODEC,
44 STATUS_UNSUPPORTED_VIDEO_CODEC,
45 STATUS_INVALID_AUDIO_CONFIGURATION,
46 STATUS_INVALID_VIDEO_CONFIGURATION,
47 STATUS_GPU_ACCELERATION_NOT_SUPPORTED,
48 STATUS_GPU_ACCELERATION_ERROR,
51 enum DefaultSettings {
52 kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR.
53 kDefaultAudioSamplingRate = 48000,
54 kDefaultMaxQp = 56,
55 kDefaultMinQp = 4,
56 kDefaultMaxFrameRate = 30,
57 kDefaultNumberOfVideoBuffers = 1,
58 kDefaultRtcpIntervalMs = 500,
59 kDefaultRtpHistoryMs = 1000,
60 kDefaultRtpMaxDelayMs = 100,
63 enum PacketType {
64 kNewPacket,
65 kNewPacketCompletingFrame,
66 kDuplicatePacket,
67 kTooOldPacket,
70 // kRtcpCastAllPacketsLost is used in PacketIDSet and
71 // on the wire to mean that ALL packets for a particular
72 // frame are lost.
73 const uint16 kRtcpCastAllPacketsLost = 0xffff;
75 // kRtcpCastLastPacket is used in PacketIDSet to ask for
76 // the last packet of a frame to be retransmitted.
77 const uint16 kRtcpCastLastPacket = 0xfffe;
79 const size_t kMinLengthOfRtcp = 8;
81 // Basic RTP header + cast header.
82 const size_t kMinLengthOfRtp = 12 + 6;
84 // Each uint16 represents one packet id within a cast frame.
85 // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket.
86 typedef std::set<uint16> PacketIdSet;
87 // Each uint8 represents one cast frame.
88 typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap;
90 // TODO(pwestin): Re-factor the functions bellow into a class with static
91 // methods.
93 // January 1970, in NTP seconds.
94 // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on
95 // 1 January 1900.
96 static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800);
98 // Magic fractional unit. Used to convert time (in microseconds) to/from
99 // fractional NTP seconds.
100 static const double kMagicFractionalUnit = 4.294967296E3;
102 // The maximum number of Cast receiver events to keep in history for the
103 // purpose of sending the events through RTCP.
104 // The number chosen should be more than the number of events that can be
105 // stored in a RTCP packet.
106 static const size_t kReceiverRtcpEventHistorySize = 512;
108 inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) {
109 return (frame_id != prev_frame_id) &&
110 static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000;
113 inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) {
114 return (timestamp != prev_timestamp) &&
115 static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000;
118 inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) {
119 return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id);
122 inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) {
123 return (packet_id != prev_packet_id) &&
124 static_cast<uint16>(packet_id - prev_packet_id) < 0x8000;
127 inline bool IsNewerSequenceNumber(uint16 sequence_number,
128 uint16 prev_sequence_number) {
129 // Same function as IsNewerPacketId just different data and name.
130 return IsNewerPacketId(sequence_number, prev_sequence_number);
133 // Create a NTP diff from seconds and fractions of seconds; delay_fraction is
134 // fractions of a second where 0x80000000 is half a second.
135 inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) {
136 return ((delay_seconds & 0x0000FFFF) << 16) +
137 ((delay_fraction & 0xFFFF0000) >> 16);
140 inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) {
141 uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000;
142 delay_ms >>= 16;
143 delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000;
144 return base::TimeDelta::FromMilliseconds(delay_ms);
147 inline void ConvertTimeToFractions(int64 ntp_time_us,
148 uint32* seconds,
149 uint32* fractions) {
150 DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative";
151 const int64 seconds_component =
152 ntp_time_us / base::Time::kMicrosecondsPerSecond;
153 // NTP time will overflow in the year 2036. Also, make sure unit tests don't
154 // regress and use an origin past the year 2036. If this overflows here, the
155 // inverse calculation fails to compute the correct TimeTicks value, throwing
156 // off the entire system.
157 DCHECK_LT(seconds_component, INT64_C(4263431296))
158 << "One year left to fix the NTP year 2036 wrap-around issue!";
159 *seconds = static_cast<uint32>(seconds_component);
160 *fractions = static_cast<uint32>(
161 (ntp_time_us % base::Time::kMicrosecondsPerSecond) *
162 kMagicFractionalUnit);
165 inline void ConvertTimeTicksToNtp(const base::TimeTicks& time,
166 uint32* ntp_seconds,
167 uint32* ntp_fractions) {
168 base::TimeDelta elapsed_since_unix_epoch =
169 time - base::TimeTicks::UnixEpoch();
171 int64 ntp_time_us =
172 elapsed_since_unix_epoch.InMicroseconds() +
173 (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond);
175 ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions);
178 inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds,
179 uint32 ntp_fractions) {
180 int64 ntp_time_us =
181 static_cast<int64>(ntp_seconds) * base::Time::kMicrosecondsPerSecond +
182 static_cast<int64>(ntp_fractions) / kMagicFractionalUnit;
184 base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds(
185 ntp_time_us -
186 (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond));
187 return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch;
190 inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) {
191 DCHECK_GT(rtp_timebase, 0);
192 return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase;
195 } // namespace cast
196 } // namespace media
198 #endif // MEDIA_CAST_CAST_DEFINES_H_