Roll src/third_party/WebKit a3b4a2e:7441784 (svn 202551:202552)
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / bitvec.c
blob52184aa964ce1898f35d1b3d87871c2d0ef4c53d
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap. Bits are numbered starting with 1.
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property. Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled. In those cases,
21 ** the bitmap becomes dense with high cardinality. The algorithm needs
22 ** to handle both cases well.
24 ** The size of the bitmap is fixed when the object is created.
26 ** All bits are clear when the bitmap is created. Individual bits
27 ** may be set or cleared one at a time.
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare. There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger. The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
37 #include "sqliteInt.h"
39 /* Size of the Bitvec structure in bytes. */
40 #define BITVEC_SZ 512
42 /* Round the union size down to the nearest pointer boundary, since that's how
43 ** it will be aligned within the Bitvec struct. */
44 #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
46 /* Type of the array "element" for the bitmap representation.
47 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
48 ** Setting this to the "natural word" size of your CPU may improve
49 ** performance. */
50 #define BITVEC_TELEM u8
51 /* Size, in bits, of the bitmap element. */
52 #define BITVEC_SZELEM 8
53 /* Number of elements in a bitmap array. */
54 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
55 /* Number of bits in the bitmap array. */
56 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
58 /* Number of u32 values in hash table. */
59 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
60 /* Maximum number of entries in hash table before
61 ** sub-dividing and re-hashing. */
62 #define BITVEC_MXHASH (BITVEC_NINT/2)
63 /* Hashing function for the aHash representation.
64 ** Empirical testing showed that the *37 multiplier
65 ** (an arbitrary prime)in the hash function provided
66 ** no fewer collisions than the no-op *1. */
67 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
69 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
73 ** A bitmap is an instance of the following structure.
75 ** This bitmap records the existence of zero or more bits
76 ** with values between 1 and iSize, inclusive.
78 ** There are three possible representations of the bitmap.
79 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
80 ** bitmap. The least significant bit is bit 1.
82 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
83 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
85 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
86 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
87 ** handles up to iDivisor separate values of i. apSub[0] holds
88 ** values between 1 and iDivisor. apSub[1] holds values between
89 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
90 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
91 ** to hold deal with values between 1 and iDivisor.
93 struct Bitvec {
94 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
95 u32 nSet; /* Number of bits that are set - only valid for aHash
96 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
97 ** this would be 125. */
98 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
99 /* Should >=0 for apSub element. */
100 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
101 /* For a BITVEC_SZ of 512, this would be 34,359,739. */
102 union {
103 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
104 u32 aHash[BITVEC_NINT]; /* Hash table representation */
105 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
106 } u;
110 ** Create a new bitmap object able to handle bits between 0 and iSize,
111 ** inclusive. Return a pointer to the new object. Return NULL if
112 ** malloc fails.
114 Bitvec *sqlite3BitvecCreate(u32 iSize){
115 Bitvec *p;
116 assert( sizeof(*p)==BITVEC_SZ );
117 p = sqlite3MallocZero( sizeof(*p) );
118 if( p ){
119 p->iSize = iSize;
121 return p;
125 ** Check to see if the i-th bit is set. Return true or false.
126 ** If p is NULL (if the bitmap has not been created) or if
127 ** i is out of range, then return false.
129 int sqlite3BitvecTest(Bitvec *p, u32 i){
130 if( p==0 ) return 0;
131 if( i>p->iSize || i==0 ) return 0;
132 i--;
133 while( p->iDivisor ){
134 u32 bin = i/p->iDivisor;
135 i = i%p->iDivisor;
136 p = p->u.apSub[bin];
137 if (!p) {
138 return 0;
141 if( p->iSize<=BITVEC_NBIT ){
142 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
143 } else{
144 u32 h = BITVEC_HASH(i++);
145 while( p->u.aHash[h] ){
146 if( p->u.aHash[h]==i ) return 1;
147 h = (h+1) % BITVEC_NINT;
149 return 0;
154 ** Set the i-th bit. Return 0 on success and an error code if
155 ** anything goes wrong.
157 ** This routine might cause sub-bitmaps to be allocated. Failing
158 ** to get the memory needed to hold the sub-bitmap is the only
159 ** that can go wrong with an insert, assuming p and i are valid.
161 ** The calling function must ensure that p is a valid Bitvec object
162 ** and that the value for "i" is within range of the Bitvec object.
163 ** Otherwise the behavior is undefined.
165 int sqlite3BitvecSet(Bitvec *p, u32 i){
166 u32 h;
167 if( p==0 ) return SQLITE_OK;
168 assert( i>0 );
169 assert( i<=p->iSize );
170 i--;
171 while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
172 u32 bin = i/p->iDivisor;
173 i = i%p->iDivisor;
174 if( p->u.apSub[bin]==0 ){
175 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
176 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
178 p = p->u.apSub[bin];
180 if( p->iSize<=BITVEC_NBIT ){
181 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
182 return SQLITE_OK;
184 h = BITVEC_HASH(i++);
185 /* if there wasn't a hash collision, and this doesn't */
186 /* completely fill the hash, then just add it without */
187 /* worring about sub-dividing and re-hashing. */
188 if( !p->u.aHash[h] ){
189 if (p->nSet<(BITVEC_NINT-1)) {
190 goto bitvec_set_end;
191 } else {
192 goto bitvec_set_rehash;
195 /* there was a collision, check to see if it's already */
196 /* in hash, if not, try to find a spot for it */
197 do {
198 if( p->u.aHash[h]==i ) return SQLITE_OK;
199 h++;
200 if( h>=BITVEC_NINT ) h = 0;
201 } while( p->u.aHash[h] );
202 /* we didn't find it in the hash. h points to the first */
203 /* available free spot. check to see if this is going to */
204 /* make our hash too "full". */
205 bitvec_set_rehash:
206 if( p->nSet>=BITVEC_MXHASH ){
207 unsigned int j;
208 int rc;
209 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
210 if( aiValues==0 ){
211 return SQLITE_NOMEM;
212 }else{
213 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
214 memset(p->u.apSub, 0, sizeof(p->u.apSub));
215 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
216 rc = sqlite3BitvecSet(p, i);
217 for(j=0; j<BITVEC_NINT; j++){
218 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
220 sqlite3StackFree(0, aiValues);
221 return rc;
224 bitvec_set_end:
225 p->nSet++;
226 p->u.aHash[h] = i;
227 return SQLITE_OK;
231 ** Clear the i-th bit.
233 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
234 ** that BitvecClear can use to rebuilt its hash table.
236 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
237 if( p==0 ) return;
238 assert( i>0 );
239 i--;
240 while( p->iDivisor ){
241 u32 bin = i/p->iDivisor;
242 i = i%p->iDivisor;
243 p = p->u.apSub[bin];
244 if (!p) {
245 return;
248 if( p->iSize<=BITVEC_NBIT ){
249 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
250 }else{
251 unsigned int j;
252 u32 *aiValues = pBuf;
253 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
254 memset(p->u.aHash, 0, sizeof(p->u.aHash));
255 p->nSet = 0;
256 for(j=0; j<BITVEC_NINT; j++){
257 if( aiValues[j] && aiValues[j]!=(i+1) ){
258 u32 h = BITVEC_HASH(aiValues[j]-1);
259 p->nSet++;
260 while( p->u.aHash[h] ){
261 h++;
262 if( h>=BITVEC_NINT ) h = 0;
264 p->u.aHash[h] = aiValues[j];
271 ** Destroy a bitmap object. Reclaim all memory used.
273 void sqlite3BitvecDestroy(Bitvec *p){
274 if( p==0 ) return;
275 if( p->iDivisor ){
276 unsigned int i;
277 for(i=0; i<BITVEC_NPTR; i++){
278 sqlite3BitvecDestroy(p->u.apSub[i]);
281 sqlite3_free(p);
285 ** Return the value of the iSize parameter specified when Bitvec *p
286 ** was created.
288 u32 sqlite3BitvecSize(Bitvec *p){
289 return p->iSize;
292 #ifndef SQLITE_OMIT_BUILTIN_TEST
294 ** Let V[] be an array of unsigned characters sufficient to hold
295 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
296 ** Then the following macros can be used to set, clear, or test
297 ** individual bits within V.
299 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
300 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
301 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
304 ** This routine runs an extensive test of the Bitvec code.
306 ** The input is an array of integers that acts as a program
307 ** to test the Bitvec. The integers are opcodes followed
308 ** by 0, 1, or 3 operands, depending on the opcode. Another
309 ** opcode follows immediately after the last operand.
311 ** There are 6 opcodes numbered from 0 through 5. 0 is the
312 ** "halt" opcode and causes the test to end.
314 ** 0 Halt and return the number of errors
315 ** 1 N S X Set N bits beginning with S and incrementing by X
316 ** 2 N S X Clear N bits beginning with S and incrementing by X
317 ** 3 N Set N randomly chosen bits
318 ** 4 N Clear N randomly chosen bits
319 ** 5 N S X Set N bits from S increment X in array only, not in bitvec
321 ** The opcodes 1 through 4 perform set and clear operations are performed
322 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
323 ** Opcode 5 works on the linear array only, not on the Bitvec.
324 ** Opcode 5 is used to deliberately induce a fault in order to
325 ** confirm that error detection works.
327 ** At the conclusion of the test the linear array is compared
328 ** against the Bitvec object. If there are any differences,
329 ** an error is returned. If they are the same, zero is returned.
331 ** If a memory allocation error occurs, return -1.
333 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
334 Bitvec *pBitvec = 0;
335 unsigned char *pV = 0;
336 int rc = -1;
337 int i, nx, pc, op;
338 void *pTmpSpace;
340 /* Allocate the Bitvec to be tested and a linear array of
341 ** bits to act as the reference */
342 pBitvec = sqlite3BitvecCreate( sz );
343 pV = sqlite3MallocZero( (sz+7)/8 + 1 );
344 pTmpSpace = sqlite3_malloc(BITVEC_SZ);
345 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end;
347 /* NULL pBitvec tests */
348 sqlite3BitvecSet(0, 1);
349 sqlite3BitvecClear(0, 1, pTmpSpace);
351 /* Run the program */
352 pc = 0;
353 while( (op = aOp[pc])!=0 ){
354 switch( op ){
355 case 1:
356 case 2:
357 case 5: {
358 nx = 4;
359 i = aOp[pc+2] - 1;
360 aOp[pc+2] += aOp[pc+3];
361 break;
363 case 3:
364 case 4:
365 default: {
366 nx = 2;
367 sqlite3_randomness(sizeof(i), &i);
368 break;
371 if( (--aOp[pc+1]) > 0 ) nx = 0;
372 pc += nx;
373 i = (i & 0x7fffffff)%sz;
374 if( (op & 1)!=0 ){
375 SETBIT(pV, (i+1));
376 if( op!=5 ){
377 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
379 }else{
380 CLEARBIT(pV, (i+1));
381 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
385 /* Test to make sure the linear array exactly matches the
386 ** Bitvec object. Start with the assumption that they do
387 ** match (rc==0). Change rc to non-zero if a discrepancy
388 ** is found.
390 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
391 + sqlite3BitvecTest(pBitvec, 0)
392 + (sqlite3BitvecSize(pBitvec) - sz);
393 for(i=1; i<=sz; i++){
394 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
395 rc = i;
396 break;
400 /* Free allocated structure */
401 bitvec_end:
402 sqlite3_free(pTmpSpace);
403 sqlite3_free(pV);
404 sqlite3BitvecDestroy(pBitvec);
405 return rc;
407 #endif /* SQLITE_OMIT_BUILTIN_TEST */