Roll src/third_party/WebKit a3b4a2e:7441784 (svn 202551:202552)
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / ext / rtree / rtree.c
blob8150538d452d1b31ebc91b54b5fcb3e6dad8f3aa
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code for implementations of the r-tree and r*-tree
13 ** algorithms packaged as an SQLite virtual table module.
17 ** Database Format of R-Tree Tables
18 ** --------------------------------
20 ** The data structure for a single virtual r-tree table is stored in three
21 ** native SQLite tables declared as follows. In each case, the '%' character
22 ** in the table name is replaced with the user-supplied name of the r-tree
23 ** table.
25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
29 ** The data for each node of the r-tree structure is stored in the %_node
30 ** table. For each node that is not the root node of the r-tree, there is
31 ** an entry in the %_parent table associating the node with its parent.
32 ** And for each row of data in the table, there is an entry in the %_rowid
33 ** table that maps from the entries rowid to the id of the node that it
34 ** is stored on.
36 ** The root node of an r-tree always exists, even if the r-tree table is
37 ** empty. The nodeno of the root node is always 1. All other nodes in the
38 ** table must be the same size as the root node. The content of each node
39 ** is formatted as follows:
41 ** 1. If the node is the root node (node 1), then the first 2 bytes
42 ** of the node contain the tree depth as a big-endian integer.
43 ** For non-root nodes, the first 2 bytes are left unused.
45 ** 2. The next 2 bytes contain the number of entries currently
46 ** stored in the node.
48 ** 3. The remainder of the node contains the node entries. Each entry
49 ** consists of a single 8-byte integer followed by an even number
50 ** of 4-byte coordinates. For leaf nodes the integer is the rowid
51 ** of a record. For internal nodes it is the node number of a
52 ** child page.
55 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
57 #ifndef SQLITE_CORE
58 #include "sqlite3ext.h"
59 SQLITE_EXTENSION_INIT1
60 #else
61 #include "sqlite3.h"
62 #endif
64 #include <string.h>
65 #include <assert.h>
66 #include <stdio.h>
68 #ifndef SQLITE_AMALGAMATION
69 #include "sqlite3rtree.h"
70 typedef sqlite3_int64 i64;
71 typedef unsigned char u8;
72 typedef unsigned short u16;
73 typedef unsigned int u32;
74 #endif
76 /* The following macro is used to suppress compiler warnings.
78 #ifndef UNUSED_PARAMETER
79 # define UNUSED_PARAMETER(x) (void)(x)
80 #endif
82 typedef struct Rtree Rtree;
83 typedef struct RtreeCursor RtreeCursor;
84 typedef struct RtreeNode RtreeNode;
85 typedef struct RtreeCell RtreeCell;
86 typedef struct RtreeConstraint RtreeConstraint;
87 typedef struct RtreeMatchArg RtreeMatchArg;
88 typedef struct RtreeGeomCallback RtreeGeomCallback;
89 typedef union RtreeCoord RtreeCoord;
90 typedef struct RtreeSearchPoint RtreeSearchPoint;
92 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
93 #define RTREE_MAX_DIMENSIONS 5
95 /* Size of hash table Rtree.aHash. This hash table is not expected to
96 ** ever contain very many entries, so a fixed number of buckets is
97 ** used.
99 #define HASHSIZE 97
101 /* The xBestIndex method of this virtual table requires an estimate of
102 ** the number of rows in the virtual table to calculate the costs of
103 ** various strategies. If possible, this estimate is loaded from the
104 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
105 ** Otherwise, if no sqlite_stat1 entry is available, use
106 ** RTREE_DEFAULT_ROWEST.
108 #define RTREE_DEFAULT_ROWEST 1048576
109 #define RTREE_MIN_ROWEST 100
112 ** An rtree virtual-table object.
114 struct Rtree {
115 sqlite3_vtab base; /* Base class. Must be first */
116 sqlite3 *db; /* Host database connection */
117 int iNodeSize; /* Size in bytes of each node in the node table */
118 u8 nDim; /* Number of dimensions */
119 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
120 u8 nBytesPerCell; /* Bytes consumed per cell */
121 int iDepth; /* Current depth of the r-tree structure */
122 char *zDb; /* Name of database containing r-tree table */
123 char *zName; /* Name of r-tree table */
124 int nBusy; /* Current number of users of this structure */
125 i64 nRowEst; /* Estimated number of rows in this table */
127 /* List of nodes removed during a CondenseTree operation. List is
128 ** linked together via the pointer normally used for hash chains -
129 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
130 ** headed by the node (leaf nodes have RtreeNode.iNode==0).
132 RtreeNode *pDeleted;
133 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
135 /* Statements to read/write/delete a record from xxx_node */
136 sqlite3_stmt *pReadNode;
137 sqlite3_stmt *pWriteNode;
138 sqlite3_stmt *pDeleteNode;
140 /* Statements to read/write/delete a record from xxx_rowid */
141 sqlite3_stmt *pReadRowid;
142 sqlite3_stmt *pWriteRowid;
143 sqlite3_stmt *pDeleteRowid;
145 /* Statements to read/write/delete a record from xxx_parent */
146 sqlite3_stmt *pReadParent;
147 sqlite3_stmt *pWriteParent;
148 sqlite3_stmt *pDeleteParent;
150 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
153 /* Possible values for Rtree.eCoordType: */
154 #define RTREE_COORD_REAL32 0
155 #define RTREE_COORD_INT32 1
158 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
159 ** only deal with integer coordinates. No floating point operations
160 ** will be done.
162 #ifdef SQLITE_RTREE_INT_ONLY
163 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */
164 typedef int RtreeValue; /* Low accuracy coordinate */
165 # define RTREE_ZERO 0
166 #else
167 typedef double RtreeDValue; /* High accuracy coordinate */
168 typedef float RtreeValue; /* Low accuracy coordinate */
169 # define RTREE_ZERO 0.0
170 #endif
173 ** When doing a search of an r-tree, instances of the following structure
174 ** record intermediate results from the tree walk.
176 ** The id is always a node-id. For iLevel>=1 the id is the node-id of
177 ** the node that the RtreeSearchPoint represents. When iLevel==0, however,
178 ** the id is of the parent node and the cell that RtreeSearchPoint
179 ** represents is the iCell-th entry in the parent node.
181 struct RtreeSearchPoint {
182 RtreeDValue rScore; /* The score for this node. Smallest goes first. */
183 sqlite3_int64 id; /* Node ID */
184 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */
185 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */
186 u8 iCell; /* Cell index within the node */
190 ** The minimum number of cells allowed for a node is a third of the
191 ** maximum. In Gutman's notation:
193 ** m = M/3
195 ** If an R*-tree "Reinsert" operation is required, the same number of
196 ** cells are removed from the overfull node and reinserted into the tree.
198 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
199 #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
200 #define RTREE_MAXCELLS 51
203 ** The smallest possible node-size is (512-64)==448 bytes. And the largest
204 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
205 ** Therefore all non-root nodes must contain at least 3 entries. Since
206 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of
207 ** 40 or less.
209 #define RTREE_MAX_DEPTH 40
213 ** Number of entries in the cursor RtreeNode cache. The first entry is
214 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
215 ** entries cache the RtreeNode for the first elements of the priority queue.
217 #define RTREE_CACHE_SZ 5
220 ** An rtree cursor object.
222 struct RtreeCursor {
223 sqlite3_vtab_cursor base; /* Base class. Must be first */
224 u8 atEOF; /* True if at end of search */
225 u8 bPoint; /* True if sPoint is valid */
226 int iStrategy; /* Copy of idxNum search parameter */
227 int nConstraint; /* Number of entries in aConstraint */
228 RtreeConstraint *aConstraint; /* Search constraints. */
229 int nPointAlloc; /* Number of slots allocated for aPoint[] */
230 int nPoint; /* Number of slots used in aPoint[] */
231 int mxLevel; /* iLevel value for root of the tree */
232 RtreeSearchPoint *aPoint; /* Priority queue for search points */
233 RtreeSearchPoint sPoint; /* Cached next search point */
234 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
235 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */
238 /* Return the Rtree of a RtreeCursor */
239 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
242 ** A coordinate can be either a floating point number or a integer. All
243 ** coordinates within a single R-Tree are always of the same time.
245 union RtreeCoord {
246 RtreeValue f; /* Floating point value */
247 int i; /* Integer value */
248 u32 u; /* Unsigned for byte-order conversions */
252 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
253 ** formatted as a RtreeDValue (double or int64). This macro assumes that local
254 ** variable pRtree points to the Rtree structure associated with the
255 ** RtreeCoord.
257 #ifdef SQLITE_RTREE_INT_ONLY
258 # define DCOORD(coord) ((RtreeDValue)coord.i)
259 #else
260 # define DCOORD(coord) ( \
261 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
262 ((double)coord.f) : \
263 ((double)coord.i) \
265 #endif
268 ** A search constraint.
270 struct RtreeConstraint {
271 int iCoord; /* Index of constrained coordinate */
272 int op; /* Constraining operation */
273 union {
274 RtreeDValue rValue; /* Constraint value. */
275 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
276 int (*xQueryFunc)(sqlite3_rtree_query_info*);
277 } u;
278 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */
281 /* Possible values for RtreeConstraint.op */
282 #define RTREE_EQ 0x41 /* A */
283 #define RTREE_LE 0x42 /* B */
284 #define RTREE_LT 0x43 /* C */
285 #define RTREE_GE 0x44 /* D */
286 #define RTREE_GT 0x45 /* E */
287 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
288 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
292 ** An rtree structure node.
294 struct RtreeNode {
295 RtreeNode *pParent; /* Parent node */
296 i64 iNode; /* The node number */
297 int nRef; /* Number of references to this node */
298 int isDirty; /* True if the node needs to be written to disk */
299 u8 *zData; /* Content of the node, as should be on disk */
300 RtreeNode *pNext; /* Next node in this hash collision chain */
303 /* Return the number of cells in a node */
304 #define NCELL(pNode) readInt16(&(pNode)->zData[2])
307 ** A single cell from a node, deserialized
309 struct RtreeCell {
310 i64 iRowid; /* Node or entry ID */
311 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */
316 ** This object becomes the sqlite3_user_data() for the SQL functions
317 ** that are created by sqlite3_rtree_geometry_callback() and
318 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH
319 ** operators in order to constrain a search.
321 ** xGeom and xQueryFunc are the callback functions. Exactly one of
322 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the
323 ** SQL function was created using sqlite3_rtree_geometry_callback() or
324 ** sqlite3_rtree_query_callback().
326 ** This object is deleted automatically by the destructor mechanism in
327 ** sqlite3_create_function_v2().
329 struct RtreeGeomCallback {
330 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
331 int (*xQueryFunc)(sqlite3_rtree_query_info*);
332 void (*xDestructor)(void*);
333 void *pContext;
338 ** Value for the first field of every RtreeMatchArg object. The MATCH
339 ** operator tests that the first field of a blob operand matches this
340 ** value to avoid operating on invalid blobs (which could cause a segfault).
342 #define RTREE_GEOMETRY_MAGIC 0x891245AB
345 ** An instance of this structure (in the form of a BLOB) is returned by
346 ** the SQL functions that sqlite3_rtree_geometry_callback() and
347 ** sqlite3_rtree_query_callback() create, and is read as the right-hand
348 ** operand to the MATCH operator of an R-Tree.
350 struct RtreeMatchArg {
351 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */
352 RtreeGeomCallback cb; /* Info about the callback functions */
353 int nParam; /* Number of parameters to the SQL function */
354 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */
357 #ifndef MAX
358 # define MAX(x,y) ((x) < (y) ? (y) : (x))
359 #endif
360 #ifndef MIN
361 # define MIN(x,y) ((x) > (y) ? (y) : (x))
362 #endif
365 ** Functions to deserialize a 16 bit integer, 32 bit real number and
366 ** 64 bit integer. The deserialized value is returned.
368 static int readInt16(u8 *p){
369 return (p[0]<<8) + p[1];
371 static void readCoord(u8 *p, RtreeCoord *pCoord){
372 u32 i = (
373 (((u32)p[0]) << 24) +
374 (((u32)p[1]) << 16) +
375 (((u32)p[2]) << 8) +
376 (((u32)p[3]) << 0)
378 *(u32 *)pCoord = i;
380 static i64 readInt64(u8 *p){
381 return (
382 (((i64)p[0]) << 56) +
383 (((i64)p[1]) << 48) +
384 (((i64)p[2]) << 40) +
385 (((i64)p[3]) << 32) +
386 (((i64)p[4]) << 24) +
387 (((i64)p[5]) << 16) +
388 (((i64)p[6]) << 8) +
389 (((i64)p[7]) << 0)
394 ** Functions to serialize a 16 bit integer, 32 bit real number and
395 ** 64 bit integer. The value returned is the number of bytes written
396 ** to the argument buffer (always 2, 4 and 8 respectively).
398 static int writeInt16(u8 *p, int i){
399 p[0] = (i>> 8)&0xFF;
400 p[1] = (i>> 0)&0xFF;
401 return 2;
403 static int writeCoord(u8 *p, RtreeCoord *pCoord){
404 u32 i;
405 assert( sizeof(RtreeCoord)==4 );
406 assert( sizeof(u32)==4 );
407 i = *(u32 *)pCoord;
408 p[0] = (i>>24)&0xFF;
409 p[1] = (i>>16)&0xFF;
410 p[2] = (i>> 8)&0xFF;
411 p[3] = (i>> 0)&0xFF;
412 return 4;
414 static int writeInt64(u8 *p, i64 i){
415 p[0] = (i>>56)&0xFF;
416 p[1] = (i>>48)&0xFF;
417 p[2] = (i>>40)&0xFF;
418 p[3] = (i>>32)&0xFF;
419 p[4] = (i>>24)&0xFF;
420 p[5] = (i>>16)&0xFF;
421 p[6] = (i>> 8)&0xFF;
422 p[7] = (i>> 0)&0xFF;
423 return 8;
427 ** Increment the reference count of node p.
429 static void nodeReference(RtreeNode *p){
430 if( p ){
431 p->nRef++;
436 ** Clear the content of node p (set all bytes to 0x00).
438 static void nodeZero(Rtree *pRtree, RtreeNode *p){
439 memset(&p->zData[2], 0, pRtree->iNodeSize-2);
440 p->isDirty = 1;
444 ** Given a node number iNode, return the corresponding key to use
445 ** in the Rtree.aHash table.
447 static int nodeHash(i64 iNode){
448 return iNode % HASHSIZE;
452 ** Search the node hash table for node iNode. If found, return a pointer
453 ** to it. Otherwise, return 0.
455 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
456 RtreeNode *p;
457 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
458 return p;
462 ** Add node pNode to the node hash table.
464 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
465 int iHash;
466 assert( pNode->pNext==0 );
467 iHash = nodeHash(pNode->iNode);
468 pNode->pNext = pRtree->aHash[iHash];
469 pRtree->aHash[iHash] = pNode;
473 ** Remove node pNode from the node hash table.
475 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
476 RtreeNode **pp;
477 if( pNode->iNode!=0 ){
478 pp = &pRtree->aHash[nodeHash(pNode->iNode)];
479 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
480 *pp = pNode->pNext;
481 pNode->pNext = 0;
486 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
487 ** indicating that node has not yet been assigned a node number. It is
488 ** assigned a node number when nodeWrite() is called to write the
489 ** node contents out to the database.
491 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
492 RtreeNode *pNode;
493 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
494 if( pNode ){
495 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
496 pNode->zData = (u8 *)&pNode[1];
497 pNode->nRef = 1;
498 pNode->pParent = pParent;
499 pNode->isDirty = 1;
500 nodeReference(pParent);
502 return pNode;
506 ** Obtain a reference to an r-tree node.
508 static int nodeAcquire(
509 Rtree *pRtree, /* R-tree structure */
510 i64 iNode, /* Node number to load */
511 RtreeNode *pParent, /* Either the parent node or NULL */
512 RtreeNode **ppNode /* OUT: Acquired node */
514 int rc;
515 int rc2 = SQLITE_OK;
516 RtreeNode *pNode;
518 /* Check if the requested node is already in the hash table. If so,
519 ** increase its reference count and return it.
521 if( (pNode = nodeHashLookup(pRtree, iNode)) ){
522 assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
523 if( pParent && !pNode->pParent ){
524 nodeReference(pParent);
525 pNode->pParent = pParent;
527 pNode->nRef++;
528 *ppNode = pNode;
529 return SQLITE_OK;
532 sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
533 rc = sqlite3_step(pRtree->pReadNode);
534 if( rc==SQLITE_ROW ){
535 const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
536 if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
537 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
538 if( !pNode ){
539 rc2 = SQLITE_NOMEM;
540 }else{
541 pNode->pParent = pParent;
542 pNode->zData = (u8 *)&pNode[1];
543 pNode->nRef = 1;
544 pNode->iNode = iNode;
545 pNode->isDirty = 0;
546 pNode->pNext = 0;
547 memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
548 nodeReference(pParent);
552 rc = sqlite3_reset(pRtree->pReadNode);
553 if( rc==SQLITE_OK ) rc = rc2;
555 /* If the root node was just loaded, set pRtree->iDepth to the height
556 ** of the r-tree structure. A height of zero means all data is stored on
557 ** the root node. A height of one means the children of the root node
558 ** are the leaves, and so on. If the depth as specified on the root node
559 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
561 if( pNode && iNode==1 ){
562 pRtree->iDepth = readInt16(pNode->zData);
563 if( pRtree->iDepth>RTREE_MAX_DEPTH ){
564 rc = SQLITE_CORRUPT_VTAB;
568 /* If no error has occurred so far, check if the "number of entries"
569 ** field on the node is too large. If so, set the return code to
570 ** SQLITE_CORRUPT_VTAB.
572 if( pNode && rc==SQLITE_OK ){
573 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
574 rc = SQLITE_CORRUPT_VTAB;
578 if( rc==SQLITE_OK ){
579 if( pNode!=0 ){
580 nodeHashInsert(pRtree, pNode);
581 }else{
582 rc = SQLITE_CORRUPT_VTAB;
584 *ppNode = pNode;
585 }else{
586 sqlite3_free(pNode);
587 *ppNode = 0;
590 return rc;
594 ** Overwrite cell iCell of node pNode with the contents of pCell.
596 static void nodeOverwriteCell(
597 Rtree *pRtree, /* The overall R-Tree */
598 RtreeNode *pNode, /* The node into which the cell is to be written */
599 RtreeCell *pCell, /* The cell to write */
600 int iCell /* Index into pNode into which pCell is written */
602 int ii;
603 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
604 p += writeInt64(p, pCell->iRowid);
605 for(ii=0; ii<(pRtree->nDim*2); ii++){
606 p += writeCoord(p, &pCell->aCoord[ii]);
608 pNode->isDirty = 1;
612 ** Remove the cell with index iCell from node pNode.
614 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
615 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
616 u8 *pSrc = &pDst[pRtree->nBytesPerCell];
617 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
618 memmove(pDst, pSrc, nByte);
619 writeInt16(&pNode->zData[2], NCELL(pNode)-1);
620 pNode->isDirty = 1;
624 ** Insert the contents of cell pCell into node pNode. If the insert
625 ** is successful, return SQLITE_OK.
627 ** If there is not enough free space in pNode, return SQLITE_FULL.
629 static int nodeInsertCell(
630 Rtree *pRtree, /* The overall R-Tree */
631 RtreeNode *pNode, /* Write new cell into this node */
632 RtreeCell *pCell /* The cell to be inserted */
634 int nCell; /* Current number of cells in pNode */
635 int nMaxCell; /* Maximum number of cells for pNode */
637 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
638 nCell = NCELL(pNode);
640 assert( nCell<=nMaxCell );
641 if( nCell<nMaxCell ){
642 nodeOverwriteCell(pRtree, pNode, pCell, nCell);
643 writeInt16(&pNode->zData[2], nCell+1);
644 pNode->isDirty = 1;
647 return (nCell==nMaxCell);
651 ** If the node is dirty, write it out to the database.
653 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
654 int rc = SQLITE_OK;
655 if( pNode->isDirty ){
656 sqlite3_stmt *p = pRtree->pWriteNode;
657 if( pNode->iNode ){
658 sqlite3_bind_int64(p, 1, pNode->iNode);
659 }else{
660 sqlite3_bind_null(p, 1);
662 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
663 sqlite3_step(p);
664 pNode->isDirty = 0;
665 rc = sqlite3_reset(p);
666 if( pNode->iNode==0 && rc==SQLITE_OK ){
667 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
668 nodeHashInsert(pRtree, pNode);
671 return rc;
675 ** Release a reference to a node. If the node is dirty and the reference
676 ** count drops to zero, the node data is written to the database.
678 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
679 int rc = SQLITE_OK;
680 if( pNode ){
681 assert( pNode->nRef>0 );
682 pNode->nRef--;
683 if( pNode->nRef==0 ){
684 if( pNode->iNode==1 ){
685 pRtree->iDepth = -1;
687 if( pNode->pParent ){
688 rc = nodeRelease(pRtree, pNode->pParent);
690 if( rc==SQLITE_OK ){
691 rc = nodeWrite(pRtree, pNode);
693 nodeHashDelete(pRtree, pNode);
694 sqlite3_free(pNode);
697 return rc;
701 ** Return the 64-bit integer value associated with cell iCell of
702 ** node pNode. If pNode is a leaf node, this is a rowid. If it is
703 ** an internal node, then the 64-bit integer is a child page number.
705 static i64 nodeGetRowid(
706 Rtree *pRtree, /* The overall R-Tree */
707 RtreeNode *pNode, /* The node from which to extract the ID */
708 int iCell /* The cell index from which to extract the ID */
710 assert( iCell<NCELL(pNode) );
711 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
715 ** Return coordinate iCoord from cell iCell in node pNode.
717 static void nodeGetCoord(
718 Rtree *pRtree, /* The overall R-Tree */
719 RtreeNode *pNode, /* The node from which to extract a coordinate */
720 int iCell, /* The index of the cell within the node */
721 int iCoord, /* Which coordinate to extract */
722 RtreeCoord *pCoord /* OUT: Space to write result to */
724 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
728 ** Deserialize cell iCell of node pNode. Populate the structure pointed
729 ** to by pCell with the results.
731 static void nodeGetCell(
732 Rtree *pRtree, /* The overall R-Tree */
733 RtreeNode *pNode, /* The node containing the cell to be read */
734 int iCell, /* Index of the cell within the node */
735 RtreeCell *pCell /* OUT: Write the cell contents here */
737 u8 *pData;
738 u8 *pEnd;
739 RtreeCoord *pCoord;
740 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
741 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
742 pEnd = pData + pRtree->nDim*8;
743 pCoord = pCell->aCoord;
744 for(; pData<pEnd; pData+=4, pCoord++){
745 readCoord(pData, pCoord);
750 /* Forward declaration for the function that does the work of
751 ** the virtual table module xCreate() and xConnect() methods.
753 static int rtreeInit(
754 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
758 ** Rtree virtual table module xCreate method.
760 static int rtreeCreate(
761 sqlite3 *db,
762 void *pAux,
763 int argc, const char *const*argv,
764 sqlite3_vtab **ppVtab,
765 char **pzErr
767 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
771 ** Rtree virtual table module xConnect method.
773 static int rtreeConnect(
774 sqlite3 *db,
775 void *pAux,
776 int argc, const char *const*argv,
777 sqlite3_vtab **ppVtab,
778 char **pzErr
780 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
784 ** Increment the r-tree reference count.
786 static void rtreeReference(Rtree *pRtree){
787 pRtree->nBusy++;
791 ** Decrement the r-tree reference count. When the reference count reaches
792 ** zero the structure is deleted.
794 static void rtreeRelease(Rtree *pRtree){
795 pRtree->nBusy--;
796 if( pRtree->nBusy==0 ){
797 sqlite3_finalize(pRtree->pReadNode);
798 sqlite3_finalize(pRtree->pWriteNode);
799 sqlite3_finalize(pRtree->pDeleteNode);
800 sqlite3_finalize(pRtree->pReadRowid);
801 sqlite3_finalize(pRtree->pWriteRowid);
802 sqlite3_finalize(pRtree->pDeleteRowid);
803 sqlite3_finalize(pRtree->pReadParent);
804 sqlite3_finalize(pRtree->pWriteParent);
805 sqlite3_finalize(pRtree->pDeleteParent);
806 sqlite3_free(pRtree);
811 ** Rtree virtual table module xDisconnect method.
813 static int rtreeDisconnect(sqlite3_vtab *pVtab){
814 rtreeRelease((Rtree *)pVtab);
815 return SQLITE_OK;
819 ** Rtree virtual table module xDestroy method.
821 static int rtreeDestroy(sqlite3_vtab *pVtab){
822 Rtree *pRtree = (Rtree *)pVtab;
823 int rc;
824 char *zCreate = sqlite3_mprintf(
825 "DROP TABLE '%q'.'%q_node';"
826 "DROP TABLE '%q'.'%q_rowid';"
827 "DROP TABLE '%q'.'%q_parent';",
828 pRtree->zDb, pRtree->zName,
829 pRtree->zDb, pRtree->zName,
830 pRtree->zDb, pRtree->zName
832 if( !zCreate ){
833 rc = SQLITE_NOMEM;
834 }else{
835 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
836 sqlite3_free(zCreate);
838 if( rc==SQLITE_OK ){
839 rtreeRelease(pRtree);
842 return rc;
846 ** Rtree virtual table module xOpen method.
848 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
849 int rc = SQLITE_NOMEM;
850 RtreeCursor *pCsr;
852 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
853 if( pCsr ){
854 memset(pCsr, 0, sizeof(RtreeCursor));
855 pCsr->base.pVtab = pVTab;
856 rc = SQLITE_OK;
858 *ppCursor = (sqlite3_vtab_cursor *)pCsr;
860 return rc;
865 ** Free the RtreeCursor.aConstraint[] array and its contents.
867 static void freeCursorConstraints(RtreeCursor *pCsr){
868 if( pCsr->aConstraint ){
869 int i; /* Used to iterate through constraint array */
870 for(i=0; i<pCsr->nConstraint; i++){
871 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
872 if( pInfo ){
873 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
874 sqlite3_free(pInfo);
877 sqlite3_free(pCsr->aConstraint);
878 pCsr->aConstraint = 0;
883 ** Rtree virtual table module xClose method.
885 static int rtreeClose(sqlite3_vtab_cursor *cur){
886 Rtree *pRtree = (Rtree *)(cur->pVtab);
887 int ii;
888 RtreeCursor *pCsr = (RtreeCursor *)cur;
889 freeCursorConstraints(pCsr);
890 sqlite3_free(pCsr->aPoint);
891 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
892 sqlite3_free(pCsr);
893 return SQLITE_OK;
897 ** Rtree virtual table module xEof method.
899 ** Return non-zero if the cursor does not currently point to a valid
900 ** record (i.e if the scan has finished), or zero otherwise.
902 static int rtreeEof(sqlite3_vtab_cursor *cur){
903 RtreeCursor *pCsr = (RtreeCursor *)cur;
904 return pCsr->atEOF;
908 ** Convert raw bits from the on-disk RTree record into a coordinate value.
909 ** The on-disk format is big-endian and needs to be converted for little-
910 ** endian platforms. The on-disk record stores integer coordinates if
911 ** eInt is true and it stores 32-bit floating point records if eInt is
912 ** false. a[] is the four bytes of the on-disk record to be decoded.
913 ** Store the results in "r".
915 ** There are three versions of this macro, one each for little-endian and
916 ** big-endian processors and a third generic implementation. The endian-
917 ** specific implementations are much faster and are preferred if the
918 ** processor endianness is known at compile-time. The SQLITE_BYTEORDER
919 ** macro is part of sqliteInt.h and hence the endian-specific
920 ** implementation will only be used if this module is compiled as part
921 ** of the amalgamation.
923 #if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234
924 #define RTREE_DECODE_COORD(eInt, a, r) { \
925 RtreeCoord c; /* Coordinate decoded */ \
926 memcpy(&c.u,a,4); \
927 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
928 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
929 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
931 #elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321
932 #define RTREE_DECODE_COORD(eInt, a, r) { \
933 RtreeCoord c; /* Coordinate decoded */ \
934 memcpy(&c.u,a,4); \
935 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
937 #else
938 #define RTREE_DECODE_COORD(eInt, a, r) { \
939 RtreeCoord c; /* Coordinate decoded */ \
940 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
941 +((u32)a[2]<<8) + a[3]; \
942 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
944 #endif
947 ** Check the RTree node or entry given by pCellData and p against the MATCH
948 ** constraint pConstraint.
950 static int rtreeCallbackConstraint(
951 RtreeConstraint *pConstraint, /* The constraint to test */
952 int eInt, /* True if RTree holding integer coordinates */
953 u8 *pCellData, /* Raw cell content */
954 RtreeSearchPoint *pSearch, /* Container of this cell */
955 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */
956 int *peWithin /* OUT: visibility of the cell */
958 int i; /* Loop counter */
959 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
960 int nCoord = pInfo->nCoord; /* No. of coordinates */
961 int rc; /* Callback return code */
962 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */
964 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
965 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
967 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
968 pInfo->iRowid = readInt64(pCellData);
970 pCellData += 8;
971 for(i=0; i<nCoord; i++, pCellData += 4){
972 RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]);
974 if( pConstraint->op==RTREE_MATCH ){
975 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
976 nCoord, aCoord, &i);
977 if( i==0 ) *peWithin = NOT_WITHIN;
978 *prScore = RTREE_ZERO;
979 }else{
980 pInfo->aCoord = aCoord;
981 pInfo->iLevel = pSearch->iLevel - 1;
982 pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
983 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
984 rc = pConstraint->u.xQueryFunc(pInfo);
985 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
986 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
987 *prScore = pInfo->rScore;
990 return rc;
994 ** Check the internal RTree node given by pCellData against constraint p.
995 ** If this constraint cannot be satisfied by any child within the node,
996 ** set *peWithin to NOT_WITHIN.
998 static void rtreeNonleafConstraint(
999 RtreeConstraint *p, /* The constraint to test */
1000 int eInt, /* True if RTree holds integer coordinates */
1001 u8 *pCellData, /* Raw cell content as appears on disk */
1002 int *peWithin /* Adjust downward, as appropriate */
1004 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */
1006 /* p->iCoord might point to either a lower or upper bound coordinate
1007 ** in a coordinate pair. But make pCellData point to the lower bound.
1009 pCellData += 8 + 4*(p->iCoord&0xfe);
1011 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
1012 || p->op==RTREE_GT || p->op==RTREE_EQ );
1013 switch( p->op ){
1014 case RTREE_LE:
1015 case RTREE_LT:
1016 case RTREE_EQ:
1017 RTREE_DECODE_COORD(eInt, pCellData, val);
1018 /* val now holds the lower bound of the coordinate pair */
1019 if( p->u.rValue>=val ) return;
1020 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */
1021 /* Fall through for the RTREE_EQ case */
1023 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */
1024 pCellData += 4;
1025 RTREE_DECODE_COORD(eInt, pCellData, val);
1026 /* val now holds the upper bound of the coordinate pair */
1027 if( p->u.rValue<=val ) return;
1029 *peWithin = NOT_WITHIN;
1033 ** Check the leaf RTree cell given by pCellData against constraint p.
1034 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
1035 ** If the constraint is satisfied, leave *peWithin unchanged.
1037 ** The constraint is of the form: xN op $val
1039 ** The op is given by p->op. The xN is p->iCoord-th coordinate in
1040 ** pCellData. $val is given by p->u.rValue.
1042 static void rtreeLeafConstraint(
1043 RtreeConstraint *p, /* The constraint to test */
1044 int eInt, /* True if RTree holds integer coordinates */
1045 u8 *pCellData, /* Raw cell content as appears on disk */
1046 int *peWithin /* Adjust downward, as appropriate */
1048 RtreeDValue xN; /* Coordinate value converted to a double */
1050 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
1051 || p->op==RTREE_GT || p->op==RTREE_EQ );
1052 pCellData += 8 + p->iCoord*4;
1053 RTREE_DECODE_COORD(eInt, pCellData, xN);
1054 switch( p->op ){
1055 case RTREE_LE: if( xN <= p->u.rValue ) return; break;
1056 case RTREE_LT: if( xN < p->u.rValue ) return; break;
1057 case RTREE_GE: if( xN >= p->u.rValue ) return; break;
1058 case RTREE_GT: if( xN > p->u.rValue ) return; break;
1059 default: if( xN == p->u.rValue ) return; break;
1061 *peWithin = NOT_WITHIN;
1065 ** One of the cells in node pNode is guaranteed to have a 64-bit
1066 ** integer value equal to iRowid. Return the index of this cell.
1068 static int nodeRowidIndex(
1069 Rtree *pRtree,
1070 RtreeNode *pNode,
1071 i64 iRowid,
1072 int *piIndex
1074 int ii;
1075 int nCell = NCELL(pNode);
1076 assert( nCell<200 );
1077 for(ii=0; ii<nCell; ii++){
1078 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
1079 *piIndex = ii;
1080 return SQLITE_OK;
1083 return SQLITE_CORRUPT_VTAB;
1087 ** Return the index of the cell containing a pointer to node pNode
1088 ** in its parent. If pNode is the root node, return -1.
1090 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
1091 RtreeNode *pParent = pNode->pParent;
1092 if( pParent ){
1093 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
1095 *piIndex = -1;
1096 return SQLITE_OK;
1100 ** Compare two search points. Return negative, zero, or positive if the first
1101 ** is less than, equal to, or greater than the second.
1103 ** The rScore is the primary key. Smaller rScore values come first.
1104 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller
1105 ** iLevel values coming first. In this way, if rScore is the same for all
1106 ** SearchPoints, then iLevel becomes the deciding factor and the result
1107 ** is a depth-first search, which is the desired default behavior.
1109 static int rtreeSearchPointCompare(
1110 const RtreeSearchPoint *pA,
1111 const RtreeSearchPoint *pB
1113 if( pA->rScore<pB->rScore ) return -1;
1114 if( pA->rScore>pB->rScore ) return +1;
1115 if( pA->iLevel<pB->iLevel ) return -1;
1116 if( pA->iLevel>pB->iLevel ) return +1;
1117 return 0;
1121 ** Interchange to search points in a cursor.
1123 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
1124 RtreeSearchPoint t = p->aPoint[i];
1125 assert( i<j );
1126 p->aPoint[i] = p->aPoint[j];
1127 p->aPoint[j] = t;
1128 i++; j++;
1129 if( i<RTREE_CACHE_SZ ){
1130 if( j>=RTREE_CACHE_SZ ){
1131 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
1132 p->aNode[i] = 0;
1133 }else{
1134 RtreeNode *pTemp = p->aNode[i];
1135 p->aNode[i] = p->aNode[j];
1136 p->aNode[j] = pTemp;
1142 ** Return the search point with the lowest current score.
1144 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
1145 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
1149 ** Get the RtreeNode for the search point with the lowest score.
1151 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
1152 sqlite3_int64 id;
1153 int ii = 1 - pCur->bPoint;
1154 assert( ii==0 || ii==1 );
1155 assert( pCur->bPoint || pCur->nPoint );
1156 if( pCur->aNode[ii]==0 ){
1157 assert( pRC!=0 );
1158 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
1159 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
1161 return pCur->aNode[ii];
1165 ** Push a new element onto the priority queue
1167 static RtreeSearchPoint *rtreeEnqueue(
1168 RtreeCursor *pCur, /* The cursor */
1169 RtreeDValue rScore, /* Score for the new search point */
1170 u8 iLevel /* Level for the new search point */
1172 int i, j;
1173 RtreeSearchPoint *pNew;
1174 if( pCur->nPoint>=pCur->nPointAlloc ){
1175 int nNew = pCur->nPointAlloc*2 + 8;
1176 pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
1177 if( pNew==0 ) return 0;
1178 pCur->aPoint = pNew;
1179 pCur->nPointAlloc = nNew;
1181 i = pCur->nPoint++;
1182 pNew = pCur->aPoint + i;
1183 pNew->rScore = rScore;
1184 pNew->iLevel = iLevel;
1185 assert( iLevel>=0 && iLevel<=RTREE_MAX_DEPTH );
1186 while( i>0 ){
1187 RtreeSearchPoint *pParent;
1188 j = (i-1)/2;
1189 pParent = pCur->aPoint + j;
1190 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
1191 rtreeSearchPointSwap(pCur, j, i);
1192 i = j;
1193 pNew = pParent;
1195 return pNew;
1199 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return
1200 ** NULL if malloc fails.
1202 static RtreeSearchPoint *rtreeSearchPointNew(
1203 RtreeCursor *pCur, /* The cursor */
1204 RtreeDValue rScore, /* Score for the new search point */
1205 u8 iLevel /* Level for the new search point */
1207 RtreeSearchPoint *pNew, *pFirst;
1208 pFirst = rtreeSearchPointFirst(pCur);
1209 pCur->anQueue[iLevel]++;
1210 if( pFirst==0
1211 || pFirst->rScore>rScore
1212 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
1214 if( pCur->bPoint ){
1215 int ii;
1216 pNew = rtreeEnqueue(pCur, rScore, iLevel);
1217 if( pNew==0 ) return 0;
1218 ii = (int)(pNew - pCur->aPoint) + 1;
1219 if( ii<RTREE_CACHE_SZ ){
1220 assert( pCur->aNode[ii]==0 );
1221 pCur->aNode[ii] = pCur->aNode[0];
1222 }else{
1223 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
1225 pCur->aNode[0] = 0;
1226 *pNew = pCur->sPoint;
1228 pCur->sPoint.rScore = rScore;
1229 pCur->sPoint.iLevel = iLevel;
1230 pCur->bPoint = 1;
1231 return &pCur->sPoint;
1232 }else{
1233 return rtreeEnqueue(pCur, rScore, iLevel);
1237 #if 0
1238 /* Tracing routines for the RtreeSearchPoint queue */
1239 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
1240 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
1241 printf(" %d.%05lld.%02d %g %d",
1242 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
1244 idx++;
1245 if( idx<RTREE_CACHE_SZ ){
1246 printf(" %p\n", pCur->aNode[idx]);
1247 }else{
1248 printf("\n");
1251 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
1252 int ii;
1253 printf("=== %9s ", zPrefix);
1254 if( pCur->bPoint ){
1255 tracePoint(&pCur->sPoint, -1, pCur);
1257 for(ii=0; ii<pCur->nPoint; ii++){
1258 if( ii>0 || pCur->bPoint ) printf(" ");
1259 tracePoint(&pCur->aPoint[ii], ii, pCur);
1262 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
1263 #else
1264 # define RTREE_QUEUE_TRACE(A,B) /* no-op */
1265 #endif
1267 /* Remove the search point with the lowest current score.
1269 static void rtreeSearchPointPop(RtreeCursor *p){
1270 int i, j, k, n;
1271 i = 1 - p->bPoint;
1272 assert( i==0 || i==1 );
1273 if( p->aNode[i] ){
1274 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
1275 p->aNode[i] = 0;
1277 if( p->bPoint ){
1278 p->anQueue[p->sPoint.iLevel]--;
1279 p->bPoint = 0;
1280 }else if( p->nPoint ){
1281 p->anQueue[p->aPoint[0].iLevel]--;
1282 n = --p->nPoint;
1283 p->aPoint[0] = p->aPoint[n];
1284 if( n<RTREE_CACHE_SZ-1 ){
1285 p->aNode[1] = p->aNode[n+1];
1286 p->aNode[n+1] = 0;
1288 i = 0;
1289 while( (j = i*2+1)<n ){
1290 k = j+1;
1291 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
1292 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
1293 rtreeSearchPointSwap(p, i, k);
1294 i = k;
1295 }else{
1296 break;
1298 }else{
1299 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
1300 rtreeSearchPointSwap(p, i, j);
1301 i = j;
1302 }else{
1303 break;
1312 ** Continue the search on cursor pCur until the front of the queue
1313 ** contains an entry suitable for returning as a result-set row,
1314 ** or until the RtreeSearchPoint queue is empty, indicating that the
1315 ** query has completed.
1317 static int rtreeStepToLeaf(RtreeCursor *pCur){
1318 RtreeSearchPoint *p;
1319 Rtree *pRtree = RTREE_OF_CURSOR(pCur);
1320 RtreeNode *pNode;
1321 int eWithin;
1322 int rc = SQLITE_OK;
1323 int nCell;
1324 int nConstraint = pCur->nConstraint;
1325 int ii;
1326 int eInt;
1327 RtreeSearchPoint x;
1329 eInt = pRtree->eCoordType==RTREE_COORD_INT32;
1330 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
1331 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
1332 if( rc ) return rc;
1333 nCell = NCELL(pNode);
1334 assert( nCell<200 );
1335 while( p->iCell<nCell ){
1336 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
1337 u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
1338 eWithin = FULLY_WITHIN;
1339 for(ii=0; ii<nConstraint; ii++){
1340 RtreeConstraint *pConstraint = pCur->aConstraint + ii;
1341 if( pConstraint->op>=RTREE_MATCH ){
1342 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
1343 &rScore, &eWithin);
1344 if( rc ) return rc;
1345 }else if( p->iLevel==1 ){
1346 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
1347 }else{
1348 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
1350 if( eWithin==NOT_WITHIN ) break;
1352 p->iCell++;
1353 if( eWithin==NOT_WITHIN ) continue;
1354 x.iLevel = p->iLevel - 1;
1355 if( x.iLevel ){
1356 x.id = readInt64(pCellData);
1357 x.iCell = 0;
1358 }else{
1359 x.id = p->id;
1360 x.iCell = p->iCell - 1;
1362 if( p->iCell>=nCell ){
1363 RTREE_QUEUE_TRACE(pCur, "POP-S:");
1364 rtreeSearchPointPop(pCur);
1366 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
1367 p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
1368 if( p==0 ) return SQLITE_NOMEM;
1369 p->eWithin = eWithin;
1370 p->id = x.id;
1371 p->iCell = x.iCell;
1372 RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
1373 break;
1375 if( p->iCell>=nCell ){
1376 RTREE_QUEUE_TRACE(pCur, "POP-Se:");
1377 rtreeSearchPointPop(pCur);
1380 pCur->atEOF = p==0;
1381 return SQLITE_OK;
1385 ** Rtree virtual table module xNext method.
1387 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
1388 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1389 int rc = SQLITE_OK;
1391 /* Move to the next entry that matches the configured constraints. */
1392 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
1393 rtreeSearchPointPop(pCsr);
1394 rc = rtreeStepToLeaf(pCsr);
1395 return rc;
1399 ** Rtree virtual table module xRowid method.
1401 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
1402 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1403 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
1404 int rc = SQLITE_OK;
1405 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
1406 if( rc==SQLITE_OK && p ){
1407 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
1409 return rc;
1413 ** Rtree virtual table module xColumn method.
1415 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1416 Rtree *pRtree = (Rtree *)cur->pVtab;
1417 RtreeCursor *pCsr = (RtreeCursor *)cur;
1418 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
1419 RtreeCoord c;
1420 int rc = SQLITE_OK;
1421 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
1423 if( rc ) return rc;
1424 if( p==0 ) return SQLITE_OK;
1425 if( i==0 ){
1426 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
1427 }else{
1428 if( rc ) return rc;
1429 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
1430 #ifndef SQLITE_RTREE_INT_ONLY
1431 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
1432 sqlite3_result_double(ctx, c.f);
1433 }else
1434 #endif
1436 assert( pRtree->eCoordType==RTREE_COORD_INT32 );
1437 sqlite3_result_int(ctx, c.i);
1440 return SQLITE_OK;
1444 ** Use nodeAcquire() to obtain the leaf node containing the record with
1445 ** rowid iRowid. If successful, set *ppLeaf to point to the node and
1446 ** return SQLITE_OK. If there is no such record in the table, set
1447 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
1448 ** to zero and return an SQLite error code.
1450 static int findLeafNode(
1451 Rtree *pRtree, /* RTree to search */
1452 i64 iRowid, /* The rowid searching for */
1453 RtreeNode **ppLeaf, /* Write the node here */
1454 sqlite3_int64 *piNode /* Write the node-id here */
1456 int rc;
1457 *ppLeaf = 0;
1458 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
1459 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
1460 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
1461 if( piNode ) *piNode = iNode;
1462 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
1463 sqlite3_reset(pRtree->pReadRowid);
1464 }else{
1465 rc = sqlite3_reset(pRtree->pReadRowid);
1467 return rc;
1471 ** This function is called to configure the RtreeConstraint object passed
1472 ** as the second argument for a MATCH constraint. The value passed as the
1473 ** first argument to this function is the right-hand operand to the MATCH
1474 ** operator.
1476 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
1477 RtreeMatchArg *pBlob; /* BLOB returned by geometry function */
1478 sqlite3_rtree_query_info *pInfo; /* Callback information */
1479 int nBlob; /* Size of the geometry function blob */
1480 int nExpected; /* Expected size of the BLOB */
1482 /* Check that value is actually a blob. */
1483 if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;
1485 /* Check that the blob is roughly the right size. */
1486 nBlob = sqlite3_value_bytes(pValue);
1487 if( nBlob<(int)sizeof(RtreeMatchArg)
1488 || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0
1490 return SQLITE_ERROR;
1493 pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob );
1494 if( !pInfo ) return SQLITE_NOMEM;
1495 memset(pInfo, 0, sizeof(*pInfo));
1496 pBlob = (RtreeMatchArg*)&pInfo[1];
1498 memcpy(pBlob, sqlite3_value_blob(pValue), nBlob);
1499 nExpected = (int)(sizeof(RtreeMatchArg) +
1500 (pBlob->nParam-1)*sizeof(RtreeDValue));
1501 if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){
1502 sqlite3_free(pInfo);
1503 return SQLITE_ERROR;
1505 pInfo->pContext = pBlob->cb.pContext;
1506 pInfo->nParam = pBlob->nParam;
1507 pInfo->aParam = pBlob->aParam;
1509 if( pBlob->cb.xGeom ){
1510 pCons->u.xGeom = pBlob->cb.xGeom;
1511 }else{
1512 pCons->op = RTREE_QUERY;
1513 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
1515 pCons->pInfo = pInfo;
1516 return SQLITE_OK;
1520 ** Rtree virtual table module xFilter method.
1522 static int rtreeFilter(
1523 sqlite3_vtab_cursor *pVtabCursor,
1524 int idxNum, const char *idxStr,
1525 int argc, sqlite3_value **argv
1527 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
1528 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1529 RtreeNode *pRoot = 0;
1530 int ii;
1531 int rc = SQLITE_OK;
1532 int iCell = 0;
1534 rtreeReference(pRtree);
1536 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
1537 freeCursorConstraints(pCsr);
1538 sqlite3_free(pCsr->aPoint);
1539 memset(pCsr, 0, sizeof(RtreeCursor));
1540 pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
1542 pCsr->iStrategy = idxNum;
1543 if( idxNum==1 ){
1544 /* Special case - lookup by rowid. */
1545 RtreeNode *pLeaf; /* Leaf on which the required cell resides */
1546 RtreeSearchPoint *p; /* Search point for the the leaf */
1547 i64 iRowid = sqlite3_value_int64(argv[0]);
1548 i64 iNode = 0;
1549 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
1550 if( rc==SQLITE_OK && pLeaf!=0 ){
1551 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
1552 assert( p!=0 ); /* Always returns pCsr->sPoint */
1553 pCsr->aNode[0] = pLeaf;
1554 p->id = iNode;
1555 p->eWithin = PARTLY_WITHIN;
1556 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
1557 p->iCell = iCell;
1558 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
1559 }else{
1560 pCsr->atEOF = 1;
1562 }else{
1563 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
1564 ** with the configured constraints.
1566 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
1567 if( rc==SQLITE_OK && argc>0 ){
1568 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
1569 pCsr->nConstraint = argc;
1570 if( !pCsr->aConstraint ){
1571 rc = SQLITE_NOMEM;
1572 }else{
1573 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
1574 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
1575 assert( (idxStr==0 && argc==0)
1576 || (idxStr && (int)strlen(idxStr)==argc*2) );
1577 for(ii=0; ii<argc; ii++){
1578 RtreeConstraint *p = &pCsr->aConstraint[ii];
1579 p->op = idxStr[ii*2];
1580 p->iCoord = idxStr[ii*2+1]-'0';
1581 if( p->op>=RTREE_MATCH ){
1582 /* A MATCH operator. The right-hand-side must be a blob that
1583 ** can be cast into an RtreeMatchArg object. One created using
1584 ** an sqlite3_rtree_geometry_callback() SQL user function.
1586 rc = deserializeGeometry(argv[ii], p);
1587 if( rc!=SQLITE_OK ){
1588 break;
1590 p->pInfo->nCoord = pRtree->nDim*2;
1591 p->pInfo->anQueue = pCsr->anQueue;
1592 p->pInfo->mxLevel = pRtree->iDepth + 1;
1593 }else{
1594 #ifdef SQLITE_RTREE_INT_ONLY
1595 p->u.rValue = sqlite3_value_int64(argv[ii]);
1596 #else
1597 p->u.rValue = sqlite3_value_double(argv[ii]);
1598 #endif
1603 if( rc==SQLITE_OK ){
1604 RtreeSearchPoint *pNew;
1605 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1);
1606 if( pNew==0 ) return SQLITE_NOMEM;
1607 pNew->id = 1;
1608 pNew->iCell = 0;
1609 pNew->eWithin = PARTLY_WITHIN;
1610 assert( pCsr->bPoint==1 );
1611 pCsr->aNode[0] = pRoot;
1612 pRoot = 0;
1613 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
1614 rc = rtreeStepToLeaf(pCsr);
1618 nodeRelease(pRtree, pRoot);
1619 rtreeRelease(pRtree);
1620 return rc;
1624 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1625 ** extension is currently being used by a version of SQLite too old to
1626 ** support estimatedRows. In that case this function is a no-op.
1628 static void setEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
1629 #if SQLITE_VERSION_NUMBER>=3008002
1630 if( sqlite3_libversion_number()>=3008002 ){
1631 pIdxInfo->estimatedRows = nRow;
1633 #endif
1637 ** Rtree virtual table module xBestIndex method. There are three
1638 ** table scan strategies to choose from (in order from most to
1639 ** least desirable):
1641 ** idxNum idxStr Strategy
1642 ** ------------------------------------------------
1643 ** 1 Unused Direct lookup by rowid.
1644 ** 2 See below R-tree query or full-table scan.
1645 ** ------------------------------------------------
1647 ** If strategy 1 is used, then idxStr is not meaningful. If strategy
1648 ** 2 is used, idxStr is formatted to contain 2 bytes for each
1649 ** constraint used. The first two bytes of idxStr correspond to
1650 ** the constraint in sqlite3_index_info.aConstraintUsage[] with
1651 ** (argvIndex==1) etc.
1653 ** The first of each pair of bytes in idxStr identifies the constraint
1654 ** operator as follows:
1656 ** Operator Byte Value
1657 ** ----------------------
1658 ** = 0x41 ('A')
1659 ** <= 0x42 ('B')
1660 ** < 0x43 ('C')
1661 ** >= 0x44 ('D')
1662 ** > 0x45 ('E')
1663 ** MATCH 0x46 ('F')
1664 ** ----------------------
1666 ** The second of each pair of bytes identifies the coordinate column
1667 ** to which the constraint applies. The leftmost coordinate column
1668 ** is 'a', the second from the left 'b' etc.
1670 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
1671 Rtree *pRtree = (Rtree*)tab;
1672 int rc = SQLITE_OK;
1673 int ii;
1674 i64 nRow; /* Estimated rows returned by this scan */
1676 int iIdx = 0;
1677 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
1678 memset(zIdxStr, 0, sizeof(zIdxStr));
1680 assert( pIdxInfo->idxStr==0 );
1681 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
1682 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
1684 if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
1685 /* We have an equality constraint on the rowid. Use strategy 1. */
1686 int jj;
1687 for(jj=0; jj<ii; jj++){
1688 pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
1689 pIdxInfo->aConstraintUsage[jj].omit = 0;
1691 pIdxInfo->idxNum = 1;
1692 pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
1693 pIdxInfo->aConstraintUsage[jj].omit = 1;
1695 /* This strategy involves a two rowid lookups on an B-Tree structures
1696 ** and then a linear search of an R-Tree node. This should be
1697 ** considered almost as quick as a direct rowid lookup (for which
1698 ** sqlite uses an internal cost of 0.0). It is expected to return
1699 ** a single row.
1701 pIdxInfo->estimatedCost = 30.0;
1702 setEstimatedRows(pIdxInfo, 1);
1703 return SQLITE_OK;
1706 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
1707 u8 op;
1708 switch( p->op ){
1709 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
1710 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
1711 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
1712 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
1713 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
1714 default:
1715 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
1716 op = RTREE_MATCH;
1717 break;
1719 zIdxStr[iIdx++] = op;
1720 zIdxStr[iIdx++] = p->iColumn - 1 + '0';
1721 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
1722 pIdxInfo->aConstraintUsage[ii].omit = 1;
1726 pIdxInfo->idxNum = 2;
1727 pIdxInfo->needToFreeIdxStr = 1;
1728 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
1729 return SQLITE_NOMEM;
1732 nRow = pRtree->nRowEst / (iIdx + 1);
1733 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
1734 setEstimatedRows(pIdxInfo, nRow);
1736 return rc;
1740 ** Return the N-dimensional volumn of the cell stored in *p.
1742 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
1743 RtreeDValue area = (RtreeDValue)1;
1744 int ii;
1745 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
1746 area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
1748 return area;
1752 ** Return the margin length of cell p. The margin length is the sum
1753 ** of the objects size in each dimension.
1755 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
1756 RtreeDValue margin = (RtreeDValue)0;
1757 int ii;
1758 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
1759 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
1761 return margin;
1765 ** Store the union of cells p1 and p2 in p1.
1767 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
1768 int ii;
1769 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
1770 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
1771 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
1772 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
1774 }else{
1775 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
1776 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
1777 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
1783 ** Return true if the area covered by p2 is a subset of the area covered
1784 ** by p1. False otherwise.
1786 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
1787 int ii;
1788 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
1789 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
1790 RtreeCoord *a1 = &p1->aCoord[ii];
1791 RtreeCoord *a2 = &p2->aCoord[ii];
1792 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
1793 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
1795 return 0;
1798 return 1;
1802 ** Return the amount cell p would grow by if it were unioned with pCell.
1804 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
1805 RtreeDValue area;
1806 RtreeCell cell;
1807 memcpy(&cell, p, sizeof(RtreeCell));
1808 area = cellArea(pRtree, &cell);
1809 cellUnion(pRtree, &cell, pCell);
1810 return (cellArea(pRtree, &cell)-area);
1813 static RtreeDValue cellOverlap(
1814 Rtree *pRtree,
1815 RtreeCell *p,
1816 RtreeCell *aCell,
1817 int nCell
1819 int ii;
1820 RtreeDValue overlap = RTREE_ZERO;
1821 for(ii=0; ii<nCell; ii++){
1822 int jj;
1823 RtreeDValue o = (RtreeDValue)1;
1824 for(jj=0; jj<(pRtree->nDim*2); jj+=2){
1825 RtreeDValue x1, x2;
1826 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
1827 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
1828 if( x2<x1 ){
1829 o = (RtreeDValue)0;
1830 break;
1831 }else{
1832 o = o * (x2-x1);
1835 overlap += o;
1837 return overlap;
1842 ** This function implements the ChooseLeaf algorithm from Gutman[84].
1843 ** ChooseSubTree in r*tree terminology.
1845 static int ChooseLeaf(
1846 Rtree *pRtree, /* Rtree table */
1847 RtreeCell *pCell, /* Cell to insert into rtree */
1848 int iHeight, /* Height of sub-tree rooted at pCell */
1849 RtreeNode **ppLeaf /* OUT: Selected leaf page */
1851 int rc;
1852 int ii;
1853 RtreeNode *pNode;
1854 rc = nodeAcquire(pRtree, 1, 0, &pNode);
1856 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
1857 int iCell;
1858 sqlite3_int64 iBest = 0;
1860 RtreeDValue fMinGrowth = RTREE_ZERO;
1861 RtreeDValue fMinArea = RTREE_ZERO;
1863 int nCell = NCELL(pNode);
1864 RtreeCell cell;
1865 RtreeNode *pChild;
1867 RtreeCell *aCell = 0;
1869 /* Select the child node which will be enlarged the least if pCell
1870 ** is inserted into it. Resolve ties by choosing the entry with
1871 ** the smallest area.
1873 for(iCell=0; iCell<nCell; iCell++){
1874 int bBest = 0;
1875 RtreeDValue growth;
1876 RtreeDValue area;
1877 nodeGetCell(pRtree, pNode, iCell, &cell);
1878 growth = cellGrowth(pRtree, &cell, pCell);
1879 area = cellArea(pRtree, &cell);
1880 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
1881 bBest = 1;
1883 if( bBest ){
1884 fMinGrowth = growth;
1885 fMinArea = area;
1886 iBest = cell.iRowid;
1890 sqlite3_free(aCell);
1891 rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
1892 nodeRelease(pRtree, pNode);
1893 pNode = pChild;
1896 *ppLeaf = pNode;
1897 return rc;
1901 ** A cell with the same content as pCell has just been inserted into
1902 ** the node pNode. This function updates the bounding box cells in
1903 ** all ancestor elements.
1905 static int AdjustTree(
1906 Rtree *pRtree, /* Rtree table */
1907 RtreeNode *pNode, /* Adjust ancestry of this node. */
1908 RtreeCell *pCell /* This cell was just inserted */
1910 RtreeNode *p = pNode;
1911 while( p->pParent ){
1912 RtreeNode *pParent = p->pParent;
1913 RtreeCell cell;
1914 int iCell;
1916 if( nodeParentIndex(pRtree, p, &iCell) ){
1917 return SQLITE_CORRUPT_VTAB;
1920 nodeGetCell(pRtree, pParent, iCell, &cell);
1921 if( !cellContains(pRtree, &cell, pCell) ){
1922 cellUnion(pRtree, &cell, pCell);
1923 nodeOverwriteCell(pRtree, pParent, &cell, iCell);
1926 p = pParent;
1928 return SQLITE_OK;
1932 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
1934 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
1935 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
1936 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
1937 sqlite3_step(pRtree->pWriteRowid);
1938 return sqlite3_reset(pRtree->pWriteRowid);
1942 ** Write mapping (iNode->iPar) to the <rtree>_parent table.
1944 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
1945 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
1946 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
1947 sqlite3_step(pRtree->pWriteParent);
1948 return sqlite3_reset(pRtree->pWriteParent);
1951 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
1955 ** Arguments aIdx, aDistance and aSpare all point to arrays of size
1956 ** nIdx. The aIdx array contains the set of integers from 0 to
1957 ** (nIdx-1) in no particular order. This function sorts the values
1958 ** in aIdx according to the indexed values in aDistance. For
1959 ** example, assuming the inputs:
1961 ** aIdx = { 0, 1, 2, 3 }
1962 ** aDistance = { 5.0, 2.0, 7.0, 6.0 }
1964 ** this function sets the aIdx array to contain:
1966 ** aIdx = { 0, 1, 2, 3 }
1968 ** The aSpare array is used as temporary working space by the
1969 ** sorting algorithm.
1971 static void SortByDistance(
1972 int *aIdx,
1973 int nIdx,
1974 RtreeDValue *aDistance,
1975 int *aSpare
1977 if( nIdx>1 ){
1978 int iLeft = 0;
1979 int iRight = 0;
1981 int nLeft = nIdx/2;
1982 int nRight = nIdx-nLeft;
1983 int *aLeft = aIdx;
1984 int *aRight = &aIdx[nLeft];
1986 SortByDistance(aLeft, nLeft, aDistance, aSpare);
1987 SortByDistance(aRight, nRight, aDistance, aSpare);
1989 memcpy(aSpare, aLeft, sizeof(int)*nLeft);
1990 aLeft = aSpare;
1992 while( iLeft<nLeft || iRight<nRight ){
1993 if( iLeft==nLeft ){
1994 aIdx[iLeft+iRight] = aRight[iRight];
1995 iRight++;
1996 }else if( iRight==nRight ){
1997 aIdx[iLeft+iRight] = aLeft[iLeft];
1998 iLeft++;
1999 }else{
2000 RtreeDValue fLeft = aDistance[aLeft[iLeft]];
2001 RtreeDValue fRight = aDistance[aRight[iRight]];
2002 if( fLeft<fRight ){
2003 aIdx[iLeft+iRight] = aLeft[iLeft];
2004 iLeft++;
2005 }else{
2006 aIdx[iLeft+iRight] = aRight[iRight];
2007 iRight++;
2012 #if 0
2013 /* Check that the sort worked */
2015 int jj;
2016 for(jj=1; jj<nIdx; jj++){
2017 RtreeDValue left = aDistance[aIdx[jj-1]];
2018 RtreeDValue right = aDistance[aIdx[jj]];
2019 assert( left<=right );
2022 #endif
2027 ** Arguments aIdx, aCell and aSpare all point to arrays of size
2028 ** nIdx. The aIdx array contains the set of integers from 0 to
2029 ** (nIdx-1) in no particular order. This function sorts the values
2030 ** in aIdx according to dimension iDim of the cells in aCell. The
2031 ** minimum value of dimension iDim is considered first, the
2032 ** maximum used to break ties.
2034 ** The aSpare array is used as temporary working space by the
2035 ** sorting algorithm.
2037 static void SortByDimension(
2038 Rtree *pRtree,
2039 int *aIdx,
2040 int nIdx,
2041 int iDim,
2042 RtreeCell *aCell,
2043 int *aSpare
2045 if( nIdx>1 ){
2047 int iLeft = 0;
2048 int iRight = 0;
2050 int nLeft = nIdx/2;
2051 int nRight = nIdx-nLeft;
2052 int *aLeft = aIdx;
2053 int *aRight = &aIdx[nLeft];
2055 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
2056 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
2058 memcpy(aSpare, aLeft, sizeof(int)*nLeft);
2059 aLeft = aSpare;
2060 while( iLeft<nLeft || iRight<nRight ){
2061 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
2062 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
2063 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
2064 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
2065 if( (iLeft!=nLeft) && ((iRight==nRight)
2066 || (xleft1<xright1)
2067 || (xleft1==xright1 && xleft2<xright2)
2069 aIdx[iLeft+iRight] = aLeft[iLeft];
2070 iLeft++;
2071 }else{
2072 aIdx[iLeft+iRight] = aRight[iRight];
2073 iRight++;
2077 #if 0
2078 /* Check that the sort worked */
2080 int jj;
2081 for(jj=1; jj<nIdx; jj++){
2082 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
2083 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
2084 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
2085 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
2086 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
2089 #endif
2094 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
2096 static int splitNodeStartree(
2097 Rtree *pRtree,
2098 RtreeCell *aCell,
2099 int nCell,
2100 RtreeNode *pLeft,
2101 RtreeNode *pRight,
2102 RtreeCell *pBboxLeft,
2103 RtreeCell *pBboxRight
2105 int **aaSorted;
2106 int *aSpare;
2107 int ii;
2109 int iBestDim = 0;
2110 int iBestSplit = 0;
2111 RtreeDValue fBestMargin = RTREE_ZERO;
2113 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
2115 aaSorted = (int **)sqlite3_malloc(nByte);
2116 if( !aaSorted ){
2117 return SQLITE_NOMEM;
2120 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
2121 memset(aaSorted, 0, nByte);
2122 for(ii=0; ii<pRtree->nDim; ii++){
2123 int jj;
2124 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
2125 for(jj=0; jj<nCell; jj++){
2126 aaSorted[ii][jj] = jj;
2128 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
2131 for(ii=0; ii<pRtree->nDim; ii++){
2132 RtreeDValue margin = RTREE_ZERO;
2133 RtreeDValue fBestOverlap = RTREE_ZERO;
2134 RtreeDValue fBestArea = RTREE_ZERO;
2135 int iBestLeft = 0;
2136 int nLeft;
2138 for(
2139 nLeft=RTREE_MINCELLS(pRtree);
2140 nLeft<=(nCell-RTREE_MINCELLS(pRtree));
2141 nLeft++
2143 RtreeCell left;
2144 RtreeCell right;
2145 int kk;
2146 RtreeDValue overlap;
2147 RtreeDValue area;
2149 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
2150 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
2151 for(kk=1; kk<(nCell-1); kk++){
2152 if( kk<nLeft ){
2153 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
2154 }else{
2155 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
2158 margin += cellMargin(pRtree, &left);
2159 margin += cellMargin(pRtree, &right);
2160 overlap = cellOverlap(pRtree, &left, &right, 1);
2161 area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
2162 if( (nLeft==RTREE_MINCELLS(pRtree))
2163 || (overlap<fBestOverlap)
2164 || (overlap==fBestOverlap && area<fBestArea)
2166 iBestLeft = nLeft;
2167 fBestOverlap = overlap;
2168 fBestArea = area;
2172 if( ii==0 || margin<fBestMargin ){
2173 iBestDim = ii;
2174 fBestMargin = margin;
2175 iBestSplit = iBestLeft;
2179 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
2180 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
2181 for(ii=0; ii<nCell; ii++){
2182 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
2183 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
2184 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
2185 nodeInsertCell(pRtree, pTarget, pCell);
2186 cellUnion(pRtree, pBbox, pCell);
2189 sqlite3_free(aaSorted);
2190 return SQLITE_OK;
2194 static int updateMapping(
2195 Rtree *pRtree,
2196 i64 iRowid,
2197 RtreeNode *pNode,
2198 int iHeight
2200 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
2201 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
2202 if( iHeight>0 ){
2203 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
2204 if( pChild ){
2205 nodeRelease(pRtree, pChild->pParent);
2206 nodeReference(pNode);
2207 pChild->pParent = pNode;
2210 return xSetMapping(pRtree, iRowid, pNode->iNode);
2213 static int SplitNode(
2214 Rtree *pRtree,
2215 RtreeNode *pNode,
2216 RtreeCell *pCell,
2217 int iHeight
2219 int i;
2220 int newCellIsRight = 0;
2222 int rc = SQLITE_OK;
2223 int nCell = NCELL(pNode);
2224 RtreeCell *aCell;
2225 int *aiUsed;
2227 RtreeNode *pLeft = 0;
2228 RtreeNode *pRight = 0;
2230 RtreeCell leftbbox;
2231 RtreeCell rightbbox;
2233 /* Allocate an array and populate it with a copy of pCell and
2234 ** all cells from node pLeft. Then zero the original node.
2236 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
2237 if( !aCell ){
2238 rc = SQLITE_NOMEM;
2239 goto splitnode_out;
2241 aiUsed = (int *)&aCell[nCell+1];
2242 memset(aiUsed, 0, sizeof(int)*(nCell+1));
2243 for(i=0; i<nCell; i++){
2244 nodeGetCell(pRtree, pNode, i, &aCell[i]);
2246 nodeZero(pRtree, pNode);
2247 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
2248 nCell++;
2250 if( pNode->iNode==1 ){
2251 pRight = nodeNew(pRtree, pNode);
2252 pLeft = nodeNew(pRtree, pNode);
2253 pRtree->iDepth++;
2254 pNode->isDirty = 1;
2255 writeInt16(pNode->zData, pRtree->iDepth);
2256 }else{
2257 pLeft = pNode;
2258 pRight = nodeNew(pRtree, pLeft->pParent);
2259 nodeReference(pLeft);
2262 if( !pLeft || !pRight ){
2263 rc = SQLITE_NOMEM;
2264 goto splitnode_out;
2267 memset(pLeft->zData, 0, pRtree->iNodeSize);
2268 memset(pRight->zData, 0, pRtree->iNodeSize);
2270 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
2271 &leftbbox, &rightbbox);
2272 if( rc!=SQLITE_OK ){
2273 goto splitnode_out;
2276 /* Ensure both child nodes have node numbers assigned to them by calling
2277 ** nodeWrite(). Node pRight always needs a node number, as it was created
2278 ** by nodeNew() above. But node pLeft sometimes already has a node number.
2279 ** In this case avoid the all to nodeWrite().
2281 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
2282 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
2284 goto splitnode_out;
2287 rightbbox.iRowid = pRight->iNode;
2288 leftbbox.iRowid = pLeft->iNode;
2290 if( pNode->iNode==1 ){
2291 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
2292 if( rc!=SQLITE_OK ){
2293 goto splitnode_out;
2295 }else{
2296 RtreeNode *pParent = pLeft->pParent;
2297 int iCell;
2298 rc = nodeParentIndex(pRtree, pLeft, &iCell);
2299 if( rc==SQLITE_OK ){
2300 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
2301 rc = AdjustTree(pRtree, pParent, &leftbbox);
2303 if( rc!=SQLITE_OK ){
2304 goto splitnode_out;
2307 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
2308 goto splitnode_out;
2311 for(i=0; i<NCELL(pRight); i++){
2312 i64 iRowid = nodeGetRowid(pRtree, pRight, i);
2313 rc = updateMapping(pRtree, iRowid, pRight, iHeight);
2314 if( iRowid==pCell->iRowid ){
2315 newCellIsRight = 1;
2317 if( rc!=SQLITE_OK ){
2318 goto splitnode_out;
2321 if( pNode->iNode==1 ){
2322 for(i=0; i<NCELL(pLeft); i++){
2323 i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
2324 rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
2325 if( rc!=SQLITE_OK ){
2326 goto splitnode_out;
2329 }else if( newCellIsRight==0 ){
2330 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
2333 if( rc==SQLITE_OK ){
2334 rc = nodeRelease(pRtree, pRight);
2335 pRight = 0;
2337 if( rc==SQLITE_OK ){
2338 rc = nodeRelease(pRtree, pLeft);
2339 pLeft = 0;
2342 splitnode_out:
2343 nodeRelease(pRtree, pRight);
2344 nodeRelease(pRtree, pLeft);
2345 sqlite3_free(aCell);
2346 return rc;
2350 ** If node pLeaf is not the root of the r-tree and its pParent pointer is
2351 ** still NULL, load all ancestor nodes of pLeaf into memory and populate
2352 ** the pLeaf->pParent chain all the way up to the root node.
2354 ** This operation is required when a row is deleted (or updated - an update
2355 ** is implemented as a delete followed by an insert). SQLite provides the
2356 ** rowid of the row to delete, which can be used to find the leaf on which
2357 ** the entry resides (argument pLeaf). Once the leaf is located, this
2358 ** function is called to determine its ancestry.
2360 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
2361 int rc = SQLITE_OK;
2362 RtreeNode *pChild = pLeaf;
2363 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
2364 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
2365 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
2366 rc = sqlite3_step(pRtree->pReadParent);
2367 if( rc==SQLITE_ROW ){
2368 RtreeNode *pTest; /* Used to test for reference loops */
2369 i64 iNode; /* Node number of parent node */
2371 /* Before setting pChild->pParent, test that we are not creating a
2372 ** loop of references (as we would if, say, pChild==pParent). We don't
2373 ** want to do this as it leads to a memory leak when trying to delete
2374 ** the referenced counted node structures.
2376 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
2377 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
2378 if( !pTest ){
2379 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
2382 rc = sqlite3_reset(pRtree->pReadParent);
2383 if( rc==SQLITE_OK ) rc = rc2;
2384 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
2385 pChild = pChild->pParent;
2387 return rc;
2390 static int deleteCell(Rtree *, RtreeNode *, int, int);
2392 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
2393 int rc;
2394 int rc2;
2395 RtreeNode *pParent = 0;
2396 int iCell;
2398 assert( pNode->nRef==1 );
2400 /* Remove the entry in the parent cell. */
2401 rc = nodeParentIndex(pRtree, pNode, &iCell);
2402 if( rc==SQLITE_OK ){
2403 pParent = pNode->pParent;
2404 pNode->pParent = 0;
2405 rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
2407 rc2 = nodeRelease(pRtree, pParent);
2408 if( rc==SQLITE_OK ){
2409 rc = rc2;
2411 if( rc!=SQLITE_OK ){
2412 return rc;
2415 /* Remove the xxx_node entry. */
2416 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
2417 sqlite3_step(pRtree->pDeleteNode);
2418 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
2419 return rc;
2422 /* Remove the xxx_parent entry. */
2423 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
2424 sqlite3_step(pRtree->pDeleteParent);
2425 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
2426 return rc;
2429 /* Remove the node from the in-memory hash table and link it into
2430 ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
2432 nodeHashDelete(pRtree, pNode);
2433 pNode->iNode = iHeight;
2434 pNode->pNext = pRtree->pDeleted;
2435 pNode->nRef++;
2436 pRtree->pDeleted = pNode;
2438 return SQLITE_OK;
2441 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
2442 RtreeNode *pParent = pNode->pParent;
2443 int rc = SQLITE_OK;
2444 if( pParent ){
2445 int ii;
2446 int nCell = NCELL(pNode);
2447 RtreeCell box; /* Bounding box for pNode */
2448 nodeGetCell(pRtree, pNode, 0, &box);
2449 for(ii=1; ii<nCell; ii++){
2450 RtreeCell cell;
2451 nodeGetCell(pRtree, pNode, ii, &cell);
2452 cellUnion(pRtree, &box, &cell);
2454 box.iRowid = pNode->iNode;
2455 rc = nodeParentIndex(pRtree, pNode, &ii);
2456 if( rc==SQLITE_OK ){
2457 nodeOverwriteCell(pRtree, pParent, &box, ii);
2458 rc = fixBoundingBox(pRtree, pParent);
2461 return rc;
2465 ** Delete the cell at index iCell of node pNode. After removing the
2466 ** cell, adjust the r-tree data structure if required.
2468 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
2469 RtreeNode *pParent;
2470 int rc;
2472 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
2473 return rc;
2476 /* Remove the cell from the node. This call just moves bytes around
2477 ** the in-memory node image, so it cannot fail.
2479 nodeDeleteCell(pRtree, pNode, iCell);
2481 /* If the node is not the tree root and now has less than the minimum
2482 ** number of cells, remove it from the tree. Otherwise, update the
2483 ** cell in the parent node so that it tightly contains the updated
2484 ** node.
2486 pParent = pNode->pParent;
2487 assert( pParent || pNode->iNode==1 );
2488 if( pParent ){
2489 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
2490 rc = removeNode(pRtree, pNode, iHeight);
2491 }else{
2492 rc = fixBoundingBox(pRtree, pNode);
2496 return rc;
2499 static int Reinsert(
2500 Rtree *pRtree,
2501 RtreeNode *pNode,
2502 RtreeCell *pCell,
2503 int iHeight
2505 int *aOrder;
2506 int *aSpare;
2507 RtreeCell *aCell;
2508 RtreeDValue *aDistance;
2509 int nCell;
2510 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
2511 int iDim;
2512 int ii;
2513 int rc = SQLITE_OK;
2514 int n;
2516 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
2518 nCell = NCELL(pNode)+1;
2519 n = (nCell+1)&(~1);
2521 /* Allocate the buffers used by this operation. The allocation is
2522 ** relinquished before this function returns.
2524 aCell = (RtreeCell *)sqlite3_malloc(n * (
2525 sizeof(RtreeCell) + /* aCell array */
2526 sizeof(int) + /* aOrder array */
2527 sizeof(int) + /* aSpare array */
2528 sizeof(RtreeDValue) /* aDistance array */
2530 if( !aCell ){
2531 return SQLITE_NOMEM;
2533 aOrder = (int *)&aCell[n];
2534 aSpare = (int *)&aOrder[n];
2535 aDistance = (RtreeDValue *)&aSpare[n];
2537 for(ii=0; ii<nCell; ii++){
2538 if( ii==(nCell-1) ){
2539 memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
2540 }else{
2541 nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
2543 aOrder[ii] = ii;
2544 for(iDim=0; iDim<pRtree->nDim; iDim++){
2545 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
2546 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
2549 for(iDim=0; iDim<pRtree->nDim; iDim++){
2550 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
2553 for(ii=0; ii<nCell; ii++){
2554 aDistance[ii] = RTREE_ZERO;
2555 for(iDim=0; iDim<pRtree->nDim; iDim++){
2556 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) -
2557 DCOORD(aCell[ii].aCoord[iDim*2]));
2558 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
2562 SortByDistance(aOrder, nCell, aDistance, aSpare);
2563 nodeZero(pRtree, pNode);
2565 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
2566 RtreeCell *p = &aCell[aOrder[ii]];
2567 nodeInsertCell(pRtree, pNode, p);
2568 if( p->iRowid==pCell->iRowid ){
2569 if( iHeight==0 ){
2570 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
2571 }else{
2572 rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
2576 if( rc==SQLITE_OK ){
2577 rc = fixBoundingBox(pRtree, pNode);
2579 for(; rc==SQLITE_OK && ii<nCell; ii++){
2580 /* Find a node to store this cell in. pNode->iNode currently contains
2581 ** the height of the sub-tree headed by the cell.
2583 RtreeNode *pInsert;
2584 RtreeCell *p = &aCell[aOrder[ii]];
2585 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
2586 if( rc==SQLITE_OK ){
2587 int rc2;
2588 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
2589 rc2 = nodeRelease(pRtree, pInsert);
2590 if( rc==SQLITE_OK ){
2591 rc = rc2;
2596 sqlite3_free(aCell);
2597 return rc;
2601 ** Insert cell pCell into node pNode. Node pNode is the head of a
2602 ** subtree iHeight high (leaf nodes have iHeight==0).
2604 static int rtreeInsertCell(
2605 Rtree *pRtree,
2606 RtreeNode *pNode,
2607 RtreeCell *pCell,
2608 int iHeight
2610 int rc = SQLITE_OK;
2611 if( iHeight>0 ){
2612 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
2613 if( pChild ){
2614 nodeRelease(pRtree, pChild->pParent);
2615 nodeReference(pNode);
2616 pChild->pParent = pNode;
2619 if( nodeInsertCell(pRtree, pNode, pCell) ){
2620 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
2621 rc = SplitNode(pRtree, pNode, pCell, iHeight);
2622 }else{
2623 pRtree->iReinsertHeight = iHeight;
2624 rc = Reinsert(pRtree, pNode, pCell, iHeight);
2626 }else{
2627 rc = AdjustTree(pRtree, pNode, pCell);
2628 if( rc==SQLITE_OK ){
2629 if( iHeight==0 ){
2630 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
2631 }else{
2632 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
2636 return rc;
2639 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
2640 int ii;
2641 int rc = SQLITE_OK;
2642 int nCell = NCELL(pNode);
2644 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
2645 RtreeNode *pInsert;
2646 RtreeCell cell;
2647 nodeGetCell(pRtree, pNode, ii, &cell);
2649 /* Find a node to store this cell in. pNode->iNode currently contains
2650 ** the height of the sub-tree headed by the cell.
2652 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
2653 if( rc==SQLITE_OK ){
2654 int rc2;
2655 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
2656 rc2 = nodeRelease(pRtree, pInsert);
2657 if( rc==SQLITE_OK ){
2658 rc = rc2;
2662 return rc;
2666 ** Select a currently unused rowid for a new r-tree record.
2668 static int newRowid(Rtree *pRtree, i64 *piRowid){
2669 int rc;
2670 sqlite3_bind_null(pRtree->pWriteRowid, 1);
2671 sqlite3_bind_null(pRtree->pWriteRowid, 2);
2672 sqlite3_step(pRtree->pWriteRowid);
2673 rc = sqlite3_reset(pRtree->pWriteRowid);
2674 *piRowid = sqlite3_last_insert_rowid(pRtree->db);
2675 return rc;
2679 ** Remove the entry with rowid=iDelete from the r-tree structure.
2681 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
2682 int rc; /* Return code */
2683 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */
2684 int iCell; /* Index of iDelete cell in pLeaf */
2685 RtreeNode *pRoot; /* Root node of rtree structure */
2688 /* Obtain a reference to the root node to initialize Rtree.iDepth */
2689 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
2691 /* Obtain a reference to the leaf node that contains the entry
2692 ** about to be deleted.
2694 if( rc==SQLITE_OK ){
2695 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
2698 /* Delete the cell in question from the leaf node. */
2699 if( rc==SQLITE_OK ){
2700 int rc2;
2701 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
2702 if( rc==SQLITE_OK ){
2703 rc = deleteCell(pRtree, pLeaf, iCell, 0);
2705 rc2 = nodeRelease(pRtree, pLeaf);
2706 if( rc==SQLITE_OK ){
2707 rc = rc2;
2711 /* Delete the corresponding entry in the <rtree>_rowid table. */
2712 if( rc==SQLITE_OK ){
2713 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
2714 sqlite3_step(pRtree->pDeleteRowid);
2715 rc = sqlite3_reset(pRtree->pDeleteRowid);
2718 /* Check if the root node now has exactly one child. If so, remove
2719 ** it, schedule the contents of the child for reinsertion and
2720 ** reduce the tree height by one.
2722 ** This is equivalent to copying the contents of the child into
2723 ** the root node (the operation that Gutman's paper says to perform
2724 ** in this scenario).
2726 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
2727 int rc2;
2728 RtreeNode *pChild;
2729 i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
2730 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
2731 if( rc==SQLITE_OK ){
2732 rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
2734 rc2 = nodeRelease(pRtree, pChild);
2735 if( rc==SQLITE_OK ) rc = rc2;
2736 if( rc==SQLITE_OK ){
2737 pRtree->iDepth--;
2738 writeInt16(pRoot->zData, pRtree->iDepth);
2739 pRoot->isDirty = 1;
2743 /* Re-insert the contents of any underfull nodes removed from the tree. */
2744 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
2745 if( rc==SQLITE_OK ){
2746 rc = reinsertNodeContent(pRtree, pLeaf);
2748 pRtree->pDeleted = pLeaf->pNext;
2749 sqlite3_free(pLeaf);
2752 /* Release the reference to the root node. */
2753 if( rc==SQLITE_OK ){
2754 rc = nodeRelease(pRtree, pRoot);
2755 }else{
2756 nodeRelease(pRtree, pRoot);
2759 return rc;
2763 ** Rounding constants for float->double conversion.
2765 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
2766 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
2768 #if !defined(SQLITE_RTREE_INT_ONLY)
2770 ** Convert an sqlite3_value into an RtreeValue (presumably a float)
2771 ** while taking care to round toward negative or positive, respectively.
2773 static RtreeValue rtreeValueDown(sqlite3_value *v){
2774 double d = sqlite3_value_double(v);
2775 float f = (float)d;
2776 if( f>d ){
2777 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
2779 return f;
2781 static RtreeValue rtreeValueUp(sqlite3_value *v){
2782 double d = sqlite3_value_double(v);
2783 float f = (float)d;
2784 if( f<d ){
2785 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
2787 return f;
2789 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */
2793 ** The xUpdate method for rtree module virtual tables.
2795 static int rtreeUpdate(
2796 sqlite3_vtab *pVtab,
2797 int nData,
2798 sqlite3_value **azData,
2799 sqlite_int64 *pRowid
2801 Rtree *pRtree = (Rtree *)pVtab;
2802 int rc = SQLITE_OK;
2803 RtreeCell cell; /* New cell to insert if nData>1 */
2804 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
2806 rtreeReference(pRtree);
2807 assert(nData>=1);
2809 /* Constraint handling. A write operation on an r-tree table may return
2810 ** SQLITE_CONSTRAINT for two reasons:
2812 ** 1. A duplicate rowid value, or
2813 ** 2. The supplied data violates the "x2>=x1" constraint.
2815 ** In the first case, if the conflict-handling mode is REPLACE, then
2816 ** the conflicting row can be removed before proceeding. In the second
2817 ** case, SQLITE_CONSTRAINT must be returned regardless of the
2818 ** conflict-handling mode specified by the user.
2820 if( nData>1 ){
2821 int ii;
2823 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
2824 assert( nData==(pRtree->nDim*2 + 3) );
2825 #ifndef SQLITE_RTREE_INT_ONLY
2826 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
2827 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
2828 cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
2829 cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
2830 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
2831 rc = SQLITE_CONSTRAINT;
2832 goto constraint;
2835 }else
2836 #endif
2838 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
2839 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
2840 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
2841 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
2842 rc = SQLITE_CONSTRAINT;
2843 goto constraint;
2848 /* If a rowid value was supplied, check if it is already present in
2849 ** the table. If so, the constraint has failed. */
2850 if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
2851 cell.iRowid = sqlite3_value_int64(azData[2]);
2852 if( sqlite3_value_type(azData[0])==SQLITE_NULL
2853 || sqlite3_value_int64(azData[0])!=cell.iRowid
2855 int steprc;
2856 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
2857 steprc = sqlite3_step(pRtree->pReadRowid);
2858 rc = sqlite3_reset(pRtree->pReadRowid);
2859 if( SQLITE_ROW==steprc ){
2860 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
2861 rc = rtreeDeleteRowid(pRtree, cell.iRowid);
2862 }else{
2863 rc = SQLITE_CONSTRAINT;
2864 goto constraint;
2868 bHaveRowid = 1;
2872 /* If azData[0] is not an SQL NULL value, it is the rowid of a
2873 ** record to delete from the r-tree table. The following block does
2874 ** just that.
2876 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
2877 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
2880 /* If the azData[] array contains more than one element, elements
2881 ** (azData[2]..azData[argc-1]) contain a new record to insert into
2882 ** the r-tree structure.
2884 if( rc==SQLITE_OK && nData>1 ){
2885 /* Insert the new record into the r-tree */
2886 RtreeNode *pLeaf = 0;
2888 /* Figure out the rowid of the new row. */
2889 if( bHaveRowid==0 ){
2890 rc = newRowid(pRtree, &cell.iRowid);
2892 *pRowid = cell.iRowid;
2894 if( rc==SQLITE_OK ){
2895 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
2897 if( rc==SQLITE_OK ){
2898 int rc2;
2899 pRtree->iReinsertHeight = -1;
2900 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
2901 rc2 = nodeRelease(pRtree, pLeaf);
2902 if( rc==SQLITE_OK ){
2903 rc = rc2;
2908 constraint:
2909 rtreeRelease(pRtree);
2910 return rc;
2914 ** The xRename method for rtree module virtual tables.
2916 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
2917 Rtree *pRtree = (Rtree *)pVtab;
2918 int rc = SQLITE_NOMEM;
2919 char *zSql = sqlite3_mprintf(
2920 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
2921 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
2922 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
2923 , pRtree->zDb, pRtree->zName, zNewName
2924 , pRtree->zDb, pRtree->zName, zNewName
2925 , pRtree->zDb, pRtree->zName, zNewName
2927 if( zSql ){
2928 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
2929 sqlite3_free(zSql);
2931 return rc;
2935 ** This function populates the pRtree->nRowEst variable with an estimate
2936 ** of the number of rows in the virtual table. If possible, this is based
2937 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
2939 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
2940 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
2941 char *zSql;
2942 sqlite3_stmt *p;
2943 int rc;
2944 i64 nRow = 0;
2946 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
2947 if( zSql==0 ){
2948 rc = SQLITE_NOMEM;
2949 }else{
2950 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
2951 if( rc==SQLITE_OK ){
2952 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
2953 rc = sqlite3_finalize(p);
2954 }else if( rc!=SQLITE_NOMEM ){
2955 rc = SQLITE_OK;
2958 if( rc==SQLITE_OK ){
2959 if( nRow==0 ){
2960 pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
2961 }else{
2962 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
2965 sqlite3_free(zSql);
2968 return rc;
2971 static sqlite3_module rtreeModule = {
2972 0, /* iVersion */
2973 rtreeCreate, /* xCreate - create a table */
2974 rtreeConnect, /* xConnect - connect to an existing table */
2975 rtreeBestIndex, /* xBestIndex - Determine search strategy */
2976 rtreeDisconnect, /* xDisconnect - Disconnect from a table */
2977 rtreeDestroy, /* xDestroy - Drop a table */
2978 rtreeOpen, /* xOpen - open a cursor */
2979 rtreeClose, /* xClose - close a cursor */
2980 rtreeFilter, /* xFilter - configure scan constraints */
2981 rtreeNext, /* xNext - advance a cursor */
2982 rtreeEof, /* xEof */
2983 rtreeColumn, /* xColumn - read data */
2984 rtreeRowid, /* xRowid - read data */
2985 rtreeUpdate, /* xUpdate - write data */
2986 0, /* xBegin - begin transaction */
2987 0, /* xSync - sync transaction */
2988 0, /* xCommit - commit transaction */
2989 0, /* xRollback - rollback transaction */
2990 0, /* xFindFunction - function overloading */
2991 rtreeRename, /* xRename - rename the table */
2992 0, /* xSavepoint */
2993 0, /* xRelease */
2994 0 /* xRollbackTo */
2997 static int rtreeSqlInit(
2998 Rtree *pRtree,
2999 sqlite3 *db,
3000 const char *zDb,
3001 const char *zPrefix,
3002 int isCreate
3004 int rc = SQLITE_OK;
3006 #define N_STATEMENT 9
3007 static const char *azSql[N_STATEMENT] = {
3008 /* Read and write the xxx_node table */
3009 "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
3010 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
3011 "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
3013 /* Read and write the xxx_rowid table */
3014 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
3015 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
3016 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
3018 /* Read and write the xxx_parent table */
3019 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
3020 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
3021 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
3023 sqlite3_stmt **appStmt[N_STATEMENT];
3024 int i;
3026 pRtree->db = db;
3028 if( isCreate ){
3029 char *zCreate = sqlite3_mprintf(
3030 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
3031 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
3032 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,"
3033 " parentnode INTEGER);"
3034 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
3035 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
3037 if( !zCreate ){
3038 return SQLITE_NOMEM;
3040 rc = sqlite3_exec(db, zCreate, 0, 0, 0);
3041 sqlite3_free(zCreate);
3042 if( rc!=SQLITE_OK ){
3043 return rc;
3047 appStmt[0] = &pRtree->pReadNode;
3048 appStmt[1] = &pRtree->pWriteNode;
3049 appStmt[2] = &pRtree->pDeleteNode;
3050 appStmt[3] = &pRtree->pReadRowid;
3051 appStmt[4] = &pRtree->pWriteRowid;
3052 appStmt[5] = &pRtree->pDeleteRowid;
3053 appStmt[6] = &pRtree->pReadParent;
3054 appStmt[7] = &pRtree->pWriteParent;
3055 appStmt[8] = &pRtree->pDeleteParent;
3057 rc = rtreeQueryStat1(db, pRtree);
3058 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
3059 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
3060 if( zSql ){
3061 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
3062 }else{
3063 rc = SQLITE_NOMEM;
3065 sqlite3_free(zSql);
3068 return rc;
3072 ** The second argument to this function contains the text of an SQL statement
3073 ** that returns a single integer value. The statement is compiled and executed
3074 ** using database connection db. If successful, the integer value returned
3075 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
3076 ** code is returned and the value of *piVal after returning is not defined.
3078 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
3079 int rc = SQLITE_NOMEM;
3080 if( zSql ){
3081 sqlite3_stmt *pStmt = 0;
3082 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
3083 if( rc==SQLITE_OK ){
3084 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3085 *piVal = sqlite3_column_int(pStmt, 0);
3087 rc = sqlite3_finalize(pStmt);
3090 return rc;
3094 ** This function is called from within the xConnect() or xCreate() method to
3095 ** determine the node-size used by the rtree table being created or connected
3096 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
3097 ** Otherwise, an SQLite error code is returned.
3099 ** If this function is being called as part of an xConnect(), then the rtree
3100 ** table already exists. In this case the node-size is determined by inspecting
3101 ** the root node of the tree.
3103 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
3104 ** This ensures that each node is stored on a single database page. If the
3105 ** database page-size is so large that more than RTREE_MAXCELLS entries
3106 ** would fit in a single node, use a smaller node-size.
3108 static int getNodeSize(
3109 sqlite3 *db, /* Database handle */
3110 Rtree *pRtree, /* Rtree handle */
3111 int isCreate, /* True for xCreate, false for xConnect */
3112 char **pzErr /* OUT: Error message, if any */
3114 int rc;
3115 char *zSql;
3116 if( isCreate ){
3117 int iPageSize = 0;
3118 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
3119 rc = getIntFromStmt(db, zSql, &iPageSize);
3120 if( rc==SQLITE_OK ){
3121 pRtree->iNodeSize = iPageSize-64;
3122 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
3123 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
3125 }else{
3126 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3128 }else{
3129 zSql = sqlite3_mprintf(
3130 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
3131 pRtree->zDb, pRtree->zName
3133 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
3134 if( rc!=SQLITE_OK ){
3135 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3139 sqlite3_free(zSql);
3140 return rc;
3144 ** This function is the implementation of both the xConnect and xCreate
3145 ** methods of the r-tree virtual table.
3147 ** argv[0] -> module name
3148 ** argv[1] -> database name
3149 ** argv[2] -> table name
3150 ** argv[...] -> column names...
3152 static int rtreeInit(
3153 sqlite3 *db, /* Database connection */
3154 void *pAux, /* One of the RTREE_COORD_* constants */
3155 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
3156 sqlite3_vtab **ppVtab, /* OUT: New virtual table */
3157 char **pzErr, /* OUT: Error message, if any */
3158 int isCreate /* True for xCreate, false for xConnect */
3160 int rc = SQLITE_OK;
3161 Rtree *pRtree;
3162 int nDb; /* Length of string argv[1] */
3163 int nName; /* Length of string argv[2] */
3164 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
3166 const char *aErrMsg[] = {
3167 0, /* 0 */
3168 "Wrong number of columns for an rtree table", /* 1 */
3169 "Too few columns for an rtree table", /* 2 */
3170 "Too many columns for an rtree table" /* 3 */
3173 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
3174 if( aErrMsg[iErr] ){
3175 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
3176 return SQLITE_ERROR;
3179 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
3181 /* Allocate the sqlite3_vtab structure */
3182 nDb = (int)strlen(argv[1]);
3183 nName = (int)strlen(argv[2]);
3184 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
3185 if( !pRtree ){
3186 return SQLITE_NOMEM;
3188 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
3189 pRtree->nBusy = 1;
3190 pRtree->base.pModule = &rtreeModule;
3191 pRtree->zDb = (char *)&pRtree[1];
3192 pRtree->zName = &pRtree->zDb[nDb+1];
3193 pRtree->nDim = (argc-4)/2;
3194 pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
3195 pRtree->eCoordType = eCoordType;
3196 memcpy(pRtree->zDb, argv[1], nDb);
3197 memcpy(pRtree->zName, argv[2], nName);
3199 /* Figure out the node size to use. */
3200 rc = getNodeSize(db, pRtree, isCreate, pzErr);
3202 /* Create/Connect to the underlying relational database schema. If
3203 ** that is successful, call sqlite3_declare_vtab() to configure
3204 ** the r-tree table schema.
3206 if( rc==SQLITE_OK ){
3207 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
3208 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3209 }else{
3210 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
3211 char *zTmp;
3212 int ii;
3213 for(ii=4; zSql && ii<argc; ii++){
3214 zTmp = zSql;
3215 zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
3216 sqlite3_free(zTmp);
3218 if( zSql ){
3219 zTmp = zSql;
3220 zSql = sqlite3_mprintf("%s);", zTmp);
3221 sqlite3_free(zTmp);
3223 if( !zSql ){
3224 rc = SQLITE_NOMEM;
3225 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
3226 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3228 sqlite3_free(zSql);
3232 if( rc==SQLITE_OK ){
3233 *ppVtab = (sqlite3_vtab *)pRtree;
3234 }else{
3235 assert( *ppVtab==0 );
3236 assert( pRtree->nBusy==1 );
3237 rtreeRelease(pRtree);
3239 return rc;
3244 ** Implementation of a scalar function that decodes r-tree nodes to
3245 ** human readable strings. This can be used for debugging and analysis.
3247 ** The scalar function takes two arguments: (1) the number of dimensions
3248 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
3249 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to
3250 ** deserialize all nodes, a statement like:
3252 ** SELECT rtreenode(2, data) FROM rt_node;
3254 ** The human readable string takes the form of a Tcl list with one
3255 ** entry for each cell in the r-tree node. Each entry is itself a
3256 ** list, containing the 8-byte rowid/pageno followed by the
3257 ** <num-dimension>*2 coordinates.
3259 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
3260 char *zText = 0;
3261 RtreeNode node;
3262 Rtree tree;
3263 int ii;
3265 UNUSED_PARAMETER(nArg);
3266 memset(&node, 0, sizeof(RtreeNode));
3267 memset(&tree, 0, sizeof(Rtree));
3268 tree.nDim = sqlite3_value_int(apArg[0]);
3269 tree.nBytesPerCell = 8 + 8 * tree.nDim;
3270 node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
3272 for(ii=0; ii<NCELL(&node); ii++){
3273 char zCell[512];
3274 int nCell = 0;
3275 RtreeCell cell;
3276 int jj;
3278 nodeGetCell(&tree, &node, ii, &cell);
3279 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
3280 nCell = (int)strlen(zCell);
3281 for(jj=0; jj<tree.nDim*2; jj++){
3282 #ifndef SQLITE_RTREE_INT_ONLY
3283 sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
3284 (double)cell.aCoord[jj].f);
3285 #else
3286 sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
3287 cell.aCoord[jj].i);
3288 #endif
3289 nCell = (int)strlen(zCell);
3292 if( zText ){
3293 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
3294 sqlite3_free(zText);
3295 zText = zTextNew;
3296 }else{
3297 zText = sqlite3_mprintf("{%s}", zCell);
3301 sqlite3_result_text(ctx, zText, -1, sqlite3_free);
3304 /* This routine implements an SQL function that returns the "depth" parameter
3305 ** from the front of a blob that is an r-tree node. For example:
3307 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
3309 ** The depth value is 0 for all nodes other than the root node, and the root
3310 ** node always has nodeno=1, so the example above is the primary use for this
3311 ** routine. This routine is intended for testing and analysis only.
3313 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
3314 UNUSED_PARAMETER(nArg);
3315 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
3316 || sqlite3_value_bytes(apArg[0])<2
3318 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
3319 }else{
3320 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
3321 sqlite3_result_int(ctx, readInt16(zBlob));
3326 ** Register the r-tree module with database handle db. This creates the
3327 ** virtual table module "rtree" and the debugging/analysis scalar
3328 ** function "rtreenode".
3330 int sqlite3RtreeInit(sqlite3 *db){
3331 const int utf8 = SQLITE_UTF8;
3332 int rc;
3334 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
3335 if( rc==SQLITE_OK ){
3336 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
3338 if( rc==SQLITE_OK ){
3339 #ifdef SQLITE_RTREE_INT_ONLY
3340 void *c = (void *)RTREE_COORD_INT32;
3341 #else
3342 void *c = (void *)RTREE_COORD_REAL32;
3343 #endif
3344 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
3346 if( rc==SQLITE_OK ){
3347 void *c = (void *)RTREE_COORD_INT32;
3348 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
3351 return rc;
3355 ** This routine deletes the RtreeGeomCallback object that was attached
3356 ** one of the SQL functions create by sqlite3_rtree_geometry_callback()
3357 ** or sqlite3_rtree_query_callback(). In other words, this routine is the
3358 ** destructor for an RtreeGeomCallback objecct. This routine is called when
3359 ** the corresponding SQL function is deleted.
3361 static void rtreeFreeCallback(void *p){
3362 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
3363 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
3364 sqlite3_free(p);
3368 ** Each call to sqlite3_rtree_geometry_callback() or
3369 ** sqlite3_rtree_query_callback() creates an ordinary SQLite
3370 ** scalar function that is implemented by this routine.
3372 ** All this function does is construct an RtreeMatchArg object that
3373 ** contains the geometry-checking callback routines and a list of
3374 ** parameters to this function, then return that RtreeMatchArg object
3375 ** as a BLOB.
3377 ** The R-Tree MATCH operator will read the returned BLOB, deserialize
3378 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
3379 ** out which elements of the R-Tree should be returned by the query.
3381 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
3382 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
3383 RtreeMatchArg *pBlob;
3384 int nBlob;
3386 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue);
3387 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
3388 if( !pBlob ){
3389 sqlite3_result_error_nomem(ctx);
3390 }else{
3391 int i;
3392 pBlob->magic = RTREE_GEOMETRY_MAGIC;
3393 pBlob->cb = pGeomCtx[0];
3394 pBlob->nParam = nArg;
3395 for(i=0; i<nArg; i++){
3396 #ifdef SQLITE_RTREE_INT_ONLY
3397 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
3398 #else
3399 pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
3400 #endif
3402 sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free);
3407 ** Register a new geometry function for use with the r-tree MATCH operator.
3409 int sqlite3_rtree_geometry_callback(
3410 sqlite3 *db, /* Register SQL function on this connection */
3411 const char *zGeom, /* Name of the new SQL function */
3412 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
3413 void *pContext /* Extra data associated with the callback */
3415 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
3417 /* Allocate and populate the context object. */
3418 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
3419 if( !pGeomCtx ) return SQLITE_NOMEM;
3420 pGeomCtx->xGeom = xGeom;
3421 pGeomCtx->xQueryFunc = 0;
3422 pGeomCtx->xDestructor = 0;
3423 pGeomCtx->pContext = pContext;
3424 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
3425 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
3430 ** Register a new 2nd-generation geometry function for use with the
3431 ** r-tree MATCH operator.
3433 int sqlite3_rtree_query_callback(
3434 sqlite3 *db, /* Register SQL function on this connection */
3435 const char *zQueryFunc, /* Name of new SQL function */
3436 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
3437 void *pContext, /* Extra data passed into the callback */
3438 void (*xDestructor)(void*) /* Destructor for the extra data */
3440 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
3442 /* Allocate and populate the context object. */
3443 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
3444 if( !pGeomCtx ) return SQLITE_NOMEM;
3445 pGeomCtx->xGeom = 0;
3446 pGeomCtx->xQueryFunc = xQueryFunc;
3447 pGeomCtx->xDestructor = xDestructor;
3448 pGeomCtx->pContext = pContext;
3449 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY,
3450 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
3454 #if !SQLITE_CORE
3455 #ifdef _WIN32
3456 __declspec(dllexport)
3457 #endif
3458 int sqlite3_rtree_init(
3459 sqlite3 *db,
3460 char **pzErrMsg,
3461 const sqlite3_api_routines *pApi
3463 SQLITE_EXTENSION_INIT2(pApi)
3464 return sqlite3RtreeInit(db);
3466 #endif
3468 #endif