Roll src/third_party/WebKit a3b4a2e:7441784 (svn 202551:202552)
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / vdbeaux.c
blobc0018bb71cae5d486e5e94f90963d3ce509dc16e
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
34 p->pParse = pParse;
35 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
38 return p;
42 ** Remember the SQL string for a prepared statement.
44 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
45 assert( isPrepareV2==1 || isPrepareV2==0 );
46 if( p==0 ) return;
47 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
48 if( !isPrepareV2 ) return;
49 #endif
50 assert( p->zSql==0 );
51 p->zSql = sqlite3DbStrNDup(p->db, z, n);
52 p->isPrepareV2 = (u8)isPrepareV2;
56 ** Return the SQL associated with a prepared statement
58 const char *sqlite3_sql(sqlite3_stmt *pStmt){
59 Vdbe *p = (Vdbe *)pStmt;
60 return (p && p->isPrepareV2) ? p->zSql : 0;
64 ** Swap all content between two VDBE structures.
66 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
67 Vdbe tmp, *pTmp;
68 char *zTmp;
69 tmp = *pA;
70 *pA = *pB;
71 *pB = tmp;
72 pTmp = pA->pNext;
73 pA->pNext = pB->pNext;
74 pB->pNext = pTmp;
75 pTmp = pA->pPrev;
76 pA->pPrev = pB->pPrev;
77 pB->pPrev = pTmp;
78 zTmp = pA->zSql;
79 pA->zSql = pB->zSql;
80 pB->zSql = zTmp;
81 pB->isPrepareV2 = pA->isPrepareV2;
85 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
86 ** than its current size. nOp is guaranteed to be less than or equal
87 ** to 1024/sizeof(Op).
89 ** If an out-of-memory error occurs while resizing the array, return
90 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
91 ** unchanged (this is so that any opcodes already allocated can be
92 ** correctly deallocated along with the rest of the Vdbe).
94 static int growOpArray(Vdbe *v, int nOp){
95 VdbeOp *pNew;
96 Parse *p = v->pParse;
98 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
99 ** more frequent reallocs and hence provide more opportunities for
100 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
101 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
102 ** by the minimum* amount required until the size reaches 512. Normal
103 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
104 ** size of the op array or add 1KB of space, whichever is smaller. */
105 #ifdef SQLITE_TEST_REALLOC_STRESS
106 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
107 #else
108 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
109 UNUSED_PARAMETER(nOp);
110 #endif
112 assert( nOp<=(1024/sizeof(Op)) );
113 assert( nNew>=(p->nOpAlloc+nOp) );
114 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
115 if( pNew ){
116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117 v->aOp = pNew;
119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
122 #ifdef SQLITE_DEBUG
123 /* This routine is just a convenient place to set a breakpoint that will
124 ** fire after each opcode is inserted and displayed using
125 ** "PRAGMA vdbe_addoptrace=on".
127 static void test_addop_breakpoint(void){
128 static int n = 0;
129 n++;
131 #endif
134 ** Add a new instruction to the list of instructions current in the
135 ** VDBE. Return the address of the new instruction.
137 ** Parameters:
139 ** p Pointer to the VDBE
141 ** op The opcode for this instruction
143 ** p1, p2, p3 Operands
145 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
146 ** the sqlite3VdbeChangeP4() function to change the value of the P4
147 ** operand.
149 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
150 int i;
151 VdbeOp *pOp;
153 i = p->nOp;
154 assert( p->magic==VDBE_MAGIC_INIT );
155 assert( op>0 && op<0xff );
156 if( p->pParse->nOpAlloc<=i ){
157 if( growOpArray(p, 1) ){
158 return 1;
161 p->nOp++;
162 pOp = &p->aOp[i];
163 pOp->opcode = (u8)op;
164 pOp->p5 = 0;
165 pOp->p1 = p1;
166 pOp->p2 = p2;
167 pOp->p3 = p3;
168 pOp->p4.p = 0;
169 pOp->p4type = P4_NOTUSED;
170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
171 pOp->zComment = 0;
172 #endif
173 #ifdef SQLITE_DEBUG
174 if( p->db->flags & SQLITE_VdbeAddopTrace ){
175 int jj, kk;
176 Parse *pParse = p->pParse;
177 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
178 struct yColCache *x = pParse->aColCache + jj;
179 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
180 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
181 kk++;
183 if( kk ) printf("\n");
184 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
185 test_addop_breakpoint();
187 #endif
188 #ifdef VDBE_PROFILE
189 pOp->cycles = 0;
190 pOp->cnt = 0;
191 #endif
192 #ifdef SQLITE_VDBE_COVERAGE
193 pOp->iSrcLine = 0;
194 #endif
195 return i;
197 int sqlite3VdbeAddOp0(Vdbe *p, int op){
198 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
200 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
201 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
203 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
204 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
209 ** Add an opcode that includes the p4 value as a pointer.
211 int sqlite3VdbeAddOp4(
212 Vdbe *p, /* Add the opcode to this VM */
213 int op, /* The new opcode */
214 int p1, /* The P1 operand */
215 int p2, /* The P2 operand */
216 int p3, /* The P3 operand */
217 const char *zP4, /* The P4 operand */
218 int p4type /* P4 operand type */
220 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
221 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
222 return addr;
226 ** Add an OP_ParseSchema opcode. This routine is broken out from
227 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
228 ** as having been used.
230 ** The zWhere string must have been obtained from sqlite3_malloc().
231 ** This routine will take ownership of the allocated memory.
233 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
234 int j;
235 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
236 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
237 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
241 ** Add an opcode that includes the p4 value as an integer.
243 int sqlite3VdbeAddOp4Int(
244 Vdbe *p, /* Add the opcode to this VM */
245 int op, /* The new opcode */
246 int p1, /* The P1 operand */
247 int p2, /* The P2 operand */
248 int p3, /* The P3 operand */
249 int p4 /* The P4 operand as an integer */
251 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
252 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
253 return addr;
257 ** Create a new symbolic label for an instruction that has yet to be
258 ** coded. The symbolic label is really just a negative number. The
259 ** label can be used as the P2 value of an operation. Later, when
260 ** the label is resolved to a specific address, the VDBE will scan
261 ** through its operation list and change all values of P2 which match
262 ** the label into the resolved address.
264 ** The VDBE knows that a P2 value is a label because labels are
265 ** always negative and P2 values are suppose to be non-negative.
266 ** Hence, a negative P2 value is a label that has yet to be resolved.
268 ** Zero is returned if a malloc() fails.
270 int sqlite3VdbeMakeLabel(Vdbe *v){
271 Parse *p = v->pParse;
272 int i = p->nLabel++;
273 assert( v->magic==VDBE_MAGIC_INIT );
274 if( (i & (i-1))==0 ){
275 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
276 (i*2+1)*sizeof(p->aLabel[0]));
278 if( p->aLabel ){
279 p->aLabel[i] = -1;
281 return -1-i;
285 ** Resolve label "x" to be the address of the next instruction to
286 ** be inserted. The parameter "x" must have been obtained from
287 ** a prior call to sqlite3VdbeMakeLabel().
289 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
290 Parse *p = v->pParse;
291 int j = -1-x;
292 assert( v->magic==VDBE_MAGIC_INIT );
293 assert( j<p->nLabel );
294 if( ALWAYS(j>=0) && p->aLabel ){
295 p->aLabel[j] = v->nOp;
297 p->iFixedOp = v->nOp - 1;
301 ** Mark the VDBE as one that can only be run one time.
303 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
304 p->runOnlyOnce = 1;
307 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
310 ** The following type and function are used to iterate through all opcodes
311 ** in a Vdbe main program and each of the sub-programs (triggers) it may
312 ** invoke directly or indirectly. It should be used as follows:
314 ** Op *pOp;
315 ** VdbeOpIter sIter;
317 ** memset(&sIter, 0, sizeof(sIter));
318 ** sIter.v = v; // v is of type Vdbe*
319 ** while( (pOp = opIterNext(&sIter)) ){
320 ** // Do something with pOp
321 ** }
322 ** sqlite3DbFree(v->db, sIter.apSub);
325 typedef struct VdbeOpIter VdbeOpIter;
326 struct VdbeOpIter {
327 Vdbe *v; /* Vdbe to iterate through the opcodes of */
328 SubProgram **apSub; /* Array of subprograms */
329 int nSub; /* Number of entries in apSub */
330 int iAddr; /* Address of next instruction to return */
331 int iSub; /* 0 = main program, 1 = first sub-program etc. */
333 static Op *opIterNext(VdbeOpIter *p){
334 Vdbe *v = p->v;
335 Op *pRet = 0;
336 Op *aOp;
337 int nOp;
339 if( p->iSub<=p->nSub ){
341 if( p->iSub==0 ){
342 aOp = v->aOp;
343 nOp = v->nOp;
344 }else{
345 aOp = p->apSub[p->iSub-1]->aOp;
346 nOp = p->apSub[p->iSub-1]->nOp;
348 assert( p->iAddr<nOp );
350 pRet = &aOp[p->iAddr];
351 p->iAddr++;
352 if( p->iAddr==nOp ){
353 p->iSub++;
354 p->iAddr = 0;
357 if( pRet->p4type==P4_SUBPROGRAM ){
358 int nByte = (p->nSub+1)*sizeof(SubProgram*);
359 int j;
360 for(j=0; j<p->nSub; j++){
361 if( p->apSub[j]==pRet->p4.pProgram ) break;
363 if( j==p->nSub ){
364 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
365 if( !p->apSub ){
366 pRet = 0;
367 }else{
368 p->apSub[p->nSub++] = pRet->p4.pProgram;
374 return pRet;
378 ** Check if the program stored in the VM associated with pParse may
379 ** throw an ABORT exception (causing the statement, but not entire transaction
380 ** to be rolled back). This condition is true if the main program or any
381 ** sub-programs contains any of the following:
383 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
384 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
385 ** * OP_Destroy
386 ** * OP_VUpdate
387 ** * OP_VRename
388 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
390 ** Then check that the value of Parse.mayAbort is true if an
391 ** ABORT may be thrown, or false otherwise. Return true if it does
392 ** match, or false otherwise. This function is intended to be used as
393 ** part of an assert statement in the compiler. Similar to:
395 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
397 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
398 int hasAbort = 0;
399 Op *pOp;
400 VdbeOpIter sIter;
401 memset(&sIter, 0, sizeof(sIter));
402 sIter.v = v;
404 while( (pOp = opIterNext(&sIter))!=0 ){
405 int opcode = pOp->opcode;
406 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
407 #ifndef SQLITE_OMIT_FOREIGN_KEY
408 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
409 #endif
410 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
411 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
413 hasAbort = 1;
414 break;
417 sqlite3DbFree(v->db, sIter.apSub);
419 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
420 ** If malloc failed, then the while() loop above may not have iterated
421 ** through all opcodes and hasAbort may be set incorrectly. Return
422 ** true for this case to prevent the assert() in the callers frame
423 ** from failing. */
424 return ( v->db->mallocFailed || hasAbort==mayAbort );
426 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
429 ** Loop through the program looking for P2 values that are negative
430 ** on jump instructions. Each such value is a label. Resolve the
431 ** label by setting the P2 value to its correct non-zero value.
433 ** This routine is called once after all opcodes have been inserted.
435 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
436 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
437 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
439 ** The Op.opflags field is set on all opcodes.
441 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
442 int i;
443 int nMaxArgs = *pMaxFuncArgs;
444 Op *pOp;
445 Parse *pParse = p->pParse;
446 int *aLabel = pParse->aLabel;
447 p->readOnly = 1;
448 p->bIsReader = 0;
449 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
450 u8 opcode = pOp->opcode;
452 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
453 ** cases from this switch! */
454 switch( opcode ){
455 case OP_Function:
456 case OP_AggStep: {
457 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
458 break;
460 case OP_Transaction: {
461 if( pOp->p2!=0 ) p->readOnly = 0;
462 /* fall thru */
464 case OP_AutoCommit:
465 case OP_Savepoint: {
466 p->bIsReader = 1;
467 break;
469 #ifndef SQLITE_OMIT_WAL
470 case OP_Checkpoint:
471 #endif
472 case OP_Vacuum:
473 case OP_JournalMode: {
474 p->readOnly = 0;
475 p->bIsReader = 1;
476 break;
478 #ifndef SQLITE_OMIT_VIRTUALTABLE
479 case OP_VUpdate: {
480 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
481 break;
483 case OP_VFilter: {
484 int n;
485 assert( p->nOp - i >= 3 );
486 assert( pOp[-1].opcode==OP_Integer );
487 n = pOp[-1].p1;
488 if( n>nMaxArgs ) nMaxArgs = n;
489 break;
491 #endif
492 case OP_Next:
493 case OP_NextIfOpen:
494 case OP_SorterNext: {
495 pOp->p4.xAdvance = sqlite3BtreeNext;
496 pOp->p4type = P4_ADVANCE;
497 break;
499 case OP_Prev:
500 case OP_PrevIfOpen: {
501 pOp->p4.xAdvance = sqlite3BtreePrevious;
502 pOp->p4type = P4_ADVANCE;
503 break;
507 pOp->opflags = sqlite3OpcodeProperty[opcode];
508 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
509 assert( -1-pOp->p2<pParse->nLabel );
510 pOp->p2 = aLabel[-1-pOp->p2];
513 sqlite3DbFree(p->db, pParse->aLabel);
514 pParse->aLabel = 0;
515 pParse->nLabel = 0;
516 *pMaxFuncArgs = nMaxArgs;
517 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
521 ** Return the address of the next instruction to be inserted.
523 int sqlite3VdbeCurrentAddr(Vdbe *p){
524 assert( p->magic==VDBE_MAGIC_INIT );
525 return p->nOp;
529 ** This function returns a pointer to the array of opcodes associated with
530 ** the Vdbe passed as the first argument. It is the callers responsibility
531 ** to arrange for the returned array to be eventually freed using the
532 ** vdbeFreeOpArray() function.
534 ** Before returning, *pnOp is set to the number of entries in the returned
535 ** array. Also, *pnMaxArg is set to the larger of its current value and
536 ** the number of entries in the Vdbe.apArg[] array required to execute the
537 ** returned program.
539 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
540 VdbeOp *aOp = p->aOp;
541 assert( aOp && !p->db->mallocFailed );
543 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
544 assert( DbMaskAllZero(p->btreeMask) );
546 resolveP2Values(p, pnMaxArg);
547 *pnOp = p->nOp;
548 p->aOp = 0;
549 return aOp;
553 ** Add a whole list of operations to the operation stack. Return the
554 ** address of the first operation added.
556 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
557 int addr;
558 assert( p->magic==VDBE_MAGIC_INIT );
559 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
560 return 0;
562 addr = p->nOp;
563 if( ALWAYS(nOp>0) ){
564 int i;
565 VdbeOpList const *pIn = aOp;
566 for(i=0; i<nOp; i++, pIn++){
567 int p2 = pIn->p2;
568 VdbeOp *pOut = &p->aOp[i+addr];
569 pOut->opcode = pIn->opcode;
570 pOut->p1 = pIn->p1;
571 if( p2<0 ){
572 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
573 pOut->p2 = addr + ADDR(p2);
574 }else{
575 pOut->p2 = p2;
577 pOut->p3 = pIn->p3;
578 pOut->p4type = P4_NOTUSED;
579 pOut->p4.p = 0;
580 pOut->p5 = 0;
581 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
582 pOut->zComment = 0;
583 #endif
584 #ifdef SQLITE_VDBE_COVERAGE
585 pOut->iSrcLine = iLineno+i;
586 #else
587 (void)iLineno;
588 #endif
589 #ifdef SQLITE_DEBUG
590 if( p->db->flags & SQLITE_VdbeAddopTrace ){
591 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
593 #endif
595 p->nOp += nOp;
597 return addr;
601 ** Change the value of the P1 operand for a specific instruction.
602 ** This routine is useful when a large program is loaded from a
603 ** static array using sqlite3VdbeAddOpList but we want to make a
604 ** few minor changes to the program.
606 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
607 assert( p!=0 );
608 if( ((u32)p->nOp)>addr ){
609 p->aOp[addr].p1 = val;
614 ** Change the value of the P2 operand for a specific instruction.
615 ** This routine is useful for setting a jump destination.
617 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
618 assert( p!=0 );
619 if( ((u32)p->nOp)>addr ){
620 p->aOp[addr].p2 = val;
625 ** Change the value of the P3 operand for a specific instruction.
627 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
628 assert( p!=0 );
629 if( ((u32)p->nOp)>addr ){
630 p->aOp[addr].p3 = val;
635 ** Change the value of the P5 operand for the most recently
636 ** added operation.
638 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
639 assert( p!=0 );
640 if( p->aOp ){
641 assert( p->nOp>0 );
642 p->aOp[p->nOp-1].p5 = val;
647 ** Change the P2 operand of instruction addr so that it points to
648 ** the address of the next instruction to be coded.
650 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
651 sqlite3VdbeChangeP2(p, addr, p->nOp);
652 p->pParse->iFixedOp = p->nOp - 1;
657 ** If the input FuncDef structure is ephemeral, then free it. If
658 ** the FuncDef is not ephermal, then do nothing.
660 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
661 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
662 sqlite3DbFree(db, pDef);
666 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
669 ** Delete a P4 value if necessary.
671 static void freeP4(sqlite3 *db, int p4type, void *p4){
672 if( p4 ){
673 assert( db );
674 switch( p4type ){
675 case P4_REAL:
676 case P4_INT64:
677 case P4_DYNAMIC:
678 case P4_INTARRAY: {
679 sqlite3DbFree(db, p4);
680 break;
682 case P4_KEYINFO: {
683 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
684 break;
686 case P4_MPRINTF: {
687 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
688 break;
690 case P4_FUNCDEF: {
691 freeEphemeralFunction(db, (FuncDef*)p4);
692 break;
694 case P4_MEM: {
695 if( db->pnBytesFreed==0 ){
696 sqlite3ValueFree((sqlite3_value*)p4);
697 }else{
698 Mem *p = (Mem*)p4;
699 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
700 sqlite3DbFree(db, p);
702 break;
704 case P4_VTAB : {
705 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
706 break;
713 ** Free the space allocated for aOp and any p4 values allocated for the
714 ** opcodes contained within. If aOp is not NULL it is assumed to contain
715 ** nOp entries.
717 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
718 if( aOp ){
719 Op *pOp;
720 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
721 freeP4(db, pOp->p4type, pOp->p4.p);
722 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
723 sqlite3DbFree(db, pOp->zComment);
724 #endif
727 sqlite3DbFree(db, aOp);
731 ** Link the SubProgram object passed as the second argument into the linked
732 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
733 ** objects when the VM is no longer required.
735 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
736 p->pNext = pVdbe->pProgram;
737 pVdbe->pProgram = p;
741 ** Change the opcode at addr into OP_Noop
743 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
744 if( addr<p->nOp ){
745 VdbeOp *pOp = &p->aOp[addr];
746 sqlite3 *db = p->db;
747 freeP4(db, pOp->p4type, pOp->p4.p);
748 memset(pOp, 0, sizeof(pOp[0]));
749 pOp->opcode = OP_Noop;
750 if( addr==p->nOp-1 ) p->nOp--;
755 ** If the last opcode is "op" and it is not a jump destination,
756 ** then remove it. Return true if and only if an opcode was removed.
758 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
759 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
760 sqlite3VdbeChangeToNoop(p, p->nOp-1);
761 return 1;
762 }else{
763 return 0;
768 ** Change the value of the P4 operand for a specific instruction.
769 ** This routine is useful when a large program is loaded from a
770 ** static array using sqlite3VdbeAddOpList but we want to make a
771 ** few minor changes to the program.
773 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
774 ** the string is made into memory obtained from sqlite3_malloc().
775 ** A value of n==0 means copy bytes of zP4 up to and including the
776 ** first null byte. If n>0 then copy n+1 bytes of zP4.
778 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
779 ** to a string or structure that is guaranteed to exist for the lifetime of
780 ** the Vdbe. In these cases we can just copy the pointer.
782 ** If addr<0 then change P4 on the most recently inserted instruction.
784 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
785 Op *pOp;
786 sqlite3 *db;
787 assert( p!=0 );
788 db = p->db;
789 assert( p->magic==VDBE_MAGIC_INIT );
790 if( p->aOp==0 || db->mallocFailed ){
791 if( n!=P4_VTAB ){
792 freeP4(db, n, (void*)*(char**)&zP4);
794 return;
796 assert( p->nOp>0 );
797 assert( addr<p->nOp );
798 if( addr<0 ){
799 addr = p->nOp - 1;
801 pOp = &p->aOp[addr];
802 assert( pOp->p4type==P4_NOTUSED
803 || pOp->p4type==P4_INT32
804 || pOp->p4type==P4_KEYINFO );
805 freeP4(db, pOp->p4type, pOp->p4.p);
806 pOp->p4.p = 0;
807 if( n==P4_INT32 ){
808 /* Note: this cast is safe, because the origin data point was an int
809 ** that was cast to a (const char *). */
810 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
811 pOp->p4type = P4_INT32;
812 }else if( zP4==0 ){
813 pOp->p4.p = 0;
814 pOp->p4type = P4_NOTUSED;
815 }else if( n==P4_KEYINFO ){
816 pOp->p4.p = (void*)zP4;
817 pOp->p4type = P4_KEYINFO;
818 }else if( n==P4_VTAB ){
819 pOp->p4.p = (void*)zP4;
820 pOp->p4type = P4_VTAB;
821 sqlite3VtabLock((VTable *)zP4);
822 assert( ((VTable *)zP4)->db==p->db );
823 }else if( n<0 ){
824 pOp->p4.p = (void*)zP4;
825 pOp->p4type = (signed char)n;
826 }else{
827 if( n==0 ) n = sqlite3Strlen30(zP4);
828 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
829 pOp->p4type = P4_DYNAMIC;
834 ** Set the P4 on the most recently added opcode to the KeyInfo for the
835 ** index given.
837 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
838 Vdbe *v = pParse->pVdbe;
839 assert( v!=0 );
840 assert( pIdx!=0 );
841 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
842 P4_KEYINFO);
845 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
847 ** Change the comment on the most recently coded instruction. Or
848 ** insert a No-op and add the comment to that new instruction. This
849 ** makes the code easier to read during debugging. None of this happens
850 ** in a production build.
852 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
853 assert( p->nOp>0 || p->aOp==0 );
854 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
855 if( p->nOp ){
856 assert( p->aOp );
857 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
858 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
861 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
862 va_list ap;
863 if( p ){
864 va_start(ap, zFormat);
865 vdbeVComment(p, zFormat, ap);
866 va_end(ap);
869 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
870 va_list ap;
871 if( p ){
872 sqlite3VdbeAddOp0(p, OP_Noop);
873 va_start(ap, zFormat);
874 vdbeVComment(p, zFormat, ap);
875 va_end(ap);
878 #endif /* NDEBUG */
880 #ifdef SQLITE_VDBE_COVERAGE
882 ** Set the value if the iSrcLine field for the previously coded instruction.
884 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
885 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
887 #endif /* SQLITE_VDBE_COVERAGE */
890 ** Return the opcode for a given address. If the address is -1, then
891 ** return the most recently inserted opcode.
893 ** If a memory allocation error has occurred prior to the calling of this
894 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
895 ** is readable but not writable, though it is cast to a writable value.
896 ** The return of a dummy opcode allows the call to continue functioning
897 ** after an OOM fault without having to check to see if the return from
898 ** this routine is a valid pointer. But because the dummy.opcode is 0,
899 ** dummy will never be written to. This is verified by code inspection and
900 ** by running with Valgrind.
902 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
903 /* C89 specifies that the constant "dummy" will be initialized to all
904 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
905 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
906 assert( p->magic==VDBE_MAGIC_INIT );
907 if( addr<0 ){
908 addr = p->nOp - 1;
910 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
911 if( p->db->mallocFailed ){
912 return (VdbeOp*)&dummy;
913 }else{
914 return &p->aOp[addr];
918 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
920 ** Return an integer value for one of the parameters to the opcode pOp
921 ** determined by character c.
923 static int translateP(char c, const Op *pOp){
924 if( c=='1' ) return pOp->p1;
925 if( c=='2' ) return pOp->p2;
926 if( c=='3' ) return pOp->p3;
927 if( c=='4' ) return pOp->p4.i;
928 return pOp->p5;
932 ** Compute a string for the "comment" field of a VDBE opcode listing.
934 ** The Synopsis: field in comments in the vdbe.c source file gets converted
935 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
936 ** absence of other comments, this synopsis becomes the comment on the opcode.
937 ** Some translation occurs:
939 ** "PX" -> "r[X]"
940 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
941 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
942 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
944 static int displayComment(
945 const Op *pOp, /* The opcode to be commented */
946 const char *zP4, /* Previously obtained value for P4 */
947 char *zTemp, /* Write result here */
948 int nTemp /* Space available in zTemp[] */
950 const char *zOpName;
951 const char *zSynopsis;
952 int nOpName;
953 int ii, jj;
954 zOpName = sqlite3OpcodeName(pOp->opcode);
955 nOpName = sqlite3Strlen30(zOpName);
956 if( zOpName[nOpName+1] ){
957 int seenCom = 0;
958 char c;
959 zSynopsis = zOpName += nOpName + 1;
960 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
961 if( c=='P' ){
962 c = zSynopsis[++ii];
963 if( c=='4' ){
964 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
965 }else if( c=='X' ){
966 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
967 seenCom = 1;
968 }else{
969 int v1 = translateP(c, pOp);
970 int v2;
971 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
972 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
973 ii += 3;
974 jj += sqlite3Strlen30(zTemp+jj);
975 v2 = translateP(zSynopsis[ii], pOp);
976 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
977 ii += 2;
978 v2++;
980 if( v2>1 ){
981 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
983 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
984 ii += 4;
987 jj += sqlite3Strlen30(zTemp+jj);
988 }else{
989 zTemp[jj++] = c;
992 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
993 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
994 jj += sqlite3Strlen30(zTemp+jj);
996 if( jj<nTemp ) zTemp[jj] = 0;
997 }else if( pOp->zComment ){
998 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
999 jj = sqlite3Strlen30(zTemp);
1000 }else{
1001 zTemp[0] = 0;
1002 jj = 0;
1004 return jj;
1006 #endif /* SQLITE_DEBUG */
1009 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
1010 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1012 ** Compute a string that describes the P4 parameter for an opcode.
1013 ** Use zTemp for any required temporary buffer space.
1015 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1016 char *zP4 = zTemp;
1017 assert( nTemp>=20 );
1018 switch( pOp->p4type ){
1019 case P4_KEYINFO: {
1020 int i, j;
1021 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1022 assert( pKeyInfo->aSortOrder!=0 );
1023 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
1024 i = sqlite3Strlen30(zTemp);
1025 for(j=0; j<pKeyInfo->nField; j++){
1026 CollSeq *pColl = pKeyInfo->aColl[j];
1027 const char *zColl = pColl ? pColl->zName : "nil";
1028 int n = sqlite3Strlen30(zColl);
1029 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1030 zColl = "B";
1031 n = 1;
1033 if( i+n>nTemp-6 ){
1034 memcpy(&zTemp[i],",...",4);
1035 break;
1037 zTemp[i++] = ',';
1038 if( pKeyInfo->aSortOrder[j] ){
1039 zTemp[i++] = '-';
1041 memcpy(&zTemp[i], zColl, n+1);
1042 i += n;
1044 zTemp[i++] = ')';
1045 zTemp[i] = 0;
1046 assert( i<nTemp );
1047 break;
1049 case P4_COLLSEQ: {
1050 CollSeq *pColl = pOp->p4.pColl;
1051 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
1052 break;
1054 case P4_FUNCDEF: {
1055 FuncDef *pDef = pOp->p4.pFunc;
1056 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1057 break;
1059 case P4_INT64: {
1060 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
1061 break;
1063 case P4_INT32: {
1064 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
1065 break;
1067 case P4_REAL: {
1068 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
1069 break;
1071 case P4_MEM: {
1072 Mem *pMem = pOp->p4.pMem;
1073 if( pMem->flags & MEM_Str ){
1074 zP4 = pMem->z;
1075 }else if( pMem->flags & MEM_Int ){
1076 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1077 }else if( pMem->flags & MEM_Real ){
1078 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
1079 }else if( pMem->flags & MEM_Null ){
1080 sqlite3_snprintf(nTemp, zTemp, "NULL");
1081 }else{
1082 assert( pMem->flags & MEM_Blob );
1083 zP4 = "(blob)";
1085 break;
1087 #ifndef SQLITE_OMIT_VIRTUALTABLE
1088 case P4_VTAB: {
1089 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1090 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
1091 break;
1093 #endif
1094 case P4_INTARRAY: {
1095 sqlite3_snprintf(nTemp, zTemp, "intarray");
1096 break;
1098 case P4_SUBPROGRAM: {
1099 sqlite3_snprintf(nTemp, zTemp, "program");
1100 break;
1102 case P4_ADVANCE: {
1103 zTemp[0] = 0;
1104 break;
1106 default: {
1107 zP4 = pOp->p4.z;
1108 if( zP4==0 ){
1109 zP4 = zTemp;
1110 zTemp[0] = 0;
1114 assert( zP4!=0 );
1115 return zP4;
1117 #endif
1120 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1122 ** The prepared statements need to know in advance the complete set of
1123 ** attached databases that will be use. A mask of these databases
1124 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1125 ** p->btreeMask of databases that will require a lock.
1127 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1128 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1129 assert( i<(int)sizeof(p->btreeMask)*8 );
1130 DbMaskSet(p->btreeMask, i);
1131 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1132 DbMaskSet(p->lockMask, i);
1136 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1138 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1139 ** this routine obtains the mutex associated with each BtShared structure
1140 ** that may be accessed by the VM passed as an argument. In doing so it also
1141 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1142 ** that the correct busy-handler callback is invoked if required.
1144 ** If SQLite is not threadsafe but does support shared-cache mode, then
1145 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1146 ** of all of BtShared structures accessible via the database handle
1147 ** associated with the VM.
1149 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1150 ** function is a no-op.
1152 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1153 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1154 ** corresponding to btrees that use shared cache. Then the runtime of
1155 ** this routine is N*N. But as N is rarely more than 1, this should not
1156 ** be a problem.
1158 void sqlite3VdbeEnter(Vdbe *p){
1159 int i;
1160 sqlite3 *db;
1161 Db *aDb;
1162 int nDb;
1163 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1164 db = p->db;
1165 aDb = db->aDb;
1166 nDb = db->nDb;
1167 for(i=0; i<nDb; i++){
1168 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1169 sqlite3BtreeEnter(aDb[i].pBt);
1173 #endif
1175 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1177 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1179 void sqlite3VdbeLeave(Vdbe *p){
1180 int i;
1181 sqlite3 *db;
1182 Db *aDb;
1183 int nDb;
1184 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1185 db = p->db;
1186 aDb = db->aDb;
1187 nDb = db->nDb;
1188 for(i=0; i<nDb; i++){
1189 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1190 sqlite3BtreeLeave(aDb[i].pBt);
1194 #endif
1196 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1198 ** Print a single opcode. This routine is used for debugging only.
1200 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1201 char *zP4;
1202 char zPtr[50];
1203 char zCom[100];
1204 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1205 if( pOut==0 ) pOut = stdout;
1206 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1207 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1208 displayComment(pOp, zP4, zCom, sizeof(zCom));
1209 #else
1210 zCom[0] = 0;
1211 #endif
1212 /* NB: The sqlite3OpcodeName() function is implemented by code created
1213 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1214 ** information from the vdbe.c source text */
1215 fprintf(pOut, zFormat1, pc,
1216 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1217 zCom
1219 fflush(pOut);
1221 #endif
1224 ** Release an array of N Mem elements
1226 static void releaseMemArray(Mem *p, int N){
1227 if( p && N ){
1228 Mem *pEnd = &p[N];
1229 sqlite3 *db = p->db;
1230 u8 malloc_failed = db->mallocFailed;
1231 if( db->pnBytesFreed ){
1233 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1234 }while( (++p)<pEnd );
1235 return;
1238 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1239 assert( sqlite3VdbeCheckMemInvariants(p) );
1241 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1242 ** that takes advantage of the fact that the memory cell value is
1243 ** being set to NULL after releasing any dynamic resources.
1245 ** The justification for duplicating code is that according to
1246 ** callgrind, this causes a certain test case to hit the CPU 4.7
1247 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1248 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1249 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1250 ** with no indexes using a single prepared INSERT statement, bind()
1251 ** and reset(). Inserts are grouped into a transaction.
1253 testcase( p->flags & MEM_Agg );
1254 testcase( p->flags & MEM_Dyn );
1255 testcase( p->flags & MEM_Frame );
1256 testcase( p->flags & MEM_RowSet );
1257 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1258 sqlite3VdbeMemRelease(p);
1259 }else if( p->szMalloc ){
1260 sqlite3DbFree(db, p->zMalloc);
1261 p->szMalloc = 0;
1264 p->flags = MEM_Undefined;
1265 }while( (++p)<pEnd );
1266 db->mallocFailed = malloc_failed;
1271 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1272 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1274 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1275 int i;
1276 Mem *aMem = VdbeFrameMem(p);
1277 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1278 for(i=0; i<p->nChildCsr; i++){
1279 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1281 releaseMemArray(aMem, p->nChildMem);
1282 sqlite3DbFree(p->v->db, p);
1285 #ifndef SQLITE_OMIT_EXPLAIN
1287 ** Give a listing of the program in the virtual machine.
1289 ** The interface is the same as sqlite3VdbeExec(). But instead of
1290 ** running the code, it invokes the callback once for each instruction.
1291 ** This feature is used to implement "EXPLAIN".
1293 ** When p->explain==1, each instruction is listed. When
1294 ** p->explain==2, only OP_Explain instructions are listed and these
1295 ** are shown in a different format. p->explain==2 is used to implement
1296 ** EXPLAIN QUERY PLAN.
1298 ** When p->explain==1, first the main program is listed, then each of
1299 ** the trigger subprograms are listed one by one.
1301 int sqlite3VdbeList(
1302 Vdbe *p /* The VDBE */
1304 int nRow; /* Stop when row count reaches this */
1305 int nSub = 0; /* Number of sub-vdbes seen so far */
1306 SubProgram **apSub = 0; /* Array of sub-vdbes */
1307 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1308 sqlite3 *db = p->db; /* The database connection */
1309 int i; /* Loop counter */
1310 int rc = SQLITE_OK; /* Return code */
1311 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1313 assert( p->explain );
1314 assert( p->magic==VDBE_MAGIC_RUN );
1315 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1317 /* Even though this opcode does not use dynamic strings for
1318 ** the result, result columns may become dynamic if the user calls
1319 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1321 releaseMemArray(pMem, 8);
1322 p->pResultSet = 0;
1324 if( p->rc==SQLITE_NOMEM ){
1325 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1326 ** sqlite3_column_text16() failed. */
1327 db->mallocFailed = 1;
1328 return SQLITE_ERROR;
1331 /* When the number of output rows reaches nRow, that means the
1332 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1333 ** nRow is the sum of the number of rows in the main program, plus
1334 ** the sum of the number of rows in all trigger subprograms encountered
1335 ** so far. The nRow value will increase as new trigger subprograms are
1336 ** encountered, but p->pc will eventually catch up to nRow.
1338 nRow = p->nOp;
1339 if( p->explain==1 ){
1340 /* The first 8 memory cells are used for the result set. So we will
1341 ** commandeer the 9th cell to use as storage for an array of pointers
1342 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1343 ** cells. */
1344 assert( p->nMem>9 );
1345 pSub = &p->aMem[9];
1346 if( pSub->flags&MEM_Blob ){
1347 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1348 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1349 nSub = pSub->n/sizeof(Vdbe*);
1350 apSub = (SubProgram **)pSub->z;
1352 for(i=0; i<nSub; i++){
1353 nRow += apSub[i]->nOp;
1358 i = p->pc++;
1359 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1360 if( i>=nRow ){
1361 p->rc = SQLITE_OK;
1362 rc = SQLITE_DONE;
1363 }else if( db->u1.isInterrupted ){
1364 p->rc = SQLITE_INTERRUPT;
1365 rc = SQLITE_ERROR;
1366 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1367 }else{
1368 char *zP4;
1369 Op *pOp;
1370 if( i<p->nOp ){
1371 /* The output line number is small enough that we are still in the
1372 ** main program. */
1373 pOp = &p->aOp[i];
1374 }else{
1375 /* We are currently listing subprograms. Figure out which one and
1376 ** pick up the appropriate opcode. */
1377 int j;
1378 i -= p->nOp;
1379 for(j=0; i>=apSub[j]->nOp; j++){
1380 i -= apSub[j]->nOp;
1382 pOp = &apSub[j]->aOp[i];
1384 if( p->explain==1 ){
1385 pMem->flags = MEM_Int;
1386 pMem->u.i = i; /* Program counter */
1387 pMem++;
1389 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1390 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1391 assert( pMem->z!=0 );
1392 pMem->n = sqlite3Strlen30(pMem->z);
1393 pMem->enc = SQLITE_UTF8;
1394 pMem++;
1396 /* When an OP_Program opcode is encounter (the only opcode that has
1397 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1398 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1399 ** has not already been seen.
1401 if( pOp->p4type==P4_SUBPROGRAM ){
1402 int nByte = (nSub+1)*sizeof(SubProgram*);
1403 int j;
1404 for(j=0; j<nSub; j++){
1405 if( apSub[j]==pOp->p4.pProgram ) break;
1407 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1408 apSub = (SubProgram **)pSub->z;
1409 apSub[nSub++] = pOp->p4.pProgram;
1410 pSub->flags |= MEM_Blob;
1411 pSub->n = nSub*sizeof(SubProgram*);
1416 pMem->flags = MEM_Int;
1417 pMem->u.i = pOp->p1; /* P1 */
1418 pMem++;
1420 pMem->flags = MEM_Int;
1421 pMem->u.i = pOp->p2; /* P2 */
1422 pMem++;
1424 pMem->flags = MEM_Int;
1425 pMem->u.i = pOp->p3; /* P3 */
1426 pMem++;
1428 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
1429 assert( p->db->mallocFailed );
1430 return SQLITE_ERROR;
1432 pMem->flags = MEM_Str|MEM_Term;
1433 zP4 = displayP4(pOp, pMem->z, 32);
1434 if( zP4!=pMem->z ){
1435 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1436 }else{
1437 assert( pMem->z!=0 );
1438 pMem->n = sqlite3Strlen30(pMem->z);
1439 pMem->enc = SQLITE_UTF8;
1441 pMem++;
1443 if( p->explain==1 ){
1444 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1445 assert( p->db->mallocFailed );
1446 return SQLITE_ERROR;
1448 pMem->flags = MEM_Str|MEM_Term;
1449 pMem->n = 2;
1450 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1451 pMem->enc = SQLITE_UTF8;
1452 pMem++;
1454 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1455 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1456 assert( p->db->mallocFailed );
1457 return SQLITE_ERROR;
1459 pMem->flags = MEM_Str|MEM_Term;
1460 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1461 pMem->enc = SQLITE_UTF8;
1462 #else
1463 pMem->flags = MEM_Null; /* Comment */
1464 #endif
1467 p->nResColumn = 8 - 4*(p->explain-1);
1468 p->pResultSet = &p->aMem[1];
1469 p->rc = SQLITE_OK;
1470 rc = SQLITE_ROW;
1472 return rc;
1474 #endif /* SQLITE_OMIT_EXPLAIN */
1476 #ifdef SQLITE_DEBUG
1478 ** Print the SQL that was used to generate a VDBE program.
1480 void sqlite3VdbePrintSql(Vdbe *p){
1481 const char *z = 0;
1482 if( p->zSql ){
1483 z = p->zSql;
1484 }else if( p->nOp>=1 ){
1485 const VdbeOp *pOp = &p->aOp[0];
1486 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1487 z = pOp->p4.z;
1488 while( sqlite3Isspace(*z) ) z++;
1491 if( z ) printf("SQL: [%s]\n", z);
1493 #endif
1495 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1497 ** Print an IOTRACE message showing SQL content.
1499 void sqlite3VdbeIOTraceSql(Vdbe *p){
1500 int nOp = p->nOp;
1501 VdbeOp *pOp;
1502 if( sqlite3IoTrace==0 ) return;
1503 if( nOp<1 ) return;
1504 pOp = &p->aOp[0];
1505 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1506 int i, j;
1507 char z[1000];
1508 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1509 for(i=0; sqlite3Isspace(z[i]); i++){}
1510 for(j=0; z[i]; i++){
1511 if( sqlite3Isspace(z[i]) ){
1512 if( z[i-1]!=' ' ){
1513 z[j++] = ' ';
1515 }else{
1516 z[j++] = z[i];
1519 z[j] = 0;
1520 sqlite3IoTrace("SQL %s\n", z);
1523 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1526 ** Allocate space from a fixed size buffer and return a pointer to
1527 ** that space. If insufficient space is available, return NULL.
1529 ** The pBuf parameter is the initial value of a pointer which will
1530 ** receive the new memory. pBuf is normally NULL. If pBuf is not
1531 ** NULL, it means that memory space has already been allocated and that
1532 ** this routine should not allocate any new memory. When pBuf is not
1533 ** NULL simply return pBuf. Only allocate new memory space when pBuf
1534 ** is NULL.
1536 ** nByte is the number of bytes of space needed.
1538 ** *ppFrom points to available space and pEnd points to the end of the
1539 ** available space. When space is allocated, *ppFrom is advanced past
1540 ** the end of the allocated space.
1542 ** *pnByte is a counter of the number of bytes of space that have failed
1543 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
1544 ** request, then increment *pnByte by the amount of the request.
1546 static void *allocSpace(
1547 void *pBuf, /* Where return pointer will be stored */
1548 int nByte, /* Number of bytes to allocate */
1549 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
1550 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
1551 int *pnByte /* If allocation cannot be made, increment *pnByte */
1553 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1554 if( pBuf ) return pBuf;
1555 nByte = ROUND8(nByte);
1556 if( &(*ppFrom)[nByte] <= pEnd ){
1557 pBuf = (void*)*ppFrom;
1558 *ppFrom += nByte;
1559 }else{
1560 *pnByte += nByte;
1562 return pBuf;
1566 ** Rewind the VDBE back to the beginning in preparation for
1567 ** running it.
1569 void sqlite3VdbeRewind(Vdbe *p){
1570 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1571 int i;
1572 #endif
1573 assert( p!=0 );
1574 assert( p->magic==VDBE_MAGIC_INIT );
1576 /* There should be at least one opcode.
1578 assert( p->nOp>0 );
1580 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1581 p->magic = VDBE_MAGIC_RUN;
1583 #ifdef SQLITE_DEBUG
1584 for(i=1; i<p->nMem; i++){
1585 assert( p->aMem[i].db==p->db );
1587 #endif
1588 p->pc = -1;
1589 p->rc = SQLITE_OK;
1590 p->errorAction = OE_Abort;
1591 p->magic = VDBE_MAGIC_RUN;
1592 p->nChange = 0;
1593 p->cacheCtr = 1;
1594 p->minWriteFileFormat = 255;
1595 p->iStatement = 0;
1596 p->nFkConstraint = 0;
1597 #ifdef VDBE_PROFILE
1598 for(i=0; i<p->nOp; i++){
1599 p->aOp[i].cnt = 0;
1600 p->aOp[i].cycles = 0;
1602 #endif
1606 ** Prepare a virtual machine for execution for the first time after
1607 ** creating the virtual machine. This involves things such
1608 ** as allocating registers and initializing the program counter.
1609 ** After the VDBE has be prepped, it can be executed by one or more
1610 ** calls to sqlite3VdbeExec().
1612 ** This function may be called exactly once on each virtual machine.
1613 ** After this routine is called the VM has been "packaged" and is ready
1614 ** to run. After this routine is called, further calls to
1615 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1616 ** the Vdbe from the Parse object that helped generate it so that the
1617 ** the Vdbe becomes an independent entity and the Parse object can be
1618 ** destroyed.
1620 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1621 ** to its initial state after it has been run.
1623 void sqlite3VdbeMakeReady(
1624 Vdbe *p, /* The VDBE */
1625 Parse *pParse /* Parsing context */
1627 sqlite3 *db; /* The database connection */
1628 int nVar; /* Number of parameters */
1629 int nMem; /* Number of VM memory registers */
1630 int nCursor; /* Number of cursors required */
1631 int nArg; /* Number of arguments in subprograms */
1632 int nOnce; /* Number of OP_Once instructions */
1633 int n; /* Loop counter */
1634 u8 *zCsr; /* Memory available for allocation */
1635 u8 *zEnd; /* First byte past allocated memory */
1636 int nByte; /* How much extra memory is needed */
1638 assert( p!=0 );
1639 assert( p->nOp>0 );
1640 assert( pParse!=0 );
1641 assert( p->magic==VDBE_MAGIC_INIT );
1642 assert( pParse==p->pParse );
1643 db = p->db;
1644 assert( db->mallocFailed==0 );
1645 nVar = pParse->nVar;
1646 nMem = pParse->nMem;
1647 nCursor = pParse->nTab;
1648 nArg = pParse->nMaxArg;
1649 nOnce = pParse->nOnce;
1650 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1652 /* For each cursor required, also allocate a memory cell. Memory
1653 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1654 ** the vdbe program. Instead they are used to allocate space for
1655 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1656 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1657 ** stores the blob of memory associated with cursor 1, etc.
1659 ** See also: allocateCursor().
1661 nMem += nCursor;
1663 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1664 ** an array to marshal SQL function arguments in.
1666 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1667 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
1669 resolveP2Values(p, &nArg);
1670 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1671 if( pParse->explain && nMem<10 ){
1672 nMem = 10;
1674 memset(zCsr, 0, zEnd-zCsr);
1675 zCsr += (zCsr - (u8*)0)&7;
1676 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1677 p->expired = 0;
1679 /* Memory for registers, parameters, cursor, etc, is allocated in two
1680 ** passes. On the first pass, we try to reuse unused space at the
1681 ** end of the opcode array. If we are unable to satisfy all memory
1682 ** requirements by reusing the opcode array tail, then the second
1683 ** pass will fill in the rest using a fresh allocation.
1685 ** This two-pass approach that reuses as much memory as possible from
1686 ** the leftover space at the end of the opcode array can significantly
1687 ** reduce the amount of memory held by a prepared statement.
1689 do {
1690 nByte = 0;
1691 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1692 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1693 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1694 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1695 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1696 &zCsr, zEnd, &nByte);
1697 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
1698 if( nByte ){
1699 p->pFree = sqlite3DbMallocZero(db, nByte);
1701 zCsr = p->pFree;
1702 zEnd = &zCsr[nByte];
1703 }while( nByte && !db->mallocFailed );
1705 p->nCursor = nCursor;
1706 p->nOnceFlag = nOnce;
1707 if( p->aVar ){
1708 p->nVar = (ynVar)nVar;
1709 for(n=0; n<nVar; n++){
1710 p->aVar[n].flags = MEM_Null;
1711 p->aVar[n].db = db;
1714 if( p->azVar ){
1715 p->nzVar = pParse->nzVar;
1716 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1717 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
1719 if( p->aMem ){
1720 p->aMem--; /* aMem[] goes from 1..nMem */
1721 p->nMem = nMem; /* not from 0..nMem-1 */
1722 for(n=1; n<=nMem; n++){
1723 p->aMem[n].flags = MEM_Undefined;
1724 p->aMem[n].db = db;
1727 p->explain = pParse->explain;
1728 sqlite3VdbeRewind(p);
1732 ** Close a VDBE cursor and release all the resources that cursor
1733 ** happens to hold.
1735 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1736 if( pCx==0 ){
1737 return;
1739 sqlite3VdbeSorterClose(p->db, pCx);
1740 if( pCx->pBt ){
1741 sqlite3BtreeClose(pCx->pBt);
1742 /* The pCx->pCursor will be close automatically, if it exists, by
1743 ** the call above. */
1744 }else if( pCx->pCursor ){
1745 sqlite3BtreeCloseCursor(pCx->pCursor);
1747 #ifndef SQLITE_OMIT_VIRTUALTABLE
1748 else if( pCx->pVtabCursor ){
1749 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1750 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
1751 p->inVtabMethod = 1;
1752 pModule->xClose(pVtabCursor);
1753 p->inVtabMethod = 0;
1755 #endif
1759 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1760 ** is used, for example, when a trigger sub-program is halted to restore
1761 ** control to the main program.
1763 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1764 Vdbe *v = pFrame->v;
1765 v->aOnceFlag = pFrame->aOnceFlag;
1766 v->nOnceFlag = pFrame->nOnceFlag;
1767 v->aOp = pFrame->aOp;
1768 v->nOp = pFrame->nOp;
1769 v->aMem = pFrame->aMem;
1770 v->nMem = pFrame->nMem;
1771 v->apCsr = pFrame->apCsr;
1772 v->nCursor = pFrame->nCursor;
1773 v->db->lastRowid = pFrame->lastRowid;
1774 v->nChange = pFrame->nChange;
1775 return pFrame->pc;
1779 ** Close all cursors.
1781 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1782 ** cell array. This is necessary as the memory cell array may contain
1783 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1784 ** open cursors.
1786 static void closeAllCursors(Vdbe *p){
1787 if( p->pFrame ){
1788 VdbeFrame *pFrame;
1789 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1790 sqlite3VdbeFrameRestore(pFrame);
1791 p->pFrame = 0;
1792 p->nFrame = 0;
1794 assert( p->nFrame==0 );
1796 if( p->apCsr ){
1797 int i;
1798 for(i=0; i<p->nCursor; i++){
1799 VdbeCursor *pC = p->apCsr[i];
1800 if( pC ){
1801 sqlite3VdbeFreeCursor(p, pC);
1802 p->apCsr[i] = 0;
1806 if( p->aMem ){
1807 releaseMemArray(&p->aMem[1], p->nMem);
1809 while( p->pDelFrame ){
1810 VdbeFrame *pDel = p->pDelFrame;
1811 p->pDelFrame = pDel->pParent;
1812 sqlite3VdbeFrameDelete(pDel);
1815 /* Delete any auxdata allocations made by the VM */
1816 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
1817 assert( p->pAuxData==0 );
1821 ** Clean up the VM after a single run.
1823 static void Cleanup(Vdbe *p){
1824 sqlite3 *db = p->db;
1826 #ifdef SQLITE_DEBUG
1827 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1828 ** Vdbe.aMem[] arrays have already been cleaned up. */
1829 int i;
1830 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1831 if( p->aMem ){
1832 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
1834 #endif
1836 sqlite3DbFree(db, p->zErrMsg);
1837 p->zErrMsg = 0;
1838 p->pResultSet = 0;
1842 ** Set the number of result columns that will be returned by this SQL
1843 ** statement. This is now set at compile time, rather than during
1844 ** execution of the vdbe program so that sqlite3_column_count() can
1845 ** be called on an SQL statement before sqlite3_step().
1847 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1848 Mem *pColName;
1849 int n;
1850 sqlite3 *db = p->db;
1852 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1853 sqlite3DbFree(db, p->aColName);
1854 n = nResColumn*COLNAME_N;
1855 p->nResColumn = (u16)nResColumn;
1856 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1857 if( p->aColName==0 ) return;
1858 while( n-- > 0 ){
1859 pColName->flags = MEM_Null;
1860 pColName->db = p->db;
1861 pColName++;
1866 ** Set the name of the idx'th column to be returned by the SQL statement.
1867 ** zName must be a pointer to a nul terminated string.
1869 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1871 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1872 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1873 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1875 int sqlite3VdbeSetColName(
1876 Vdbe *p, /* Vdbe being configured */
1877 int idx, /* Index of column zName applies to */
1878 int var, /* One of the COLNAME_* constants */
1879 const char *zName, /* Pointer to buffer containing name */
1880 void (*xDel)(void*) /* Memory management strategy for zName */
1882 int rc;
1883 Mem *pColName;
1884 assert( idx<p->nResColumn );
1885 assert( var<COLNAME_N );
1886 if( p->db->mallocFailed ){
1887 assert( !zName || xDel!=SQLITE_DYNAMIC );
1888 return SQLITE_NOMEM;
1890 assert( p->aColName!=0 );
1891 pColName = &(p->aColName[idx+var*p->nResColumn]);
1892 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1893 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1894 return rc;
1898 ** A read or write transaction may or may not be active on database handle
1899 ** db. If a transaction is active, commit it. If there is a
1900 ** write-transaction spanning more than one database file, this routine
1901 ** takes care of the master journal trickery.
1903 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1904 int i;
1905 int nTrans = 0; /* Number of databases with an active write-transaction */
1906 int rc = SQLITE_OK;
1907 int needXcommit = 0;
1909 #ifdef SQLITE_OMIT_VIRTUALTABLE
1910 /* With this option, sqlite3VtabSync() is defined to be simply
1911 ** SQLITE_OK so p is not used.
1913 UNUSED_PARAMETER(p);
1914 #endif
1916 /* Before doing anything else, call the xSync() callback for any
1917 ** virtual module tables written in this transaction. This has to
1918 ** be done before determining whether a master journal file is
1919 ** required, as an xSync() callback may add an attached database
1920 ** to the transaction.
1922 rc = sqlite3VtabSync(db, p);
1924 /* This loop determines (a) if the commit hook should be invoked and
1925 ** (b) how many database files have open write transactions, not
1926 ** including the temp database. (b) is important because if more than
1927 ** one database file has an open write transaction, a master journal
1928 ** file is required for an atomic commit.
1930 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1931 Btree *pBt = db->aDb[i].pBt;
1932 if( sqlite3BtreeIsInTrans(pBt) ){
1933 needXcommit = 1;
1934 if( i!=1 ) nTrans++;
1935 sqlite3BtreeEnter(pBt);
1936 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1937 sqlite3BtreeLeave(pBt);
1940 if( rc!=SQLITE_OK ){
1941 return rc;
1944 /* If there are any write-transactions at all, invoke the commit hook */
1945 if( needXcommit && db->xCommitCallback ){
1946 rc = db->xCommitCallback(db->pCommitArg);
1947 if( rc ){
1948 return SQLITE_CONSTRAINT_COMMITHOOK;
1952 /* The simple case - no more than one database file (not counting the
1953 ** TEMP database) has a transaction active. There is no need for the
1954 ** master-journal.
1956 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1957 ** string, it means the main database is :memory: or a temp file. In
1958 ** that case we do not support atomic multi-file commits, so use the
1959 ** simple case then too.
1961 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1962 || nTrans<=1
1964 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1965 Btree *pBt = db->aDb[i].pBt;
1966 if( pBt ){
1967 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1971 /* Do the commit only if all databases successfully complete phase 1.
1972 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1973 ** IO error while deleting or truncating a journal file. It is unlikely,
1974 ** but could happen. In this case abandon processing and return the error.
1976 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1977 Btree *pBt = db->aDb[i].pBt;
1978 if( pBt ){
1979 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
1982 if( rc==SQLITE_OK ){
1983 sqlite3VtabCommit(db);
1987 /* The complex case - There is a multi-file write-transaction active.
1988 ** This requires a master journal file to ensure the transaction is
1989 ** committed atomically.
1991 #ifndef SQLITE_OMIT_DISKIO
1992 else{
1993 sqlite3_vfs *pVfs = db->pVfs;
1994 int needSync = 0;
1995 char *zMaster = 0; /* File-name for the master journal */
1996 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1997 sqlite3_file *pMaster = 0;
1998 i64 offset = 0;
1999 int res;
2000 int retryCount = 0;
2001 int nMainFile;
2003 /* Select a master journal file name */
2004 nMainFile = sqlite3Strlen30(zMainFile);
2005 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2006 if( zMaster==0 ) return SQLITE_NOMEM;
2007 do {
2008 u32 iRandom;
2009 if( retryCount ){
2010 if( retryCount>100 ){
2011 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2012 sqlite3OsDelete(pVfs, zMaster, 0);
2013 break;
2014 }else if( retryCount==1 ){
2015 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2018 retryCount++;
2019 sqlite3_randomness(sizeof(iRandom), &iRandom);
2020 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2021 (iRandom>>8)&0xffffff, iRandom&0xff);
2022 /* The antipenultimate character of the master journal name must
2023 ** be "9" to avoid name collisions when using 8+3 filenames. */
2024 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2025 sqlite3FileSuffix3(zMainFile, zMaster);
2026 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2027 }while( rc==SQLITE_OK && res );
2028 if( rc==SQLITE_OK ){
2029 /* Open the master journal. */
2030 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2031 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2032 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2035 if( rc!=SQLITE_OK ){
2036 sqlite3DbFree(db, zMaster);
2037 return rc;
2040 /* Write the name of each database file in the transaction into the new
2041 ** master journal file. If an error occurs at this point close
2042 ** and delete the master journal file. All the individual journal files
2043 ** still have 'null' as the master journal pointer, so they will roll
2044 ** back independently if a failure occurs.
2046 for(i=0; i<db->nDb; i++){
2047 Btree *pBt = db->aDb[i].pBt;
2048 if( sqlite3BtreeIsInTrans(pBt) ){
2049 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2050 if( zFile==0 ){
2051 continue; /* Ignore TEMP and :memory: databases */
2053 assert( zFile[0]!=0 );
2054 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2055 needSync = 1;
2057 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2058 offset += sqlite3Strlen30(zFile)+1;
2059 if( rc!=SQLITE_OK ){
2060 sqlite3OsCloseFree(pMaster);
2061 sqlite3OsDelete(pVfs, zMaster, 0);
2062 sqlite3DbFree(db, zMaster);
2063 return rc;
2068 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2069 ** flag is set this is not required.
2071 if( needSync
2072 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2073 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2075 sqlite3OsCloseFree(pMaster);
2076 sqlite3OsDelete(pVfs, zMaster, 0);
2077 sqlite3DbFree(db, zMaster);
2078 return rc;
2081 /* Sync all the db files involved in the transaction. The same call
2082 ** sets the master journal pointer in each individual journal. If
2083 ** an error occurs here, do not delete the master journal file.
2085 ** If the error occurs during the first call to
2086 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2087 ** master journal file will be orphaned. But we cannot delete it,
2088 ** in case the master journal file name was written into the journal
2089 ** file before the failure occurred.
2091 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2092 Btree *pBt = db->aDb[i].pBt;
2093 if( pBt ){
2094 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2097 sqlite3OsCloseFree(pMaster);
2098 assert( rc!=SQLITE_BUSY );
2099 if( rc!=SQLITE_OK ){
2100 sqlite3DbFree(db, zMaster);
2101 return rc;
2104 /* Delete the master journal file. This commits the transaction. After
2105 ** doing this the directory is synced again before any individual
2106 ** transaction files are deleted.
2108 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2109 sqlite3DbFree(db, zMaster);
2110 zMaster = 0;
2111 if( rc ){
2112 return rc;
2115 /* All files and directories have already been synced, so the following
2116 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2117 ** deleting or truncating journals. If something goes wrong while
2118 ** this is happening we don't really care. The integrity of the
2119 ** transaction is already guaranteed, but some stray 'cold' journals
2120 ** may be lying around. Returning an error code won't help matters.
2122 disable_simulated_io_errors();
2123 sqlite3BeginBenignMalloc();
2124 for(i=0; i<db->nDb; i++){
2125 Btree *pBt = db->aDb[i].pBt;
2126 if( pBt ){
2127 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2130 sqlite3EndBenignMalloc();
2131 enable_simulated_io_errors();
2133 sqlite3VtabCommit(db);
2135 #endif
2137 return rc;
2141 ** This routine checks that the sqlite3.nVdbeActive count variable
2142 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2143 ** currently active. An assertion fails if the two counts do not match.
2144 ** This is an internal self-check only - it is not an essential processing
2145 ** step.
2147 ** This is a no-op if NDEBUG is defined.
2149 #ifndef NDEBUG
2150 static void checkActiveVdbeCnt(sqlite3 *db){
2151 Vdbe *p;
2152 int cnt = 0;
2153 int nWrite = 0;
2154 int nRead = 0;
2155 p = db->pVdbe;
2156 while( p ){
2157 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2158 cnt++;
2159 if( p->readOnly==0 ) nWrite++;
2160 if( p->bIsReader ) nRead++;
2162 p = p->pNext;
2164 assert( cnt==db->nVdbeActive );
2165 assert( nWrite==db->nVdbeWrite );
2166 assert( nRead==db->nVdbeRead );
2168 #else
2169 #define checkActiveVdbeCnt(x)
2170 #endif
2173 ** If the Vdbe passed as the first argument opened a statement-transaction,
2174 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2175 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2176 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2177 ** statement transaction is committed.
2179 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2180 ** Otherwise SQLITE_OK.
2182 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2183 sqlite3 *const db = p->db;
2184 int rc = SQLITE_OK;
2186 /* If p->iStatement is greater than zero, then this Vdbe opened a
2187 ** statement transaction that should be closed here. The only exception
2188 ** is that an IO error may have occurred, causing an emergency rollback.
2189 ** In this case (db->nStatement==0), and there is nothing to do.
2191 if( db->nStatement && p->iStatement ){
2192 int i;
2193 const int iSavepoint = p->iStatement-1;
2195 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2196 assert( db->nStatement>0 );
2197 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2199 for(i=0; i<db->nDb; i++){
2200 int rc2 = SQLITE_OK;
2201 Btree *pBt = db->aDb[i].pBt;
2202 if( pBt ){
2203 if( eOp==SAVEPOINT_ROLLBACK ){
2204 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2206 if( rc2==SQLITE_OK ){
2207 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2209 if( rc==SQLITE_OK ){
2210 rc = rc2;
2214 db->nStatement--;
2215 p->iStatement = 0;
2217 if( rc==SQLITE_OK ){
2218 if( eOp==SAVEPOINT_ROLLBACK ){
2219 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2221 if( rc==SQLITE_OK ){
2222 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2226 /* If the statement transaction is being rolled back, also restore the
2227 ** database handles deferred constraint counter to the value it had when
2228 ** the statement transaction was opened. */
2229 if( eOp==SAVEPOINT_ROLLBACK ){
2230 db->nDeferredCons = p->nStmtDefCons;
2231 db->nDeferredImmCons = p->nStmtDefImmCons;
2234 return rc;
2238 ** This function is called when a transaction opened by the database
2239 ** handle associated with the VM passed as an argument is about to be
2240 ** committed. If there are outstanding deferred foreign key constraint
2241 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2243 ** If there are outstanding FK violations and this function returns
2244 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2245 ** and write an error message to it. Then return SQLITE_ERROR.
2247 #ifndef SQLITE_OMIT_FOREIGN_KEY
2248 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2249 sqlite3 *db = p->db;
2250 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2251 || (!deferred && p->nFkConstraint>0)
2253 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2254 p->errorAction = OE_Abort;
2255 sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
2256 return SQLITE_ERROR;
2258 return SQLITE_OK;
2260 #endif
2263 ** This routine is called the when a VDBE tries to halt. If the VDBE
2264 ** has made changes and is in autocommit mode, then commit those
2265 ** changes. If a rollback is needed, then do the rollback.
2267 ** This routine is the only way to move the state of a VM from
2268 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2269 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2271 ** Return an error code. If the commit could not complete because of
2272 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2273 ** means the close did not happen and needs to be repeated.
2275 int sqlite3VdbeHalt(Vdbe *p){
2276 int rc; /* Used to store transient return codes */
2277 sqlite3 *db = p->db;
2279 /* This function contains the logic that determines if a statement or
2280 ** transaction will be committed or rolled back as a result of the
2281 ** execution of this virtual machine.
2283 ** If any of the following errors occur:
2285 ** SQLITE_NOMEM
2286 ** SQLITE_IOERR
2287 ** SQLITE_FULL
2288 ** SQLITE_INTERRUPT
2290 ** Then the internal cache might have been left in an inconsistent
2291 ** state. We need to rollback the statement transaction, if there is
2292 ** one, or the complete transaction if there is no statement transaction.
2295 if( p->db->mallocFailed ){
2296 p->rc = SQLITE_NOMEM;
2298 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2299 closeAllCursors(p);
2300 if( p->magic!=VDBE_MAGIC_RUN ){
2301 return SQLITE_OK;
2303 checkActiveVdbeCnt(db);
2305 /* No commit or rollback needed if the program never started or if the
2306 ** SQL statement does not read or write a database file. */
2307 if( p->pc>=0 && p->bIsReader ){
2308 int mrc; /* Primary error code from p->rc */
2309 int eStatementOp = 0;
2310 int isSpecialError; /* Set to true if a 'special' error */
2312 /* Lock all btrees used by the statement */
2313 sqlite3VdbeEnter(p);
2315 /* Check for one of the special errors */
2316 mrc = p->rc & 0xff;
2317 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2318 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2319 if( isSpecialError ){
2320 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2321 ** no rollback is necessary. Otherwise, at least a savepoint
2322 ** transaction must be rolled back to restore the database to a
2323 ** consistent state.
2325 ** Even if the statement is read-only, it is important to perform
2326 ** a statement or transaction rollback operation. If the error
2327 ** occurred while writing to the journal, sub-journal or database
2328 ** file as part of an effort to free up cache space (see function
2329 ** pagerStress() in pager.c), the rollback is required to restore
2330 ** the pager to a consistent state.
2332 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2333 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2334 eStatementOp = SAVEPOINT_ROLLBACK;
2335 }else{
2336 /* We are forced to roll back the active transaction. Before doing
2337 ** so, abort any other statements this handle currently has active.
2339 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2340 sqlite3CloseSavepoints(db);
2341 db->autoCommit = 1;
2346 /* Check for immediate foreign key violations. */
2347 if( p->rc==SQLITE_OK ){
2348 sqlite3VdbeCheckFk(p, 0);
2351 /* If the auto-commit flag is set and this is the only active writer
2352 ** VM, then we do either a commit or rollback of the current transaction.
2354 ** Note: This block also runs if one of the special errors handled
2355 ** above has occurred.
2357 if( !sqlite3VtabInSync(db)
2358 && db->autoCommit
2359 && db->nVdbeWrite==(p->readOnly==0)
2361 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2362 rc = sqlite3VdbeCheckFk(p, 1);
2363 if( rc!=SQLITE_OK ){
2364 if( NEVER(p->readOnly) ){
2365 sqlite3VdbeLeave(p);
2366 return SQLITE_ERROR;
2368 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2369 }else{
2370 /* The auto-commit flag is true, the vdbe program was successful
2371 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2372 ** key constraints to hold up the transaction. This means a commit
2373 ** is required. */
2374 rc = vdbeCommit(db, p);
2376 if( rc==SQLITE_BUSY && p->readOnly ){
2377 sqlite3VdbeLeave(p);
2378 return SQLITE_BUSY;
2379 }else if( rc!=SQLITE_OK ){
2380 p->rc = rc;
2381 sqlite3RollbackAll(db, SQLITE_OK);
2382 }else{
2383 db->nDeferredCons = 0;
2384 db->nDeferredImmCons = 0;
2385 db->flags &= ~SQLITE_DeferFKs;
2386 sqlite3CommitInternalChanges(db);
2388 }else{
2389 sqlite3RollbackAll(db, SQLITE_OK);
2391 db->nStatement = 0;
2392 }else if( eStatementOp==0 ){
2393 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2394 eStatementOp = SAVEPOINT_RELEASE;
2395 }else if( p->errorAction==OE_Abort ){
2396 eStatementOp = SAVEPOINT_ROLLBACK;
2397 }else{
2398 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2399 sqlite3CloseSavepoints(db);
2400 db->autoCommit = 1;
2404 /* If eStatementOp is non-zero, then a statement transaction needs to
2405 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2406 ** do so. If this operation returns an error, and the current statement
2407 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2408 ** current statement error code.
2410 if( eStatementOp ){
2411 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2412 if( rc ){
2413 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2414 p->rc = rc;
2415 sqlite3DbFree(db, p->zErrMsg);
2416 p->zErrMsg = 0;
2418 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2419 sqlite3CloseSavepoints(db);
2420 db->autoCommit = 1;
2424 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2425 ** has been rolled back, update the database connection change-counter.
2427 if( p->changeCntOn ){
2428 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2429 sqlite3VdbeSetChanges(db, p->nChange);
2430 }else{
2431 sqlite3VdbeSetChanges(db, 0);
2433 p->nChange = 0;
2436 /* Release the locks */
2437 sqlite3VdbeLeave(p);
2440 /* We have successfully halted and closed the VM. Record this fact. */
2441 if( p->pc>=0 ){
2442 db->nVdbeActive--;
2443 if( !p->readOnly ) db->nVdbeWrite--;
2444 if( p->bIsReader ) db->nVdbeRead--;
2445 assert( db->nVdbeActive>=db->nVdbeRead );
2446 assert( db->nVdbeRead>=db->nVdbeWrite );
2447 assert( db->nVdbeWrite>=0 );
2449 p->magic = VDBE_MAGIC_HALT;
2450 checkActiveVdbeCnt(db);
2451 if( p->db->mallocFailed ){
2452 p->rc = SQLITE_NOMEM;
2455 /* If the auto-commit flag is set to true, then any locks that were held
2456 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2457 ** to invoke any required unlock-notify callbacks.
2459 if( db->autoCommit ){
2460 sqlite3ConnectionUnlocked(db);
2463 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2464 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2469 ** Each VDBE holds the result of the most recent sqlite3_step() call
2470 ** in p->rc. This routine sets that result back to SQLITE_OK.
2472 void sqlite3VdbeResetStepResult(Vdbe *p){
2473 p->rc = SQLITE_OK;
2477 ** Copy the error code and error message belonging to the VDBE passed
2478 ** as the first argument to its database handle (so that they will be
2479 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2481 ** This function does not clear the VDBE error code or message, just
2482 ** copies them to the database handle.
2484 int sqlite3VdbeTransferError(Vdbe *p){
2485 sqlite3 *db = p->db;
2486 int rc = p->rc;
2487 if( p->zErrMsg ){
2488 u8 mallocFailed = db->mallocFailed;
2489 sqlite3BeginBenignMalloc();
2490 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2491 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2492 sqlite3EndBenignMalloc();
2493 db->mallocFailed = mallocFailed;
2494 db->errCode = rc;
2495 }else{
2496 sqlite3Error(db, rc);
2498 return rc;
2501 #ifdef SQLITE_ENABLE_SQLLOG
2503 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2504 ** invoke it.
2506 static void vdbeInvokeSqllog(Vdbe *v){
2507 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2508 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2509 assert( v->db->init.busy==0 );
2510 if( zExpanded ){
2511 sqlite3GlobalConfig.xSqllog(
2512 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2514 sqlite3DbFree(v->db, zExpanded);
2518 #else
2519 # define vdbeInvokeSqllog(x)
2520 #endif
2523 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2524 ** Write any error messages into *pzErrMsg. Return the result code.
2526 ** After this routine is run, the VDBE should be ready to be executed
2527 ** again.
2529 ** To look at it another way, this routine resets the state of the
2530 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2531 ** VDBE_MAGIC_INIT.
2533 int sqlite3VdbeReset(Vdbe *p){
2534 sqlite3 *db;
2535 db = p->db;
2537 /* If the VM did not run to completion or if it encountered an
2538 ** error, then it might not have been halted properly. So halt
2539 ** it now.
2541 sqlite3VdbeHalt(p);
2543 /* If the VDBE has be run even partially, then transfer the error code
2544 ** and error message from the VDBE into the main database structure. But
2545 ** if the VDBE has just been set to run but has not actually executed any
2546 ** instructions yet, leave the main database error information unchanged.
2548 if( p->pc>=0 ){
2549 vdbeInvokeSqllog(p);
2550 sqlite3VdbeTransferError(p);
2551 sqlite3DbFree(db, p->zErrMsg);
2552 p->zErrMsg = 0;
2553 if( p->runOnlyOnce ) p->expired = 1;
2554 }else if( p->rc && p->expired ){
2555 /* The expired flag was set on the VDBE before the first call
2556 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2557 ** called), set the database error in this case as well.
2559 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2560 sqlite3DbFree(db, p->zErrMsg);
2561 p->zErrMsg = 0;
2564 /* Reclaim all memory used by the VDBE
2566 Cleanup(p);
2568 /* Save profiling information from this VDBE run.
2570 #ifdef VDBE_PROFILE
2572 FILE *out = fopen("vdbe_profile.out", "a");
2573 if( out ){
2574 int i;
2575 fprintf(out, "---- ");
2576 for(i=0; i<p->nOp; i++){
2577 fprintf(out, "%02x", p->aOp[i].opcode);
2579 fprintf(out, "\n");
2580 if( p->zSql ){
2581 char c, pc = 0;
2582 fprintf(out, "-- ");
2583 for(i=0; (c = p->zSql[i])!=0; i++){
2584 if( pc=='\n' ) fprintf(out, "-- ");
2585 putc(c, out);
2586 pc = c;
2588 if( pc!='\n' ) fprintf(out, "\n");
2590 for(i=0; i<p->nOp; i++){
2591 char zHdr[100];
2592 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2593 p->aOp[i].cnt,
2594 p->aOp[i].cycles,
2595 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2597 fprintf(out, "%s", zHdr);
2598 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2600 fclose(out);
2603 #endif
2604 p->iCurrentTime = 0;
2605 p->magic = VDBE_MAGIC_INIT;
2606 return p->rc & db->errMask;
2610 ** Clean up and delete a VDBE after execution. Return an integer which is
2611 ** the result code. Write any error message text into *pzErrMsg.
2613 int sqlite3VdbeFinalize(Vdbe *p){
2614 int rc = SQLITE_OK;
2615 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2616 rc = sqlite3VdbeReset(p);
2617 assert( (rc & p->db->errMask)==rc );
2619 sqlite3VdbeDelete(p);
2620 return rc;
2624 ** If parameter iOp is less than zero, then invoke the destructor for
2625 ** all auxiliary data pointers currently cached by the VM passed as
2626 ** the first argument.
2628 ** Or, if iOp is greater than or equal to zero, then the destructor is
2629 ** only invoked for those auxiliary data pointers created by the user
2630 ** function invoked by the OP_Function opcode at instruction iOp of
2631 ** VM pVdbe, and only then if:
2633 ** * the associated function parameter is the 32nd or later (counting
2634 ** from left to right), or
2636 ** * the corresponding bit in argument mask is clear (where the first
2637 ** function parameter corresponds to bit 0 etc.).
2639 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2640 AuxData **pp = &pVdbe->pAuxData;
2641 while( *pp ){
2642 AuxData *pAux = *pp;
2643 if( (iOp<0)
2644 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2646 testcase( pAux->iArg==31 );
2647 if( pAux->xDelete ){
2648 pAux->xDelete(pAux->pAux);
2650 *pp = pAux->pNext;
2651 sqlite3DbFree(pVdbe->db, pAux);
2652 }else{
2653 pp= &pAux->pNext;
2659 ** Free all memory associated with the Vdbe passed as the second argument,
2660 ** except for object itself, which is preserved.
2662 ** The difference between this function and sqlite3VdbeDelete() is that
2663 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2664 ** the database connection and frees the object itself.
2666 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2667 SubProgram *pSub, *pNext;
2668 int i;
2669 assert( p->db==0 || p->db==db );
2670 releaseMemArray(p->aVar, p->nVar);
2671 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2672 for(pSub=p->pProgram; pSub; pSub=pNext){
2673 pNext = pSub->pNext;
2674 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2675 sqlite3DbFree(db, pSub);
2677 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2678 vdbeFreeOpArray(db, p->aOp, p->nOp);
2679 sqlite3DbFree(db, p->aColName);
2680 sqlite3DbFree(db, p->zSql);
2681 sqlite3DbFree(db, p->pFree);
2685 ** Delete an entire VDBE.
2687 void sqlite3VdbeDelete(Vdbe *p){
2688 sqlite3 *db;
2690 if( NEVER(p==0) ) return;
2691 db = p->db;
2692 assert( sqlite3_mutex_held(db->mutex) );
2693 sqlite3VdbeClearObject(db, p);
2694 if( p->pPrev ){
2695 p->pPrev->pNext = p->pNext;
2696 }else{
2697 assert( db->pVdbe==p );
2698 db->pVdbe = p->pNext;
2700 if( p->pNext ){
2701 p->pNext->pPrev = p->pPrev;
2703 p->magic = VDBE_MAGIC_DEAD;
2704 p->db = 0;
2705 sqlite3DbFree(db, p);
2709 ** The cursor "p" has a pending seek operation that has not yet been
2710 ** carried out. Seek the cursor now. If an error occurs, return
2711 ** the appropriate error code.
2713 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2714 int res, rc;
2715 #ifdef SQLITE_TEST
2716 extern int sqlite3_search_count;
2717 #endif
2718 assert( p->deferredMoveto );
2719 assert( p->isTable );
2720 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2721 if( rc ) return rc;
2722 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2723 #ifdef SQLITE_TEST
2724 sqlite3_search_count++;
2725 #endif
2726 p->deferredMoveto = 0;
2727 p->cacheStatus = CACHE_STALE;
2728 return SQLITE_OK;
2732 ** Something has moved cursor "p" out of place. Maybe the row it was
2733 ** pointed to was deleted out from under it. Or maybe the btree was
2734 ** rebalanced. Whatever the cause, try to restore "p" to the place it
2735 ** is supposed to be pointing. If the row was deleted out from under the
2736 ** cursor, set the cursor to point to a NULL row.
2738 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2739 int isDifferentRow, rc;
2740 assert( p->pCursor!=0 );
2741 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2742 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2743 p->cacheStatus = CACHE_STALE;
2744 if( isDifferentRow ) p->nullRow = 1;
2745 return rc;
2749 ** Check to ensure that the cursor is valid. Restore the cursor
2750 ** if need be. Return any I/O error from the restore operation.
2752 int sqlite3VdbeCursorRestore(VdbeCursor *p){
2753 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2754 return handleMovedCursor(p);
2756 return SQLITE_OK;
2760 ** Make sure the cursor p is ready to read or write the row to which it
2761 ** was last positioned. Return an error code if an OOM fault or I/O error
2762 ** prevents us from positioning the cursor to its correct position.
2764 ** If a MoveTo operation is pending on the given cursor, then do that
2765 ** MoveTo now. If no move is pending, check to see if the row has been
2766 ** deleted out from under the cursor and if it has, mark the row as
2767 ** a NULL row.
2769 ** If the cursor is already pointing to the correct row and that row has
2770 ** not been deleted out from under the cursor, then this routine is a no-op.
2772 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2773 if( p->deferredMoveto ){
2774 return handleDeferredMoveto(p);
2776 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
2777 return handleMovedCursor(p);
2779 return SQLITE_OK;
2783 ** The following functions:
2785 ** sqlite3VdbeSerialType()
2786 ** sqlite3VdbeSerialTypeLen()
2787 ** sqlite3VdbeSerialLen()
2788 ** sqlite3VdbeSerialPut()
2789 ** sqlite3VdbeSerialGet()
2791 ** encapsulate the code that serializes values for storage in SQLite
2792 ** data and index records. Each serialized value consists of a
2793 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2794 ** integer, stored as a varint.
2796 ** In an SQLite index record, the serial type is stored directly before
2797 ** the blob of data that it corresponds to. In a table record, all serial
2798 ** types are stored at the start of the record, and the blobs of data at
2799 ** the end. Hence these functions allow the caller to handle the
2800 ** serial-type and data blob separately.
2802 ** The following table describes the various storage classes for data:
2804 ** serial type bytes of data type
2805 ** -------------- --------------- ---------------
2806 ** 0 0 NULL
2807 ** 1 1 signed integer
2808 ** 2 2 signed integer
2809 ** 3 3 signed integer
2810 ** 4 4 signed integer
2811 ** 5 6 signed integer
2812 ** 6 8 signed integer
2813 ** 7 8 IEEE float
2814 ** 8 0 Integer constant 0
2815 ** 9 0 Integer constant 1
2816 ** 10,11 reserved for expansion
2817 ** N>=12 and even (N-12)/2 BLOB
2818 ** N>=13 and odd (N-13)/2 text
2820 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2821 ** of SQLite will not understand those serial types.
2825 ** Return the serial-type for the value stored in pMem.
2827 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2828 int flags = pMem->flags;
2829 u32 n;
2831 if( flags&MEM_Null ){
2832 return 0;
2834 if( flags&MEM_Int ){
2835 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2836 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2837 i64 i = pMem->u.i;
2838 u64 u;
2839 if( i<0 ){
2840 if( i<(-MAX_6BYTE) ) return 6;
2841 /* Previous test prevents: u = -(-9223372036854775808) */
2842 u = -i;
2843 }else{
2844 u = i;
2846 if( u<=127 ){
2847 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2849 if( u<=32767 ) return 2;
2850 if( u<=8388607 ) return 3;
2851 if( u<=2147483647 ) return 4;
2852 if( u<=MAX_6BYTE ) return 5;
2853 return 6;
2855 if( flags&MEM_Real ){
2856 return 7;
2858 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2859 assert( pMem->n>=0 );
2860 n = (u32)pMem->n;
2861 if( flags & MEM_Zero ){
2862 n += pMem->u.nZero;
2864 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2868 ** Return the length of the data corresponding to the supplied serial-type.
2870 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2871 if( serial_type>=12 ){
2872 return (serial_type-12)/2;
2873 }else{
2874 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2875 return aSize[serial_type];
2880 ** If we are on an architecture with mixed-endian floating
2881 ** points (ex: ARM7) then swap the lower 4 bytes with the
2882 ** upper 4 bytes. Return the result.
2884 ** For most architectures, this is a no-op.
2886 ** (later): It is reported to me that the mixed-endian problem
2887 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2888 ** that early versions of GCC stored the two words of a 64-bit
2889 ** float in the wrong order. And that error has been propagated
2890 ** ever since. The blame is not necessarily with GCC, though.
2891 ** GCC might have just copying the problem from a prior compiler.
2892 ** I am also told that newer versions of GCC that follow a different
2893 ** ABI get the byte order right.
2895 ** Developers using SQLite on an ARM7 should compile and run their
2896 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2897 ** enabled, some asserts below will ensure that the byte order of
2898 ** floating point values is correct.
2900 ** (2007-08-30) Frank van Vugt has studied this problem closely
2901 ** and has send his findings to the SQLite developers. Frank
2902 ** writes that some Linux kernels offer floating point hardware
2903 ** emulation that uses only 32-bit mantissas instead of a full
2904 ** 48-bits as required by the IEEE standard. (This is the
2905 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2906 ** byte swapping becomes very complicated. To avoid problems,
2907 ** the necessary byte swapping is carried out using a 64-bit integer
2908 ** rather than a 64-bit float. Frank assures us that the code here
2909 ** works for him. We, the developers, have no way to independently
2910 ** verify this, but Frank seems to know what he is talking about
2911 ** so we trust him.
2913 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2914 static u64 floatSwap(u64 in){
2915 union {
2916 u64 r;
2917 u32 i[2];
2918 } u;
2919 u32 t;
2921 u.r = in;
2922 t = u.i[0];
2923 u.i[0] = u.i[1];
2924 u.i[1] = t;
2925 return u.r;
2927 # define swapMixedEndianFloat(X) X = floatSwap(X)
2928 #else
2929 # define swapMixedEndianFloat(X)
2930 #endif
2933 ** Write the serialized data blob for the value stored in pMem into
2934 ** buf. It is assumed that the caller has allocated sufficient space.
2935 ** Return the number of bytes written.
2937 ** nBuf is the amount of space left in buf[]. The caller is responsible
2938 ** for allocating enough space to buf[] to hold the entire field, exclusive
2939 ** of the pMem->u.nZero bytes for a MEM_Zero value.
2941 ** Return the number of bytes actually written into buf[]. The number
2942 ** of bytes in the zero-filled tail is included in the return value only
2943 ** if those bytes were zeroed in buf[].
2945 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
2946 u32 len;
2948 /* Integer and Real */
2949 if( serial_type<=7 && serial_type>0 ){
2950 u64 v;
2951 u32 i;
2952 if( serial_type==7 ){
2953 assert( sizeof(v)==sizeof(pMem->u.r) );
2954 memcpy(&v, &pMem->u.r, sizeof(v));
2955 swapMixedEndianFloat(v);
2956 }else{
2957 v = pMem->u.i;
2959 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2960 assert( i>0 );
2962 buf[--i] = (u8)(v&0xFF);
2963 v >>= 8;
2964 }while( i );
2965 return len;
2968 /* String or blob */
2969 if( serial_type>=12 ){
2970 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2971 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2972 len = pMem->n;
2973 memcpy(buf, pMem->z, len);
2974 return len;
2977 /* NULL or constants 0 or 1 */
2978 return 0;
2981 /* Input "x" is a sequence of unsigned characters that represent a
2982 ** big-endian integer. Return the equivalent native integer
2984 #define ONE_BYTE_INT(x) ((i8)(x)[0])
2985 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
2986 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
2987 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
2988 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
2991 ** Deserialize the data blob pointed to by buf as serial type serial_type
2992 ** and store the result in pMem. Return the number of bytes read.
2994 ** This function is implemented as two separate routines for performance.
2995 ** The few cases that require local variables are broken out into a separate
2996 ** routine so that in most cases the overhead of moving the stack pointer
2997 ** is avoided.
2999 static u32 SQLITE_NOINLINE serialGet(
3000 const unsigned char *buf, /* Buffer to deserialize from */
3001 u32 serial_type, /* Serial type to deserialize */
3002 Mem *pMem /* Memory cell to write value into */
3004 u64 x = FOUR_BYTE_UINT(buf);
3005 u32 y = FOUR_BYTE_UINT(buf+4);
3006 x = (x<<32) + y;
3007 if( serial_type==6 ){
3008 pMem->u.i = *(i64*)&x;
3009 pMem->flags = MEM_Int;
3010 testcase( pMem->u.i<0 );
3011 }else{
3012 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3013 /* Verify that integers and floating point values use the same
3014 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3015 ** defined that 64-bit floating point values really are mixed
3016 ** endian.
3018 static const u64 t1 = ((u64)0x3ff00000)<<32;
3019 static const double r1 = 1.0;
3020 u64 t2 = t1;
3021 swapMixedEndianFloat(t2);
3022 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3023 #endif
3024 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3025 swapMixedEndianFloat(x);
3026 memcpy(&pMem->u.r, &x, sizeof(x));
3027 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3029 return 8;
3031 u32 sqlite3VdbeSerialGet(
3032 const unsigned char *buf, /* Buffer to deserialize from */
3033 u32 serial_type, /* Serial type to deserialize */
3034 Mem *pMem /* Memory cell to write value into */
3036 switch( serial_type ){
3037 case 10: /* Reserved for future use */
3038 case 11: /* Reserved for future use */
3039 case 0: { /* NULL */
3040 pMem->flags = MEM_Null;
3041 break;
3043 case 1: { /* 1-byte signed integer */
3044 pMem->u.i = ONE_BYTE_INT(buf);
3045 pMem->flags = MEM_Int;
3046 testcase( pMem->u.i<0 );
3047 return 1;
3049 case 2: { /* 2-byte signed integer */
3050 pMem->u.i = TWO_BYTE_INT(buf);
3051 pMem->flags = MEM_Int;
3052 testcase( pMem->u.i<0 );
3053 return 2;
3055 case 3: { /* 3-byte signed integer */
3056 pMem->u.i = THREE_BYTE_INT(buf);
3057 pMem->flags = MEM_Int;
3058 testcase( pMem->u.i<0 );
3059 return 3;
3061 case 4: { /* 4-byte signed integer */
3062 pMem->u.i = FOUR_BYTE_INT(buf);
3063 pMem->flags = MEM_Int;
3064 testcase( pMem->u.i<0 );
3065 return 4;
3067 case 5: { /* 6-byte signed integer */
3068 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3069 pMem->flags = MEM_Int;
3070 testcase( pMem->u.i<0 );
3071 return 6;
3073 case 6: /* 8-byte signed integer */
3074 case 7: { /* IEEE floating point */
3075 /* These use local variables, so do them in a separate routine
3076 ** to avoid having to move the frame pointer in the common case */
3077 return serialGet(buf,serial_type,pMem);
3079 case 8: /* Integer 0 */
3080 case 9: { /* Integer 1 */
3081 pMem->u.i = serial_type-8;
3082 pMem->flags = MEM_Int;
3083 return 0;
3085 default: {
3086 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3087 pMem->z = (char *)buf;
3088 pMem->n = (serial_type-12)/2;
3089 pMem->flags = aFlag[serial_type&1];
3090 return pMem->n;
3093 return 0;
3096 ** This routine is used to allocate sufficient space for an UnpackedRecord
3097 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3098 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3100 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3101 ** the unaligned buffer passed via the second and third arguments (presumably
3102 ** stack space). If the former, then *ppFree is set to a pointer that should
3103 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3104 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3105 ** before returning.
3107 ** If an OOM error occurs, NULL is returned.
3109 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3110 KeyInfo *pKeyInfo, /* Description of the record */
3111 char *pSpace, /* Unaligned space available */
3112 int szSpace, /* Size of pSpace[] in bytes */
3113 char **ppFree /* OUT: Caller should free this pointer */
3115 UnpackedRecord *p; /* Unpacked record to return */
3116 int nOff; /* Increment pSpace by nOff to align it */
3117 int nByte; /* Number of bytes required for *p */
3119 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
3120 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3121 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3123 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
3124 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3125 if( nByte>szSpace+nOff ){
3126 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3127 *ppFree = (char *)p;
3128 if( !p ) return 0;
3129 }else{
3130 p = (UnpackedRecord*)&pSpace[nOff];
3131 *ppFree = 0;
3134 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3135 assert( pKeyInfo->aSortOrder!=0 );
3136 p->pKeyInfo = pKeyInfo;
3137 p->nField = pKeyInfo->nField + 1;
3138 return p;
3142 ** Given the nKey-byte encoding of a record in pKey[], populate the
3143 ** UnpackedRecord structure indicated by the fourth argument with the
3144 ** contents of the decoded record.
3146 void sqlite3VdbeRecordUnpack(
3147 KeyInfo *pKeyInfo, /* Information about the record format */
3148 int nKey, /* Size of the binary record */
3149 const void *pKey, /* The binary record */
3150 UnpackedRecord *p /* Populate this structure before returning. */
3152 const unsigned char *aKey = (const unsigned char *)pKey;
3153 int d;
3154 u32 idx; /* Offset in aKey[] to read from */
3155 u16 u; /* Unsigned loop counter */
3156 u32 szHdr;
3157 Mem *pMem = p->aMem;
3159 p->default_rc = 0;
3160 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3161 idx = getVarint32(aKey, szHdr);
3162 d = szHdr;
3163 u = 0;
3164 while( idx<szHdr && d<=nKey ){
3165 u32 serial_type;
3167 idx += getVarint32(&aKey[idx], serial_type);
3168 pMem->enc = pKeyInfo->enc;
3169 pMem->db = pKeyInfo->db;
3170 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3171 pMem->szMalloc = 0;
3172 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3173 pMem++;
3174 if( (++u)>=p->nField ) break;
3176 assert( u<=pKeyInfo->nField + 1 );
3177 p->nField = u;
3180 #if SQLITE_DEBUG
3182 ** This function compares two index or table record keys in the same way
3183 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3184 ** this function deserializes and compares values using the
3185 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3186 ** in assert() statements to ensure that the optimized code in
3187 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3189 ** Return true if the result of comparison is equivalent to desiredResult.
3190 ** Return false if there is a disagreement.
3192 static int vdbeRecordCompareDebug(
3193 int nKey1, const void *pKey1, /* Left key */
3194 const UnpackedRecord *pPKey2, /* Right key */
3195 int desiredResult /* Correct answer */
3197 u32 d1; /* Offset into aKey[] of next data element */
3198 u32 idx1; /* Offset into aKey[] of next header element */
3199 u32 szHdr1; /* Number of bytes in header */
3200 int i = 0;
3201 int rc = 0;
3202 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3203 KeyInfo *pKeyInfo;
3204 Mem mem1;
3206 pKeyInfo = pPKey2->pKeyInfo;
3207 if( pKeyInfo->db==0 ) return 1;
3208 mem1.enc = pKeyInfo->enc;
3209 mem1.db = pKeyInfo->db;
3210 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3211 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3213 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3214 ** We could initialize it, as shown here, to silence those complaints.
3215 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3216 ** the unnecessary initialization has a measurable negative performance
3217 ** impact, since this routine is a very high runner. And so, we choose
3218 ** to ignore the compiler warnings and leave this variable uninitialized.
3220 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3222 idx1 = getVarint32(aKey1, szHdr1);
3223 d1 = szHdr1;
3224 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3225 assert( pKeyInfo->aSortOrder!=0 );
3226 assert( pKeyInfo->nField>0 );
3227 assert( idx1<=szHdr1 || CORRUPT_DB );
3229 u32 serial_type1;
3231 /* Read the serial types for the next element in each key. */
3232 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3234 /* Verify that there is enough key space remaining to avoid
3235 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3236 ** always be greater than or equal to the amount of required key space.
3237 ** Use that approximation to avoid the more expensive call to
3238 ** sqlite3VdbeSerialTypeLen() in the common case.
3240 if( d1+serial_type1+2>(u32)nKey1
3241 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3243 break;
3246 /* Extract the values to be compared.
3248 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3250 /* Do the comparison
3252 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3253 if( rc!=0 ){
3254 assert( mem1.szMalloc==0 ); /* See comment below */
3255 if( pKeyInfo->aSortOrder[i] ){
3256 rc = -rc; /* Invert the result for DESC sort order. */
3258 goto debugCompareEnd;
3260 i++;
3261 }while( idx1<szHdr1 && i<pPKey2->nField );
3263 /* No memory allocation is ever used on mem1. Prove this using
3264 ** the following assert(). If the assert() fails, it indicates a
3265 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3267 assert( mem1.szMalloc==0 );
3269 /* rc==0 here means that one of the keys ran out of fields and
3270 ** all the fields up to that point were equal. Return the default_rc
3271 ** value. */
3272 rc = pPKey2->default_rc;
3274 debugCompareEnd:
3275 if( desiredResult==0 && rc==0 ) return 1;
3276 if( desiredResult<0 && rc<0 ) return 1;
3277 if( desiredResult>0 && rc>0 ) return 1;
3278 if( CORRUPT_DB ) return 1;
3279 if( pKeyInfo->db->mallocFailed ) return 1;
3280 return 0;
3282 #endif
3285 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3286 ** using the collation sequence pColl. As usual, return a negative , zero
3287 ** or positive value if *pMem1 is less than, equal to or greater than
3288 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3290 static int vdbeCompareMemString(
3291 const Mem *pMem1,
3292 const Mem *pMem2,
3293 const CollSeq *pColl,
3294 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3296 if( pMem1->enc==pColl->enc ){
3297 /* The strings are already in the correct encoding. Call the
3298 ** comparison function directly */
3299 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3300 }else{
3301 int rc;
3302 const void *v1, *v2;
3303 int n1, n2;
3304 Mem c1;
3305 Mem c2;
3306 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3307 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3308 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3309 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3310 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3311 n1 = v1==0 ? 0 : c1.n;
3312 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3313 n2 = v2==0 ? 0 : c2.n;
3314 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3315 sqlite3VdbeMemRelease(&c1);
3316 sqlite3VdbeMemRelease(&c2);
3317 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
3318 return rc;
3323 ** Compare two blobs. Return negative, zero, or positive if the first
3324 ** is less than, equal to, or greater than the second, respectively.
3325 ** If one blob is a prefix of the other, then the shorter is the lessor.
3327 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3328 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3329 if( c ) return c;
3330 return pB1->n - pB2->n;
3335 ** Compare the values contained by the two memory cells, returning
3336 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3337 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3338 ** and reals) sorted numerically, followed by text ordered by the collating
3339 ** sequence pColl and finally blob's ordered by memcmp().
3341 ** Two NULL values are considered equal by this function.
3343 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3344 int f1, f2;
3345 int combined_flags;
3347 f1 = pMem1->flags;
3348 f2 = pMem2->flags;
3349 combined_flags = f1|f2;
3350 assert( (combined_flags & MEM_RowSet)==0 );
3352 /* If one value is NULL, it is less than the other. If both values
3353 ** are NULL, return 0.
3355 if( combined_flags&MEM_Null ){
3356 return (f2&MEM_Null) - (f1&MEM_Null);
3359 /* If one value is a number and the other is not, the number is less.
3360 ** If both are numbers, compare as reals if one is a real, or as integers
3361 ** if both values are integers.
3363 if( combined_flags&(MEM_Int|MEM_Real) ){
3364 double r1, r2;
3365 if( (f1 & f2 & MEM_Int)!=0 ){
3366 if( pMem1->u.i < pMem2->u.i ) return -1;
3367 if( pMem1->u.i > pMem2->u.i ) return 1;
3368 return 0;
3370 if( (f1&MEM_Real)!=0 ){
3371 r1 = pMem1->u.r;
3372 }else if( (f1&MEM_Int)!=0 ){
3373 r1 = (double)pMem1->u.i;
3374 }else{
3375 return 1;
3377 if( (f2&MEM_Real)!=0 ){
3378 r2 = pMem2->u.r;
3379 }else if( (f2&MEM_Int)!=0 ){
3380 r2 = (double)pMem2->u.i;
3381 }else{
3382 return -1;
3384 if( r1<r2 ) return -1;
3385 if( r1>r2 ) return 1;
3386 return 0;
3389 /* If one value is a string and the other is a blob, the string is less.
3390 ** If both are strings, compare using the collating functions.
3392 if( combined_flags&MEM_Str ){
3393 if( (f1 & MEM_Str)==0 ){
3394 return 1;
3396 if( (f2 & MEM_Str)==0 ){
3397 return -1;
3400 assert( pMem1->enc==pMem2->enc );
3401 assert( pMem1->enc==SQLITE_UTF8 ||
3402 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3404 /* The collation sequence must be defined at this point, even if
3405 ** the user deletes the collation sequence after the vdbe program is
3406 ** compiled (this was not always the case).
3408 assert( !pColl || pColl->xCmp );
3410 if( pColl ){
3411 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3413 /* If a NULL pointer was passed as the collate function, fall through
3414 ** to the blob case and use memcmp(). */
3417 /* Both values must be blobs. Compare using memcmp(). */
3418 return sqlite3BlobCompare(pMem1, pMem2);
3423 ** The first argument passed to this function is a serial-type that
3424 ** corresponds to an integer - all values between 1 and 9 inclusive
3425 ** except 7. The second points to a buffer containing an integer value
3426 ** serialized according to serial_type. This function deserializes
3427 ** and returns the value.
3429 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3430 u32 y;
3431 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3432 switch( serial_type ){
3433 case 0:
3434 case 1:
3435 testcase( aKey[0]&0x80 );
3436 return ONE_BYTE_INT(aKey);
3437 case 2:
3438 testcase( aKey[0]&0x80 );
3439 return TWO_BYTE_INT(aKey);
3440 case 3:
3441 testcase( aKey[0]&0x80 );
3442 return THREE_BYTE_INT(aKey);
3443 case 4: {
3444 testcase( aKey[0]&0x80 );
3445 y = FOUR_BYTE_UINT(aKey);
3446 return (i64)*(int*)&y;
3448 case 5: {
3449 testcase( aKey[0]&0x80 );
3450 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3452 case 6: {
3453 u64 x = FOUR_BYTE_UINT(aKey);
3454 testcase( aKey[0]&0x80 );
3455 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3456 return (i64)*(i64*)&x;
3460 return (serial_type - 8);
3464 ** This function compares the two table rows or index records
3465 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3466 ** or positive integer if key1 is less than, equal to or
3467 ** greater than key2. The {nKey1, pKey1} key must be a blob
3468 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3469 ** key must be a parsed key such as obtained from
3470 ** sqlite3VdbeParseRecord.
3472 ** If argument bSkip is non-zero, it is assumed that the caller has already
3473 ** determined that the first fields of the keys are equal.
3475 ** Key1 and Key2 do not have to contain the same number of fields. If all
3476 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3477 ** returned.
3479 ** If database corruption is discovered, set pPKey2->errCode to
3480 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3481 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3482 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3484 static int vdbeRecordCompareWithSkip(
3485 int nKey1, const void *pKey1, /* Left key */
3486 UnpackedRecord *pPKey2, /* Right key */
3487 int bSkip /* If true, skip the first field */
3489 u32 d1; /* Offset into aKey[] of next data element */
3490 int i; /* Index of next field to compare */
3491 u32 szHdr1; /* Size of record header in bytes */
3492 u32 idx1; /* Offset of first type in header */
3493 int rc = 0; /* Return value */
3494 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
3495 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3496 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3497 Mem mem1;
3499 /* If bSkip is true, then the caller has already determined that the first
3500 ** two elements in the keys are equal. Fix the various stack variables so
3501 ** that this routine begins comparing at the second field. */
3502 if( bSkip ){
3503 u32 s1;
3504 idx1 = 1 + getVarint32(&aKey1[1], s1);
3505 szHdr1 = aKey1[0];
3506 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3507 i = 1;
3508 pRhs++;
3509 }else{
3510 idx1 = getVarint32(aKey1, szHdr1);
3511 d1 = szHdr1;
3512 if( d1>(unsigned)nKey1 ){
3513 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3514 return 0; /* Corruption */
3516 i = 0;
3519 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3520 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3521 || CORRUPT_DB );
3522 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3523 assert( pPKey2->pKeyInfo->nField>0 );
3524 assert( idx1<=szHdr1 || CORRUPT_DB );
3526 u32 serial_type;
3528 /* RHS is an integer */
3529 if( pRhs->flags & MEM_Int ){
3530 serial_type = aKey1[idx1];
3531 testcase( serial_type==12 );
3532 if( serial_type>=12 ){
3533 rc = +1;
3534 }else if( serial_type==0 ){
3535 rc = -1;
3536 }else if( serial_type==7 ){
3537 double rhs = (double)pRhs->u.i;
3538 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3539 if( mem1.u.r<rhs ){
3540 rc = -1;
3541 }else if( mem1.u.r>rhs ){
3542 rc = +1;
3544 }else{
3545 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3546 i64 rhs = pRhs->u.i;
3547 if( lhs<rhs ){
3548 rc = -1;
3549 }else if( lhs>rhs ){
3550 rc = +1;
3555 /* RHS is real */
3556 else if( pRhs->flags & MEM_Real ){
3557 serial_type = aKey1[idx1];
3558 if( serial_type>=12 ){
3559 rc = +1;
3560 }else if( serial_type==0 ){
3561 rc = -1;
3562 }else{
3563 double rhs = pRhs->u.r;
3564 double lhs;
3565 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3566 if( serial_type==7 ){
3567 lhs = mem1.u.r;
3568 }else{
3569 lhs = (double)mem1.u.i;
3571 if( lhs<rhs ){
3572 rc = -1;
3573 }else if( lhs>rhs ){
3574 rc = +1;
3579 /* RHS is a string */
3580 else if( pRhs->flags & MEM_Str ){
3581 getVarint32(&aKey1[idx1], serial_type);
3582 testcase( serial_type==12 );
3583 if( serial_type<12 ){
3584 rc = -1;
3585 }else if( !(serial_type & 0x01) ){
3586 rc = +1;
3587 }else{
3588 mem1.n = (serial_type - 12) / 2;
3589 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3590 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
3591 if( (d1+mem1.n) > (unsigned)nKey1 ){
3592 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3593 return 0; /* Corruption */
3594 }else if( pKeyInfo->aColl[i] ){
3595 mem1.enc = pKeyInfo->enc;
3596 mem1.db = pKeyInfo->db;
3597 mem1.flags = MEM_Str;
3598 mem1.z = (char*)&aKey1[d1];
3599 rc = vdbeCompareMemString(
3600 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3602 }else{
3603 int nCmp = MIN(mem1.n, pRhs->n);
3604 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3605 if( rc==0 ) rc = mem1.n - pRhs->n;
3610 /* RHS is a blob */
3611 else if( pRhs->flags & MEM_Blob ){
3612 getVarint32(&aKey1[idx1], serial_type);
3613 testcase( serial_type==12 );
3614 if( serial_type<12 || (serial_type & 0x01) ){
3615 rc = -1;
3616 }else{
3617 int nStr = (serial_type - 12) / 2;
3618 testcase( (d1+nStr)==(unsigned)nKey1 );
3619 testcase( (d1+nStr+1)==(unsigned)nKey1 );
3620 if( (d1+nStr) > (unsigned)nKey1 ){
3621 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3622 return 0; /* Corruption */
3623 }else{
3624 int nCmp = MIN(nStr, pRhs->n);
3625 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3626 if( rc==0 ) rc = nStr - pRhs->n;
3631 /* RHS is null */
3632 else{
3633 serial_type = aKey1[idx1];
3634 rc = (serial_type!=0);
3637 if( rc!=0 ){
3638 if( pKeyInfo->aSortOrder[i] ){
3639 rc = -rc;
3641 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
3642 assert( mem1.szMalloc==0 ); /* See comment below */
3643 return rc;
3646 i++;
3647 pRhs++;
3648 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3649 idx1 += sqlite3VarintLen(serial_type);
3650 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
3652 /* No memory allocation is ever used on mem1. Prove this using
3653 ** the following assert(). If the assert() fails, it indicates a
3654 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
3655 assert( mem1.szMalloc==0 );
3657 /* rc==0 here means that one or both of the keys ran out of fields and
3658 ** all the fields up to that point were equal. Return the default_rc
3659 ** value. */
3660 assert( CORRUPT_DB
3661 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
3662 || pKeyInfo->db->mallocFailed
3664 return pPKey2->default_rc;
3666 int sqlite3VdbeRecordCompare(
3667 int nKey1, const void *pKey1, /* Left key */
3668 UnpackedRecord *pPKey2 /* Right key */
3670 return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
3675 ** This function is an optimized version of sqlite3VdbeRecordCompare()
3676 ** that (a) the first field of pPKey2 is an integer, and (b) the
3677 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
3678 ** byte (i.e. is less than 128).
3680 ** To avoid concerns about buffer overreads, this routine is only used
3681 ** on schemas where the maximum valid header size is 63 bytes or less.
3683 static int vdbeRecordCompareInt(
3684 int nKey1, const void *pKey1, /* Left key */
3685 UnpackedRecord *pPKey2 /* Right key */
3687 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
3688 int serial_type = ((const u8*)pKey1)[1];
3689 int res;
3690 u32 y;
3691 u64 x;
3692 i64 v = pPKey2->aMem[0].u.i;
3693 i64 lhs;
3695 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
3696 switch( serial_type ){
3697 case 1: { /* 1-byte signed integer */
3698 lhs = ONE_BYTE_INT(aKey);
3699 testcase( lhs<0 );
3700 break;
3702 case 2: { /* 2-byte signed integer */
3703 lhs = TWO_BYTE_INT(aKey);
3704 testcase( lhs<0 );
3705 break;
3707 case 3: { /* 3-byte signed integer */
3708 lhs = THREE_BYTE_INT(aKey);
3709 testcase( lhs<0 );
3710 break;
3712 case 4: { /* 4-byte signed integer */
3713 y = FOUR_BYTE_UINT(aKey);
3714 lhs = (i64)*(int*)&y;
3715 testcase( lhs<0 );
3716 break;
3718 case 5: { /* 6-byte signed integer */
3719 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3720 testcase( lhs<0 );
3721 break;
3723 case 6: { /* 8-byte signed integer */
3724 x = FOUR_BYTE_UINT(aKey);
3725 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3726 lhs = *(i64*)&x;
3727 testcase( lhs<0 );
3728 break;
3730 case 8:
3731 lhs = 0;
3732 break;
3733 case 9:
3734 lhs = 1;
3735 break;
3737 /* This case could be removed without changing the results of running
3738 ** this code. Including it causes gcc to generate a faster switch
3739 ** statement (since the range of switch targets now starts at zero and
3740 ** is contiguous) but does not cause any duplicate code to be generated
3741 ** (as gcc is clever enough to combine the two like cases). Other
3742 ** compilers might be similar. */
3743 case 0: case 7:
3744 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
3746 default:
3747 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
3750 if( v>lhs ){
3751 res = pPKey2->r1;
3752 }else if( v<lhs ){
3753 res = pPKey2->r2;
3754 }else if( pPKey2->nField>1 ){
3755 /* The first fields of the two keys are equal. Compare the trailing
3756 ** fields. */
3757 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
3758 }else{
3759 /* The first fields of the two keys are equal and there are no trailing
3760 ** fields. Return pPKey2->default_rc in this case. */
3761 res = pPKey2->default_rc;
3764 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
3765 return res;
3769 ** This function is an optimized version of sqlite3VdbeRecordCompare()
3770 ** that (a) the first field of pPKey2 is a string, that (b) the first field
3771 ** uses the collation sequence BINARY and (c) that the size-of-header varint
3772 ** at the start of (pKey1/nKey1) fits in a single byte.
3774 static int vdbeRecordCompareString(
3775 int nKey1, const void *pKey1, /* Left key */
3776 UnpackedRecord *pPKey2 /* Right key */
3778 const u8 *aKey1 = (const u8*)pKey1;
3779 int serial_type;
3780 int res;
3782 getVarint32(&aKey1[1], serial_type);
3783 if( serial_type<12 ){
3784 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
3785 }else if( !(serial_type & 0x01) ){
3786 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
3787 }else{
3788 int nCmp;
3789 int nStr;
3790 int szHdr = aKey1[0];
3792 nStr = (serial_type-12) / 2;
3793 if( (szHdr + nStr) > nKey1 ){
3794 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3795 return 0; /* Corruption */
3797 nCmp = MIN( pPKey2->aMem[0].n, nStr );
3798 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
3800 if( res==0 ){
3801 res = nStr - pPKey2->aMem[0].n;
3802 if( res==0 ){
3803 if( pPKey2->nField>1 ){
3804 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
3805 }else{
3806 res = pPKey2->default_rc;
3808 }else if( res>0 ){
3809 res = pPKey2->r2;
3810 }else{
3811 res = pPKey2->r1;
3813 }else if( res>0 ){
3814 res = pPKey2->r2;
3815 }else{
3816 res = pPKey2->r1;
3820 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
3821 || CORRUPT_DB
3822 || pPKey2->pKeyInfo->db->mallocFailed
3824 return res;
3828 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
3829 ** suitable for comparing serialized records to the unpacked record passed
3830 ** as the only argument.
3832 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
3833 /* varintRecordCompareInt() and varintRecordCompareString() both assume
3834 ** that the size-of-header varint that occurs at the start of each record
3835 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
3836 ** also assumes that it is safe to overread a buffer by at least the
3837 ** maximum possible legal header size plus 8 bytes. Because there is
3838 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
3839 ** buffer passed to varintRecordCompareInt() this makes it convenient to
3840 ** limit the size of the header to 64 bytes in cases where the first field
3841 ** is an integer.
3843 ** The easiest way to enforce this limit is to consider only records with
3844 ** 13 fields or less. If the first field is an integer, the maximum legal
3845 ** header size is (12*5 + 1 + 1) bytes. */
3846 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
3847 int flags = p->aMem[0].flags;
3848 if( p->pKeyInfo->aSortOrder[0] ){
3849 p->r1 = 1;
3850 p->r2 = -1;
3851 }else{
3852 p->r1 = -1;
3853 p->r2 = 1;
3855 if( (flags & MEM_Int) ){
3856 return vdbeRecordCompareInt;
3858 testcase( flags & MEM_Real );
3859 testcase( flags & MEM_Null );
3860 testcase( flags & MEM_Blob );
3861 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
3862 assert( flags & MEM_Str );
3863 return vdbeRecordCompareString;
3867 return sqlite3VdbeRecordCompare;
3871 ** pCur points at an index entry created using the OP_MakeRecord opcode.
3872 ** Read the rowid (the last field in the record) and store it in *rowid.
3873 ** Return SQLITE_OK if everything works, or an error code otherwise.
3875 ** pCur might be pointing to text obtained from a corrupt database file.
3876 ** So the content cannot be trusted. Do appropriate checks on the content.
3878 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3879 i64 nCellKey = 0;
3880 int rc;
3881 u32 szHdr; /* Size of the header */
3882 u32 typeRowid; /* Serial type of the rowid */
3883 u32 lenRowid; /* Size of the rowid */
3884 Mem m, v;
3886 /* Get the size of the index entry. Only indices entries of less
3887 ** than 2GiB are support - anything large must be database corruption.
3888 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3889 ** this code can safely assume that nCellKey is 32-bits
3891 assert( sqlite3BtreeCursorIsValid(pCur) );
3892 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3893 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3894 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
3896 /* Read in the complete content of the index entry */
3897 sqlite3VdbeMemInit(&m, db, 0);
3898 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
3899 if( rc ){
3900 return rc;
3903 /* The index entry must begin with a header size */
3904 (void)getVarint32((u8*)m.z, szHdr);
3905 testcase( szHdr==3 );
3906 testcase( szHdr==m.n );
3907 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
3908 goto idx_rowid_corruption;
3911 /* The last field of the index should be an integer - the ROWID.
3912 ** Verify that the last entry really is an integer. */
3913 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
3914 testcase( typeRowid==1 );
3915 testcase( typeRowid==2 );
3916 testcase( typeRowid==3 );
3917 testcase( typeRowid==4 );
3918 testcase( typeRowid==5 );
3919 testcase( typeRowid==6 );
3920 testcase( typeRowid==8 );
3921 testcase( typeRowid==9 );
3922 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3923 goto idx_rowid_corruption;
3925 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
3926 testcase( (u32)m.n==szHdr+lenRowid );
3927 if( unlikely((u32)m.n<szHdr+lenRowid) ){
3928 goto idx_rowid_corruption;
3931 /* Fetch the integer off the end of the index record */
3932 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
3933 *rowid = v.u.i;
3934 sqlite3VdbeMemRelease(&m);
3935 return SQLITE_OK;
3937 /* Jump here if database corruption is detected after m has been
3938 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3939 idx_rowid_corruption:
3940 testcase( m.szMalloc!=0 );
3941 sqlite3VdbeMemRelease(&m);
3942 return SQLITE_CORRUPT_BKPT;
3946 ** Compare the key of the index entry that cursor pC is pointing to against
3947 ** the key string in pUnpacked. Write into *pRes a number
3948 ** that is negative, zero, or positive if pC is less than, equal to,
3949 ** or greater than pUnpacked. Return SQLITE_OK on success.
3951 ** pUnpacked is either created without a rowid or is truncated so that it
3952 ** omits the rowid at the end. The rowid at the end of the index entry
3953 ** is ignored as well. Hence, this routine only compares the prefixes
3954 ** of the keys prior to the final rowid, not the entire key.
3956 int sqlite3VdbeIdxKeyCompare(
3957 sqlite3 *db, /* Database connection */
3958 VdbeCursor *pC, /* The cursor to compare against */
3959 UnpackedRecord *pUnpacked, /* Unpacked version of key */
3960 int *res /* Write the comparison result here */
3962 i64 nCellKey = 0;
3963 int rc;
3964 BtCursor *pCur = pC->pCursor;
3965 Mem m;
3967 assert( sqlite3BtreeCursorIsValid(pCur) );
3968 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3969 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3970 /* nCellKey will always be between 0 and 0xffffffff because of the way
3971 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
3972 if( nCellKey<=0 || nCellKey>0x7fffffff ){
3973 *res = 0;
3974 return SQLITE_CORRUPT_BKPT;
3976 sqlite3VdbeMemInit(&m, db, 0);
3977 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
3978 if( rc ){
3979 return rc;
3981 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
3982 sqlite3VdbeMemRelease(&m);
3983 return SQLITE_OK;
3987 ** This routine sets the value to be returned by subsequent calls to
3988 ** sqlite3_changes() on the database handle 'db'.
3990 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
3991 assert( sqlite3_mutex_held(db->mutex) );
3992 db->nChange = nChange;
3993 db->nTotalChange += nChange;
3997 ** Set a flag in the vdbe to update the change counter when it is finalised
3998 ** or reset.
4000 void sqlite3VdbeCountChanges(Vdbe *v){
4001 v->changeCntOn = 1;
4005 ** Mark every prepared statement associated with a database connection
4006 ** as expired.
4008 ** An expired statement means that recompilation of the statement is
4009 ** recommend. Statements expire when things happen that make their
4010 ** programs obsolete. Removing user-defined functions or collating
4011 ** sequences, or changing an authorization function are the types of
4012 ** things that make prepared statements obsolete.
4014 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4015 Vdbe *p;
4016 for(p = db->pVdbe; p; p=p->pNext){
4017 p->expired = 1;
4022 ** Return the database associated with the Vdbe.
4024 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4025 return v->db;
4029 ** Return a pointer to an sqlite3_value structure containing the value bound
4030 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4031 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4032 ** constants) to the value before returning it.
4034 ** The returned value must be freed by the caller using sqlite3ValueFree().
4036 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4037 assert( iVar>0 );
4038 if( v ){
4039 Mem *pMem = &v->aVar[iVar-1];
4040 if( 0==(pMem->flags & MEM_Null) ){
4041 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4042 if( pRet ){
4043 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4044 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4046 return pRet;
4049 return 0;
4053 ** Configure SQL variable iVar so that binding a new value to it signals
4054 ** to sqlite3_reoptimize() that re-preparing the statement may result
4055 ** in a better query plan.
4057 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4058 assert( iVar>0 );
4059 if( iVar>32 ){
4060 v->expmask = 0xffffffff;
4061 }else{
4062 v->expmask |= ((u32)1 << (iVar-1));
4066 #ifndef SQLITE_OMIT_VIRTUALTABLE
4068 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4069 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4070 ** in memory obtained from sqlite3DbMalloc).
4072 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4073 sqlite3 *db = p->db;
4074 sqlite3DbFree(db, p->zErrMsg);
4075 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4076 sqlite3_free(pVtab->zErrMsg);
4077 pVtab->zErrMsg = 0;
4079 #endif /* SQLITE_OMIT_VIRTUALTABLE */