Roll src/third_party/WebKit a3b4a2e:7441784 (svn 202551:202552)
[chromium-blink-merge.git] / third_party / sqlite / src / ext / fts2 / fts2.c
blob0405fb7b1e56f9aefccebcc274131b973a16b768
1 /* fts2 has a design flaw which can lead to database corruption (see
2 ** below). It is recommended not to use it any longer, instead use
3 ** fts3 (or higher). If you believe that your use of fts2 is safe,
4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS.
5 */
6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \
7 && !defined(SQLITE_ENABLE_BROKEN_FTS2)
8 #error fts2 has a design flaw and has been deprecated.
9 #endif
10 /* The flaw is that fts2 uses the content table's unaliased rowid as
11 ** the unique docid. fts2 embeds the rowid in the index it builds,
12 ** and expects the rowid to not change. The SQLite VACUUM operation
13 ** will renumber such rowids, thereby breaking fts2. If you are using
14 ** fts2 in a system which has disabled VACUUM, then you can continue
15 ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable
16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke
17 ** VACUUM.
19 ** Unlike fts1, which is safe across VACUUM if you never delete
20 ** documents, fts2 has a second exposure to this flaw, in the segments
21 ** table. So fts2 should be considered unsafe across VACUUM in all
22 ** cases.
26 ** 2006 Oct 10
28 ** The author disclaims copyright to this source code. In place of
29 ** a legal notice, here is a blessing:
31 ** May you do good and not evil.
32 ** May you find forgiveness for yourself and forgive others.
33 ** May you share freely, never taking more than you give.
35 ******************************************************************************
37 ** This is an SQLite module implementing full-text search.
41 ** The code in this file is only compiled if:
43 ** * The FTS2 module is being built as an extension
44 ** (in which case SQLITE_CORE is not defined), or
46 ** * The FTS2 module is being built into the core of
47 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
50 /* TODO(shess) Consider exporting this comment to an HTML file or the
51 ** wiki.
53 /* The full-text index is stored in a series of b+tree (-like)
54 ** structures called segments which map terms to doclists. The
55 ** structures are like b+trees in layout, but are constructed from the
56 ** bottom up in optimal fashion and are not updatable. Since trees
57 ** are built from the bottom up, things will be described from the
58 ** bottom up.
61 **** Varints ****
62 ** The basic unit of encoding is a variable-length integer called a
63 ** varint. We encode variable-length integers in little-endian order
64 ** using seven bits * per byte as follows:
66 ** KEY:
67 ** A = 0xxxxxxx 7 bits of data and one flag bit
68 ** B = 1xxxxxxx 7 bits of data and one flag bit
70 ** 7 bits - A
71 ** 14 bits - BA
72 ** 21 bits - BBA
73 ** and so on.
75 ** This is identical to how sqlite encodes varints (see util.c).
78 **** Document lists ****
79 ** A doclist (document list) holds a docid-sorted list of hits for a
80 ** given term. Doclists hold docids, and can optionally associate
81 ** token positions and offsets with docids.
83 ** A DL_POSITIONS_OFFSETS doclist is stored like this:
85 ** array {
86 ** varint docid;
87 ** array { (position list for column 0)
88 ** varint position; (delta from previous position plus POS_BASE)
89 ** varint startOffset; (delta from previous startOffset)
90 ** varint endOffset; (delta from startOffset)
91 ** }
92 ** array {
93 ** varint POS_COLUMN; (marks start of position list for new column)
94 ** varint column; (index of new column)
95 ** array {
96 ** varint position; (delta from previous position plus POS_BASE)
97 ** varint startOffset;(delta from previous startOffset)
98 ** varint endOffset; (delta from startOffset)
99 ** }
100 ** }
101 ** varint POS_END; (marks end of positions for this document.
102 ** }
104 ** Here, array { X } means zero or more occurrences of X, adjacent in
105 ** memory. A "position" is an index of a token in the token stream
106 ** generated by the tokenizer, while an "offset" is a byte offset,
107 ** both based at 0. Note that POS_END and POS_COLUMN occur in the
108 ** same logical place as the position element, and act as sentinals
109 ** ending a position list array.
111 ** A DL_POSITIONS doclist omits the startOffset and endOffset
112 ** information. A DL_DOCIDS doclist omits both the position and
113 ** offset information, becoming an array of varint-encoded docids.
115 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize
116 ** the type. Due to how deletion is implemented in the segmentation
117 ** system, on-disk doclists MUST store at least positions.
120 **** Segment leaf nodes ****
121 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
122 ** nodes are written using LeafWriter, and read using LeafReader (to
123 ** iterate through a single leaf node's data) and LeavesReader (to
124 ** iterate through a segment's entire leaf layer). Leaf nodes have
125 ** the format:
127 ** varint iHeight; (height from leaf level, always 0)
128 ** varint nTerm; (length of first term)
129 ** char pTerm[nTerm]; (content of first term)
130 ** varint nDoclist; (length of term's associated doclist)
131 ** char pDoclist[nDoclist]; (content of doclist)
132 ** array {
133 ** (further terms are delta-encoded)
134 ** varint nPrefix; (length of prefix shared with previous term)
135 ** varint nSuffix; (length of unshared suffix)
136 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
137 ** varint nDoclist; (length of term's associated doclist)
138 ** char pDoclist[nDoclist]; (content of doclist)
139 ** }
141 ** Here, array { X } means zero or more occurrences of X, adjacent in
142 ** memory.
144 ** Leaf nodes are broken into blocks which are stored contiguously in
145 ** the %_segments table in sorted order. This means that when the end
146 ** of a node is reached, the next term is in the node with the next
147 ** greater node id.
149 ** New data is spilled to a new leaf node when the current node
150 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
151 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
152 ** node (a leaf node with a single term and doclist). The goal of
153 ** these settings is to pack together groups of small doclists while
154 ** making it efficient to directly access large doclists. The
155 ** assumption is that large doclists represent terms which are more
156 ** likely to be query targets.
158 ** TODO(shess) It may be useful for blocking decisions to be more
159 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
160 ** node rather than splitting into 2k and .5k nodes. My intuition is
161 ** that this might extend through 2x or 4x the pagesize.
164 **** Segment interior nodes ****
165 ** Segment interior nodes store blockids for subtree nodes and terms
166 ** to describe what data is stored by the each subtree. Interior
167 ** nodes are written using InteriorWriter, and read using
168 ** InteriorReader. InteriorWriters are created as needed when
169 ** SegmentWriter creates new leaf nodes, or when an interior node
170 ** itself grows too big and must be split. The format of interior
171 ** nodes:
173 ** varint iHeight; (height from leaf level, always >0)
174 ** varint iBlockid; (block id of node's leftmost subtree)
175 ** optional {
176 ** varint nTerm; (length of first term)
177 ** char pTerm[nTerm]; (content of first term)
178 ** array {
179 ** (further terms are delta-encoded)
180 ** varint nPrefix; (length of shared prefix with previous term)
181 ** varint nSuffix; (length of unshared suffix)
182 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
183 ** }
184 ** }
186 ** Here, optional { X } means an optional element, while array { X }
187 ** means zero or more occurrences of X, adjacent in memory.
189 ** An interior node encodes n terms separating n+1 subtrees. The
190 ** subtree blocks are contiguous, so only the first subtree's blockid
191 ** is encoded. The subtree at iBlockid will contain all terms less
192 ** than the first term encoded (or all terms if no term is encoded).
193 ** Otherwise, for terms greater than or equal to pTerm[i] but less
194 ** than pTerm[i+1], the subtree for that term will be rooted at
195 ** iBlockid+i. Interior nodes only store enough term data to
196 ** distinguish adjacent children (if the rightmost term of the left
197 ** child is "something", and the leftmost term of the right child is
198 ** "wicked", only "w" is stored).
200 ** New data is spilled to a new interior node at the same height when
201 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
202 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
203 ** interior nodes and making the tree too skinny. The interior nodes
204 ** at a given height are naturally tracked by interior nodes at
205 ** height+1, and so on.
208 **** Segment directory ****
209 ** The segment directory in table %_segdir stores meta-information for
210 ** merging and deleting segments, and also the root node of the
211 ** segment's tree.
213 ** The root node is the top node of the segment's tree after encoding
214 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
215 ** This could be either a leaf node or an interior node. If the top
216 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
217 ** and a new root interior node is generated (which should always fit
218 ** within ROOT_MAX because it only needs space for 2 varints, the
219 ** height and the blockid of the previous root).
221 ** The meta-information in the segment directory is:
222 ** level - segment level (see below)
223 ** idx - index within level
224 ** - (level,idx uniquely identify a segment)
225 ** start_block - first leaf node
226 ** leaves_end_block - last leaf node
227 ** end_block - last block (including interior nodes)
228 ** root - contents of root node
230 ** If the root node is a leaf node, then start_block,
231 ** leaves_end_block, and end_block are all 0.
234 **** Segment merging ****
235 ** To amortize update costs, segments are groups into levels and
236 ** merged in matches. Each increase in level represents exponentially
237 ** more documents.
239 ** New documents (actually, document updates) are tokenized and
240 ** written individually (using LeafWriter) to a level 0 segment, with
241 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
242 ** level 0 segments are merged into a single level 1 segment. Level 1
243 ** is populated like level 0, and eventually MERGE_COUNT level 1
244 ** segments are merged to a single level 2 segment (representing
245 ** MERGE_COUNT^2 updates), and so on.
247 ** A segment merge traverses all segments at a given level in
248 ** parallel, performing a straightforward sorted merge. Since segment
249 ** leaf nodes are written in to the %_segments table in order, this
250 ** merge traverses the underlying sqlite disk structures efficiently.
251 ** After the merge, all segment blocks from the merged level are
252 ** deleted.
254 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
255 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
256 ** very similar performance numbers to 16 on insertion, though they're
257 ** a tiny bit slower (perhaps due to more overhead in merge-time
258 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
259 ** 16, 2 about 66% slower than 16.
261 ** At query time, high MERGE_COUNT increases the number of segments
262 ** which need to be scanned and merged. For instance, with 100k docs
263 ** inserted:
265 ** MERGE_COUNT segments
266 ** 16 25
267 ** 8 12
268 ** 4 10
269 ** 2 6
271 ** This appears to have only a moderate impact on queries for very
272 ** frequent terms (which are somewhat dominated by segment merge
273 ** costs), and infrequent and non-existent terms still seem to be fast
274 ** even with many segments.
276 ** TODO(shess) That said, it would be nice to have a better query-side
277 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
278 ** optimizations to things like doclist merging will swing the sweet
279 ** spot around.
283 **** Handling of deletions and updates ****
284 ** Since we're using a segmented structure, with no docid-oriented
285 ** index into the term index, we clearly cannot simply update the term
286 ** index when a document is deleted or updated. For deletions, we
287 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
288 ** we simply write the new doclist. Segment merges overwrite older
289 ** data for a particular docid with newer data, so deletes or updates
290 ** will eventually overtake the earlier data and knock it out. The
291 ** query logic likewise merges doclists so that newer data knocks out
292 ** older data.
294 ** TODO(shess) Provide a VACUUM type operation to clear out all
295 ** deletions and duplications. This would basically be a forced merge
296 ** into a single segment.
299 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
301 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE)
302 # define SQLITE_CORE 1
303 #endif
305 #include <assert.h>
306 #include <stdlib.h>
307 #include <stdio.h>
308 #include <string.h>
309 #include "fts2.h"
310 #include "fts2_hash.h"
311 #include "fts2_tokenizer.h"
312 #include "sqlite3.h"
313 #include "sqlite3ext.h"
314 SQLITE_EXTENSION_INIT1
317 /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
318 ** would be nice to order the file better, perhaps something along the
319 ** lines of:
321 ** - utility functions
322 ** - table setup functions
323 ** - table update functions
324 ** - table query functions
326 ** Put the query functions last because they're likely to reference
327 ** typedefs or functions from the table update section.
330 #if 0
331 # define TRACE(A) printf A; fflush(stdout)
332 #else
333 # define TRACE(A)
334 #endif
336 /* It is not safe to call isspace(), tolower(), or isalnum() on
337 ** hi-bit-set characters. This is the same solution used in the
338 ** tokenizer.
340 /* TODO(shess) The snippet-generation code should be using the
341 ** tokenizer-generated tokens rather than doing its own local
342 ** tokenization.
344 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
345 static int safe_isspace(char c){
346 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
348 static int safe_tolower(char c){
349 return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c;
351 static int safe_isalnum(char c){
352 return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z');
355 typedef enum DocListType {
356 DL_DOCIDS, /* docids only */
357 DL_POSITIONS, /* docids + positions */
358 DL_POSITIONS_OFFSETS /* docids + positions + offsets */
359 } DocListType;
362 ** By default, only positions and not offsets are stored in the doclists.
363 ** To change this so that offsets are stored too, compile with
365 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
367 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
368 ** into (no deletes or updates).
370 #ifndef DL_DEFAULT
371 # define DL_DEFAULT DL_POSITIONS
372 #endif
374 enum {
375 POS_END = 0, /* end of this position list */
376 POS_COLUMN, /* followed by new column number */
377 POS_BASE
380 /* MERGE_COUNT controls how often we merge segments (see comment at
381 ** top of file).
383 #define MERGE_COUNT 16
385 /* utility functions */
387 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
388 ** record to prevent errors of the form:
390 ** my_function(SomeType *b){
391 ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
392 ** }
394 /* TODO(shess) Obvious candidates for a header file. */
395 #define CLEAR(b) memset(b, '\0', sizeof(*(b)))
397 #ifndef NDEBUG
398 # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
399 #else
400 # define SCRAMBLE(b)
401 #endif
403 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
404 #define VARINT_MAX 10
406 /* Write a 64-bit variable-length integer to memory starting at p[0].
407 * The length of data written will be between 1 and VARINT_MAX bytes.
408 * The number of bytes written is returned. */
409 static int putVarint(char *p, sqlite_int64 v){
410 unsigned char *q = (unsigned char *) p;
411 sqlite_uint64 vu = v;
413 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
414 vu >>= 7;
415 }while( vu!=0 );
416 q[-1] &= 0x7f; /* turn off high bit in final byte */
417 assert( q - (unsigned char *)p <= VARINT_MAX );
418 return (int) (q - (unsigned char *)p);
421 /* Read a 64-bit variable-length integer from memory starting at p[0].
422 * Return the number of bytes read, or 0 on error.
423 * The value is stored in *v. */
424 static int getVarint(const char *p, sqlite_int64 *v){
425 const unsigned char *q = (const unsigned char *) p;
426 sqlite_uint64 x = 0, y = 1;
427 while( (*q & 0x80) == 0x80 ){
428 x += y * (*q++ & 0x7f);
429 y <<= 7;
430 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
431 assert( 0 );
432 return 0;
435 x += y * (*q++);
436 *v = (sqlite_int64) x;
437 return (int) (q - (unsigned char *)p);
440 static int getVarint32(const char *p, int *pi){
441 sqlite_int64 i;
442 int ret = getVarint(p, &i);
443 *pi = (int) i;
444 assert( *pi==i );
445 return ret;
448 /*******************************************************************/
449 /* DataBuffer is used to collect data into a buffer in piecemeal
450 ** fashion. It implements the usual distinction between amount of
451 ** data currently stored (nData) and buffer capacity (nCapacity).
453 ** dataBufferInit - create a buffer with given initial capacity.
454 ** dataBufferReset - forget buffer's data, retaining capacity.
455 ** dataBufferDestroy - free buffer's data.
456 ** dataBufferSwap - swap contents of two buffers.
457 ** dataBufferExpand - expand capacity without adding data.
458 ** dataBufferAppend - append data.
459 ** dataBufferAppend2 - append two pieces of data at once.
460 ** dataBufferReplace - replace buffer's data.
462 typedef struct DataBuffer {
463 char *pData; /* Pointer to malloc'ed buffer. */
464 int nCapacity; /* Size of pData buffer. */
465 int nData; /* End of data loaded into pData. */
466 } DataBuffer;
468 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
469 assert( nCapacity>=0 );
470 pBuffer->nData = 0;
471 pBuffer->nCapacity = nCapacity;
472 pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
474 static void dataBufferReset(DataBuffer *pBuffer){
475 pBuffer->nData = 0;
477 static void dataBufferDestroy(DataBuffer *pBuffer){
478 if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
479 SCRAMBLE(pBuffer);
481 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
482 DataBuffer tmp = *pBuffer1;
483 *pBuffer1 = *pBuffer2;
484 *pBuffer2 = tmp;
486 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
487 assert( nAddCapacity>0 );
488 /* TODO(shess) Consider expanding more aggressively. Note that the
489 ** underlying malloc implementation may take care of such things for
490 ** us already.
492 if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
493 pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
494 pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
497 static void dataBufferAppend(DataBuffer *pBuffer,
498 const char *pSource, int nSource){
499 assert( nSource>0 && pSource!=NULL );
500 dataBufferExpand(pBuffer, nSource);
501 memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
502 pBuffer->nData += nSource;
504 static void dataBufferAppend2(DataBuffer *pBuffer,
505 const char *pSource1, int nSource1,
506 const char *pSource2, int nSource2){
507 assert( nSource1>0 && pSource1!=NULL );
508 assert( nSource2>0 && pSource2!=NULL );
509 dataBufferExpand(pBuffer, nSource1+nSource2);
510 memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
511 memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
512 pBuffer->nData += nSource1+nSource2;
514 static void dataBufferReplace(DataBuffer *pBuffer,
515 const char *pSource, int nSource){
516 dataBufferReset(pBuffer);
517 dataBufferAppend(pBuffer, pSource, nSource);
520 /* StringBuffer is a null-terminated version of DataBuffer. */
521 typedef struct StringBuffer {
522 DataBuffer b; /* Includes null terminator. */
523 } StringBuffer;
525 static void initStringBuffer(StringBuffer *sb){
526 dataBufferInit(&sb->b, 100);
527 dataBufferReplace(&sb->b, "", 1);
529 static int stringBufferLength(StringBuffer *sb){
530 return sb->b.nData-1;
532 static char *stringBufferData(StringBuffer *sb){
533 return sb->b.pData;
535 static void stringBufferDestroy(StringBuffer *sb){
536 dataBufferDestroy(&sb->b);
539 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
540 assert( sb->b.nData>0 );
541 if( nFrom>0 ){
542 sb->b.nData--;
543 dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
546 static void append(StringBuffer *sb, const char *zFrom){
547 nappend(sb, zFrom, strlen(zFrom));
550 /* Append a list of strings separated by commas. */
551 static void appendList(StringBuffer *sb, int nString, char **azString){
552 int i;
553 for(i=0; i<nString; ++i){
554 if( i>0 ) append(sb, ", ");
555 append(sb, azString[i]);
559 static int endsInWhiteSpace(StringBuffer *p){
560 return stringBufferLength(p)>0 &&
561 safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
564 /* If the StringBuffer ends in something other than white space, add a
565 ** single space character to the end.
567 static void appendWhiteSpace(StringBuffer *p){
568 if( stringBufferLength(p)==0 ) return;
569 if( !endsInWhiteSpace(p) ) append(p, " ");
572 /* Remove white space from the end of the StringBuffer */
573 static void trimWhiteSpace(StringBuffer *p){
574 while( endsInWhiteSpace(p) ){
575 p->b.pData[--p->b.nData-1] = '\0';
579 /*******************************************************************/
580 /* DLReader is used to read document elements from a doclist. The
581 ** current docid is cached, so dlrDocid() is fast. DLReader does not
582 ** own the doclist buffer.
584 ** dlrAtEnd - true if there's no more data to read.
585 ** dlrDocid - docid of current document.
586 ** dlrDocData - doclist data for current document (including docid).
587 ** dlrDocDataBytes - length of same.
588 ** dlrAllDataBytes - length of all remaining data.
589 ** dlrPosData - position data for current document.
590 ** dlrPosDataLen - length of pos data for current document (incl POS_END).
591 ** dlrStep - step to current document.
592 ** dlrInit - initial for doclist of given type against given data.
593 ** dlrDestroy - clean up.
595 ** Expected usage is something like:
597 ** DLReader reader;
598 ** dlrInit(&reader, pData, nData);
599 ** while( !dlrAtEnd(&reader) ){
600 ** // calls to dlrDocid() and kin.
601 ** dlrStep(&reader);
602 ** }
603 ** dlrDestroy(&reader);
605 typedef struct DLReader {
606 DocListType iType;
607 const char *pData;
608 int nData;
610 sqlite_int64 iDocid;
611 int nElement;
612 } DLReader;
614 static int dlrAtEnd(DLReader *pReader){
615 assert( pReader->nData>=0 );
616 return pReader->nData==0;
618 static sqlite_int64 dlrDocid(DLReader *pReader){
619 assert( !dlrAtEnd(pReader) );
620 return pReader->iDocid;
622 static const char *dlrDocData(DLReader *pReader){
623 assert( !dlrAtEnd(pReader) );
624 return pReader->pData;
626 static int dlrDocDataBytes(DLReader *pReader){
627 assert( !dlrAtEnd(pReader) );
628 return pReader->nElement;
630 static int dlrAllDataBytes(DLReader *pReader){
631 assert( !dlrAtEnd(pReader) );
632 return pReader->nData;
634 /* TODO(shess) Consider adding a field to track iDocid varint length
635 ** to make these two functions faster. This might matter (a tiny bit)
636 ** for queries.
638 static const char *dlrPosData(DLReader *pReader){
639 sqlite_int64 iDummy;
640 int n = getVarint(pReader->pData, &iDummy);
641 assert( !dlrAtEnd(pReader) );
642 return pReader->pData+n;
644 static int dlrPosDataLen(DLReader *pReader){
645 sqlite_int64 iDummy;
646 int n = getVarint(pReader->pData, &iDummy);
647 assert( !dlrAtEnd(pReader) );
648 return pReader->nElement-n;
650 static void dlrStep(DLReader *pReader){
651 assert( !dlrAtEnd(pReader) );
653 /* Skip past current doclist element. */
654 assert( pReader->nElement<=pReader->nData );
655 pReader->pData += pReader->nElement;
656 pReader->nData -= pReader->nElement;
658 /* If there is more data, read the next doclist element. */
659 if( pReader->nData!=0 ){
660 sqlite_int64 iDocidDelta;
661 int iDummy, n = getVarint(pReader->pData, &iDocidDelta);
662 pReader->iDocid += iDocidDelta;
663 if( pReader->iType>=DL_POSITIONS ){
664 assert( n<pReader->nData );
665 while( 1 ){
666 n += getVarint32(pReader->pData+n, &iDummy);
667 assert( n<=pReader->nData );
668 if( iDummy==POS_END ) break;
669 if( iDummy==POS_COLUMN ){
670 n += getVarint32(pReader->pData+n, &iDummy);
671 assert( n<pReader->nData );
672 }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
673 n += getVarint32(pReader->pData+n, &iDummy);
674 n += getVarint32(pReader->pData+n, &iDummy);
675 assert( n<pReader->nData );
679 pReader->nElement = n;
680 assert( pReader->nElement<=pReader->nData );
683 static void dlrInit(DLReader *pReader, DocListType iType,
684 const char *pData, int nData){
685 assert( pData!=NULL && nData!=0 );
686 pReader->iType = iType;
687 pReader->pData = pData;
688 pReader->nData = nData;
689 pReader->nElement = 0;
690 pReader->iDocid = 0;
692 /* Load the first element's data. There must be a first element. */
693 dlrStep(pReader);
695 static void dlrDestroy(DLReader *pReader){
696 SCRAMBLE(pReader);
699 #ifndef NDEBUG
700 /* Verify that the doclist can be validly decoded. Also returns the
701 ** last docid found because it is convenient in other assertions for
702 ** DLWriter.
704 static void docListValidate(DocListType iType, const char *pData, int nData,
705 sqlite_int64 *pLastDocid){
706 sqlite_int64 iPrevDocid = 0;
707 assert( nData>0 );
708 assert( pData!=0 );
709 assert( pData+nData>pData );
710 while( nData!=0 ){
711 sqlite_int64 iDocidDelta;
712 int n = getVarint(pData, &iDocidDelta);
713 iPrevDocid += iDocidDelta;
714 if( iType>DL_DOCIDS ){
715 int iDummy;
716 while( 1 ){
717 n += getVarint32(pData+n, &iDummy);
718 if( iDummy==POS_END ) break;
719 if( iDummy==POS_COLUMN ){
720 n += getVarint32(pData+n, &iDummy);
721 }else if( iType>DL_POSITIONS ){
722 n += getVarint32(pData+n, &iDummy);
723 n += getVarint32(pData+n, &iDummy);
725 assert( n<=nData );
728 assert( n<=nData );
729 pData += n;
730 nData -= n;
732 if( pLastDocid ) *pLastDocid = iPrevDocid;
734 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
735 #else
736 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
737 #endif
739 /*******************************************************************/
740 /* DLWriter is used to write doclist data to a DataBuffer. DLWriter
741 ** always appends to the buffer and does not own it.
743 ** dlwInit - initialize to write a given type doclistto a buffer.
744 ** dlwDestroy - clear the writer's memory. Does not free buffer.
745 ** dlwAppend - append raw doclist data to buffer.
746 ** dlwCopy - copy next doclist from reader to writer.
747 ** dlwAdd - construct doclist element and append to buffer.
748 ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
750 typedef struct DLWriter {
751 DocListType iType;
752 DataBuffer *b;
753 sqlite_int64 iPrevDocid;
754 #ifndef NDEBUG
755 int has_iPrevDocid;
756 #endif
757 } DLWriter;
759 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
760 pWriter->b = b;
761 pWriter->iType = iType;
762 pWriter->iPrevDocid = 0;
763 #ifndef NDEBUG
764 pWriter->has_iPrevDocid = 0;
765 #endif
767 static void dlwDestroy(DLWriter *pWriter){
768 SCRAMBLE(pWriter);
770 /* iFirstDocid is the first docid in the doclist in pData. It is
771 ** needed because pData may point within a larger doclist, in which
772 ** case the first item would be delta-encoded.
774 ** iLastDocid is the final docid in the doclist in pData. It is
775 ** needed to create the new iPrevDocid for future delta-encoding. The
776 ** code could decode the passed doclist to recreate iLastDocid, but
777 ** the only current user (docListMerge) already has decoded this
778 ** information.
780 /* TODO(shess) This has become just a helper for docListMerge.
781 ** Consider a refactor to make this cleaner.
783 static void dlwAppend(DLWriter *pWriter,
784 const char *pData, int nData,
785 sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
786 sqlite_int64 iDocid = 0;
787 char c[VARINT_MAX];
788 int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
789 #ifndef NDEBUG
790 sqlite_int64 iLastDocidDelta;
791 #endif
793 /* Recode the initial docid as delta from iPrevDocid. */
794 nFirstOld = getVarint(pData, &iDocid);
795 assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
796 nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid);
798 /* Verify that the incoming doclist is valid AND that it ends with
799 ** the expected docid. This is essential because we'll trust this
800 ** docid in future delta-encoding.
802 ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
803 assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
805 /* Append recoded initial docid and everything else. Rest of docids
806 ** should have been delta-encoded from previous initial docid.
808 if( nFirstOld<nData ){
809 dataBufferAppend2(pWriter->b, c, nFirstNew,
810 pData+nFirstOld, nData-nFirstOld);
811 }else{
812 dataBufferAppend(pWriter->b, c, nFirstNew);
814 pWriter->iPrevDocid = iLastDocid;
816 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
817 dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
818 dlrDocid(pReader), dlrDocid(pReader));
820 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
821 char c[VARINT_MAX];
822 int n = putVarint(c, iDocid-pWriter->iPrevDocid);
824 /* Docids must ascend. */
825 assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
826 assert( pWriter->iType==DL_DOCIDS );
828 dataBufferAppend(pWriter->b, c, n);
829 pWriter->iPrevDocid = iDocid;
830 #ifndef NDEBUG
831 pWriter->has_iPrevDocid = 1;
832 #endif
835 /*******************************************************************/
836 /* PLReader is used to read data from a document's position list. As
837 ** the caller steps through the list, data is cached so that varints
838 ** only need to be decoded once.
840 ** plrInit, plrDestroy - create/destroy a reader.
841 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
842 ** plrAtEnd - at end of stream, only call plrDestroy once true.
843 ** plrStep - step to the next element.
845 typedef struct PLReader {
846 /* These refer to the next position's data. nData will reach 0 when
847 ** reading the last position, so plrStep() signals EOF by setting
848 ** pData to NULL.
850 const char *pData;
851 int nData;
853 DocListType iType;
854 int iColumn; /* the last column read */
855 int iPosition; /* the last position read */
856 int iStartOffset; /* the last start offset read */
857 int iEndOffset; /* the last end offset read */
858 } PLReader;
860 static int plrAtEnd(PLReader *pReader){
861 return pReader->pData==NULL;
863 static int plrColumn(PLReader *pReader){
864 assert( !plrAtEnd(pReader) );
865 return pReader->iColumn;
867 static int plrPosition(PLReader *pReader){
868 assert( !plrAtEnd(pReader) );
869 return pReader->iPosition;
871 static int plrStartOffset(PLReader *pReader){
872 assert( !plrAtEnd(pReader) );
873 return pReader->iStartOffset;
875 static int plrEndOffset(PLReader *pReader){
876 assert( !plrAtEnd(pReader) );
877 return pReader->iEndOffset;
879 static void plrStep(PLReader *pReader){
880 int i, n;
882 assert( !plrAtEnd(pReader) );
884 if( pReader->nData==0 ){
885 pReader->pData = NULL;
886 return;
889 n = getVarint32(pReader->pData, &i);
890 if( i==POS_COLUMN ){
891 n += getVarint32(pReader->pData+n, &pReader->iColumn);
892 pReader->iPosition = 0;
893 pReader->iStartOffset = 0;
894 n += getVarint32(pReader->pData+n, &i);
896 /* Should never see adjacent column changes. */
897 assert( i!=POS_COLUMN );
899 if( i==POS_END ){
900 pReader->nData = 0;
901 pReader->pData = NULL;
902 return;
905 pReader->iPosition += i-POS_BASE;
906 if( pReader->iType==DL_POSITIONS_OFFSETS ){
907 n += getVarint32(pReader->pData+n, &i);
908 pReader->iStartOffset += i;
909 n += getVarint32(pReader->pData+n, &i);
910 pReader->iEndOffset = pReader->iStartOffset+i;
912 assert( n<=pReader->nData );
913 pReader->pData += n;
914 pReader->nData -= n;
917 static void plrInit(PLReader *pReader, DLReader *pDLReader){
918 pReader->pData = dlrPosData(pDLReader);
919 pReader->nData = dlrPosDataLen(pDLReader);
920 pReader->iType = pDLReader->iType;
921 pReader->iColumn = 0;
922 pReader->iPosition = 0;
923 pReader->iStartOffset = 0;
924 pReader->iEndOffset = 0;
925 plrStep(pReader);
927 static void plrDestroy(PLReader *pReader){
928 SCRAMBLE(pReader);
931 /*******************************************************************/
932 /* PLWriter is used in constructing a document's position list. As a
933 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
934 ** PLWriter writes to the associated DLWriter's buffer.
936 ** plwInit - init for writing a document's poslist.
937 ** plwDestroy - clear a writer.
938 ** plwAdd - append position and offset information.
939 ** plwCopy - copy next position's data from reader to writer.
940 ** plwTerminate - add any necessary doclist terminator.
942 ** Calling plwAdd() after plwTerminate() may result in a corrupt
943 ** doclist.
945 /* TODO(shess) Until we've written the second item, we can cache the
946 ** first item's information. Then we'd have three states:
948 ** - initialized with docid, no positions.
949 ** - docid and one position.
950 ** - docid and multiple positions.
952 ** Only the last state needs to actually write to dlw->b, which would
953 ** be an improvement in the DLCollector case.
955 typedef struct PLWriter {
956 DLWriter *dlw;
958 int iColumn; /* the last column written */
959 int iPos; /* the last position written */
960 int iOffset; /* the last start offset written */
961 } PLWriter;
963 /* TODO(shess) In the case where the parent is reading these values
964 ** from a PLReader, we could optimize to a copy if that PLReader has
965 ** the same type as pWriter.
967 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
968 int iStartOffset, int iEndOffset){
969 /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
970 ** iStartOffsetDelta, and iEndOffsetDelta.
972 char c[5*VARINT_MAX];
973 int n = 0;
975 /* Ban plwAdd() after plwTerminate(). */
976 assert( pWriter->iPos!=-1 );
978 if( pWriter->dlw->iType==DL_DOCIDS ) return;
980 if( iColumn!=pWriter->iColumn ){
981 n += putVarint(c+n, POS_COLUMN);
982 n += putVarint(c+n, iColumn);
983 pWriter->iColumn = iColumn;
984 pWriter->iPos = 0;
985 pWriter->iOffset = 0;
987 assert( iPos>=pWriter->iPos );
988 n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
989 pWriter->iPos = iPos;
990 if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
991 assert( iStartOffset>=pWriter->iOffset );
992 n += putVarint(c+n, iStartOffset-pWriter->iOffset);
993 pWriter->iOffset = iStartOffset;
994 assert( iEndOffset>=iStartOffset );
995 n += putVarint(c+n, iEndOffset-iStartOffset);
997 dataBufferAppend(pWriter->dlw->b, c, n);
999 static void plwCopy(PLWriter *pWriter, PLReader *pReader){
1000 plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
1001 plrStartOffset(pReader), plrEndOffset(pReader));
1003 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
1004 char c[VARINT_MAX];
1005 int n;
1007 pWriter->dlw = dlw;
1009 /* Docids must ascend. */
1010 assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
1011 n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid);
1012 dataBufferAppend(pWriter->dlw->b, c, n);
1013 pWriter->dlw->iPrevDocid = iDocid;
1014 #ifndef NDEBUG
1015 pWriter->dlw->has_iPrevDocid = 1;
1016 #endif
1018 pWriter->iColumn = 0;
1019 pWriter->iPos = 0;
1020 pWriter->iOffset = 0;
1022 /* TODO(shess) Should plwDestroy() also terminate the doclist? But
1023 ** then plwDestroy() would no longer be just a destructor, it would
1024 ** also be doing work, which isn't consistent with the overall idiom.
1025 ** Another option would be for plwAdd() to always append any necessary
1026 ** terminator, so that the output is always correct. But that would
1027 ** add incremental work to the common case with the only benefit being
1028 ** API elegance. Punt for now.
1030 static void plwTerminate(PLWriter *pWriter){
1031 if( pWriter->dlw->iType>DL_DOCIDS ){
1032 char c[VARINT_MAX];
1033 int n = putVarint(c, POS_END);
1034 dataBufferAppend(pWriter->dlw->b, c, n);
1036 #ifndef NDEBUG
1037 /* Mark as terminated for assert in plwAdd(). */
1038 pWriter->iPos = -1;
1039 #endif
1041 static void plwDestroy(PLWriter *pWriter){
1042 SCRAMBLE(pWriter);
1045 /*******************************************************************/
1046 /* DLCollector wraps PLWriter and DLWriter to provide a
1047 ** dynamically-allocated doclist area to use during tokenization.
1049 ** dlcNew - malloc up and initialize a collector.
1050 ** dlcDelete - destroy a collector and all contained items.
1051 ** dlcAddPos - append position and offset information.
1052 ** dlcAddDoclist - add the collected doclist to the given buffer.
1053 ** dlcNext - terminate the current document and open another.
1055 typedef struct DLCollector {
1056 DataBuffer b;
1057 DLWriter dlw;
1058 PLWriter plw;
1059 } DLCollector;
1061 /* TODO(shess) This could also be done by calling plwTerminate() and
1062 ** dataBufferAppend(). I tried that, expecting nominal performance
1063 ** differences, but it seemed to pretty reliably be worth 1% to code
1064 ** it this way. I suspect it is the incremental malloc overhead (some
1065 ** percentage of the plwTerminate() calls will cause a realloc), so
1066 ** this might be worth revisiting if the DataBuffer implementation
1067 ** changes.
1069 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
1070 if( pCollector->dlw.iType>DL_DOCIDS ){
1071 char c[VARINT_MAX];
1072 int n = putVarint(c, POS_END);
1073 dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
1074 }else{
1075 dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
1078 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
1079 plwTerminate(&pCollector->plw);
1080 plwDestroy(&pCollector->plw);
1081 plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
1083 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
1084 int iStartOffset, int iEndOffset){
1085 plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
1088 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
1089 DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
1090 dataBufferInit(&pCollector->b, 0);
1091 dlwInit(&pCollector->dlw, iType, &pCollector->b);
1092 plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
1093 return pCollector;
1095 static void dlcDelete(DLCollector *pCollector){
1096 plwDestroy(&pCollector->plw);
1097 dlwDestroy(&pCollector->dlw);
1098 dataBufferDestroy(&pCollector->b);
1099 SCRAMBLE(pCollector);
1100 sqlite3_free(pCollector);
1104 /* Copy the doclist data of iType in pData/nData into *out, trimming
1105 ** unnecessary data as we go. Only columns matching iColumn are
1106 ** copied, all columns copied if iColumn is -1. Elements with no
1107 ** matching columns are dropped. The output is an iOutType doclist.
1109 /* NOTE(shess) This code is only valid after all doclists are merged.
1110 ** If this is run before merges, then doclist items which represent
1111 ** deletion will be trimmed, and will thus not effect a deletion
1112 ** during the merge.
1114 static void docListTrim(DocListType iType, const char *pData, int nData,
1115 int iColumn, DocListType iOutType, DataBuffer *out){
1116 DLReader dlReader;
1117 DLWriter dlWriter;
1119 assert( iOutType<=iType );
1121 dlrInit(&dlReader, iType, pData, nData);
1122 dlwInit(&dlWriter, iOutType, out);
1124 while( !dlrAtEnd(&dlReader) ){
1125 PLReader plReader;
1126 PLWriter plWriter;
1127 int match = 0;
1129 plrInit(&plReader, &dlReader);
1131 while( !plrAtEnd(&plReader) ){
1132 if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
1133 if( !match ){
1134 plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
1135 match = 1;
1137 plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
1138 plrStartOffset(&plReader), plrEndOffset(&plReader));
1140 plrStep(&plReader);
1142 if( match ){
1143 plwTerminate(&plWriter);
1144 plwDestroy(&plWriter);
1147 plrDestroy(&plReader);
1148 dlrStep(&dlReader);
1150 dlwDestroy(&dlWriter);
1151 dlrDestroy(&dlReader);
1154 /* Used by docListMerge() to keep doclists in the ascending order by
1155 ** docid, then ascending order by age (so the newest comes first).
1157 typedef struct OrderedDLReader {
1158 DLReader *pReader;
1160 /* TODO(shess) If we assume that docListMerge pReaders is ordered by
1161 ** age (which we do), then we could use pReader comparisons to break
1162 ** ties.
1164 int idx;
1165 } OrderedDLReader;
1167 /* Order eof to end, then by docid asc, idx desc. */
1168 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
1169 if( dlrAtEnd(r1->pReader) ){
1170 if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
1171 return 1; /* Only r1 atEnd(). */
1173 if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
1175 if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
1176 if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
1178 /* Descending on idx. */
1179 return r2->idx-r1->idx;
1182 /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
1183 ** p[1..n-1] is already sorted.
1185 /* TODO(shess) Is this frequent enough to warrant a binary search?
1186 ** Before implementing that, instrument the code to check. In most
1187 ** current usage, I expect that p[0] will be less than p[1] a very
1188 ** high proportion of the time.
1190 static void orderedDLReaderReorder(OrderedDLReader *p, int n){
1191 while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
1192 OrderedDLReader tmp = p[0];
1193 p[0] = p[1];
1194 p[1] = tmp;
1195 n--;
1196 p++;
1200 /* Given an array of doclist readers, merge their doclist elements
1201 ** into out in sorted order (by docid), dropping elements from older
1202 ** readers when there is a duplicate docid. pReaders is assumed to be
1203 ** ordered by age, oldest first.
1205 /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
1206 ** be fixed.
1208 static void docListMerge(DataBuffer *out,
1209 DLReader *pReaders, int nReaders){
1210 OrderedDLReader readers[MERGE_COUNT];
1211 DLWriter writer;
1212 int i, n;
1213 const char *pStart = 0;
1214 int nStart = 0;
1215 sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
1217 assert( nReaders>0 );
1218 if( nReaders==1 ){
1219 dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
1220 return;
1223 assert( nReaders<=MERGE_COUNT );
1224 n = 0;
1225 for(i=0; i<nReaders; i++){
1226 assert( pReaders[i].iType==pReaders[0].iType );
1227 readers[i].pReader = pReaders+i;
1228 readers[i].idx = i;
1229 n += dlrAllDataBytes(&pReaders[i]);
1231 /* Conservatively size output to sum of inputs. Output should end
1232 ** up strictly smaller than input.
1234 dataBufferExpand(out, n);
1236 /* Get the readers into sorted order. */
1237 while( i-->0 ){
1238 orderedDLReaderReorder(readers+i, nReaders-i);
1241 dlwInit(&writer, pReaders[0].iType, out);
1242 while( !dlrAtEnd(readers[0].pReader) ){
1243 sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
1245 /* If this is a continuation of the current buffer to copy, extend
1246 ** that buffer. memcpy() seems to be more efficient if it has a
1247 ** lots of data to copy.
1249 if( dlrDocData(readers[0].pReader)==pStart+nStart ){
1250 nStart += dlrDocDataBytes(readers[0].pReader);
1251 }else{
1252 if( pStart!=0 ){
1253 dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
1255 pStart = dlrDocData(readers[0].pReader);
1256 nStart = dlrDocDataBytes(readers[0].pReader);
1257 iFirstDocid = iDocid;
1259 iLastDocid = iDocid;
1260 dlrStep(readers[0].pReader);
1262 /* Drop all of the older elements with the same docid. */
1263 for(i=1; i<nReaders &&
1264 !dlrAtEnd(readers[i].pReader) &&
1265 dlrDocid(readers[i].pReader)==iDocid; i++){
1266 dlrStep(readers[i].pReader);
1269 /* Get the readers back into order. */
1270 while( i-->0 ){
1271 orderedDLReaderReorder(readers+i, nReaders-i);
1275 /* Copy over any remaining elements. */
1276 if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
1277 dlwDestroy(&writer);
1280 /* Helper function for posListUnion(). Compares the current position
1281 ** between left and right, returning as standard C idiom of <0 if
1282 ** left<right, >0 if left>right, and 0 if left==right. "End" always
1283 ** compares greater.
1285 static int posListCmp(PLReader *pLeft, PLReader *pRight){
1286 assert( pLeft->iType==pRight->iType );
1287 if( pLeft->iType==DL_DOCIDS ) return 0;
1289 if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
1290 if( plrAtEnd(pRight) ) return -1;
1292 if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
1293 if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
1295 if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
1296 if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
1297 if( pLeft->iType==DL_POSITIONS ) return 0;
1299 if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
1300 if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
1302 if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
1303 if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
1305 return 0;
1308 /* Write the union of position lists in pLeft and pRight to pOut.
1309 ** "Union" in this case meaning "All unique position tuples". Should
1310 ** work with any doclist type, though both inputs and the output
1311 ** should be the same type.
1313 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
1314 PLReader left, right;
1315 PLWriter writer;
1317 assert( dlrDocid(pLeft)==dlrDocid(pRight) );
1318 assert( pLeft->iType==pRight->iType );
1319 assert( pLeft->iType==pOut->iType );
1321 plrInit(&left, pLeft);
1322 plrInit(&right, pRight);
1323 plwInit(&writer, pOut, dlrDocid(pLeft));
1325 while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
1326 int c = posListCmp(&left, &right);
1327 if( c<0 ){
1328 plwCopy(&writer, &left);
1329 plrStep(&left);
1330 }else if( c>0 ){
1331 plwCopy(&writer, &right);
1332 plrStep(&right);
1333 }else{
1334 plwCopy(&writer, &left);
1335 plrStep(&left);
1336 plrStep(&right);
1340 plwTerminate(&writer);
1341 plwDestroy(&writer);
1342 plrDestroy(&left);
1343 plrDestroy(&right);
1346 /* Write the union of doclists in pLeft and pRight to pOut. For
1347 ** docids in common between the inputs, the union of the position
1348 ** lists is written. Inputs and outputs are always type DL_DEFAULT.
1350 static void docListUnion(
1351 const char *pLeft, int nLeft,
1352 const char *pRight, int nRight,
1353 DataBuffer *pOut /* Write the combined doclist here */
1355 DLReader left, right;
1356 DLWriter writer;
1358 if( nLeft==0 ){
1359 if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
1360 return;
1362 if( nRight==0 ){
1363 dataBufferAppend(pOut, pLeft, nLeft);
1364 return;
1367 dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
1368 dlrInit(&right, DL_DEFAULT, pRight, nRight);
1369 dlwInit(&writer, DL_DEFAULT, pOut);
1371 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
1372 if( dlrAtEnd(&right) ){
1373 dlwCopy(&writer, &left);
1374 dlrStep(&left);
1375 }else if( dlrAtEnd(&left) ){
1376 dlwCopy(&writer, &right);
1377 dlrStep(&right);
1378 }else if( dlrDocid(&left)<dlrDocid(&right) ){
1379 dlwCopy(&writer, &left);
1380 dlrStep(&left);
1381 }else if( dlrDocid(&left)>dlrDocid(&right) ){
1382 dlwCopy(&writer, &right);
1383 dlrStep(&right);
1384 }else{
1385 posListUnion(&left, &right, &writer);
1386 dlrStep(&left);
1387 dlrStep(&right);
1391 dlrDestroy(&left);
1392 dlrDestroy(&right);
1393 dlwDestroy(&writer);
1396 /* pLeft and pRight are DLReaders positioned to the same docid.
1398 ** If there are no instances in pLeft or pRight where the position
1399 ** of pLeft is one less than the position of pRight, then this
1400 ** routine adds nothing to pOut.
1402 ** If there are one or more instances where positions from pLeft
1403 ** are exactly one less than positions from pRight, then add a new
1404 ** document record to pOut. If pOut wants to hold positions, then
1405 ** include the positions from pRight that are one more than a
1406 ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1.
1408 static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight,
1409 DLWriter *pOut){
1410 PLReader left, right;
1411 PLWriter writer;
1412 int match = 0;
1414 assert( dlrDocid(pLeft)==dlrDocid(pRight) );
1415 assert( pOut->iType!=DL_POSITIONS_OFFSETS );
1417 plrInit(&left, pLeft);
1418 plrInit(&right, pRight);
1420 while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
1421 if( plrColumn(&left)<plrColumn(&right) ){
1422 plrStep(&left);
1423 }else if( plrColumn(&left)>plrColumn(&right) ){
1424 plrStep(&right);
1425 }else if( plrPosition(&left)+1<plrPosition(&right) ){
1426 plrStep(&left);
1427 }else if( plrPosition(&left)+1>plrPosition(&right) ){
1428 plrStep(&right);
1429 }else{
1430 if( !match ){
1431 plwInit(&writer, pOut, dlrDocid(pLeft));
1432 match = 1;
1434 plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
1435 plrStep(&left);
1436 plrStep(&right);
1440 if( match ){
1441 plwTerminate(&writer);
1442 plwDestroy(&writer);
1445 plrDestroy(&left);
1446 plrDestroy(&right);
1449 /* We have two doclists with positions: pLeft and pRight.
1450 ** Write the phrase intersection of these two doclists into pOut.
1452 ** A phrase intersection means that two documents only match
1453 ** if pLeft.iPos+1==pRight.iPos.
1455 ** iType controls the type of data written to pOut. If iType is
1456 ** DL_POSITIONS, the positions are those from pRight.
1458 static void docListPhraseMerge(
1459 const char *pLeft, int nLeft,
1460 const char *pRight, int nRight,
1461 DocListType iType,
1462 DataBuffer *pOut /* Write the combined doclist here */
1464 DLReader left, right;
1465 DLWriter writer;
1467 if( nLeft==0 || nRight==0 ) return;
1469 assert( iType!=DL_POSITIONS_OFFSETS );
1471 dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
1472 dlrInit(&right, DL_POSITIONS, pRight, nRight);
1473 dlwInit(&writer, iType, pOut);
1475 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
1476 if( dlrDocid(&left)<dlrDocid(&right) ){
1477 dlrStep(&left);
1478 }else if( dlrDocid(&right)<dlrDocid(&left) ){
1479 dlrStep(&right);
1480 }else{
1481 posListPhraseMerge(&left, &right, &writer);
1482 dlrStep(&left);
1483 dlrStep(&right);
1487 dlrDestroy(&left);
1488 dlrDestroy(&right);
1489 dlwDestroy(&writer);
1492 /* We have two DL_DOCIDS doclists: pLeft and pRight.
1493 ** Write the intersection of these two doclists into pOut as a
1494 ** DL_DOCIDS doclist.
1496 static void docListAndMerge(
1497 const char *pLeft, int nLeft,
1498 const char *pRight, int nRight,
1499 DataBuffer *pOut /* Write the combined doclist here */
1501 DLReader left, right;
1502 DLWriter writer;
1504 if( nLeft==0 || nRight==0 ) return;
1506 dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1507 dlrInit(&right, DL_DOCIDS, pRight, nRight);
1508 dlwInit(&writer, DL_DOCIDS, pOut);
1510 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
1511 if( dlrDocid(&left)<dlrDocid(&right) ){
1512 dlrStep(&left);
1513 }else if( dlrDocid(&right)<dlrDocid(&left) ){
1514 dlrStep(&right);
1515 }else{
1516 dlwAdd(&writer, dlrDocid(&left));
1517 dlrStep(&left);
1518 dlrStep(&right);
1522 dlrDestroy(&left);
1523 dlrDestroy(&right);
1524 dlwDestroy(&writer);
1527 /* We have two DL_DOCIDS doclists: pLeft and pRight.
1528 ** Write the union of these two doclists into pOut as a
1529 ** DL_DOCIDS doclist.
1531 static void docListOrMerge(
1532 const char *pLeft, int nLeft,
1533 const char *pRight, int nRight,
1534 DataBuffer *pOut /* Write the combined doclist here */
1536 DLReader left, right;
1537 DLWriter writer;
1539 if( nLeft==0 ){
1540 if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
1541 return;
1543 if( nRight==0 ){
1544 dataBufferAppend(pOut, pLeft, nLeft);
1545 return;
1548 dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1549 dlrInit(&right, DL_DOCIDS, pRight, nRight);
1550 dlwInit(&writer, DL_DOCIDS, pOut);
1552 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
1553 if( dlrAtEnd(&right) ){
1554 dlwAdd(&writer, dlrDocid(&left));
1555 dlrStep(&left);
1556 }else if( dlrAtEnd(&left) ){
1557 dlwAdd(&writer, dlrDocid(&right));
1558 dlrStep(&right);
1559 }else if( dlrDocid(&left)<dlrDocid(&right) ){
1560 dlwAdd(&writer, dlrDocid(&left));
1561 dlrStep(&left);
1562 }else if( dlrDocid(&right)<dlrDocid(&left) ){
1563 dlwAdd(&writer, dlrDocid(&right));
1564 dlrStep(&right);
1565 }else{
1566 dlwAdd(&writer, dlrDocid(&left));
1567 dlrStep(&left);
1568 dlrStep(&right);
1572 dlrDestroy(&left);
1573 dlrDestroy(&right);
1574 dlwDestroy(&writer);
1577 /* We have two DL_DOCIDS doclists: pLeft and pRight.
1578 ** Write into pOut as DL_DOCIDS doclist containing all documents that
1579 ** occur in pLeft but not in pRight.
1581 static void docListExceptMerge(
1582 const char *pLeft, int nLeft,
1583 const char *pRight, int nRight,
1584 DataBuffer *pOut /* Write the combined doclist here */
1586 DLReader left, right;
1587 DLWriter writer;
1589 if( nLeft==0 ) return;
1590 if( nRight==0 ){
1591 dataBufferAppend(pOut, pLeft, nLeft);
1592 return;
1595 dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1596 dlrInit(&right, DL_DOCIDS, pRight, nRight);
1597 dlwInit(&writer, DL_DOCIDS, pOut);
1599 while( !dlrAtEnd(&left) ){
1600 while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
1601 dlrStep(&right);
1603 if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
1604 dlwAdd(&writer, dlrDocid(&left));
1606 dlrStep(&left);
1609 dlrDestroy(&left);
1610 dlrDestroy(&right);
1611 dlwDestroy(&writer);
1614 static char *string_dup_n(const char *s, int n){
1615 char *str = sqlite3_malloc(n + 1);
1616 memcpy(str, s, n);
1617 str[n] = '\0';
1618 return str;
1621 /* Duplicate a string; the caller must free() the returned string.
1622 * (We don't use strdup() since it is not part of the standard C library and
1623 * may not be available everywhere.) */
1624 static char *string_dup(const char *s){
1625 return string_dup_n(s, strlen(s));
1628 /* Format a string, replacing each occurrence of the % character with
1629 * zDb.zName. This may be more convenient than sqlite_mprintf()
1630 * when one string is used repeatedly in a format string.
1631 * The caller must free() the returned string. */
1632 static char *string_format(const char *zFormat,
1633 const char *zDb, const char *zName){
1634 const char *p;
1635 size_t len = 0;
1636 size_t nDb = strlen(zDb);
1637 size_t nName = strlen(zName);
1638 size_t nFullTableName = nDb+1+nName;
1639 char *result;
1640 char *r;
1642 /* first compute length needed */
1643 for(p = zFormat ; *p ; ++p){
1644 len += (*p=='%' ? nFullTableName : 1);
1646 len += 1; /* for null terminator */
1648 r = result = sqlite3_malloc(len);
1649 for(p = zFormat; *p; ++p){
1650 if( *p=='%' ){
1651 memcpy(r, zDb, nDb);
1652 r += nDb;
1653 *r++ = '.';
1654 memcpy(r, zName, nName);
1655 r += nName;
1656 } else {
1657 *r++ = *p;
1660 *r++ = '\0';
1661 assert( r == result + len );
1662 return result;
1665 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
1666 const char *zFormat){
1667 char *zCommand = string_format(zFormat, zDb, zName);
1668 int rc;
1669 TRACE(("FTS2 sql: %s\n", zCommand));
1670 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
1671 sqlite3_free(zCommand);
1672 return rc;
1675 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
1676 sqlite3_stmt **ppStmt, const char *zFormat){
1677 char *zCommand = string_format(zFormat, zDb, zName);
1678 int rc;
1679 TRACE(("FTS2 prepare: %s\n", zCommand));
1680 rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
1681 sqlite3_free(zCommand);
1682 return rc;
1685 /* end utility functions */
1687 /* Forward reference */
1688 typedef struct fulltext_vtab fulltext_vtab;
1690 /* A single term in a query is represented by an instances of
1691 ** the following structure.
1693 typedef struct QueryTerm {
1694 short int nPhrase; /* How many following terms are part of the same phrase */
1695 short int iPhrase; /* This is the i-th term of a phrase. */
1696 short int iColumn; /* Column of the index that must match this term */
1697 signed char isOr; /* this term is preceded by "OR" */
1698 signed char isNot; /* this term is preceded by "-" */
1699 signed char isPrefix; /* this term is followed by "*" */
1700 char *pTerm; /* text of the term. '\000' terminated. malloced */
1701 int nTerm; /* Number of bytes in pTerm[] */
1702 } QueryTerm;
1705 /* A query string is parsed into a Query structure.
1707 * We could, in theory, allow query strings to be complicated
1708 * nested expressions with precedence determined by parentheses.
1709 * But none of the major search engines do this. (Perhaps the
1710 * feeling is that an parenthesized expression is two complex of
1711 * an idea for the average user to grasp.) Taking our lead from
1712 * the major search engines, we will allow queries to be a list
1713 * of terms (with an implied AND operator) or phrases in double-quotes,
1714 * with a single optional "-" before each non-phrase term to designate
1715 * negation and an optional OR connector.
1717 * OR binds more tightly than the implied AND, which is what the
1718 * major search engines seem to do. So, for example:
1720 * [one two OR three] ==> one AND (two OR three)
1721 * [one OR two three] ==> (one OR two) AND three
1723 * A "-" before a term matches all entries that lack that term.
1724 * The "-" must occur immediately before the term with in intervening
1725 * space. This is how the search engines do it.
1727 * A NOT term cannot be the right-hand operand of an OR. If this
1728 * occurs in the query string, the NOT is ignored:
1730 * [one OR -two] ==> one OR two
1733 typedef struct Query {
1734 fulltext_vtab *pFts; /* The full text index */
1735 int nTerms; /* Number of terms in the query */
1736 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
1737 int nextIsOr; /* Set the isOr flag on the next inserted term */
1738 int nextColumn; /* Next word parsed must be in this column */
1739 int dfltColumn; /* The default column */
1740 } Query;
1744 ** An instance of the following structure keeps track of generated
1745 ** matching-word offset information and snippets.
1747 typedef struct Snippet {
1748 int nMatch; /* Total number of matches */
1749 int nAlloc; /* Space allocated for aMatch[] */
1750 struct snippetMatch { /* One entry for each matching term */
1751 char snStatus; /* Status flag for use while constructing snippets */
1752 short int iCol; /* The column that contains the match */
1753 short int iTerm; /* The index in Query.pTerms[] of the matching term */
1754 short int nByte; /* Number of bytes in the term */
1755 int iStart; /* The offset to the first character of the term */
1756 } *aMatch; /* Points to space obtained from malloc */
1757 char *zOffset; /* Text rendering of aMatch[] */
1758 int nOffset; /* strlen(zOffset) */
1759 char *zSnippet; /* Snippet text */
1760 int nSnippet; /* strlen(zSnippet) */
1761 } Snippet;
1764 typedef enum QueryType {
1765 QUERY_GENERIC, /* table scan */
1766 QUERY_ROWID, /* lookup by rowid */
1767 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
1768 } QueryType;
1770 typedef enum fulltext_statement {
1771 CONTENT_INSERT_STMT,
1772 CONTENT_SELECT_STMT,
1773 CONTENT_UPDATE_STMT,
1774 CONTENT_DELETE_STMT,
1775 CONTENT_EXISTS_STMT,
1777 BLOCK_INSERT_STMT,
1778 BLOCK_SELECT_STMT,
1779 BLOCK_DELETE_STMT,
1780 BLOCK_DELETE_ALL_STMT,
1782 SEGDIR_MAX_INDEX_STMT,
1783 SEGDIR_SET_STMT,
1784 SEGDIR_SELECT_LEVEL_STMT,
1785 SEGDIR_SPAN_STMT,
1786 SEGDIR_DELETE_STMT,
1787 SEGDIR_SELECT_SEGMENT_STMT,
1788 SEGDIR_SELECT_ALL_STMT,
1789 SEGDIR_DELETE_ALL_STMT,
1790 SEGDIR_COUNT_STMT,
1792 MAX_STMT /* Always at end! */
1793 } fulltext_statement;
1795 /* These must exactly match the enum above. */
1796 /* TODO(shess): Is there some risk that a statement will be used in two
1797 ** cursors at once, e.g. if a query joins a virtual table to itself?
1798 ** If so perhaps we should move some of these to the cursor object.
1800 static const char *const fulltext_zStatement[MAX_STMT] = {
1801 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
1802 /* CONTENT_SELECT */ "select * from %_content where rowid = ?",
1803 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
1804 /* CONTENT_DELETE */ "delete from %_content where rowid = ?",
1805 /* CONTENT_EXISTS */ "select rowid from %_content limit 1",
1807 /* BLOCK_INSERT */ "insert into %_segments values (?)",
1808 /* BLOCK_SELECT */ "select block from %_segments where rowid = ?",
1809 /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?",
1810 /* BLOCK_DELETE_ALL */ "delete from %_segments",
1812 /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
1813 /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
1814 /* SEGDIR_SELECT_LEVEL */
1815 "select start_block, leaves_end_block, root from %_segdir "
1816 " where level = ? order by idx",
1817 /* SEGDIR_SPAN */
1818 "select min(start_block), max(end_block) from %_segdir "
1819 " where level = ? and start_block <> 0",
1820 /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
1822 /* NOTE(shess): The first three results of the following two
1823 ** statements must match.
1825 /* SEGDIR_SELECT_SEGMENT */
1826 "select start_block, leaves_end_block, root from %_segdir "
1827 " where level = ? and idx = ?",
1828 /* SEGDIR_SELECT_ALL */
1829 "select start_block, leaves_end_block, root from %_segdir "
1830 " order by level desc, idx asc",
1831 /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
1832 /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
1836 ** A connection to a fulltext index is an instance of the following
1837 ** structure. The xCreate and xConnect methods create an instance
1838 ** of this structure and xDestroy and xDisconnect free that instance.
1839 ** All other methods receive a pointer to the structure as one of their
1840 ** arguments.
1842 struct fulltext_vtab {
1843 sqlite3_vtab base; /* Base class used by SQLite core */
1844 sqlite3 *db; /* The database connection */
1845 const char *zDb; /* logical database name */
1846 const char *zName; /* virtual table name */
1847 int nColumn; /* number of columns in virtual table */
1848 char **azColumn; /* column names. malloced */
1849 char **azContentColumn; /* column names in content table; malloced */
1850 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
1852 /* Precompiled statements which we keep as long as the table is
1853 ** open.
1855 sqlite3_stmt *pFulltextStatements[MAX_STMT];
1857 /* Precompiled statements used for segment merges. We run a
1858 ** separate select across the leaf level of each tree being merged.
1860 sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
1861 /* The statement used to prepare pLeafSelectStmts. */
1862 #define LEAF_SELECT \
1863 "select block from %_segments where rowid between ? and ? order by rowid"
1865 /* These buffer pending index updates during transactions.
1866 ** nPendingData estimates the memory size of the pending data. It
1867 ** doesn't include the hash-bucket overhead, nor any malloc
1868 ** overhead. When nPendingData exceeds kPendingThreshold, the
1869 ** buffer is flushed even before the transaction closes.
1870 ** pendingTerms stores the data, and is only valid when nPendingData
1871 ** is >=0 (nPendingData<0 means pendingTerms has not been
1872 ** initialized). iPrevDocid is the last docid written, used to make
1873 ** certain we're inserting in sorted order.
1875 int nPendingData;
1876 #define kPendingThreshold (1*1024*1024)
1877 sqlite_int64 iPrevDocid;
1878 fts2Hash pendingTerms;
1882 ** When the core wants to do a query, it create a cursor using a
1883 ** call to xOpen. This structure is an instance of a cursor. It
1884 ** is destroyed by xClose.
1886 typedef struct fulltext_cursor {
1887 sqlite3_vtab_cursor base; /* Base class used by SQLite core */
1888 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
1889 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
1890 int eof; /* True if at End Of Results */
1891 Query q; /* Parsed query string */
1892 Snippet snippet; /* Cached snippet for the current row */
1893 int iColumn; /* Column being searched */
1894 DataBuffer result; /* Doclist results from fulltextQuery */
1895 DLReader reader; /* Result reader if result not empty */
1896 } fulltext_cursor;
1898 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
1899 return (fulltext_vtab *) c->base.pVtab;
1902 static const sqlite3_module fts2Module; /* forward declaration */
1904 /* Return a dynamically generated statement of the form
1905 * insert into %_content (rowid, ...) values (?, ...)
1907 static const char *contentInsertStatement(fulltext_vtab *v){
1908 StringBuffer sb;
1909 int i;
1911 initStringBuffer(&sb);
1912 append(&sb, "insert into %_content (rowid, ");
1913 appendList(&sb, v->nColumn, v->azContentColumn);
1914 append(&sb, ") values (?");
1915 for(i=0; i<v->nColumn; ++i)
1916 append(&sb, ", ?");
1917 append(&sb, ")");
1918 return stringBufferData(&sb);
1921 /* Return a dynamically generated statement of the form
1922 * update %_content set [col_0] = ?, [col_1] = ?, ...
1923 * where rowid = ?
1925 static const char *contentUpdateStatement(fulltext_vtab *v){
1926 StringBuffer sb;
1927 int i;
1929 initStringBuffer(&sb);
1930 append(&sb, "update %_content set ");
1931 for(i=0; i<v->nColumn; ++i) {
1932 if( i>0 ){
1933 append(&sb, ", ");
1935 append(&sb, v->azContentColumn[i]);
1936 append(&sb, " = ?");
1938 append(&sb, " where rowid = ?");
1939 return stringBufferData(&sb);
1942 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
1943 ** If the indicated statement has never been prepared, it is prepared
1944 ** and cached, otherwise the cached version is reset.
1946 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
1947 sqlite3_stmt **ppStmt){
1948 assert( iStmt<MAX_STMT );
1949 if( v->pFulltextStatements[iStmt]==NULL ){
1950 const char *zStmt;
1951 int rc;
1952 switch( iStmt ){
1953 case CONTENT_INSERT_STMT:
1954 zStmt = contentInsertStatement(v); break;
1955 case CONTENT_UPDATE_STMT:
1956 zStmt = contentUpdateStatement(v); break;
1957 default:
1958 zStmt = fulltext_zStatement[iStmt];
1960 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
1961 zStmt);
1962 if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
1963 if( rc!=SQLITE_OK ) return rc;
1964 } else {
1965 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
1966 if( rc!=SQLITE_OK ) return rc;
1969 *ppStmt = v->pFulltextStatements[iStmt];
1970 return SQLITE_OK;
1973 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
1974 ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
1975 ** where we expect no results.
1977 static int sql_single_step(sqlite3_stmt *s){
1978 int rc = sqlite3_step(s);
1979 return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
1982 /* Like sql_get_statement(), but for special replicated LEAF_SELECT
1983 ** statements. idx -1 is a special case for an uncached version of
1984 ** the statement (used in the optimize implementation).
1986 /* TODO(shess) Write version for generic statements and then share
1987 ** that between the cached-statement functions.
1989 static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
1990 sqlite3_stmt **ppStmt){
1991 assert( idx>=-1 && idx<MERGE_COUNT );
1992 if( idx==-1 ){
1993 return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
1994 }else if( v->pLeafSelectStmts[idx]==NULL ){
1995 int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
1996 LEAF_SELECT);
1997 if( rc!=SQLITE_OK ) return rc;
1998 }else{
1999 int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
2000 if( rc!=SQLITE_OK ) return rc;
2003 *ppStmt = v->pLeafSelectStmts[idx];
2004 return SQLITE_OK;
2007 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */
2008 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid,
2009 sqlite3_value **pValues){
2010 sqlite3_stmt *s;
2011 int i;
2012 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
2013 if( rc!=SQLITE_OK ) return rc;
2015 rc = sqlite3_bind_value(s, 1, rowid);
2016 if( rc!=SQLITE_OK ) return rc;
2018 for(i=0; i<v->nColumn; ++i){
2019 rc = sqlite3_bind_value(s, 2+i, pValues[i]);
2020 if( rc!=SQLITE_OK ) return rc;
2023 return sql_single_step(s);
2026 /* update %_content set col0 = pValues[0], col1 = pValues[1], ...
2027 * where rowid = [iRowid] */
2028 static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
2029 sqlite_int64 iRowid){
2030 sqlite3_stmt *s;
2031 int i;
2032 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
2033 if( rc!=SQLITE_OK ) return rc;
2035 for(i=0; i<v->nColumn; ++i){
2036 rc = sqlite3_bind_value(s, 1+i, pValues[i]);
2037 if( rc!=SQLITE_OK ) return rc;
2040 rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid);
2041 if( rc!=SQLITE_OK ) return rc;
2043 return sql_single_step(s);
2046 static void freeStringArray(int nString, const char **pString){
2047 int i;
2049 for (i=0 ; i < nString ; ++i) {
2050 if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
2052 sqlite3_free((void *) pString);
2055 /* select * from %_content where rowid = [iRow]
2056 * The caller must delete the returned array and all strings in it.
2057 * null fields will be NULL in the returned array.
2059 * TODO: Perhaps we should return pointer/length strings here for consistency
2060 * with other code which uses pointer/length. */
2061 static int content_select(fulltext_vtab *v, sqlite_int64 iRow,
2062 const char ***pValues){
2063 sqlite3_stmt *s;
2064 const char **values;
2065 int i;
2066 int rc;
2068 *pValues = NULL;
2070 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
2071 if( rc!=SQLITE_OK ) return rc;
2073 rc = sqlite3_bind_int64(s, 1, iRow);
2074 if( rc!=SQLITE_OK ) return rc;
2076 rc = sqlite3_step(s);
2077 if( rc!=SQLITE_ROW ) return rc;
2079 values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
2080 for(i=0; i<v->nColumn; ++i){
2081 if( sqlite3_column_type(s, i)==SQLITE_NULL ){
2082 values[i] = NULL;
2083 }else{
2084 values[i] = string_dup((char*)sqlite3_column_text(s, i));
2088 /* We expect only one row. We must execute another sqlite3_step()
2089 * to complete the iteration; otherwise the table will remain locked. */
2090 rc = sqlite3_step(s);
2091 if( rc==SQLITE_DONE ){
2092 *pValues = values;
2093 return SQLITE_OK;
2096 freeStringArray(v->nColumn, values);
2097 return rc;
2100 /* delete from %_content where rowid = [iRow ] */
2101 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){
2102 sqlite3_stmt *s;
2103 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
2104 if( rc!=SQLITE_OK ) return rc;
2106 rc = sqlite3_bind_int64(s, 1, iRow);
2107 if( rc!=SQLITE_OK ) return rc;
2109 return sql_single_step(s);
2112 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
2113 ** no rows exist, and any error in case of failure.
2115 static int content_exists(fulltext_vtab *v){
2116 sqlite3_stmt *s;
2117 int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
2118 if( rc!=SQLITE_OK ) return rc;
2120 rc = sqlite3_step(s);
2121 if( rc!=SQLITE_ROW ) return rc;
2123 /* We expect only one row. We must execute another sqlite3_step()
2124 * to complete the iteration; otherwise the table will remain locked. */
2125 rc = sqlite3_step(s);
2126 if( rc==SQLITE_DONE ) return SQLITE_ROW;
2127 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2128 return rc;
2131 /* insert into %_segments values ([pData])
2132 ** returns assigned rowid in *piBlockid
2134 static int block_insert(fulltext_vtab *v, const char *pData, int nData,
2135 sqlite_int64 *piBlockid){
2136 sqlite3_stmt *s;
2137 int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
2138 if( rc!=SQLITE_OK ) return rc;
2140 rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
2141 if( rc!=SQLITE_OK ) return rc;
2143 rc = sqlite3_step(s);
2144 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2145 if( rc!=SQLITE_DONE ) return rc;
2147 *piBlockid = sqlite3_last_insert_rowid(v->db);
2148 return SQLITE_OK;
2151 /* delete from %_segments
2152 ** where rowid between [iStartBlockid] and [iEndBlockid]
2154 ** Deletes the range of blocks, inclusive, used to delete the blocks
2155 ** which form a segment.
2157 static int block_delete(fulltext_vtab *v,
2158 sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
2159 sqlite3_stmt *s;
2160 int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
2161 if( rc!=SQLITE_OK ) return rc;
2163 rc = sqlite3_bind_int64(s, 1, iStartBlockid);
2164 if( rc!=SQLITE_OK ) return rc;
2166 rc = sqlite3_bind_int64(s, 2, iEndBlockid);
2167 if( rc!=SQLITE_OK ) return rc;
2169 return sql_single_step(s);
2172 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
2173 ** at iLevel. Returns SQLITE_DONE if there are no segments at
2174 ** iLevel. Otherwise returns an error.
2176 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
2177 sqlite3_stmt *s;
2178 int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
2179 if( rc!=SQLITE_OK ) return rc;
2181 rc = sqlite3_bind_int(s, 1, iLevel);
2182 if( rc!=SQLITE_OK ) return rc;
2184 rc = sqlite3_step(s);
2185 /* Should always get at least one row due to how max() works. */
2186 if( rc==SQLITE_DONE ) return SQLITE_DONE;
2187 if( rc!=SQLITE_ROW ) return rc;
2189 /* NULL means that there were no inputs to max(). */
2190 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
2191 rc = sqlite3_step(s);
2192 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2193 return rc;
2196 *pidx = sqlite3_column_int(s, 0);
2198 /* We expect only one row. We must execute another sqlite3_step()
2199 * to complete the iteration; otherwise the table will remain locked. */
2200 rc = sqlite3_step(s);
2201 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2202 if( rc!=SQLITE_DONE ) return rc;
2203 return SQLITE_ROW;
2206 /* insert into %_segdir values (
2207 ** [iLevel], [idx],
2208 ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
2209 ** [pRootData]
2210 ** )
2212 static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
2213 sqlite_int64 iStartBlockid,
2214 sqlite_int64 iLeavesEndBlockid,
2215 sqlite_int64 iEndBlockid,
2216 const char *pRootData, int nRootData){
2217 sqlite3_stmt *s;
2218 int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
2219 if( rc!=SQLITE_OK ) return rc;
2221 rc = sqlite3_bind_int(s, 1, iLevel);
2222 if( rc!=SQLITE_OK ) return rc;
2224 rc = sqlite3_bind_int(s, 2, idx);
2225 if( rc!=SQLITE_OK ) return rc;
2227 rc = sqlite3_bind_int64(s, 3, iStartBlockid);
2228 if( rc!=SQLITE_OK ) return rc;
2230 rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
2231 if( rc!=SQLITE_OK ) return rc;
2233 rc = sqlite3_bind_int64(s, 5, iEndBlockid);
2234 if( rc!=SQLITE_OK ) return rc;
2236 rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
2237 if( rc!=SQLITE_OK ) return rc;
2239 return sql_single_step(s);
2242 /* Queries %_segdir for the block span of the segments in level
2243 ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
2244 ** SQLITE_ROW if there are blocks, else an error.
2246 static int segdir_span(fulltext_vtab *v, int iLevel,
2247 sqlite_int64 *piStartBlockid,
2248 sqlite_int64 *piEndBlockid){
2249 sqlite3_stmt *s;
2250 int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
2251 if( rc!=SQLITE_OK ) return rc;
2253 rc = sqlite3_bind_int(s, 1, iLevel);
2254 if( rc!=SQLITE_OK ) return rc;
2256 rc = sqlite3_step(s);
2257 if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
2258 if( rc!=SQLITE_ROW ) return rc;
2260 /* This happens if all segments at this level are entirely inline. */
2261 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
2262 /* We expect only one row. We must execute another sqlite3_step()
2263 * to complete the iteration; otherwise the table will remain locked. */
2264 int rc2 = sqlite3_step(s);
2265 if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
2266 return rc2;
2269 *piStartBlockid = sqlite3_column_int64(s, 0);
2270 *piEndBlockid = sqlite3_column_int64(s, 1);
2272 /* We expect only one row. We must execute another sqlite3_step()
2273 * to complete the iteration; otherwise the table will remain locked. */
2274 rc = sqlite3_step(s);
2275 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2276 if( rc!=SQLITE_DONE ) return rc;
2277 return SQLITE_ROW;
2280 /* Delete the segment blocks and segment directory records for all
2281 ** segments at iLevel.
2283 static int segdir_delete(fulltext_vtab *v, int iLevel){
2284 sqlite3_stmt *s;
2285 sqlite_int64 iStartBlockid, iEndBlockid;
2286 int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
2287 if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
2289 if( rc==SQLITE_ROW ){
2290 rc = block_delete(v, iStartBlockid, iEndBlockid);
2291 if( rc!=SQLITE_OK ) return rc;
2294 /* Delete the segment directory itself. */
2295 rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
2296 if( rc!=SQLITE_OK ) return rc;
2298 rc = sqlite3_bind_int64(s, 1, iLevel);
2299 if( rc!=SQLITE_OK ) return rc;
2301 return sql_single_step(s);
2304 /* Delete entire fts index, SQLITE_OK on success, relevant error on
2305 ** failure.
2307 static int segdir_delete_all(fulltext_vtab *v){
2308 sqlite3_stmt *s;
2309 int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
2310 if( rc!=SQLITE_OK ) return rc;
2312 rc = sql_single_step(s);
2313 if( rc!=SQLITE_OK ) return rc;
2315 rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
2316 if( rc!=SQLITE_OK ) return rc;
2318 return sql_single_step(s);
2321 /* Returns SQLITE_OK with *pnSegments set to the number of entries in
2322 ** %_segdir and *piMaxLevel set to the highest level which has a
2323 ** segment. Otherwise returns the SQLite error which caused failure.
2325 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
2326 sqlite3_stmt *s;
2327 int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
2328 if( rc!=SQLITE_OK ) return rc;
2330 rc = sqlite3_step(s);
2331 /* TODO(shess): This case should not be possible? Should stronger
2332 ** measures be taken if it happens?
2334 if( rc==SQLITE_DONE ){
2335 *pnSegments = 0;
2336 *piMaxLevel = 0;
2337 return SQLITE_OK;
2339 if( rc!=SQLITE_ROW ) return rc;
2341 *pnSegments = sqlite3_column_int(s, 0);
2342 *piMaxLevel = sqlite3_column_int(s, 1);
2344 /* We expect only one row. We must execute another sqlite3_step()
2345 * to complete the iteration; otherwise the table will remain locked. */
2346 rc = sqlite3_step(s);
2347 if( rc==SQLITE_DONE ) return SQLITE_OK;
2348 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2349 return rc;
2352 /* TODO(shess) clearPendingTerms() is far down the file because
2353 ** writeZeroSegment() is far down the file because LeafWriter is far
2354 ** down the file. Consider refactoring the code to move the non-vtab
2355 ** code above the vtab code so that we don't need this forward
2356 ** reference.
2358 static int clearPendingTerms(fulltext_vtab *v);
2361 ** Free the memory used to contain a fulltext_vtab structure.
2363 static void fulltext_vtab_destroy(fulltext_vtab *v){
2364 int iStmt, i;
2366 TRACE(("FTS2 Destroy %p\n", v));
2367 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
2368 if( v->pFulltextStatements[iStmt]!=NULL ){
2369 sqlite3_finalize(v->pFulltextStatements[iStmt]);
2370 v->pFulltextStatements[iStmt] = NULL;
2374 for( i=0; i<MERGE_COUNT; i++ ){
2375 if( v->pLeafSelectStmts[i]!=NULL ){
2376 sqlite3_finalize(v->pLeafSelectStmts[i]);
2377 v->pLeafSelectStmts[i] = NULL;
2381 if( v->pTokenizer!=NULL ){
2382 v->pTokenizer->pModule->xDestroy(v->pTokenizer);
2383 v->pTokenizer = NULL;
2386 clearPendingTerms(v);
2388 sqlite3_free(v->azColumn);
2389 for(i = 0; i < v->nColumn; ++i) {
2390 sqlite3_free(v->azContentColumn[i]);
2392 sqlite3_free(v->azContentColumn);
2393 sqlite3_free(v);
2397 ** Token types for parsing the arguments to xConnect or xCreate.
2399 #define TOKEN_EOF 0 /* End of file */
2400 #define TOKEN_SPACE 1 /* Any kind of whitespace */
2401 #define TOKEN_ID 2 /* An identifier */
2402 #define TOKEN_STRING 3 /* A string literal */
2403 #define TOKEN_PUNCT 4 /* A single punctuation character */
2406 ** If X is a character that can be used in an identifier then
2407 ** IdChar(X) will be true. Otherwise it is false.
2409 ** For ASCII, any character with the high-order bit set is
2410 ** allowed in an identifier. For 7-bit characters,
2411 ** sqlite3IsIdChar[X] must be 1.
2413 ** Ticket #1066. the SQL standard does not allow '$' in the
2414 ** middle of identfiers. But many SQL implementations do.
2415 ** SQLite will allow '$' in identifiers for compatibility.
2416 ** But the feature is undocumented.
2418 static const char isIdChar[] = {
2419 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
2420 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
2421 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
2422 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
2423 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
2424 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
2425 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
2427 #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20]))
2431 ** Return the length of the token that begins at z[0].
2432 ** Store the token type in *tokenType before returning.
2434 static int getToken(const char *z, int *tokenType){
2435 int i, c;
2436 switch( *z ){
2437 case 0: {
2438 *tokenType = TOKEN_EOF;
2439 return 0;
2441 case ' ': case '\t': case '\n': case '\f': case '\r': {
2442 for(i=1; safe_isspace(z[i]); i++){}
2443 *tokenType = TOKEN_SPACE;
2444 return i;
2446 case '`':
2447 case '\'':
2448 case '"': {
2449 int delim = z[0];
2450 for(i=1; (c=z[i])!=0; i++){
2451 if( c==delim ){
2452 if( z[i+1]==delim ){
2453 i++;
2454 }else{
2455 break;
2459 *tokenType = TOKEN_STRING;
2460 return i + (c!=0);
2462 case '[': {
2463 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
2464 *tokenType = TOKEN_ID;
2465 return i;
2467 default: {
2468 if( !IdChar(*z) ){
2469 break;
2471 for(i=1; IdChar(z[i]); i++){}
2472 *tokenType = TOKEN_ID;
2473 return i;
2476 *tokenType = TOKEN_PUNCT;
2477 return 1;
2481 ** A token extracted from a string is an instance of the following
2482 ** structure.
2484 typedef struct Token {
2485 const char *z; /* Pointer to token text. Not '\000' terminated */
2486 short int n; /* Length of the token text in bytes. */
2487 } Token;
2490 ** Given a input string (which is really one of the argv[] parameters
2491 ** passed into xConnect or xCreate) split the string up into tokens.
2492 ** Return an array of pointers to '\000' terminated strings, one string
2493 ** for each non-whitespace token.
2495 ** The returned array is terminated by a single NULL pointer.
2497 ** Space to hold the returned array is obtained from a single
2498 ** malloc and should be freed by passing the return value to free().
2499 ** The individual strings within the token list are all a part of
2500 ** the single memory allocation and will all be freed at once.
2502 static char **tokenizeString(const char *z, int *pnToken){
2503 int nToken = 0;
2504 Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
2505 int n = 1;
2506 int e, i;
2507 int totalSize = 0;
2508 char **azToken;
2509 char *zCopy;
2510 while( n>0 ){
2511 n = getToken(z, &e);
2512 if( e!=TOKEN_SPACE ){
2513 aToken[nToken].z = z;
2514 aToken[nToken].n = n;
2515 nToken++;
2516 totalSize += n+1;
2518 z += n;
2520 azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
2521 zCopy = (char*)&azToken[nToken];
2522 nToken--;
2523 for(i=0; i<nToken; i++){
2524 azToken[i] = zCopy;
2525 n = aToken[i].n;
2526 memcpy(zCopy, aToken[i].z, n);
2527 zCopy[n] = 0;
2528 zCopy += n+1;
2530 azToken[nToken] = 0;
2531 sqlite3_free(aToken);
2532 *pnToken = nToken;
2533 return azToken;
2537 ** Convert an SQL-style quoted string into a normal string by removing
2538 ** the quote characters. The conversion is done in-place. If the
2539 ** input does not begin with a quote character, then this routine
2540 ** is a no-op.
2542 ** Examples:
2544 ** "abc" becomes abc
2545 ** 'xyz' becomes xyz
2546 ** [pqr] becomes pqr
2547 ** `mno` becomes mno
2549 static void dequoteString(char *z){
2550 int quote;
2551 int i, j;
2552 if( z==0 ) return;
2553 quote = z[0];
2554 switch( quote ){
2555 case '\'': break;
2556 case '"': break;
2557 case '`': break; /* For MySQL compatibility */
2558 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
2559 default: return;
2561 for(i=1, j=0; z[i]; i++){
2562 if( z[i]==quote ){
2563 if( z[i+1]==quote ){
2564 z[j++] = quote;
2565 i++;
2566 }else{
2567 z[j++] = 0;
2568 break;
2570 }else{
2571 z[j++] = z[i];
2577 ** The input azIn is a NULL-terminated list of tokens. Remove the first
2578 ** token and all punctuation tokens. Remove the quotes from
2579 ** around string literal tokens.
2581 ** Example:
2583 ** input: tokenize chinese ( 'simplifed' , 'mixed' )
2584 ** output: chinese simplifed mixed
2586 ** Another example:
2588 ** input: delimiters ( '[' , ']' , '...' )
2589 ** output: [ ] ...
2591 static void tokenListToIdList(char **azIn){
2592 int i, j;
2593 if( azIn ){
2594 for(i=0, j=-1; azIn[i]; i++){
2595 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
2596 dequoteString(azIn[i]);
2597 if( j>=0 ){
2598 azIn[j] = azIn[i];
2600 j++;
2603 azIn[j] = 0;
2609 ** Find the first alphanumeric token in the string zIn. Null-terminate
2610 ** this token. Remove any quotation marks. And return a pointer to
2611 ** the result.
2613 static char *firstToken(char *zIn, char **pzTail){
2614 int n, ttype;
2615 while(1){
2616 n = getToken(zIn, &ttype);
2617 if( ttype==TOKEN_SPACE ){
2618 zIn += n;
2619 }else if( ttype==TOKEN_EOF ){
2620 *pzTail = zIn;
2621 return 0;
2622 }else{
2623 zIn[n] = 0;
2624 *pzTail = &zIn[1];
2625 dequoteString(zIn);
2626 return zIn;
2629 /*NOTREACHED*/
2632 /* Return true if...
2634 ** * s begins with the string t, ignoring case
2635 ** * s is longer than t
2636 ** * The first character of s beyond t is not a alphanumeric
2638 ** Ignore leading space in *s.
2640 ** To put it another way, return true if the first token of
2641 ** s[] is t[].
2643 static int startsWith(const char *s, const char *t){
2644 while( safe_isspace(*s) ){ s++; }
2645 while( *t ){
2646 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
2648 return *s!='_' && !safe_isalnum(*s);
2652 ** An instance of this structure defines the "spec" of a
2653 ** full text index. This structure is populated by parseSpec
2654 ** and use by fulltextConnect and fulltextCreate.
2656 typedef struct TableSpec {
2657 const char *zDb; /* Logical database name */
2658 const char *zName; /* Name of the full-text index */
2659 int nColumn; /* Number of columns to be indexed */
2660 char **azColumn; /* Original names of columns to be indexed */
2661 char **azContentColumn; /* Column names for %_content */
2662 char **azTokenizer; /* Name of tokenizer and its arguments */
2663 } TableSpec;
2666 ** Reclaim all of the memory used by a TableSpec
2668 static void clearTableSpec(TableSpec *p) {
2669 sqlite3_free(p->azColumn);
2670 sqlite3_free(p->azContentColumn);
2671 sqlite3_free(p->azTokenizer);
2674 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
2676 * CREATE VIRTUAL TABLE email
2677 * USING fts2(subject, body, tokenize mytokenizer(myarg))
2679 * We return parsed information in a TableSpec structure.
2682 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
2683 char**pzErr){
2684 int i, n;
2685 char *z, *zDummy;
2686 char **azArg;
2687 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
2689 assert( argc>=3 );
2690 /* Current interface:
2691 ** argv[0] - module name
2692 ** argv[1] - database name
2693 ** argv[2] - table name
2694 ** argv[3..] - columns, optionally followed by tokenizer specification
2695 ** and snippet delimiters specification.
2698 /* Make a copy of the complete argv[][] array in a single allocation.
2699 ** The argv[][] array is read-only and transient. We can write to the
2700 ** copy in order to modify things and the copy is persistent.
2702 CLEAR(pSpec);
2703 for(i=n=0; i<argc; i++){
2704 n += strlen(argv[i]) + 1;
2706 azArg = sqlite3_malloc( sizeof(char*)*argc + n );
2707 if( azArg==0 ){
2708 return SQLITE_NOMEM;
2710 z = (char*)&azArg[argc];
2711 for(i=0; i<argc; i++){
2712 azArg[i] = z;
2713 strcpy(z, argv[i]);
2714 z += strlen(z)+1;
2717 /* Identify the column names and the tokenizer and delimiter arguments
2718 ** in the argv[][] array.
2720 pSpec->zDb = azArg[1];
2721 pSpec->zName = azArg[2];
2722 pSpec->nColumn = 0;
2723 pSpec->azColumn = azArg;
2724 zTokenizer = "tokenize simple";
2725 for(i=3; i<argc; ++i){
2726 if( startsWith(azArg[i],"tokenize") ){
2727 zTokenizer = azArg[i];
2728 }else{
2729 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
2730 pSpec->nColumn++;
2733 if( pSpec->nColumn==0 ){
2734 azArg[0] = "content";
2735 pSpec->nColumn = 1;
2739 ** Construct the list of content column names.
2741 ** Each content column name will be of the form cNNAAAA
2742 ** where NN is the column number and AAAA is the sanitized
2743 ** column name. "sanitized" means that special characters are
2744 ** converted to "_". The cNN prefix guarantees that all column
2745 ** names are unique.
2747 ** The AAAA suffix is not strictly necessary. It is included
2748 ** for the convenience of people who might examine the generated
2749 ** %_content table and wonder what the columns are used for.
2751 pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
2752 if( pSpec->azContentColumn==0 ){
2753 clearTableSpec(pSpec);
2754 return SQLITE_NOMEM;
2756 for(i=0; i<pSpec->nColumn; i++){
2757 char *p;
2758 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
2759 for (p = pSpec->azContentColumn[i]; *p ; ++p) {
2760 if( !safe_isalnum(*p) ) *p = '_';
2765 ** Parse the tokenizer specification string.
2767 pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
2768 tokenListToIdList(pSpec->azTokenizer);
2770 return SQLITE_OK;
2774 ** Generate a CREATE TABLE statement that describes the schema of
2775 ** the virtual table. Return a pointer to this schema string.
2777 ** Space is obtained from sqlite3_mprintf() and should be freed
2778 ** using sqlite3_free().
2780 static char *fulltextSchema(
2781 int nColumn, /* Number of columns */
2782 const char *const* azColumn, /* List of columns */
2783 const char *zTableName /* Name of the table */
2785 int i;
2786 char *zSchema, *zNext;
2787 const char *zSep = "(";
2788 zSchema = sqlite3_mprintf("CREATE TABLE x");
2789 for(i=0; i<nColumn; i++){
2790 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
2791 sqlite3_free(zSchema);
2792 zSchema = zNext;
2793 zSep = ",";
2795 zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName);
2796 sqlite3_free(zSchema);
2797 return zNext;
2801 ** Build a new sqlite3_vtab structure that will describe the
2802 ** fulltext index defined by spec.
2804 static int constructVtab(
2805 sqlite3 *db, /* The SQLite database connection */
2806 fts2Hash *pHash, /* Hash table containing tokenizers */
2807 TableSpec *spec, /* Parsed spec information from parseSpec() */
2808 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
2809 char **pzErr /* Write any error message here */
2811 int rc;
2812 int n;
2813 fulltext_vtab *v = 0;
2814 const sqlite3_tokenizer_module *m = NULL;
2815 char *schema;
2817 char const *zTok; /* Name of tokenizer to use for this fts table */
2818 int nTok; /* Length of zTok, including nul terminator */
2820 v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
2821 if( v==0 ) return SQLITE_NOMEM;
2822 CLEAR(v);
2823 /* sqlite will initialize v->base */
2824 v->db = db;
2825 v->zDb = spec->zDb; /* Freed when azColumn is freed */
2826 v->zName = spec->zName; /* Freed when azColumn is freed */
2827 v->nColumn = spec->nColumn;
2828 v->azContentColumn = spec->azContentColumn;
2829 spec->azContentColumn = 0;
2830 v->azColumn = spec->azColumn;
2831 spec->azColumn = 0;
2833 if( spec->azTokenizer==0 ){
2834 return SQLITE_NOMEM;
2837 zTok = spec->azTokenizer[0];
2838 if( !zTok ){
2839 zTok = "simple";
2841 nTok = strlen(zTok)+1;
2843 m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok);
2844 if( !m ){
2845 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
2846 rc = SQLITE_ERROR;
2847 goto err;
2850 for(n=0; spec->azTokenizer[n]; n++){}
2851 if( n ){
2852 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
2853 &v->pTokenizer);
2854 }else{
2855 rc = m->xCreate(0, 0, &v->pTokenizer);
2857 if( rc!=SQLITE_OK ) goto err;
2858 v->pTokenizer->pModule = m;
2860 /* TODO: verify the existence of backing tables foo_content, foo_term */
2862 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
2863 spec->zName);
2864 rc = sqlite3_declare_vtab(db, schema);
2865 sqlite3_free(schema);
2866 if( rc!=SQLITE_OK ) goto err;
2868 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
2870 /* Indicate that the buffer is not live. */
2871 v->nPendingData = -1;
2873 *ppVTab = &v->base;
2874 TRACE(("FTS2 Connect %p\n", v));
2876 return rc;
2878 err:
2879 fulltext_vtab_destroy(v);
2880 return rc;
2883 static int fulltextConnect(
2884 sqlite3 *db,
2885 void *pAux,
2886 int argc, const char *const*argv,
2887 sqlite3_vtab **ppVTab,
2888 char **pzErr
2890 TableSpec spec;
2891 int rc = parseSpec(&spec, argc, argv, pzErr);
2892 if( rc!=SQLITE_OK ) return rc;
2894 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
2895 clearTableSpec(&spec);
2896 return rc;
2899 /* The %_content table holds the text of each document, with
2900 ** the rowid used as the docid.
2902 /* TODO(shess) This comment needs elaboration to match the updated
2903 ** code. Work it into the top-of-file comment at that time.
2905 static int fulltextCreate(sqlite3 *db, void *pAux,
2906 int argc, const char * const *argv,
2907 sqlite3_vtab **ppVTab, char **pzErr){
2908 int rc;
2909 TableSpec spec;
2910 StringBuffer schema;
2911 TRACE(("FTS2 Create\n"));
2913 rc = parseSpec(&spec, argc, argv, pzErr);
2914 if( rc!=SQLITE_OK ) return rc;
2916 initStringBuffer(&schema);
2917 append(&schema, "CREATE TABLE %_content(");
2918 appendList(&schema, spec.nColumn, spec.azContentColumn);
2919 append(&schema, ")");
2920 rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
2921 stringBufferDestroy(&schema);
2922 if( rc!=SQLITE_OK ) goto out;
2924 rc = sql_exec(db, spec.zDb, spec.zName,
2925 "create table %_segments(block blob);");
2926 if( rc!=SQLITE_OK ) goto out;
2928 rc = sql_exec(db, spec.zDb, spec.zName,
2929 "create table %_segdir("
2930 " level integer,"
2931 " idx integer,"
2932 " start_block integer,"
2933 " leaves_end_block integer,"
2934 " end_block integer,"
2935 " root blob,"
2936 " primary key(level, idx)"
2937 ");");
2938 if( rc!=SQLITE_OK ) goto out;
2940 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
2942 out:
2943 clearTableSpec(&spec);
2944 return rc;
2947 /* Decide how to handle an SQL query. */
2948 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
2949 int i;
2950 TRACE(("FTS2 BestIndex\n"));
2952 for(i=0; i<pInfo->nConstraint; ++i){
2953 const struct sqlite3_index_constraint *pConstraint;
2954 pConstraint = &pInfo->aConstraint[i];
2955 if( pConstraint->usable ) {
2956 if( pConstraint->iColumn==-1 &&
2957 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
2958 pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */
2959 TRACE(("FTS2 QUERY_ROWID\n"));
2960 } else if( pConstraint->iColumn>=0 &&
2961 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
2962 /* full-text search */
2963 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
2964 TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
2965 } else continue;
2967 pInfo->aConstraintUsage[i].argvIndex = 1;
2968 pInfo->aConstraintUsage[i].omit = 1;
2970 /* An arbitrary value for now.
2971 * TODO: Perhaps rowid matches should be considered cheaper than
2972 * full-text searches. */
2973 pInfo->estimatedCost = 1.0;
2975 return SQLITE_OK;
2978 pInfo->idxNum = QUERY_GENERIC;
2979 return SQLITE_OK;
2982 static int fulltextDisconnect(sqlite3_vtab *pVTab){
2983 TRACE(("FTS2 Disconnect %p\n", pVTab));
2984 fulltext_vtab_destroy((fulltext_vtab *)pVTab);
2985 return SQLITE_OK;
2988 static int fulltextDestroy(sqlite3_vtab *pVTab){
2989 fulltext_vtab *v = (fulltext_vtab *)pVTab;
2990 int rc;
2992 TRACE(("FTS2 Destroy %p\n", pVTab));
2993 rc = sql_exec(v->db, v->zDb, v->zName,
2994 "drop table if exists %_content;"
2995 "drop table if exists %_segments;"
2996 "drop table if exists %_segdir;"
2998 if( rc!=SQLITE_OK ) return rc;
3000 fulltext_vtab_destroy((fulltext_vtab *)pVTab);
3001 return SQLITE_OK;
3004 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
3005 fulltext_cursor *c;
3007 c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
3008 if( c ){
3009 memset(c, 0, sizeof(fulltext_cursor));
3010 /* sqlite will initialize c->base */
3011 *ppCursor = &c->base;
3012 TRACE(("FTS2 Open %p: %p\n", pVTab, c));
3013 return SQLITE_OK;
3014 }else{
3015 return SQLITE_NOMEM;
3020 /* Free all of the dynamically allocated memory held by *q
3022 static void queryClear(Query *q){
3023 int i;
3024 for(i = 0; i < q->nTerms; ++i){
3025 sqlite3_free(q->pTerms[i].pTerm);
3027 sqlite3_free(q->pTerms);
3028 CLEAR(q);
3031 /* Free all of the dynamically allocated memory held by the
3032 ** Snippet
3034 static void snippetClear(Snippet *p){
3035 sqlite3_free(p->aMatch);
3036 sqlite3_free(p->zOffset);
3037 sqlite3_free(p->zSnippet);
3038 CLEAR(p);
3041 ** Append a single entry to the p->aMatch[] log.
3043 static void snippetAppendMatch(
3044 Snippet *p, /* Append the entry to this snippet */
3045 int iCol, int iTerm, /* The column and query term */
3046 int iStart, int nByte /* Offset and size of the match */
3048 int i;
3049 struct snippetMatch *pMatch;
3050 if( p->nMatch+1>=p->nAlloc ){
3051 p->nAlloc = p->nAlloc*2 + 10;
3052 p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
3053 if( p->aMatch==0 ){
3054 p->nMatch = 0;
3055 p->nAlloc = 0;
3056 return;
3059 i = p->nMatch++;
3060 pMatch = &p->aMatch[i];
3061 pMatch->iCol = iCol;
3062 pMatch->iTerm = iTerm;
3063 pMatch->iStart = iStart;
3064 pMatch->nByte = nByte;
3068 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
3070 #define FTS2_ROTOR_SZ (32)
3071 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1)
3074 ** Add entries to pSnippet->aMatch[] for every match that occurs against
3075 ** document zDoc[0..nDoc-1] which is stored in column iColumn.
3077 static void snippetOffsetsOfColumn(
3078 Query *pQuery,
3079 Snippet *pSnippet,
3080 int iColumn,
3081 const char *zDoc,
3082 int nDoc
3084 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
3085 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
3086 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
3087 fulltext_vtab *pVtab; /* The full text index */
3088 int nColumn; /* Number of columns in the index */
3089 const QueryTerm *aTerm; /* Query string terms */
3090 int nTerm; /* Number of query string terms */
3091 int i, j; /* Loop counters */
3092 int rc; /* Return code */
3093 unsigned int match, prevMatch; /* Phrase search bitmasks */
3094 const char *zToken; /* Next token from the tokenizer */
3095 int nToken; /* Size of zToken */
3096 int iBegin, iEnd, iPos; /* Offsets of beginning and end */
3098 /* The following variables keep a circular buffer of the last
3099 ** few tokens */
3100 unsigned int iRotor = 0; /* Index of current token */
3101 int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */
3102 int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */
3104 pVtab = pQuery->pFts;
3105 nColumn = pVtab->nColumn;
3106 pTokenizer = pVtab->pTokenizer;
3107 pTModule = pTokenizer->pModule;
3108 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
3109 if( rc ) return;
3110 pTCursor->pTokenizer = pTokenizer;
3111 aTerm = pQuery->pTerms;
3112 nTerm = pQuery->nTerms;
3113 if( nTerm>=FTS2_ROTOR_SZ ){
3114 nTerm = FTS2_ROTOR_SZ - 1;
3116 prevMatch = 0;
3117 while(1){
3118 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
3119 if( rc ) break;
3120 iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin;
3121 iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin;
3122 match = 0;
3123 for(i=0; i<nTerm; i++){
3124 int iCol;
3125 iCol = aTerm[i].iColumn;
3126 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
3127 if( aTerm[i].nTerm>nToken ) continue;
3128 if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
3129 assert( aTerm[i].nTerm<=nToken );
3130 if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
3131 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
3132 match |= 1<<i;
3133 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
3134 for(j=aTerm[i].iPhrase-1; j>=0; j--){
3135 int k = (iRotor-j) & FTS2_ROTOR_MASK;
3136 snippetAppendMatch(pSnippet, iColumn, i-j,
3137 iRotorBegin[k], iRotorLen[k]);
3141 prevMatch = match<<1;
3142 iRotor++;
3144 pTModule->xClose(pTCursor);
3149 ** Compute all offsets for the current row of the query.
3150 ** If the offsets have already been computed, this routine is a no-op.
3152 static void snippetAllOffsets(fulltext_cursor *p){
3153 int nColumn;
3154 int iColumn, i;
3155 int iFirst, iLast;
3156 fulltext_vtab *pFts;
3158 if( p->snippet.nMatch ) return;
3159 if( p->q.nTerms==0 ) return;
3160 pFts = p->q.pFts;
3161 nColumn = pFts->nColumn;
3162 iColumn = (p->iCursorType - QUERY_FULLTEXT);
3163 if( iColumn<0 || iColumn>=nColumn ){
3164 iFirst = 0;
3165 iLast = nColumn-1;
3166 }else{
3167 iFirst = iColumn;
3168 iLast = iColumn;
3170 for(i=iFirst; i<=iLast; i++){
3171 const char *zDoc;
3172 int nDoc;
3173 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
3174 nDoc = sqlite3_column_bytes(p->pStmt, i+1);
3175 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
3180 ** Convert the information in the aMatch[] array of the snippet
3181 ** into the string zOffset[0..nOffset-1].
3183 static void snippetOffsetText(Snippet *p){
3184 int i;
3185 int cnt = 0;
3186 StringBuffer sb;
3187 char zBuf[200];
3188 if( p->zOffset ) return;
3189 initStringBuffer(&sb);
3190 for(i=0; i<p->nMatch; i++){
3191 struct snippetMatch *pMatch = &p->aMatch[i];
3192 zBuf[0] = ' ';
3193 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
3194 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
3195 append(&sb, zBuf);
3196 cnt++;
3198 p->zOffset = stringBufferData(&sb);
3199 p->nOffset = stringBufferLength(&sb);
3203 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
3204 ** of matching words some of which might be in zDoc. zDoc is column
3205 ** number iCol.
3207 ** iBreak is suggested spot in zDoc where we could begin or end an
3208 ** excerpt. Return a value similar to iBreak but possibly adjusted
3209 ** to be a little left or right so that the break point is better.
3211 static int wordBoundary(
3212 int iBreak, /* The suggested break point */
3213 const char *zDoc, /* Document text */
3214 int nDoc, /* Number of bytes in zDoc[] */
3215 struct snippetMatch *aMatch, /* Matching words */
3216 int nMatch, /* Number of entries in aMatch[] */
3217 int iCol /* The column number for zDoc[] */
3219 int i;
3220 if( iBreak<=10 ){
3221 return 0;
3223 if( iBreak>=nDoc-10 ){
3224 return nDoc;
3226 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
3227 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
3228 if( i<nMatch ){
3229 if( aMatch[i].iStart<iBreak+10 ){
3230 return aMatch[i].iStart;
3232 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
3233 return aMatch[i-1].iStart;
3236 for(i=1; i<=10; i++){
3237 if( safe_isspace(zDoc[iBreak-i]) ){
3238 return iBreak - i + 1;
3240 if( safe_isspace(zDoc[iBreak+i]) ){
3241 return iBreak + i + 1;
3244 return iBreak;
3250 ** Allowed values for Snippet.aMatch[].snStatus
3252 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
3253 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
3256 ** Generate the text of a snippet.
3258 static void snippetText(
3259 fulltext_cursor *pCursor, /* The cursor we need the snippet for */
3260 const char *zStartMark, /* Markup to appear before each match */
3261 const char *zEndMark, /* Markup to appear after each match */
3262 const char *zEllipsis /* Ellipsis mark */
3264 int i, j;
3265 struct snippetMatch *aMatch;
3266 int nMatch;
3267 int nDesired;
3268 StringBuffer sb;
3269 int tailCol;
3270 int tailOffset;
3271 int iCol;
3272 int nDoc;
3273 const char *zDoc;
3274 int iStart, iEnd;
3275 int tailEllipsis = 0;
3276 int iMatch;
3279 sqlite3_free(pCursor->snippet.zSnippet);
3280 pCursor->snippet.zSnippet = 0;
3281 aMatch = pCursor->snippet.aMatch;
3282 nMatch = pCursor->snippet.nMatch;
3283 initStringBuffer(&sb);
3285 for(i=0; i<nMatch; i++){
3286 aMatch[i].snStatus = SNIPPET_IGNORE;
3288 nDesired = 0;
3289 for(i=0; i<pCursor->q.nTerms; i++){
3290 for(j=0; j<nMatch; j++){
3291 if( aMatch[j].iTerm==i ){
3292 aMatch[j].snStatus = SNIPPET_DESIRED;
3293 nDesired++;
3294 break;
3299 iMatch = 0;
3300 tailCol = -1;
3301 tailOffset = 0;
3302 for(i=0; i<nMatch && nDesired>0; i++){
3303 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
3304 nDesired--;
3305 iCol = aMatch[i].iCol;
3306 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
3307 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
3308 iStart = aMatch[i].iStart - 40;
3309 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
3310 if( iStart<=10 ){
3311 iStart = 0;
3313 if( iCol==tailCol && iStart<=tailOffset+20 ){
3314 iStart = tailOffset;
3316 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
3317 trimWhiteSpace(&sb);
3318 appendWhiteSpace(&sb);
3319 append(&sb, zEllipsis);
3320 appendWhiteSpace(&sb);
3322 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
3323 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
3324 if( iEnd>=nDoc-10 ){
3325 iEnd = nDoc;
3326 tailEllipsis = 0;
3327 }else{
3328 tailEllipsis = 1;
3330 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
3331 while( iStart<iEnd ){
3332 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
3333 && aMatch[iMatch].iCol<=iCol ){
3334 iMatch++;
3336 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
3337 && aMatch[iMatch].iCol==iCol ){
3338 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
3339 iStart = aMatch[iMatch].iStart;
3340 append(&sb, zStartMark);
3341 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
3342 append(&sb, zEndMark);
3343 iStart += aMatch[iMatch].nByte;
3344 for(j=iMatch+1; j<nMatch; j++){
3345 if( aMatch[j].iTerm==aMatch[iMatch].iTerm
3346 && aMatch[j].snStatus==SNIPPET_DESIRED ){
3347 nDesired--;
3348 aMatch[j].snStatus = SNIPPET_IGNORE;
3351 }else{
3352 nappend(&sb, &zDoc[iStart], iEnd - iStart);
3353 iStart = iEnd;
3356 tailCol = iCol;
3357 tailOffset = iEnd;
3359 trimWhiteSpace(&sb);
3360 if( tailEllipsis ){
3361 appendWhiteSpace(&sb);
3362 append(&sb, zEllipsis);
3364 pCursor->snippet.zSnippet = stringBufferData(&sb);
3365 pCursor->snippet.nSnippet = stringBufferLength(&sb);
3370 ** Close the cursor. For additional information see the documentation
3371 ** on the xClose method of the virtual table interface.
3373 static int fulltextClose(sqlite3_vtab_cursor *pCursor){
3374 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3375 TRACE(("FTS2 Close %p\n", c));
3376 sqlite3_finalize(c->pStmt);
3377 queryClear(&c->q);
3378 snippetClear(&c->snippet);
3379 if( c->result.nData!=0 ) dlrDestroy(&c->reader);
3380 dataBufferDestroy(&c->result);
3381 sqlite3_free(c);
3382 return SQLITE_OK;
3385 static int fulltextNext(sqlite3_vtab_cursor *pCursor){
3386 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3387 int rc;
3389 TRACE(("FTS2 Next %p\n", pCursor));
3390 snippetClear(&c->snippet);
3391 if( c->iCursorType < QUERY_FULLTEXT ){
3392 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
3393 rc = sqlite3_step(c->pStmt);
3394 switch( rc ){
3395 case SQLITE_ROW:
3396 c->eof = 0;
3397 return SQLITE_OK;
3398 case SQLITE_DONE:
3399 c->eof = 1;
3400 return SQLITE_OK;
3401 default:
3402 c->eof = 1;
3403 return rc;
3405 } else { /* full-text query */
3406 rc = sqlite3_reset(c->pStmt);
3407 if( rc!=SQLITE_OK ) return rc;
3409 if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
3410 c->eof = 1;
3411 return SQLITE_OK;
3413 rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
3414 dlrStep(&c->reader);
3415 if( rc!=SQLITE_OK ) return rc;
3416 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
3417 rc = sqlite3_step(c->pStmt);
3418 if( rc==SQLITE_ROW ){ /* the case we expect */
3419 c->eof = 0;
3420 return SQLITE_OK;
3422 /* an error occurred; abort */
3423 return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
3428 /* TODO(shess) If we pushed LeafReader to the top of the file, or to
3429 ** another file, term_select() could be pushed above
3430 ** docListOfTerm().
3432 static int termSelect(fulltext_vtab *v, int iColumn,
3433 const char *pTerm, int nTerm, int isPrefix,
3434 DocListType iType, DataBuffer *out);
3436 /* Return a DocList corresponding to the query term *pTerm. If *pTerm
3437 ** is the first term of a phrase query, go ahead and evaluate the phrase
3438 ** query and return the doclist for the entire phrase query.
3440 ** The resulting DL_DOCIDS doclist is stored in pResult, which is
3441 ** overwritten.
3443 static int docListOfTerm(
3444 fulltext_vtab *v, /* The full text index */
3445 int iColumn, /* column to restrict to. No restriction if >=nColumn */
3446 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
3447 DataBuffer *pResult /* Write the result here */
3449 DataBuffer left, right, new;
3450 int i, rc;
3452 /* No phrase search if no position info. */
3453 assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
3455 /* This code should never be called with buffered updates. */
3456 assert( v->nPendingData<0 );
3458 dataBufferInit(&left, 0);
3459 rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
3460 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left);
3461 if( rc ) return rc;
3462 for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
3463 dataBufferInit(&right, 0);
3464 rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
3465 pQTerm[i].isPrefix, DL_POSITIONS, &right);
3466 if( rc ){
3467 dataBufferDestroy(&left);
3468 return rc;
3470 dataBufferInit(&new, 0);
3471 docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
3472 i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new);
3473 dataBufferDestroy(&left);
3474 dataBufferDestroy(&right);
3475 left = new;
3477 *pResult = left;
3478 return SQLITE_OK;
3481 /* Add a new term pTerm[0..nTerm-1] to the query *q.
3483 static void queryAdd(Query *q, const char *pTerm, int nTerm){
3484 QueryTerm *t;
3485 ++q->nTerms;
3486 q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
3487 if( q->pTerms==0 ){
3488 q->nTerms = 0;
3489 return;
3491 t = &q->pTerms[q->nTerms - 1];
3492 CLEAR(t);
3493 t->pTerm = sqlite3_malloc(nTerm+1);
3494 memcpy(t->pTerm, pTerm, nTerm);
3495 t->pTerm[nTerm] = 0;
3496 t->nTerm = nTerm;
3497 t->isOr = q->nextIsOr;
3498 t->isPrefix = 0;
3499 q->nextIsOr = 0;
3500 t->iColumn = q->nextColumn;
3501 q->nextColumn = q->dfltColumn;
3505 ** Check to see if the string zToken[0...nToken-1] matches any
3506 ** column name in the virtual table. If it does,
3507 ** return the zero-indexed column number. If not, return -1.
3509 static int checkColumnSpecifier(
3510 fulltext_vtab *pVtab, /* The virtual table */
3511 const char *zToken, /* Text of the token */
3512 int nToken /* Number of characters in the token */
3514 int i;
3515 for(i=0; i<pVtab->nColumn; i++){
3516 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
3517 && pVtab->azColumn[i][nToken]==0 ){
3518 return i;
3521 return -1;
3525 ** Parse the text at pSegment[0..nSegment-1]. Add additional terms
3526 ** to the query being assemblied in pQuery.
3528 ** inPhrase is true if pSegment[0..nSegement-1] is contained within
3529 ** double-quotes. If inPhrase is true, then the first term
3530 ** is marked with the number of terms in the phrase less one and
3531 ** OR and "-" syntax is ignored. If inPhrase is false, then every
3532 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
3534 static int tokenizeSegment(
3535 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
3536 const char *pSegment, int nSegment, /* Query expression being parsed */
3537 int inPhrase, /* True if within "..." */
3538 Query *pQuery /* Append results here */
3540 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
3541 sqlite3_tokenizer_cursor *pCursor;
3542 int firstIndex = pQuery->nTerms;
3543 int iCol;
3544 int nTerm = 1;
3546 int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
3547 if( rc!=SQLITE_OK ) return rc;
3548 pCursor->pTokenizer = pTokenizer;
3550 while( 1 ){
3551 const char *pToken;
3552 int nToken, iBegin, iEnd, iPos;
3554 rc = pModule->xNext(pCursor,
3555 &pToken, &nToken,
3556 &iBegin, &iEnd, &iPos);
3557 if( rc!=SQLITE_OK ) break;
3558 if( !inPhrase &&
3559 pSegment[iEnd]==':' &&
3560 (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
3561 pQuery->nextColumn = iCol;
3562 continue;
3564 if( !inPhrase && pQuery->nTerms>0 && nToken==2
3565 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){
3566 pQuery->nextIsOr = 1;
3567 continue;
3569 queryAdd(pQuery, pToken, nToken);
3570 if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
3571 pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
3573 if( iEnd<nSegment && pSegment[iEnd]=='*' ){
3574 pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
3576 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
3577 if( inPhrase ){
3578 nTerm++;
3582 if( inPhrase && pQuery->nTerms>firstIndex ){
3583 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
3586 return pModule->xClose(pCursor);
3589 /* Parse a query string, yielding a Query object pQuery.
3591 ** The calling function will need to queryClear() to clean up
3592 ** the dynamically allocated memory held by pQuery.
3594 static int parseQuery(
3595 fulltext_vtab *v, /* The fulltext index */
3596 const char *zInput, /* Input text of the query string */
3597 int nInput, /* Size of the input text */
3598 int dfltColumn, /* Default column of the index to match against */
3599 Query *pQuery /* Write the parse results here. */
3601 int iInput, inPhrase = 0;
3603 if( zInput==0 ) nInput = 0;
3604 if( nInput<0 ) nInput = strlen(zInput);
3605 pQuery->nTerms = 0;
3606 pQuery->pTerms = NULL;
3607 pQuery->nextIsOr = 0;
3608 pQuery->nextColumn = dfltColumn;
3609 pQuery->dfltColumn = dfltColumn;
3610 pQuery->pFts = v;
3612 for(iInput=0; iInput<nInput; ++iInput){
3613 int i;
3614 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
3615 if( i>iInput ){
3616 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
3617 pQuery);
3619 iInput = i;
3620 if( i<nInput ){
3621 assert( zInput[i]=='"' );
3622 inPhrase = !inPhrase;
3626 if( inPhrase ){
3627 /* unmatched quote */
3628 queryClear(pQuery);
3629 return SQLITE_ERROR;
3631 return SQLITE_OK;
3634 /* TODO(shess) Refactor the code to remove this forward decl. */
3635 static int flushPendingTerms(fulltext_vtab *v);
3637 /* Perform a full-text query using the search expression in
3638 ** zInput[0..nInput-1]. Return a list of matching documents
3639 ** in pResult.
3641 ** Queries must match column iColumn. Or if iColumn>=nColumn
3642 ** they are allowed to match against any column.
3644 static int fulltextQuery(
3645 fulltext_vtab *v, /* The full text index */
3646 int iColumn, /* Match against this column by default */
3647 const char *zInput, /* The query string */
3648 int nInput, /* Number of bytes in zInput[] */
3649 DataBuffer *pResult, /* Write the result doclist here */
3650 Query *pQuery /* Put parsed query string here */
3652 int i, iNext, rc;
3653 DataBuffer left, right, or, new;
3654 int nNot = 0;
3655 QueryTerm *aTerm;
3657 /* TODO(shess) Instead of flushing pendingTerms, we could query for
3658 ** the relevant term and merge the doclist into what we receive from
3659 ** the database. Wait and see if this is a common issue, first.
3661 ** A good reason not to flush is to not generate update-related
3662 ** error codes from here.
3665 /* Flush any buffered updates before executing the query. */
3666 rc = flushPendingTerms(v);
3667 if( rc!=SQLITE_OK ) return rc;
3669 /* TODO(shess) I think that the queryClear() calls below are not
3670 ** necessary, because fulltextClose() already clears the query.
3672 rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
3673 if( rc!=SQLITE_OK ) return rc;
3675 /* Empty or NULL queries return no results. */
3676 if( pQuery->nTerms==0 ){
3677 dataBufferInit(pResult, 0);
3678 return SQLITE_OK;
3681 /* Merge AND terms. */
3682 /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
3683 aTerm = pQuery->pTerms;
3684 for(i = 0; i<pQuery->nTerms; i=iNext){
3685 if( aTerm[i].isNot ){
3686 /* Handle all NOT terms in a separate pass */
3687 nNot++;
3688 iNext = i + aTerm[i].nPhrase+1;
3689 continue;
3691 iNext = i + aTerm[i].nPhrase + 1;
3692 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
3693 if( rc ){
3694 if( i!=nNot ) dataBufferDestroy(&left);
3695 queryClear(pQuery);
3696 return rc;
3698 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
3699 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
3700 iNext += aTerm[iNext].nPhrase + 1;
3701 if( rc ){
3702 if( i!=nNot ) dataBufferDestroy(&left);
3703 dataBufferDestroy(&right);
3704 queryClear(pQuery);
3705 return rc;
3707 dataBufferInit(&new, 0);
3708 docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
3709 dataBufferDestroy(&right);
3710 dataBufferDestroy(&or);
3711 right = new;
3713 if( i==nNot ){ /* first term processed. */
3714 left = right;
3715 }else{
3716 dataBufferInit(&new, 0);
3717 docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
3718 dataBufferDestroy(&right);
3719 dataBufferDestroy(&left);
3720 left = new;
3724 if( nNot==pQuery->nTerms ){
3725 /* We do not yet know how to handle a query of only NOT terms */
3726 return SQLITE_ERROR;
3729 /* Do the EXCEPT terms */
3730 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
3731 if( !aTerm[i].isNot ) continue;
3732 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
3733 if( rc ){
3734 queryClear(pQuery);
3735 dataBufferDestroy(&left);
3736 return rc;
3738 dataBufferInit(&new, 0);
3739 docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
3740 dataBufferDestroy(&right);
3741 dataBufferDestroy(&left);
3742 left = new;
3745 *pResult = left;
3746 return rc;
3750 ** This is the xFilter interface for the virtual table. See
3751 ** the virtual table xFilter method documentation for additional
3752 ** information.
3754 ** If idxNum==QUERY_GENERIC then do a full table scan against
3755 ** the %_content table.
3757 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry
3758 ** in the %_content table.
3760 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The
3761 ** column on the left-hand side of the MATCH operator is column
3762 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
3763 ** side of the MATCH operator.
3765 /* TODO(shess) Upgrade the cursor initialization and destruction to
3766 ** account for fulltextFilter() being called multiple times on the
3767 ** same cursor. The current solution is very fragile. Apply fix to
3768 ** fts2 as appropriate.
3770 static int fulltextFilter(
3771 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3772 int idxNum, const char *idxStr, /* Which indexing scheme to use */
3773 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
3775 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3776 fulltext_vtab *v = cursor_vtab(c);
3777 int rc;
3779 TRACE(("FTS2 Filter %p\n",pCursor));
3781 /* If the cursor has a statement that was not prepared according to
3782 ** idxNum, clear it. I believe all calls to fulltextFilter with a
3783 ** given cursor will have the same idxNum , but in this case it's
3784 ** easy to be safe.
3786 if( c->pStmt && c->iCursorType!=idxNum ){
3787 sqlite3_finalize(c->pStmt);
3788 c->pStmt = NULL;
3791 /* Get a fresh statement appropriate to idxNum. */
3792 /* TODO(shess): Add a prepared-statement cache in the vt structure.
3793 ** The cache must handle multiple open cursors. Easier to cache the
3794 ** statement variants at the vt to reduce malloc/realloc/free here.
3795 ** Or we could have a StringBuffer variant which allowed stack
3796 ** construction for small values.
3798 if( !c->pStmt ){
3799 char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s",
3800 idxNum==QUERY_GENERIC ? "" : "where rowid=?");
3801 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql);
3802 sqlite3_free(zSql);
3803 if( rc!=SQLITE_OK ) return rc;
3804 c->iCursorType = idxNum;
3805 }else{
3806 sqlite3_reset(c->pStmt);
3807 assert( c->iCursorType==idxNum );
3810 switch( idxNum ){
3811 case QUERY_GENERIC:
3812 break;
3814 case QUERY_ROWID:
3815 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
3816 if( rc!=SQLITE_OK ) return rc;
3817 break;
3819 default: /* full-text search */
3821 const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
3822 assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
3823 assert( argc==1 );
3824 queryClear(&c->q);
3825 if( c->result.nData!=0 ){
3826 /* This case happens if the same cursor is used repeatedly. */
3827 dlrDestroy(&c->reader);
3828 dataBufferReset(&c->result);
3829 }else{
3830 dataBufferInit(&c->result, 0);
3832 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
3833 if( rc!=SQLITE_OK ) return rc;
3834 if( c->result.nData!=0 ){
3835 dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
3837 break;
3841 return fulltextNext(pCursor);
3844 /* This is the xEof method of the virtual table. The SQLite core
3845 ** calls this routine to find out if it has reached the end of
3846 ** a query's results set.
3848 static int fulltextEof(sqlite3_vtab_cursor *pCursor){
3849 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3850 return c->eof;
3853 /* This is the xColumn method of the virtual table. The SQLite
3854 ** core calls this method during a query when it needs the value
3855 ** of a column from the virtual table. This method needs to use
3856 ** one of the sqlite3_result_*() routines to store the requested
3857 ** value back in the pContext.
3859 static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
3860 sqlite3_context *pContext, int idxCol){
3861 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3862 fulltext_vtab *v = cursor_vtab(c);
3864 if( idxCol<v->nColumn ){
3865 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
3866 sqlite3_result_value(pContext, pVal);
3867 }else if( idxCol==v->nColumn ){
3868 /* The extra column whose name is the same as the table.
3869 ** Return a blob which is a pointer to the cursor
3871 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
3873 return SQLITE_OK;
3876 /* This is the xRowid method. The SQLite core calls this routine to
3877 ** retrive the rowid for the current row of the result set. The
3878 ** rowid should be written to *pRowid.
3880 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3881 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3883 *pRowid = sqlite3_column_int64(c->pStmt, 0);
3884 return SQLITE_OK;
3887 /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
3888 ** we also store positions and offsets in the hash table using that
3889 ** column number.
3891 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
3892 const char *zText, int iColumn){
3893 sqlite3_tokenizer *pTokenizer = v->pTokenizer;
3894 sqlite3_tokenizer_cursor *pCursor;
3895 const char *pToken;
3896 int nTokenBytes;
3897 int iStartOffset, iEndOffset, iPosition;
3898 int rc;
3900 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
3901 if( rc!=SQLITE_OK ) return rc;
3903 pCursor->pTokenizer = pTokenizer;
3904 while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
3905 &pToken, &nTokenBytes,
3906 &iStartOffset, &iEndOffset,
3907 &iPosition)) ){
3908 DLCollector *p;
3909 int nData; /* Size of doclist before our update. */
3911 /* Positions can't be negative; we use -1 as a terminator
3912 * internally. Token can't be NULL or empty. */
3913 if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
3914 rc = SQLITE_ERROR;
3915 break;
3918 p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes);
3919 if( p==NULL ){
3920 nData = 0;
3921 p = dlcNew(iDocid, DL_DEFAULT);
3922 fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
3924 /* Overhead for our hash table entry, the key, and the value. */
3925 v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes;
3926 }else{
3927 nData = p->b.nData;
3928 if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
3930 if( iColumn>=0 ){
3931 dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
3934 /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
3935 v->nPendingData += p->b.nData-nData;
3938 /* TODO(shess) Check return? Should this be able to cause errors at
3939 ** this point? Actually, same question about sqlite3_finalize(),
3940 ** though one could argue that failure there means that the data is
3941 ** not durable. *ponder*
3943 pTokenizer->pModule->xClose(pCursor);
3944 if( SQLITE_DONE == rc ) return SQLITE_OK;
3945 return rc;
3948 /* Add doclists for all terms in [pValues] to pendingTerms table. */
3949 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid,
3950 sqlite3_value **pValues){
3951 int i;
3952 for(i = 0; i < v->nColumn ; ++i){
3953 char *zText = (char*)sqlite3_value_text(pValues[i]);
3954 int rc = buildTerms(v, iRowid, zText, i);
3955 if( rc!=SQLITE_OK ) return rc;
3957 return SQLITE_OK;
3960 /* Add empty doclists for all terms in the given row's content to
3961 ** pendingTerms.
3963 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){
3964 const char **pValues;
3965 int i, rc;
3967 /* TODO(shess) Should we allow such tables at all? */
3968 if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
3970 rc = content_select(v, iRowid, &pValues);
3971 if( rc!=SQLITE_OK ) return rc;
3973 for(i = 0 ; i < v->nColumn; ++i) {
3974 rc = buildTerms(v, iRowid, pValues[i], -1);
3975 if( rc!=SQLITE_OK ) break;
3978 freeStringArray(v->nColumn, pValues);
3979 return SQLITE_OK;
3982 /* TODO(shess) Refactor the code to remove this forward decl. */
3983 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
3985 /* Insert a row into the %_content table; set *piRowid to be the ID of the
3986 ** new row. Add doclists for terms to pendingTerms.
3988 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid,
3989 sqlite3_value **pValues, sqlite_int64 *piRowid){
3990 int rc;
3992 rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */
3993 if( rc!=SQLITE_OK ) return rc;
3995 *piRowid = sqlite3_last_insert_rowid(v->db);
3996 rc = initPendingTerms(v, *piRowid);
3997 if( rc!=SQLITE_OK ) return rc;
3999 return insertTerms(v, *piRowid, pValues);
4002 /* Delete a row from the %_content table; add empty doclists for terms
4003 ** to pendingTerms.
4005 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
4006 int rc = initPendingTerms(v, iRow);
4007 if( rc!=SQLITE_OK ) return rc;
4009 rc = deleteTerms(v, iRow);
4010 if( rc!=SQLITE_OK ) return rc;
4012 return content_delete(v, iRow); /* execute an SQL DELETE */
4015 /* Update a row in the %_content table; add delete doclists to
4016 ** pendingTerms for old terms not in the new data, add insert doclists
4017 ** to pendingTerms for terms in the new data.
4019 static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
4020 sqlite3_value **pValues){
4021 int rc = initPendingTerms(v, iRow);
4022 if( rc!=SQLITE_OK ) return rc;
4024 /* Generate an empty doclist for each term that previously appeared in this
4025 * row. */
4026 rc = deleteTerms(v, iRow);
4027 if( rc!=SQLITE_OK ) return rc;
4029 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
4030 if( rc!=SQLITE_OK ) return rc;
4032 /* Now add positions for terms which appear in the updated row. */
4033 return insertTerms(v, iRow, pValues);
4036 /*******************************************************************/
4037 /* InteriorWriter is used to collect terms and block references into
4038 ** interior nodes in %_segments. See commentary at top of file for
4039 ** format.
4042 /* How large interior nodes can grow. */
4043 #define INTERIOR_MAX 2048
4045 /* Minimum number of terms per interior node (except the root). This
4046 ** prevents large terms from making the tree too skinny - must be >0
4047 ** so that the tree always makes progress. Note that the min tree
4048 ** fanout will be INTERIOR_MIN_TERMS+1.
4050 #define INTERIOR_MIN_TERMS 7
4051 #if INTERIOR_MIN_TERMS<1
4052 # error INTERIOR_MIN_TERMS must be greater than 0.
4053 #endif
4055 /* ROOT_MAX controls how much data is stored inline in the segment
4056 ** directory.
4058 /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
4059 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
4060 ** can both see it, but if the caller passed it in, we wouldn't even
4061 ** need a define.
4063 #define ROOT_MAX 1024
4064 #if ROOT_MAX<VARINT_MAX*2
4065 # error ROOT_MAX must have enough space for a header.
4066 #endif
4068 /* InteriorBlock stores a linked-list of interior blocks while a lower
4069 ** layer is being constructed.
4071 typedef struct InteriorBlock {
4072 DataBuffer term; /* Leftmost term in block's subtree. */
4073 DataBuffer data; /* Accumulated data for the block. */
4074 struct InteriorBlock *next;
4075 } InteriorBlock;
4077 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
4078 const char *pTerm, int nTerm){
4079 InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
4080 char c[VARINT_MAX+VARINT_MAX];
4081 int n;
4083 if( block ){
4084 memset(block, 0, sizeof(*block));
4085 dataBufferInit(&block->term, 0);
4086 dataBufferReplace(&block->term, pTerm, nTerm);
4088 n = putVarint(c, iHeight);
4089 n += putVarint(c+n, iChildBlock);
4090 dataBufferInit(&block->data, INTERIOR_MAX);
4091 dataBufferReplace(&block->data, c, n);
4093 return block;
4096 #ifndef NDEBUG
4097 /* Verify that the data is readable as an interior node. */
4098 static void interiorBlockValidate(InteriorBlock *pBlock){
4099 const char *pData = pBlock->data.pData;
4100 int nData = pBlock->data.nData;
4101 int n, iDummy;
4102 sqlite_int64 iBlockid;
4104 assert( nData>0 );
4105 assert( pData!=0 );
4106 assert( pData+nData>pData );
4108 /* Must lead with height of node as a varint(n), n>0 */
4109 n = getVarint32(pData, &iDummy);
4110 assert( n>0 );
4111 assert( iDummy>0 );
4112 assert( n<nData );
4113 pData += n;
4114 nData -= n;
4116 /* Must contain iBlockid. */
4117 n = getVarint(pData, &iBlockid);
4118 assert( n>0 );
4119 assert( n<=nData );
4120 pData += n;
4121 nData -= n;
4123 /* Zero or more terms of positive length */
4124 if( nData!=0 ){
4125 /* First term is not delta-encoded. */
4126 n = getVarint32(pData, &iDummy);
4127 assert( n>0 );
4128 assert( iDummy>0 );
4129 assert( n+iDummy>0);
4130 assert( n+iDummy<=nData );
4131 pData += n+iDummy;
4132 nData -= n+iDummy;
4134 /* Following terms delta-encoded. */
4135 while( nData!=0 ){
4136 /* Length of shared prefix. */
4137 n = getVarint32(pData, &iDummy);
4138 assert( n>0 );
4139 assert( iDummy>=0 );
4140 assert( n<nData );
4141 pData += n;
4142 nData -= n;
4144 /* Length and data of distinct suffix. */
4145 n = getVarint32(pData, &iDummy);
4146 assert( n>0 );
4147 assert( iDummy>0 );
4148 assert( n+iDummy>0);
4149 assert( n+iDummy<=nData );
4150 pData += n+iDummy;
4151 nData -= n+iDummy;
4155 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
4156 #else
4157 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
4158 #endif
4160 typedef struct InteriorWriter {
4161 int iHeight; /* from 0 at leaves. */
4162 InteriorBlock *first, *last;
4163 struct InteriorWriter *parentWriter;
4165 DataBuffer term; /* Last term written to block "last". */
4166 sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
4167 #ifndef NDEBUG
4168 sqlite_int64 iLastChildBlock; /* for consistency checks. */
4169 #endif
4170 } InteriorWriter;
4172 /* Initialize an interior node where pTerm[nTerm] marks the leftmost
4173 ** term in the tree. iChildBlock is the leftmost child block at the
4174 ** next level down the tree.
4176 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
4177 sqlite_int64 iChildBlock,
4178 InteriorWriter *pWriter){
4179 InteriorBlock *block;
4180 assert( iHeight>0 );
4181 CLEAR(pWriter);
4183 pWriter->iHeight = iHeight;
4184 pWriter->iOpeningChildBlock = iChildBlock;
4185 #ifndef NDEBUG
4186 pWriter->iLastChildBlock = iChildBlock;
4187 #endif
4188 block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
4189 pWriter->last = pWriter->first = block;
4190 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
4191 dataBufferInit(&pWriter->term, 0);
4194 /* Append the child node rooted at iChildBlock to the interior node,
4195 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
4197 static void interiorWriterAppend(InteriorWriter *pWriter,
4198 const char *pTerm, int nTerm,
4199 sqlite_int64 iChildBlock){
4200 char c[VARINT_MAX+VARINT_MAX];
4201 int n, nPrefix = 0;
4203 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
4205 /* The first term written into an interior node is actually
4206 ** associated with the second child added (the first child was added
4207 ** in interiorWriterInit, or in the if clause at the bottom of this
4208 ** function). That term gets encoded straight up, with nPrefix left
4209 ** at 0.
4211 if( pWriter->term.nData==0 ){
4212 n = putVarint(c, nTerm);
4213 }else{
4214 while( nPrefix<pWriter->term.nData &&
4215 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
4216 nPrefix++;
4219 n = putVarint(c, nPrefix);
4220 n += putVarint(c+n, nTerm-nPrefix);
4223 #ifndef NDEBUG
4224 pWriter->iLastChildBlock++;
4225 #endif
4226 assert( pWriter->iLastChildBlock==iChildBlock );
4228 /* Overflow to a new block if the new term makes the current block
4229 ** too big, and the current block already has enough terms.
4231 if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
4232 iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
4233 pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
4234 pTerm, nTerm);
4235 pWriter->last = pWriter->last->next;
4236 pWriter->iOpeningChildBlock = iChildBlock;
4237 dataBufferReset(&pWriter->term);
4238 }else{
4239 dataBufferAppend2(&pWriter->last->data, c, n,
4240 pTerm+nPrefix, nTerm-nPrefix);
4241 dataBufferReplace(&pWriter->term, pTerm, nTerm);
4243 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
4246 /* Free the space used by pWriter, including the linked-list of
4247 ** InteriorBlocks, and parentWriter, if present.
4249 static int interiorWriterDestroy(InteriorWriter *pWriter){
4250 InteriorBlock *block = pWriter->first;
4252 while( block!=NULL ){
4253 InteriorBlock *b = block;
4254 block = block->next;
4255 dataBufferDestroy(&b->term);
4256 dataBufferDestroy(&b->data);
4257 sqlite3_free(b);
4259 if( pWriter->parentWriter!=NULL ){
4260 interiorWriterDestroy(pWriter->parentWriter);
4261 sqlite3_free(pWriter->parentWriter);
4263 dataBufferDestroy(&pWriter->term);
4264 SCRAMBLE(pWriter);
4265 return SQLITE_OK;
4268 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info
4269 ** directly, leaving *piEndBlockid unchanged. Otherwise, flush
4270 ** pWriter to %_segments, building a new layer of interior nodes, and
4271 ** recursively ask for their root into.
4273 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
4274 char **ppRootInfo, int *pnRootInfo,
4275 sqlite_int64 *piEndBlockid){
4276 InteriorBlock *block = pWriter->first;
4277 sqlite_int64 iBlockid = 0;
4278 int rc;
4280 /* If we can fit the segment inline */
4281 if( block==pWriter->last && block->data.nData<ROOT_MAX ){
4282 *ppRootInfo = block->data.pData;
4283 *pnRootInfo = block->data.nData;
4284 return SQLITE_OK;
4287 /* Flush the first block to %_segments, and create a new level of
4288 ** interior node.
4290 ASSERT_VALID_INTERIOR_BLOCK(block);
4291 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
4292 if( rc!=SQLITE_OK ) return rc;
4293 *piEndBlockid = iBlockid;
4295 pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
4296 interiorWriterInit(pWriter->iHeight+1,
4297 block->term.pData, block->term.nData,
4298 iBlockid, pWriter->parentWriter);
4300 /* Flush additional blocks and append to the higher interior
4301 ** node.
4303 for(block=block->next; block!=NULL; block=block->next){
4304 ASSERT_VALID_INTERIOR_BLOCK(block);
4305 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
4306 if( rc!=SQLITE_OK ) return rc;
4307 *piEndBlockid = iBlockid;
4309 interiorWriterAppend(pWriter->parentWriter,
4310 block->term.pData, block->term.nData, iBlockid);
4313 /* Parent node gets the chance to be the root. */
4314 return interiorWriterRootInfo(v, pWriter->parentWriter,
4315 ppRootInfo, pnRootInfo, piEndBlockid);
4318 /****************************************************************/
4319 /* InteriorReader is used to read off the data from an interior node
4320 ** (see comment at top of file for the format).
4322 typedef struct InteriorReader {
4323 const char *pData;
4324 int nData;
4326 DataBuffer term; /* previous term, for decoding term delta. */
4328 sqlite_int64 iBlockid;
4329 } InteriorReader;
4331 static void interiorReaderDestroy(InteriorReader *pReader){
4332 dataBufferDestroy(&pReader->term);
4333 SCRAMBLE(pReader);
4336 /* TODO(shess) The assertions are great, but what if we're in NDEBUG
4337 ** and the blob is empty or otherwise contains suspect data?
4339 static void interiorReaderInit(const char *pData, int nData,
4340 InteriorReader *pReader){
4341 int n, nTerm;
4343 /* Require at least the leading flag byte */
4344 assert( nData>0 );
4345 assert( pData[0]!='\0' );
4347 CLEAR(pReader);
4349 /* Decode the base blockid, and set the cursor to the first term. */
4350 n = getVarint(pData+1, &pReader->iBlockid);
4351 assert( 1+n<=nData );
4352 pReader->pData = pData+1+n;
4353 pReader->nData = nData-(1+n);
4355 /* A single-child interior node (such as when a leaf node was too
4356 ** large for the segment directory) won't have any terms.
4357 ** Otherwise, decode the first term.
4359 if( pReader->nData==0 ){
4360 dataBufferInit(&pReader->term, 0);
4361 }else{
4362 n = getVarint32(pReader->pData, &nTerm);
4363 dataBufferInit(&pReader->term, nTerm);
4364 dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
4365 assert( n+nTerm<=pReader->nData );
4366 pReader->pData += n+nTerm;
4367 pReader->nData -= n+nTerm;
4371 static int interiorReaderAtEnd(InteriorReader *pReader){
4372 return pReader->term.nData==0;
4375 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
4376 return pReader->iBlockid;
4379 static int interiorReaderTermBytes(InteriorReader *pReader){
4380 assert( !interiorReaderAtEnd(pReader) );
4381 return pReader->term.nData;
4383 static const char *interiorReaderTerm(InteriorReader *pReader){
4384 assert( !interiorReaderAtEnd(pReader) );
4385 return pReader->term.pData;
4388 /* Step forward to the next term in the node. */
4389 static void interiorReaderStep(InteriorReader *pReader){
4390 assert( !interiorReaderAtEnd(pReader) );
4392 /* If the last term has been read, signal eof, else construct the
4393 ** next term.
4395 if( pReader->nData==0 ){
4396 dataBufferReset(&pReader->term);
4397 }else{
4398 int n, nPrefix, nSuffix;
4400 n = getVarint32(pReader->pData, &nPrefix);
4401 n += getVarint32(pReader->pData+n, &nSuffix);
4403 /* Truncate the current term and append suffix data. */
4404 pReader->term.nData = nPrefix;
4405 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
4407 assert( n+nSuffix<=pReader->nData );
4408 pReader->pData += n+nSuffix;
4409 pReader->nData -= n+nSuffix;
4411 pReader->iBlockid++;
4414 /* Compare the current term to pTerm[nTerm], returning strcmp-style
4415 ** results. If isPrefix, equality means equal through nTerm bytes.
4417 static int interiorReaderTermCmp(InteriorReader *pReader,
4418 const char *pTerm, int nTerm, int isPrefix){
4419 const char *pReaderTerm = interiorReaderTerm(pReader);
4420 int nReaderTerm = interiorReaderTermBytes(pReader);
4421 int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
4423 if( n==0 ){
4424 if( nReaderTerm>0 ) return -1;
4425 if( nTerm>0 ) return 1;
4426 return 0;
4429 c = memcmp(pReaderTerm, pTerm, n);
4430 if( c!=0 ) return c;
4431 if( isPrefix && n==nTerm ) return 0;
4432 return nReaderTerm - nTerm;
4435 /****************************************************************/
4436 /* LeafWriter is used to collect terms and associated doclist data
4437 ** into leaf blocks in %_segments (see top of file for format info).
4438 ** Expected usage is:
4440 ** LeafWriter writer;
4441 ** leafWriterInit(0, 0, &writer);
4442 ** while( sorted_terms_left_to_process ){
4443 ** // data is doclist data for that term.
4444 ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
4445 ** if( rc!=SQLITE_OK ) goto err;
4446 ** }
4447 ** rc = leafWriterFinalize(v, &writer);
4448 **err:
4449 ** leafWriterDestroy(&writer);
4450 ** return rc;
4452 ** leafWriterStep() may write a collected leaf out to %_segments.
4453 ** leafWriterFinalize() finishes writing any buffered data and stores
4454 ** a root node in %_segdir. leafWriterDestroy() frees all buffers and
4455 ** InteriorWriters allocated as part of writing this segment.
4457 ** TODO(shess) Document leafWriterStepMerge().
4460 /* Put terms with data this big in their own block. */
4461 #define STANDALONE_MIN 1024
4463 /* Keep leaf blocks below this size. */
4464 #define LEAF_MAX 2048
4466 typedef struct LeafWriter {
4467 int iLevel;
4468 int idx;
4469 sqlite_int64 iStartBlockid; /* needed to create the root info */
4470 sqlite_int64 iEndBlockid; /* when we're done writing. */
4472 DataBuffer term; /* previous encoded term */
4473 DataBuffer data; /* encoding buffer */
4475 /* bytes of first term in the current node which distinguishes that
4476 ** term from the last term of the previous node.
4478 int nTermDistinct;
4480 InteriorWriter parentWriter; /* if we overflow */
4481 int has_parent;
4482 } LeafWriter;
4484 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
4485 CLEAR(pWriter);
4486 pWriter->iLevel = iLevel;
4487 pWriter->idx = idx;
4489 dataBufferInit(&pWriter->term, 32);
4491 /* Start out with a reasonably sized block, though it can grow. */
4492 dataBufferInit(&pWriter->data, LEAF_MAX);
4495 #ifndef NDEBUG
4496 /* Verify that the data is readable as a leaf node. */
4497 static void leafNodeValidate(const char *pData, int nData){
4498 int n, iDummy;
4500 if( nData==0 ) return;
4501 assert( nData>0 );
4502 assert( pData!=0 );
4503 assert( pData+nData>pData );
4505 /* Must lead with a varint(0) */
4506 n = getVarint32(pData, &iDummy);
4507 assert( iDummy==0 );
4508 assert( n>0 );
4509 assert( n<nData );
4510 pData += n;
4511 nData -= n;
4513 /* Leading term length and data must fit in buffer. */
4514 n = getVarint32(pData, &iDummy);
4515 assert( n>0 );
4516 assert( iDummy>0 );
4517 assert( n+iDummy>0 );
4518 assert( n+iDummy<nData );
4519 pData += n+iDummy;
4520 nData -= n+iDummy;
4522 /* Leading term's doclist length and data must fit. */
4523 n = getVarint32(pData, &iDummy);
4524 assert( n>0 );
4525 assert( iDummy>0 );
4526 assert( n+iDummy>0 );
4527 assert( n+iDummy<=nData );
4528 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
4529 pData += n+iDummy;
4530 nData -= n+iDummy;
4532 /* Verify that trailing terms and doclists also are readable. */
4533 while( nData!=0 ){
4534 n = getVarint32(pData, &iDummy);
4535 assert( n>0 );
4536 assert( iDummy>=0 );
4537 assert( n<nData );
4538 pData += n;
4539 nData -= n;
4540 n = getVarint32(pData, &iDummy);
4541 assert( n>0 );
4542 assert( iDummy>0 );
4543 assert( n+iDummy>0 );
4544 assert( n+iDummy<nData );
4545 pData += n+iDummy;
4546 nData -= n+iDummy;
4548 n = getVarint32(pData, &iDummy);
4549 assert( n>0 );
4550 assert( iDummy>0 );
4551 assert( n+iDummy>0 );
4552 assert( n+iDummy<=nData );
4553 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
4554 pData += n+iDummy;
4555 nData -= n+iDummy;
4558 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
4559 #else
4560 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
4561 #endif
4563 /* Flush the current leaf node to %_segments, and adding the resulting
4564 ** blockid and the starting term to the interior node which will
4565 ** contain it.
4567 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
4568 int iData, int nData){
4569 sqlite_int64 iBlockid = 0;
4570 const char *pStartingTerm;
4571 int nStartingTerm, rc, n;
4573 /* Must have the leading varint(0) flag, plus at least some
4574 ** valid-looking data.
4576 assert( nData>2 );
4577 assert( iData>=0 );
4578 assert( iData+nData<=pWriter->data.nData );
4579 ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
4581 rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
4582 if( rc!=SQLITE_OK ) return rc;
4583 assert( iBlockid!=0 );
4585 /* Reconstruct the first term in the leaf for purposes of building
4586 ** the interior node.
4588 n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
4589 pStartingTerm = pWriter->data.pData+iData+1+n;
4590 assert( pWriter->data.nData>iData+1+n+nStartingTerm );
4591 assert( pWriter->nTermDistinct>0 );
4592 assert( pWriter->nTermDistinct<=nStartingTerm );
4593 nStartingTerm = pWriter->nTermDistinct;
4595 if( pWriter->has_parent ){
4596 interiorWriterAppend(&pWriter->parentWriter,
4597 pStartingTerm, nStartingTerm, iBlockid);
4598 }else{
4599 interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
4600 &pWriter->parentWriter);
4601 pWriter->has_parent = 1;
4604 /* Track the span of this segment's leaf nodes. */
4605 if( pWriter->iEndBlockid==0 ){
4606 pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
4607 }else{
4608 pWriter->iEndBlockid++;
4609 assert( iBlockid==pWriter->iEndBlockid );
4612 return SQLITE_OK;
4614 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
4615 int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
4616 if( rc!=SQLITE_OK ) return rc;
4618 /* Re-initialize the output buffer. */
4619 dataBufferReset(&pWriter->data);
4621 return SQLITE_OK;
4624 /* Fetch the root info for the segment. If the entire leaf fits
4625 ** within ROOT_MAX, then it will be returned directly, otherwise it
4626 ** will be flushed and the root info will be returned from the
4627 ** interior node. *piEndBlockid is set to the blockid of the last
4628 ** interior or leaf node written to disk (0 if none are written at
4629 ** all).
4631 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
4632 char **ppRootInfo, int *pnRootInfo,
4633 sqlite_int64 *piEndBlockid){
4634 /* we can fit the segment entirely inline */
4635 if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
4636 *ppRootInfo = pWriter->data.pData;
4637 *pnRootInfo = pWriter->data.nData;
4638 *piEndBlockid = 0;
4639 return SQLITE_OK;
4642 /* Flush remaining leaf data. */
4643 if( pWriter->data.nData>0 ){
4644 int rc = leafWriterFlush(v, pWriter);
4645 if( rc!=SQLITE_OK ) return rc;
4648 /* We must have flushed a leaf at some point. */
4649 assert( pWriter->has_parent );
4651 /* Tenatively set the end leaf blockid as the end blockid. If the
4652 ** interior node can be returned inline, this will be the final
4653 ** blockid, otherwise it will be overwritten by
4654 ** interiorWriterRootInfo().
4656 *piEndBlockid = pWriter->iEndBlockid;
4658 return interiorWriterRootInfo(v, &pWriter->parentWriter,
4659 ppRootInfo, pnRootInfo, piEndBlockid);
4662 /* Collect the rootInfo data and store it into the segment directory.
4663 ** This has the effect of flushing the segment's leaf data to
4664 ** %_segments, and also flushing any interior nodes to %_segments.
4666 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
4667 sqlite_int64 iEndBlockid;
4668 char *pRootInfo;
4669 int rc, nRootInfo;
4671 rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
4672 if( rc!=SQLITE_OK ) return rc;
4674 /* Don't bother storing an entirely empty segment. */
4675 if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
4677 return segdir_set(v, pWriter->iLevel, pWriter->idx,
4678 pWriter->iStartBlockid, pWriter->iEndBlockid,
4679 iEndBlockid, pRootInfo, nRootInfo);
4682 static void leafWriterDestroy(LeafWriter *pWriter){
4683 if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
4684 dataBufferDestroy(&pWriter->term);
4685 dataBufferDestroy(&pWriter->data);
4688 /* Encode a term into the leafWriter, delta-encoding as appropriate.
4689 ** Returns the length of the new term which distinguishes it from the
4690 ** previous term, which can be used to set nTermDistinct when a node
4691 ** boundary is crossed.
4693 static int leafWriterEncodeTerm(LeafWriter *pWriter,
4694 const char *pTerm, int nTerm){
4695 char c[VARINT_MAX+VARINT_MAX];
4696 int n, nPrefix = 0;
4698 assert( nTerm>0 );
4699 while( nPrefix<pWriter->term.nData &&
4700 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
4701 nPrefix++;
4702 /* Failing this implies that the terms weren't in order. */
4703 assert( nPrefix<nTerm );
4706 if( pWriter->data.nData==0 ){
4707 /* Encode the node header and leading term as:
4708 ** varint(0)
4709 ** varint(nTerm)
4710 ** char pTerm[nTerm]
4712 n = putVarint(c, '\0');
4713 n += putVarint(c+n, nTerm);
4714 dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
4715 }else{
4716 /* Delta-encode the term as:
4717 ** varint(nPrefix)
4718 ** varint(nSuffix)
4719 ** char pTermSuffix[nSuffix]
4721 n = putVarint(c, nPrefix);
4722 n += putVarint(c+n, nTerm-nPrefix);
4723 dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
4725 dataBufferReplace(&pWriter->term, pTerm, nTerm);
4727 return nPrefix+1;
4730 /* Used to avoid a memmove when a large amount of doclist data is in
4731 ** the buffer. This constructs a node and term header before
4732 ** iDoclistData and flushes the resulting complete node using
4733 ** leafWriterInternalFlush().
4735 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
4736 const char *pTerm, int nTerm,
4737 int iDoclistData){
4738 char c[VARINT_MAX+VARINT_MAX];
4739 int iData, n = putVarint(c, 0);
4740 n += putVarint(c+n, nTerm);
4742 /* There should always be room for the header. Even if pTerm shared
4743 ** a substantial prefix with the previous term, the entire prefix
4744 ** could be constructed from earlier data in the doclist, so there
4745 ** should be room.
4747 assert( iDoclistData>=n+nTerm );
4749 iData = iDoclistData-(n+nTerm);
4750 memcpy(pWriter->data.pData+iData, c, n);
4751 memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
4753 return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
4756 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
4757 ** %_segments.
4759 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
4760 const char *pTerm, int nTerm,
4761 DLReader *pReaders, int nReaders){
4762 char c[VARINT_MAX+VARINT_MAX];
4763 int iTermData = pWriter->data.nData, iDoclistData;
4764 int i, nData, n, nActualData, nActual, rc, nTermDistinct;
4766 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
4767 nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
4769 /* Remember nTermDistinct if opening a new node. */
4770 if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
4772 iDoclistData = pWriter->data.nData;
4774 /* Estimate the length of the merged doclist so we can leave space
4775 ** to encode it.
4777 for(i=0, nData=0; i<nReaders; i++){
4778 nData += dlrAllDataBytes(&pReaders[i]);
4780 n = putVarint(c, nData);
4781 dataBufferAppend(&pWriter->data, c, n);
4783 docListMerge(&pWriter->data, pReaders, nReaders);
4784 ASSERT_VALID_DOCLIST(DL_DEFAULT,
4785 pWriter->data.pData+iDoclistData+n,
4786 pWriter->data.nData-iDoclistData-n, NULL);
4788 /* The actual amount of doclist data at this point could be smaller
4789 ** than the length we encoded. Additionally, the space required to
4790 ** encode this length could be smaller. For small doclists, this is
4791 ** not a big deal, we can just use memmove() to adjust things.
4793 nActualData = pWriter->data.nData-(iDoclistData+n);
4794 nActual = putVarint(c, nActualData);
4795 assert( nActualData<=nData );
4796 assert( nActual<=n );
4798 /* If the new doclist is big enough for force a standalone leaf
4799 ** node, we can immediately flush it inline without doing the
4800 ** memmove().
4802 /* TODO(shess) This test matches leafWriterStep(), which does this
4803 ** test before it knows the cost to varint-encode the term and
4804 ** doclist lengths. At some point, change to
4805 ** pWriter->data.nData-iTermData>STANDALONE_MIN.
4807 if( nTerm+nActualData>STANDALONE_MIN ){
4808 /* Push leaf node from before this term. */
4809 if( iTermData>0 ){
4810 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
4811 if( rc!=SQLITE_OK ) return rc;
4813 pWriter->nTermDistinct = nTermDistinct;
4816 /* Fix the encoded doclist length. */
4817 iDoclistData += n - nActual;
4818 memcpy(pWriter->data.pData+iDoclistData, c, nActual);
4820 /* Push the standalone leaf node. */
4821 rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
4822 if( rc!=SQLITE_OK ) return rc;
4824 /* Leave the node empty. */
4825 dataBufferReset(&pWriter->data);
4827 return rc;
4830 /* At this point, we know that the doclist was small, so do the
4831 ** memmove if indicated.
4833 if( nActual<n ){
4834 memmove(pWriter->data.pData+iDoclistData+nActual,
4835 pWriter->data.pData+iDoclistData+n,
4836 pWriter->data.nData-(iDoclistData+n));
4837 pWriter->data.nData -= n-nActual;
4840 /* Replace written length with actual length. */
4841 memcpy(pWriter->data.pData+iDoclistData, c, nActual);
4843 /* If the node is too large, break things up. */
4844 /* TODO(shess) This test matches leafWriterStep(), which does this
4845 ** test before it knows the cost to varint-encode the term and
4846 ** doclist lengths. At some point, change to
4847 ** pWriter->data.nData>LEAF_MAX.
4849 if( iTermData+nTerm+nActualData>LEAF_MAX ){
4850 /* Flush out the leading data as a node */
4851 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
4852 if( rc!=SQLITE_OK ) return rc;
4854 pWriter->nTermDistinct = nTermDistinct;
4856 /* Rebuild header using the current term */
4857 n = putVarint(pWriter->data.pData, 0);
4858 n += putVarint(pWriter->data.pData+n, nTerm);
4859 memcpy(pWriter->data.pData+n, pTerm, nTerm);
4860 n += nTerm;
4862 /* There should always be room, because the previous encoding
4863 ** included all data necessary to construct the term.
4865 assert( n<iDoclistData );
4866 /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
4867 ** following memcpy() is safe (as opposed to needing a memmove).
4869 assert( 2*STANDALONE_MIN<=LEAF_MAX );
4870 assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
4871 memcpy(pWriter->data.pData+n,
4872 pWriter->data.pData+iDoclistData,
4873 pWriter->data.nData-iDoclistData);
4874 pWriter->data.nData -= iDoclistData-n;
4876 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
4878 return SQLITE_OK;
4881 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
4882 ** %_segments.
4884 /* TODO(shess) Revise writeZeroSegment() so that doclists are
4885 ** constructed directly in pWriter->data.
4887 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
4888 const char *pTerm, int nTerm,
4889 const char *pData, int nData){
4890 int rc;
4891 DLReader reader;
4893 dlrInit(&reader, DL_DEFAULT, pData, nData);
4894 rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
4895 dlrDestroy(&reader);
4897 return rc;
4901 /****************************************************************/
4902 /* LeafReader is used to iterate over an individual leaf node. */
4903 typedef struct LeafReader {
4904 DataBuffer term; /* copy of current term. */
4906 const char *pData; /* data for current term. */
4907 int nData;
4908 } LeafReader;
4910 static void leafReaderDestroy(LeafReader *pReader){
4911 dataBufferDestroy(&pReader->term);
4912 SCRAMBLE(pReader);
4915 static int leafReaderAtEnd(LeafReader *pReader){
4916 return pReader->nData<=0;
4919 /* Access the current term. */
4920 static int leafReaderTermBytes(LeafReader *pReader){
4921 return pReader->term.nData;
4923 static const char *leafReaderTerm(LeafReader *pReader){
4924 assert( pReader->term.nData>0 );
4925 return pReader->term.pData;
4928 /* Access the doclist data for the current term. */
4929 static int leafReaderDataBytes(LeafReader *pReader){
4930 int nData;
4931 assert( pReader->term.nData>0 );
4932 getVarint32(pReader->pData, &nData);
4933 return nData;
4935 static const char *leafReaderData(LeafReader *pReader){
4936 int n, nData;
4937 assert( pReader->term.nData>0 );
4938 n = getVarint32(pReader->pData, &nData);
4939 return pReader->pData+n;
4942 static void leafReaderInit(const char *pData, int nData,
4943 LeafReader *pReader){
4944 int nTerm, n;
4946 assert( nData>0 );
4947 assert( pData[0]=='\0' );
4949 CLEAR(pReader);
4951 /* Read the first term, skipping the header byte. */
4952 n = getVarint32(pData+1, &nTerm);
4953 dataBufferInit(&pReader->term, nTerm);
4954 dataBufferReplace(&pReader->term, pData+1+n, nTerm);
4956 /* Position after the first term. */
4957 assert( 1+n+nTerm<nData );
4958 pReader->pData = pData+1+n+nTerm;
4959 pReader->nData = nData-1-n-nTerm;
4962 /* Step the reader forward to the next term. */
4963 static void leafReaderStep(LeafReader *pReader){
4964 int n, nData, nPrefix, nSuffix;
4965 assert( !leafReaderAtEnd(pReader) );
4967 /* Skip previous entry's data block. */
4968 n = getVarint32(pReader->pData, &nData);
4969 assert( n+nData<=pReader->nData );
4970 pReader->pData += n+nData;
4971 pReader->nData -= n+nData;
4973 if( !leafReaderAtEnd(pReader) ){
4974 /* Construct the new term using a prefix from the old term plus a
4975 ** suffix from the leaf data.
4977 n = getVarint32(pReader->pData, &nPrefix);
4978 n += getVarint32(pReader->pData+n, &nSuffix);
4979 assert( n+nSuffix<pReader->nData );
4980 pReader->term.nData = nPrefix;
4981 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
4983 pReader->pData += n+nSuffix;
4984 pReader->nData -= n+nSuffix;
4988 /* strcmp-style comparison of pReader's current term against pTerm.
4989 ** If isPrefix, equality means equal through nTerm bytes.
4991 static int leafReaderTermCmp(LeafReader *pReader,
4992 const char *pTerm, int nTerm, int isPrefix){
4993 int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
4994 if( n==0 ){
4995 if( pReader->term.nData>0 ) return -1;
4996 if(nTerm>0 ) return 1;
4997 return 0;
5000 c = memcmp(pReader->term.pData, pTerm, n);
5001 if( c!=0 ) return c;
5002 if( isPrefix && n==nTerm ) return 0;
5003 return pReader->term.nData - nTerm;
5007 /****************************************************************/
5008 /* LeavesReader wraps LeafReader to allow iterating over the entire
5009 ** leaf layer of the tree.
5011 typedef struct LeavesReader {
5012 int idx; /* Index within the segment. */
5014 sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
5015 int eof; /* we've seen SQLITE_DONE from pStmt. */
5017 LeafReader leafReader; /* reader for the current leaf. */
5018 DataBuffer rootData; /* root data for inline. */
5019 } LeavesReader;
5021 /* Access the current term. */
5022 static int leavesReaderTermBytes(LeavesReader *pReader){
5023 assert( !pReader->eof );
5024 return leafReaderTermBytes(&pReader->leafReader);
5026 static const char *leavesReaderTerm(LeavesReader *pReader){
5027 assert( !pReader->eof );
5028 return leafReaderTerm(&pReader->leafReader);
5031 /* Access the doclist data for the current term. */
5032 static int leavesReaderDataBytes(LeavesReader *pReader){
5033 assert( !pReader->eof );
5034 return leafReaderDataBytes(&pReader->leafReader);
5036 static const char *leavesReaderData(LeavesReader *pReader){
5037 assert( !pReader->eof );
5038 return leafReaderData(&pReader->leafReader);
5041 static int leavesReaderAtEnd(LeavesReader *pReader){
5042 return pReader->eof;
5045 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
5046 ** leaving the statement handle open, which locks the table.
5048 /* TODO(shess) This "solution" is not satisfactory. Really, there
5049 ** should be check-in function for all statement handles which
5050 ** arranges to call sqlite3_reset(). This most likely will require
5051 ** modification to control flow all over the place, though, so for now
5052 ** just punt.
5054 ** Note the current system assumes that segment merges will run to
5055 ** completion, which is why this particular probably hasn't arisen in
5056 ** this case. Probably a brittle assumption.
5058 static int leavesReaderReset(LeavesReader *pReader){
5059 return sqlite3_reset(pReader->pStmt);
5062 static void leavesReaderDestroy(LeavesReader *pReader){
5063 /* If idx is -1, that means we're using a non-cached statement
5064 ** handle in the optimize() case, so we need to release it.
5066 if( pReader->pStmt!=NULL && pReader->idx==-1 ){
5067 sqlite3_finalize(pReader->pStmt);
5069 leafReaderDestroy(&pReader->leafReader);
5070 dataBufferDestroy(&pReader->rootData);
5071 SCRAMBLE(pReader);
5074 /* Initialize pReader with the given root data (if iStartBlockid==0
5075 ** the leaf data was entirely contained in the root), or from the
5076 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
5078 static int leavesReaderInit(fulltext_vtab *v,
5079 int idx,
5080 sqlite_int64 iStartBlockid,
5081 sqlite_int64 iEndBlockid,
5082 const char *pRootData, int nRootData,
5083 LeavesReader *pReader){
5084 CLEAR(pReader);
5085 pReader->idx = idx;
5087 dataBufferInit(&pReader->rootData, 0);
5088 if( iStartBlockid==0 ){
5089 /* Entire leaf level fit in root data. */
5090 dataBufferReplace(&pReader->rootData, pRootData, nRootData);
5091 leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
5092 &pReader->leafReader);
5093 }else{
5094 sqlite3_stmt *s;
5095 int rc = sql_get_leaf_statement(v, idx, &s);
5096 if( rc!=SQLITE_OK ) return rc;
5098 rc = sqlite3_bind_int64(s, 1, iStartBlockid);
5099 if( rc!=SQLITE_OK ) return rc;
5101 rc = sqlite3_bind_int64(s, 2, iEndBlockid);
5102 if( rc!=SQLITE_OK ) return rc;
5104 rc = sqlite3_step(s);
5105 if( rc==SQLITE_DONE ){
5106 pReader->eof = 1;
5107 return SQLITE_OK;
5109 if( rc!=SQLITE_ROW ) return rc;
5111 pReader->pStmt = s;
5112 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
5113 sqlite3_column_bytes(pReader->pStmt, 0),
5114 &pReader->leafReader);
5116 return SQLITE_OK;
5119 /* Step the current leaf forward to the next term. If we reach the
5120 ** end of the current leaf, step forward to the next leaf block.
5122 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
5123 assert( !leavesReaderAtEnd(pReader) );
5124 leafReaderStep(&pReader->leafReader);
5126 if( leafReaderAtEnd(&pReader->leafReader) ){
5127 int rc;
5128 if( pReader->rootData.pData ){
5129 pReader->eof = 1;
5130 return SQLITE_OK;
5132 rc = sqlite3_step(pReader->pStmt);
5133 if( rc!=SQLITE_ROW ){
5134 pReader->eof = 1;
5135 return rc==SQLITE_DONE ? SQLITE_OK : rc;
5137 leafReaderDestroy(&pReader->leafReader);
5138 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
5139 sqlite3_column_bytes(pReader->pStmt, 0),
5140 &pReader->leafReader);
5142 return SQLITE_OK;
5145 /* Order LeavesReaders by their term, ignoring idx. Readers at eof
5146 ** always sort to the end.
5148 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
5149 if( leavesReaderAtEnd(lr1) ){
5150 if( leavesReaderAtEnd(lr2) ) return 0;
5151 return 1;
5153 if( leavesReaderAtEnd(lr2) ) return -1;
5155 return leafReaderTermCmp(&lr1->leafReader,
5156 leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
5160 /* Similar to leavesReaderTermCmp(), with additional ordering by idx
5161 ** so that older segments sort before newer segments.
5163 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
5164 int c = leavesReaderTermCmp(lr1, lr2);
5165 if( c!=0 ) return c;
5166 return lr1->idx-lr2->idx;
5169 /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
5170 ** sorted position.
5172 static void leavesReaderReorder(LeavesReader *pLr, int nLr){
5173 while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
5174 LeavesReader tmp = pLr[0];
5175 pLr[0] = pLr[1];
5176 pLr[1] = tmp;
5177 nLr--;
5178 pLr++;
5182 /* Initializes pReaders with the segments from level iLevel, returning
5183 ** the number of segments in *piReaders. Leaves pReaders in sorted
5184 ** order.
5186 static int leavesReadersInit(fulltext_vtab *v, int iLevel,
5187 LeavesReader *pReaders, int *piReaders){
5188 sqlite3_stmt *s;
5189 int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
5190 if( rc!=SQLITE_OK ) return rc;
5192 rc = sqlite3_bind_int(s, 1, iLevel);
5193 if( rc!=SQLITE_OK ) return rc;
5195 i = 0;
5196 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
5197 sqlite_int64 iStart = sqlite3_column_int64(s, 0);
5198 sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
5199 const char *pRootData = sqlite3_column_blob(s, 2);
5200 int nRootData = sqlite3_column_bytes(s, 2);
5202 assert( i<MERGE_COUNT );
5203 rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
5204 &pReaders[i]);
5205 if( rc!=SQLITE_OK ) break;
5207 i++;
5209 if( rc!=SQLITE_DONE ){
5210 while( i-->0 ){
5211 leavesReaderDestroy(&pReaders[i]);
5213 return rc;
5216 *piReaders = i;
5218 /* Leave our results sorted by term, then age. */
5219 while( i-- ){
5220 leavesReaderReorder(pReaders+i, *piReaders-i);
5222 return SQLITE_OK;
5225 /* Merge doclists from pReaders[nReaders] into a single doclist, which
5226 ** is written to pWriter. Assumes pReaders is ordered oldest to
5227 ** newest.
5229 /* TODO(shess) Consider putting this inline in segmentMerge(). */
5230 static int leavesReadersMerge(fulltext_vtab *v,
5231 LeavesReader *pReaders, int nReaders,
5232 LeafWriter *pWriter){
5233 DLReader dlReaders[MERGE_COUNT];
5234 const char *pTerm = leavesReaderTerm(pReaders);
5235 int i, nTerm = leavesReaderTermBytes(pReaders);
5237 assert( nReaders<=MERGE_COUNT );
5239 for(i=0; i<nReaders; i++){
5240 dlrInit(&dlReaders[i], DL_DEFAULT,
5241 leavesReaderData(pReaders+i),
5242 leavesReaderDataBytes(pReaders+i));
5245 return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
5248 /* Forward ref due to mutual recursion with segdirNextIndex(). */
5249 static int segmentMerge(fulltext_vtab *v, int iLevel);
5251 /* Put the next available index at iLevel into *pidx. If iLevel
5252 ** already has MERGE_COUNT segments, they are merged to a higher
5253 ** level to make room.
5255 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
5256 int rc = segdir_max_index(v, iLevel, pidx);
5257 if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
5258 *pidx = 0;
5259 }else if( rc==SQLITE_ROW ){
5260 if( *pidx==(MERGE_COUNT-1) ){
5261 rc = segmentMerge(v, iLevel);
5262 if( rc!=SQLITE_OK ) return rc;
5263 *pidx = 0;
5264 }else{
5265 (*pidx)++;
5267 }else{
5268 return rc;
5270 return SQLITE_OK;
5273 /* Merge MERGE_COUNT segments at iLevel into a new segment at
5274 ** iLevel+1. If iLevel+1 is already full of segments, those will be
5275 ** merged to make room.
5277 static int segmentMerge(fulltext_vtab *v, int iLevel){
5278 LeafWriter writer;
5279 LeavesReader lrs[MERGE_COUNT];
5280 int i, rc, idx = 0;
5282 /* Determine the next available segment index at the next level,
5283 ** merging as necessary.
5285 rc = segdirNextIndex(v, iLevel+1, &idx);
5286 if( rc!=SQLITE_OK ) return rc;
5288 /* TODO(shess) This assumes that we'll always see exactly
5289 ** MERGE_COUNT segments to merge at a given level. That will be
5290 ** broken if we allow the developer to request preemptive or
5291 ** deferred merging.
5293 memset(&lrs, '\0', sizeof(lrs));
5294 rc = leavesReadersInit(v, iLevel, lrs, &i);
5295 if( rc!=SQLITE_OK ) return rc;
5296 assert( i==MERGE_COUNT );
5298 leafWriterInit(iLevel+1, idx, &writer);
5300 /* Since leavesReaderReorder() pushes readers at eof to the end,
5301 ** when the first reader is empty, all will be empty.
5303 while( !leavesReaderAtEnd(lrs) ){
5304 /* Figure out how many readers share their next term. */
5305 for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
5306 if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
5309 rc = leavesReadersMerge(v, lrs, i, &writer);
5310 if( rc!=SQLITE_OK ) goto err;
5312 /* Step forward those that were merged. */
5313 while( i-->0 ){
5314 rc = leavesReaderStep(v, lrs+i);
5315 if( rc!=SQLITE_OK ) goto err;
5317 /* Reorder by term, then by age. */
5318 leavesReaderReorder(lrs+i, MERGE_COUNT-i);
5322 for(i=0; i<MERGE_COUNT; i++){
5323 leavesReaderDestroy(&lrs[i]);
5326 rc = leafWriterFinalize(v, &writer);
5327 leafWriterDestroy(&writer);
5328 if( rc!=SQLITE_OK ) return rc;
5330 /* Delete the merged segment data. */
5331 return segdir_delete(v, iLevel);
5333 err:
5334 for(i=0; i<MERGE_COUNT; i++){
5335 leavesReaderDestroy(&lrs[i]);
5337 leafWriterDestroy(&writer);
5338 return rc;
5341 /* Accumulate the union of *acc and *pData into *acc. */
5342 static void docListAccumulateUnion(DataBuffer *acc,
5343 const char *pData, int nData) {
5344 DataBuffer tmp = *acc;
5345 dataBufferInit(acc, tmp.nData+nData);
5346 docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
5347 dataBufferDestroy(&tmp);
5350 /* TODO(shess) It might be interesting to explore different merge
5351 ** strategies, here. For instance, since this is a sorted merge, we
5352 ** could easily merge many doclists in parallel. With some
5353 ** comprehension of the storage format, we could merge all of the
5354 ** doclists within a leaf node directly from the leaf node's storage.
5355 ** It may be worthwhile to merge smaller doclists before larger
5356 ** doclists, since they can be traversed more quickly - but the
5357 ** results may have less overlap, making them more expensive in a
5358 ** different way.
5361 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over
5362 ** *out (any doclists with duplicate docids overwrite those in *out).
5363 ** Internal function for loadSegmentLeaf().
5365 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
5366 const char *pTerm, int nTerm, int isPrefix,
5367 DataBuffer *out){
5368 /* doclist data is accumulated into pBuffers similar to how one does
5369 ** increment in binary arithmetic. If index 0 is empty, the data is
5370 ** stored there. If there is data there, it is merged and the
5371 ** results carried into position 1, with further merge-and-carry
5372 ** until an empty position is found.
5374 DataBuffer *pBuffers = NULL;
5375 int nBuffers = 0, nMaxBuffers = 0, rc;
5377 assert( nTerm>0 );
5379 for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
5380 rc=leavesReaderStep(v, pReader)){
5381 /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
5382 ** already taken to compare the terms of two LeavesReaders. Think
5383 ** on a better name. [Meanwhile, break encapsulation rather than
5384 ** use a confusing name.]
5386 int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
5387 if( c>0 ) break; /* Past any possible matches. */
5388 if( c==0 ){
5389 const char *pData = leavesReaderData(pReader);
5390 int iBuffer, nData = leavesReaderDataBytes(pReader);
5392 /* Find the first empty buffer. */
5393 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
5394 if( 0==pBuffers[iBuffer].nData ) break;
5397 /* Out of buffers, add an empty one. */
5398 if( iBuffer==nBuffers ){
5399 if( nBuffers==nMaxBuffers ){
5400 DataBuffer *p;
5401 nMaxBuffers += 20;
5403 /* Manual realloc so we can handle NULL appropriately. */
5404 p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
5405 if( p==NULL ){
5406 rc = SQLITE_NOMEM;
5407 break;
5410 if( nBuffers>0 ){
5411 assert(pBuffers!=NULL);
5412 memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
5413 sqlite3_free(pBuffers);
5415 pBuffers = p;
5417 dataBufferInit(&(pBuffers[nBuffers]), 0);
5418 nBuffers++;
5421 /* At this point, must have an empty at iBuffer. */
5422 assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
5424 /* If empty was first buffer, no need for merge logic. */
5425 if( iBuffer==0 ){
5426 dataBufferReplace(&(pBuffers[0]), pData, nData);
5427 }else{
5428 /* pAcc is the empty buffer the merged data will end up in. */
5429 DataBuffer *pAcc = &(pBuffers[iBuffer]);
5430 DataBuffer *p = &(pBuffers[0]);
5432 /* Handle position 0 specially to avoid need to prime pAcc
5433 ** with pData/nData.
5435 dataBufferSwap(p, pAcc);
5436 docListAccumulateUnion(pAcc, pData, nData);
5438 /* Accumulate remaining doclists into pAcc. */
5439 for(++p; p<pAcc; ++p){
5440 docListAccumulateUnion(pAcc, p->pData, p->nData);
5442 /* dataBufferReset() could allow a large doclist to blow up
5443 ** our memory requirements.
5445 if( p->nCapacity<1024 ){
5446 dataBufferReset(p);
5447 }else{
5448 dataBufferDestroy(p);
5449 dataBufferInit(p, 0);
5456 /* Union all the doclists together into *out. */
5457 /* TODO(shess) What if *out is big? Sigh. */
5458 if( rc==SQLITE_OK && nBuffers>0 ){
5459 int iBuffer;
5460 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
5461 if( pBuffers[iBuffer].nData>0 ){
5462 if( out->nData==0 ){
5463 dataBufferSwap(out, &(pBuffers[iBuffer]));
5464 }else{
5465 docListAccumulateUnion(out, pBuffers[iBuffer].pData,
5466 pBuffers[iBuffer].nData);
5472 while( nBuffers-- ){
5473 dataBufferDestroy(&(pBuffers[nBuffers]));
5475 if( pBuffers!=NULL ) sqlite3_free(pBuffers);
5477 return rc;
5480 /* Call loadSegmentLeavesInt() with pData/nData as input. */
5481 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
5482 const char *pTerm, int nTerm, int isPrefix,
5483 DataBuffer *out){
5484 LeavesReader reader;
5485 int rc;
5487 assert( nData>1 );
5488 assert( *pData=='\0' );
5489 rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
5490 if( rc!=SQLITE_OK ) return rc;
5492 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
5493 leavesReaderReset(&reader);
5494 leavesReaderDestroy(&reader);
5495 return rc;
5498 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
5499 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into
5500 ** out.
5502 static int loadSegmentLeaves(fulltext_vtab *v,
5503 sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
5504 const char *pTerm, int nTerm, int isPrefix,
5505 DataBuffer *out){
5506 int rc;
5507 LeavesReader reader;
5509 assert( iStartLeaf<=iEndLeaf );
5510 rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
5511 if( rc!=SQLITE_OK ) return rc;
5513 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
5514 leavesReaderReset(&reader);
5515 leavesReaderDestroy(&reader);
5516 return rc;
5519 /* Taking pData/nData as an interior node, find the sequence of child
5520 ** nodes which could include pTerm/nTerm/isPrefix. Note that the
5521 ** interior node terms logically come between the blocks, so there is
5522 ** one more blockid than there are terms (that block contains terms >=
5523 ** the last interior-node term).
5525 /* TODO(shess) The calling code may already know that the end child is
5526 ** not worth calculating, because the end may be in a later sibling
5527 ** node. Consider whether breaking symmetry is worthwhile. I suspect
5528 ** it is not worthwhile.
5530 static void getChildrenContaining(const char *pData, int nData,
5531 const char *pTerm, int nTerm, int isPrefix,
5532 sqlite_int64 *piStartChild,
5533 sqlite_int64 *piEndChild){
5534 InteriorReader reader;
5536 assert( nData>1 );
5537 assert( *pData!='\0' );
5538 interiorReaderInit(pData, nData, &reader);
5540 /* Scan for the first child which could contain pTerm/nTerm. */
5541 while( !interiorReaderAtEnd(&reader) ){
5542 if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
5543 interiorReaderStep(&reader);
5545 *piStartChild = interiorReaderCurrentBlockid(&reader);
5547 /* Keep scanning to find a term greater than our term, using prefix
5548 ** comparison if indicated. If isPrefix is false, this will be the
5549 ** same blockid as the starting block.
5551 while( !interiorReaderAtEnd(&reader) ){
5552 if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
5553 interiorReaderStep(&reader);
5555 *piEndChild = interiorReaderCurrentBlockid(&reader);
5557 interiorReaderDestroy(&reader);
5559 /* Children must ascend, and if !prefix, both must be the same. */
5560 assert( *piEndChild>=*piStartChild );
5561 assert( isPrefix || *piStartChild==*piEndChild );
5564 /* Read block at iBlockid and pass it with other params to
5565 ** getChildrenContaining().
5567 static int loadAndGetChildrenContaining(
5568 fulltext_vtab *v,
5569 sqlite_int64 iBlockid,
5570 const char *pTerm, int nTerm, int isPrefix,
5571 sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
5573 sqlite3_stmt *s = NULL;
5574 int rc;
5576 assert( iBlockid!=0 );
5577 assert( pTerm!=NULL );
5578 assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
5579 assert( piStartChild!=NULL );
5580 assert( piEndChild!=NULL );
5582 rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
5583 if( rc!=SQLITE_OK ) return rc;
5585 rc = sqlite3_bind_int64(s, 1, iBlockid);
5586 if( rc!=SQLITE_OK ) return rc;
5588 rc = sqlite3_step(s);
5589 if( rc==SQLITE_DONE ) return SQLITE_ERROR;
5590 if( rc!=SQLITE_ROW ) return rc;
5592 getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
5593 pTerm, nTerm, isPrefix, piStartChild, piEndChild);
5595 /* We expect only one row. We must execute another sqlite3_step()
5596 * to complete the iteration; otherwise the table will remain
5597 * locked. */
5598 rc = sqlite3_step(s);
5599 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
5600 if( rc!=SQLITE_DONE ) return rc;
5602 return SQLITE_OK;
5605 /* Traverse the tree represented by pData[nData] looking for
5606 ** pTerm[nTerm], placing its doclist into *out. This is internal to
5607 ** loadSegment() to make error-handling cleaner.
5609 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
5610 sqlite_int64 iLeavesEnd,
5611 const char *pTerm, int nTerm, int isPrefix,
5612 DataBuffer *out){
5613 /* Special case where root is a leaf. */
5614 if( *pData=='\0' ){
5615 return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
5616 }else{
5617 int rc;
5618 sqlite_int64 iStartChild, iEndChild;
5620 /* Process pData as an interior node, then loop down the tree
5621 ** until we find the set of leaf nodes to scan for the term.
5623 getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
5624 &iStartChild, &iEndChild);
5625 while( iStartChild>iLeavesEnd ){
5626 sqlite_int64 iNextStart, iNextEnd;
5627 rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
5628 &iNextStart, &iNextEnd);
5629 if( rc!=SQLITE_OK ) return rc;
5631 /* If we've branched, follow the end branch, too. */
5632 if( iStartChild!=iEndChild ){
5633 sqlite_int64 iDummy;
5634 rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
5635 &iDummy, &iNextEnd);
5636 if( rc!=SQLITE_OK ) return rc;
5639 assert( iNextStart<=iNextEnd );
5640 iStartChild = iNextStart;
5641 iEndChild = iNextEnd;
5643 assert( iStartChild<=iLeavesEnd );
5644 assert( iEndChild<=iLeavesEnd );
5646 /* Scan through the leaf segments for doclists. */
5647 return loadSegmentLeaves(v, iStartChild, iEndChild,
5648 pTerm, nTerm, isPrefix, out);
5652 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
5653 ** merge its doclist over *out (any duplicate doclists read from the
5654 ** segment rooted at pData will overwrite those in *out).
5656 /* TODO(shess) Consider changing this to determine the depth of the
5657 ** leaves using either the first characters of interior nodes (when
5658 ** ==1, we're one level above the leaves), or the first character of
5659 ** the root (which will describe the height of the tree directly).
5660 ** Either feels somewhat tricky to me.
5662 /* TODO(shess) The current merge is likely to be slow for large
5663 ** doclists (though it should process from newest/smallest to
5664 ** oldest/largest, so it may not be that bad). It might be useful to
5665 ** modify things to allow for N-way merging. This could either be
5666 ** within a segment, with pairwise merges across segments, or across
5667 ** all segments at once.
5669 static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
5670 sqlite_int64 iLeavesEnd,
5671 const char *pTerm, int nTerm, int isPrefix,
5672 DataBuffer *out){
5673 DataBuffer result;
5674 int rc;
5676 assert( nData>1 );
5678 /* This code should never be called with buffered updates. */
5679 assert( v->nPendingData<0 );
5681 dataBufferInit(&result, 0);
5682 rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
5683 pTerm, nTerm, isPrefix, &result);
5684 if( rc==SQLITE_OK && result.nData>0 ){
5685 if( out->nData==0 ){
5686 DataBuffer tmp = *out;
5687 *out = result;
5688 result = tmp;
5689 }else{
5690 DataBuffer merged;
5691 DLReader readers[2];
5693 dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
5694 dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
5695 dataBufferInit(&merged, out->nData+result.nData);
5696 docListMerge(&merged, readers, 2);
5697 dataBufferDestroy(out);
5698 *out = merged;
5699 dlrDestroy(&readers[0]);
5700 dlrDestroy(&readers[1]);
5703 dataBufferDestroy(&result);
5704 return rc;
5707 /* Scan the database and merge together the posting lists for the term
5708 ** into *out.
5710 static int termSelect(fulltext_vtab *v, int iColumn,
5711 const char *pTerm, int nTerm, int isPrefix,
5712 DocListType iType, DataBuffer *out){
5713 DataBuffer doclist;
5714 sqlite3_stmt *s;
5715 int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
5716 if( rc!=SQLITE_OK ) return rc;
5718 /* This code should never be called with buffered updates. */
5719 assert( v->nPendingData<0 );
5721 dataBufferInit(&doclist, 0);
5723 /* Traverse the segments from oldest to newest so that newer doclist
5724 ** elements for given docids overwrite older elements.
5726 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
5727 const char *pData = sqlite3_column_blob(s, 2);
5728 const int nData = sqlite3_column_bytes(s, 2);
5729 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
5730 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
5731 &doclist);
5732 if( rc!=SQLITE_OK ) goto err;
5734 if( rc==SQLITE_DONE ){
5735 if( doclist.nData!=0 ){
5736 /* TODO(shess) The old term_select_all() code applied the column
5737 ** restrict as we merged segments, leading to smaller buffers.
5738 ** This is probably worthwhile to bring back, once the new storage
5739 ** system is checked in.
5741 if( iColumn==v->nColumn) iColumn = -1;
5742 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
5743 iColumn, iType, out);
5745 rc = SQLITE_OK;
5748 err:
5749 dataBufferDestroy(&doclist);
5750 return rc;
5753 /****************************************************************/
5754 /* Used to hold hashtable data for sorting. */
5755 typedef struct TermData {
5756 const char *pTerm;
5757 int nTerm;
5758 DLCollector *pCollector;
5759 } TermData;
5761 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
5762 ** for equal, >0 for greater-than).
5764 static int termDataCmp(const void *av, const void *bv){
5765 const TermData *a = (const TermData *)av;
5766 const TermData *b = (const TermData *)bv;
5767 int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
5768 int c = memcmp(a->pTerm, b->pTerm, n);
5769 if( c!=0 ) return c;
5770 return a->nTerm-b->nTerm;
5773 /* Order pTerms data by term, then write a new level 0 segment using
5774 ** LeafWriter.
5776 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){
5777 fts2HashElem *e;
5778 int idx, rc, i, n;
5779 TermData *pData;
5780 LeafWriter writer;
5781 DataBuffer dl;
5783 /* Determine the next index at level 0, merging as necessary. */
5784 rc = segdirNextIndex(v, 0, &idx);
5785 if( rc!=SQLITE_OK ) return rc;
5787 n = fts2HashCount(pTerms);
5788 pData = sqlite3_malloc(n*sizeof(TermData));
5790 for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){
5791 assert( i<n );
5792 pData[i].pTerm = fts2HashKey(e);
5793 pData[i].nTerm = fts2HashKeysize(e);
5794 pData[i].pCollector = fts2HashData(e);
5796 assert( i==n );
5798 /* TODO(shess) Should we allow user-defined collation sequences,
5799 ** here? I think we only need that once we support prefix searches.
5801 if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
5803 /* TODO(shess) Refactor so that we can write directly to the segment
5804 ** DataBuffer, as happens for segment merges.
5806 leafWriterInit(0, idx, &writer);
5807 dataBufferInit(&dl, 0);
5808 for(i=0; i<n; i++){
5809 dataBufferReset(&dl);
5810 dlcAddDoclist(pData[i].pCollector, &dl);
5811 rc = leafWriterStep(v, &writer,
5812 pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
5813 if( rc!=SQLITE_OK ) goto err;
5815 rc = leafWriterFinalize(v, &writer);
5817 err:
5818 dataBufferDestroy(&dl);
5819 sqlite3_free(pData);
5820 leafWriterDestroy(&writer);
5821 return rc;
5824 /* If pendingTerms has data, free it. */
5825 static int clearPendingTerms(fulltext_vtab *v){
5826 if( v->nPendingData>=0 ){
5827 fts2HashElem *e;
5828 for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){
5829 dlcDelete(fts2HashData(e));
5831 fts2HashClear(&v->pendingTerms);
5832 v->nPendingData = -1;
5834 return SQLITE_OK;
5837 /* If pendingTerms has data, flush it to a level-zero segment, and
5838 ** free it.
5840 static int flushPendingTerms(fulltext_vtab *v){
5841 if( v->nPendingData>=0 ){
5842 int rc = writeZeroSegment(v, &v->pendingTerms);
5843 if( rc==SQLITE_OK ) clearPendingTerms(v);
5844 return rc;
5846 return SQLITE_OK;
5849 /* If pendingTerms is "too big", or docid is out of order, flush it.
5850 ** Regardless, be certain that pendingTerms is initialized for use.
5852 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
5853 /* TODO(shess) Explore whether partially flushing the buffer on
5854 ** forced-flush would provide better performance. I suspect that if
5855 ** we ordered the doclists by size and flushed the largest until the
5856 ** buffer was half empty, that would let the less frequent terms
5857 ** generate longer doclists.
5859 if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
5860 int rc = flushPendingTerms(v);
5861 if( rc!=SQLITE_OK ) return rc;
5863 if( v->nPendingData<0 ){
5864 fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1);
5865 v->nPendingData = 0;
5867 v->iPrevDocid = iDocid;
5868 return SQLITE_OK;
5871 /* This function implements the xUpdate callback; it is the top-level entry
5872 * point for inserting, deleting or updating a row in a full-text table. */
5873 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
5874 sqlite_int64 *pRowid){
5875 fulltext_vtab *v = (fulltext_vtab *) pVtab;
5876 int rc;
5878 TRACE(("FTS2 Update %p\n", pVtab));
5880 if( nArg<2 ){
5881 rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
5882 if( rc==SQLITE_OK ){
5883 /* If we just deleted the last row in the table, clear out the
5884 ** index data.
5886 rc = content_exists(v);
5887 if( rc==SQLITE_ROW ){
5888 rc = SQLITE_OK;
5889 }else if( rc==SQLITE_DONE ){
5890 /* Clear the pending terms so we don't flush a useless level-0
5891 ** segment when the transaction closes.
5893 rc = clearPendingTerms(v);
5894 if( rc==SQLITE_OK ){
5895 rc = segdir_delete_all(v);
5899 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
5900 /* An update:
5901 * ppArg[0] = old rowid
5902 * ppArg[1] = new rowid
5903 * ppArg[2..2+v->nColumn-1] = values
5904 * ppArg[2+v->nColumn] = value for magic column (we ignore this)
5906 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
5907 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
5908 sqlite3_value_int64(ppArg[1]) != rowid ){
5909 rc = SQLITE_ERROR; /* we don't allow changing the rowid */
5910 } else {
5911 assert( nArg==2+v->nColumn+1);
5912 rc = index_update(v, rowid, &ppArg[2]);
5914 } else {
5915 /* An insert:
5916 * ppArg[1] = requested rowid
5917 * ppArg[2..2+v->nColumn-1] = values
5918 * ppArg[2+v->nColumn] = value for magic column (we ignore this)
5920 assert( nArg==2+v->nColumn+1);
5921 rc = index_insert(v, ppArg[1], &ppArg[2], pRowid);
5924 return rc;
5927 static int fulltextSync(sqlite3_vtab *pVtab){
5928 TRACE(("FTS2 xSync()\n"));
5929 return flushPendingTerms((fulltext_vtab *)pVtab);
5932 static int fulltextBegin(sqlite3_vtab *pVtab){
5933 fulltext_vtab *v = (fulltext_vtab *) pVtab;
5934 TRACE(("FTS2 xBegin()\n"));
5936 /* Any buffered updates should have been cleared by the previous
5937 ** transaction.
5939 assert( v->nPendingData<0 );
5940 return clearPendingTerms(v);
5943 static int fulltextCommit(sqlite3_vtab *pVtab){
5944 fulltext_vtab *v = (fulltext_vtab *) pVtab;
5945 TRACE(("FTS2 xCommit()\n"));
5947 /* Buffered updates should have been cleared by fulltextSync(). */
5948 assert( v->nPendingData<0 );
5949 return clearPendingTerms(v);
5952 static int fulltextRollback(sqlite3_vtab *pVtab){
5953 TRACE(("FTS2 xRollback()\n"));
5954 return clearPendingTerms((fulltext_vtab *)pVtab);
5958 ** Implementation of the snippet() function for FTS2
5960 static void snippetFunc(
5961 sqlite3_context *pContext,
5962 int argc,
5963 sqlite3_value **argv
5965 fulltext_cursor *pCursor;
5966 if( argc<1 ) return;
5967 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
5968 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
5969 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
5970 }else{
5971 const char *zStart = "<b>";
5972 const char *zEnd = "</b>";
5973 const char *zEllipsis = "<b>...</b>";
5974 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
5975 if( argc>=2 ){
5976 zStart = (const char*)sqlite3_value_text(argv[1]);
5977 if( argc>=3 ){
5978 zEnd = (const char*)sqlite3_value_text(argv[2]);
5979 if( argc>=4 ){
5980 zEllipsis = (const char*)sqlite3_value_text(argv[3]);
5984 snippetAllOffsets(pCursor);
5985 snippetText(pCursor, zStart, zEnd, zEllipsis);
5986 sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
5987 pCursor->snippet.nSnippet, SQLITE_STATIC);
5992 ** Implementation of the offsets() function for FTS2
5994 static void snippetOffsetsFunc(
5995 sqlite3_context *pContext,
5996 int argc,
5997 sqlite3_value **argv
5999 fulltext_cursor *pCursor;
6000 if( argc<1 ) return;
6001 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6002 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6003 sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
6004 }else{
6005 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6006 snippetAllOffsets(pCursor);
6007 snippetOffsetText(&pCursor->snippet);
6008 sqlite3_result_text(pContext,
6009 pCursor->snippet.zOffset, pCursor->snippet.nOffset,
6010 SQLITE_STATIC);
6014 /* OptLeavesReader is nearly identical to LeavesReader, except that
6015 ** where LeavesReader is geared towards the merging of complete
6016 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
6017 ** is geared towards implementation of the optimize() function, and
6018 ** can merge all segments simultaneously. This version may be
6019 ** somewhat less efficient than LeavesReader because it merges into an
6020 ** accumulator rather than doing an N-way merge, but since segment
6021 ** size grows exponentially (so segment count logrithmically) this is
6022 ** probably not an immediate problem.
6024 /* TODO(shess): Prove that assertion, or extend the merge code to
6025 ** merge tree fashion (like the prefix-searching code does).
6027 /* TODO(shess): OptLeavesReader and LeavesReader could probably be
6028 ** merged with little or no loss of performance for LeavesReader. The
6029 ** merged code would need to handle >MERGE_COUNT segments, and would
6030 ** also need to be able to optionally optimize away deletes.
6032 typedef struct OptLeavesReader {
6033 /* Segment number, to order readers by age. */
6034 int segment;
6035 LeavesReader reader;
6036 } OptLeavesReader;
6038 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
6039 return leavesReaderAtEnd(&pReader->reader);
6041 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
6042 return leavesReaderTermBytes(&pReader->reader);
6044 static const char *optLeavesReaderData(OptLeavesReader *pReader){
6045 return leavesReaderData(&pReader->reader);
6047 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
6048 return leavesReaderDataBytes(&pReader->reader);
6050 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
6051 return leavesReaderTerm(&pReader->reader);
6053 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
6054 return leavesReaderStep(v, &pReader->reader);
6056 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
6057 return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
6059 /* Order by term ascending, segment ascending (oldest to newest), with
6060 ** exhausted readers to the end.
6062 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
6063 int c = optLeavesReaderTermCmp(lr1, lr2);
6064 if( c!=0 ) return c;
6065 return lr1->segment-lr2->segment;
6067 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
6068 ** pLr[1..nLr-1] is already sorted.
6070 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
6071 while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
6072 OptLeavesReader tmp = pLr[0];
6073 pLr[0] = pLr[1];
6074 pLr[1] = tmp;
6075 nLr--;
6076 pLr++;
6080 /* optimize() helper function. Put the readers in order and iterate
6081 ** through them, merging doclists for matching terms into pWriter.
6082 ** Returns SQLITE_OK on success, or the SQLite error code which
6083 ** prevented success.
6085 static int optimizeInternal(fulltext_vtab *v,
6086 OptLeavesReader *readers, int nReaders,
6087 LeafWriter *pWriter){
6088 int i, rc = SQLITE_OK;
6089 DataBuffer doclist, merged, tmp;
6091 /* Order the readers. */
6092 i = nReaders;
6093 while( i-- > 0 ){
6094 optLeavesReaderReorder(&readers[i], nReaders-i);
6097 dataBufferInit(&doclist, LEAF_MAX);
6098 dataBufferInit(&merged, LEAF_MAX);
6100 /* Exhausted readers bubble to the end, so when the first reader is
6101 ** at eof, all are at eof.
6103 while( !optLeavesReaderAtEnd(&readers[0]) ){
6105 /* Figure out how many readers share the next term. */
6106 for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
6107 if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
6110 /* Special-case for no merge. */
6111 if( i==1 ){
6112 /* Trim deletions from the doclist. */
6113 dataBufferReset(&merged);
6114 docListTrim(DL_DEFAULT,
6115 optLeavesReaderData(&readers[0]),
6116 optLeavesReaderDataBytes(&readers[0]),
6117 -1, DL_DEFAULT, &merged);
6118 }else{
6119 DLReader dlReaders[MERGE_COUNT];
6120 int iReader, nReaders;
6122 /* Prime the pipeline with the first reader's doclist. After
6123 ** one pass index 0 will reference the accumulated doclist.
6125 dlrInit(&dlReaders[0], DL_DEFAULT,
6126 optLeavesReaderData(&readers[0]),
6127 optLeavesReaderDataBytes(&readers[0]));
6128 iReader = 1;
6130 assert( iReader<i ); /* Must execute the loop at least once. */
6131 while( iReader<i ){
6132 /* Merge 16 inputs per pass. */
6133 for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
6134 iReader++, nReaders++ ){
6135 dlrInit(&dlReaders[nReaders], DL_DEFAULT,
6136 optLeavesReaderData(&readers[iReader]),
6137 optLeavesReaderDataBytes(&readers[iReader]));
6140 /* Merge doclists and swap result into accumulator. */
6141 dataBufferReset(&merged);
6142 docListMerge(&merged, dlReaders, nReaders);
6143 tmp = merged;
6144 merged = doclist;
6145 doclist = tmp;
6147 while( nReaders-- > 0 ){
6148 dlrDestroy(&dlReaders[nReaders]);
6151 /* Accumulated doclist to reader 0 for next pass. */
6152 dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
6155 /* Destroy reader that was left in the pipeline. */
6156 dlrDestroy(&dlReaders[0]);
6158 /* Trim deletions from the doclist. */
6159 dataBufferReset(&merged);
6160 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
6161 -1, DL_DEFAULT, &merged);
6164 /* Only pass doclists with hits (skip if all hits deleted). */
6165 if( merged.nData>0 ){
6166 rc = leafWriterStep(v, pWriter,
6167 optLeavesReaderTerm(&readers[0]),
6168 optLeavesReaderTermBytes(&readers[0]),
6169 merged.pData, merged.nData);
6170 if( rc!=SQLITE_OK ) goto err;
6173 /* Step merged readers to next term and reorder. */
6174 while( i-- > 0 ){
6175 rc = optLeavesReaderStep(v, &readers[i]);
6176 if( rc!=SQLITE_OK ) goto err;
6178 optLeavesReaderReorder(&readers[i], nReaders-i);
6182 err:
6183 dataBufferDestroy(&doclist);
6184 dataBufferDestroy(&merged);
6185 return rc;
6188 /* Implement optimize() function for FTS3. optimize(t) merges all
6189 ** segments in the fts index into a single segment. 't' is the magic
6190 ** table-named column.
6192 static void optimizeFunc(sqlite3_context *pContext,
6193 int argc, sqlite3_value **argv){
6194 fulltext_cursor *pCursor;
6195 if( argc>1 ){
6196 sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
6197 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6198 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6199 sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
6200 }else{
6201 fulltext_vtab *v;
6202 int i, rc, iMaxLevel;
6203 OptLeavesReader *readers;
6204 int nReaders;
6205 LeafWriter writer;
6206 sqlite3_stmt *s;
6208 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6209 v = cursor_vtab(pCursor);
6211 /* Flush any buffered updates before optimizing. */
6212 rc = flushPendingTerms(v);
6213 if( rc!=SQLITE_OK ) goto err;
6215 rc = segdir_count(v, &nReaders, &iMaxLevel);
6216 if( rc!=SQLITE_OK ) goto err;
6217 if( nReaders==0 || nReaders==1 ){
6218 sqlite3_result_text(pContext, "Index already optimal", -1,
6219 SQLITE_STATIC);
6220 return;
6223 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
6224 if( rc!=SQLITE_OK ) goto err;
6226 readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
6227 if( readers==NULL ) goto err;
6229 /* Note that there will already be a segment at this position
6230 ** until we call segdir_delete() on iMaxLevel.
6232 leafWriterInit(iMaxLevel, 0, &writer);
6234 i = 0;
6235 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
6236 sqlite_int64 iStart = sqlite3_column_int64(s, 0);
6237 sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
6238 const char *pRootData = sqlite3_column_blob(s, 2);
6239 int nRootData = sqlite3_column_bytes(s, 2);
6241 assert( i<nReaders );
6242 rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
6243 &readers[i].reader);
6244 if( rc!=SQLITE_OK ) break;
6246 readers[i].segment = i;
6247 i++;
6250 /* If we managed to successfully read them all, optimize them. */
6251 if( rc==SQLITE_DONE ){
6252 assert( i==nReaders );
6253 rc = optimizeInternal(v, readers, nReaders, &writer);
6256 while( i-- > 0 ){
6257 leavesReaderDestroy(&readers[i].reader);
6259 sqlite3_free(readers);
6261 /* If we've successfully gotten to here, delete the old segments
6262 ** and flush the interior structure of the new segment.
6264 if( rc==SQLITE_OK ){
6265 for( i=0; i<=iMaxLevel; i++ ){
6266 rc = segdir_delete(v, i);
6267 if( rc!=SQLITE_OK ) break;
6270 if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
6273 leafWriterDestroy(&writer);
6275 if( rc!=SQLITE_OK ) goto err;
6277 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
6278 return;
6280 /* TODO(shess): Error-handling needs to be improved along the
6281 ** lines of the dump_ functions.
6283 err:
6285 char buf[512];
6286 sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
6287 sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
6288 sqlite3_result_error(pContext, buf, -1);
6293 #ifdef SQLITE_TEST
6294 /* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
6295 ** pull the error from the context's db handle.
6297 static void generateError(sqlite3_context *pContext,
6298 const char *prefix, const char *msg){
6299 char buf[512];
6300 if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
6301 sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
6302 sqlite3_result_error(pContext, buf, -1);
6305 /* Helper function to collect the set of terms in the segment into
6306 ** pTerms. The segment is defined by the leaf nodes between
6307 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of
6308 ** pRootData if iStartBlockid is 0 (in which case the entire segment
6309 ** fit in a leaf).
6311 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
6312 fts2Hash *pTerms){
6313 const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
6314 const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
6315 const char *pRootData = sqlite3_column_blob(s, 2);
6316 const int nRootData = sqlite3_column_bytes(s, 2);
6317 LeavesReader reader;
6318 int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
6319 pRootData, nRootData, &reader);
6320 if( rc!=SQLITE_OK ) return rc;
6322 while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
6323 const char *pTerm = leavesReaderTerm(&reader);
6324 const int nTerm = leavesReaderTermBytes(&reader);
6325 void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm);
6326 void *newValue = (void *)((char *)oldValue+1);
6328 /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c,
6329 ** the data value passed is returned in case of malloc failure.
6331 if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){
6332 rc = SQLITE_NOMEM;
6333 }else{
6334 rc = leavesReaderStep(v, &reader);
6338 leavesReaderDestroy(&reader);
6339 return rc;
6342 /* Helper function to build the result string for dump_terms(). */
6343 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){
6344 int iTerm, nTerms, nResultBytes, iByte;
6345 char *result;
6346 TermData *pData;
6347 fts2HashElem *e;
6349 /* Iterate pTerms to generate an array of terms in pData for
6350 ** sorting.
6352 nTerms = fts2HashCount(pTerms);
6353 assert( nTerms>0 );
6354 pData = sqlite3_malloc(nTerms*sizeof(TermData));
6355 if( pData==NULL ) return SQLITE_NOMEM;
6357 nResultBytes = 0;
6358 for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){
6359 nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */
6360 assert( iTerm<nTerms );
6361 pData[iTerm].pTerm = fts2HashKey(e);
6362 pData[iTerm].nTerm = fts2HashKeysize(e);
6363 pData[iTerm].pCollector = fts2HashData(e); /* unused */
6365 assert( iTerm==nTerms );
6367 assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
6368 result = sqlite3_malloc(nResultBytes);
6369 if( result==NULL ){
6370 sqlite3_free(pData);
6371 return SQLITE_NOMEM;
6374 if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
6376 /* Read the terms in order to build the result. */
6377 iByte = 0;
6378 for(iTerm=0; iTerm<nTerms; ++iTerm){
6379 memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
6380 iByte += pData[iTerm].nTerm;
6381 result[iByte++] = ' ';
6383 assert( iByte==nResultBytes );
6384 assert( result[nResultBytes-1]==' ' );
6385 result[nResultBytes-1] = '\0';
6387 /* Passes away ownership of result. */
6388 sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
6389 sqlite3_free(pData);
6390 return SQLITE_OK;
6393 /* Implements dump_terms() for use in inspecting the fts2 index from
6394 ** tests. TEXT result containing the ordered list of terms joined by
6395 ** spaces. dump_terms(t, level, idx) dumps the terms for the segment
6396 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps
6397 ** all terms in the index. In both cases t is the fts table's magic
6398 ** table-named column.
6400 static void dumpTermsFunc(
6401 sqlite3_context *pContext,
6402 int argc, sqlite3_value **argv
6404 fulltext_cursor *pCursor;
6405 if( argc!=3 && argc!=1 ){
6406 generateError(pContext, "dump_terms", "incorrect arguments");
6407 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6408 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6409 generateError(pContext, "dump_terms", "illegal first argument");
6410 }else{
6411 fulltext_vtab *v;
6412 fts2Hash terms;
6413 sqlite3_stmt *s = NULL;
6414 int rc;
6416 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6417 v = cursor_vtab(pCursor);
6419 /* If passed only the cursor column, get all segments. Otherwise
6420 ** get the segment described by the following two arguments.
6422 if( argc==1 ){
6423 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
6424 }else{
6425 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
6426 if( rc==SQLITE_OK ){
6427 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
6428 if( rc==SQLITE_OK ){
6429 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
6434 if( rc!=SQLITE_OK ){
6435 generateError(pContext, "dump_terms", NULL);
6436 return;
6439 /* Collect the terms for each segment. */
6440 sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1);
6441 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
6442 rc = collectSegmentTerms(v, s, &terms);
6443 if( rc!=SQLITE_OK ) break;
6446 if( rc!=SQLITE_DONE ){
6447 sqlite3_reset(s);
6448 generateError(pContext, "dump_terms", NULL);
6449 }else{
6450 const int nTerms = fts2HashCount(&terms);
6451 if( nTerms>0 ){
6452 rc = generateTermsResult(pContext, &terms);
6453 if( rc==SQLITE_NOMEM ){
6454 generateError(pContext, "dump_terms", "out of memory");
6455 }else{
6456 assert( rc==SQLITE_OK );
6458 }else if( argc==3 ){
6459 /* The specific segment asked for could not be found. */
6460 generateError(pContext, "dump_terms", "segment not found");
6461 }else{
6462 /* No segments found. */
6463 /* TODO(shess): It should be impossible to reach this. This
6464 ** case can only happen for an empty table, in which case
6465 ** SQLite has no rows to call this function on.
6467 sqlite3_result_null(pContext);
6470 sqlite3Fts2HashClear(&terms);
6474 /* Expand the DL_DEFAULT doclist in pData into a text result in
6475 ** pContext.
6477 static void createDoclistResult(sqlite3_context *pContext,
6478 const char *pData, int nData){
6479 DataBuffer dump;
6480 DLReader dlReader;
6482 assert( pData!=NULL && nData>0 );
6484 dataBufferInit(&dump, 0);
6485 dlrInit(&dlReader, DL_DEFAULT, pData, nData);
6486 for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
6487 char buf[256];
6488 PLReader plReader;
6490 plrInit(&plReader, &dlReader);
6491 if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
6492 sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
6493 dataBufferAppend(&dump, buf, strlen(buf));
6494 }else{
6495 int iColumn = plrColumn(&plReader);
6497 sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
6498 dlrDocid(&dlReader), iColumn);
6499 dataBufferAppend(&dump, buf, strlen(buf));
6501 for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
6502 if( plrColumn(&plReader)!=iColumn ){
6503 iColumn = plrColumn(&plReader);
6504 sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
6505 assert( dump.nData>0 );
6506 dump.nData--; /* Overwrite trailing space. */
6507 assert( dump.pData[dump.nData]==' ');
6508 dataBufferAppend(&dump, buf, strlen(buf));
6510 if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
6511 sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
6512 plrPosition(&plReader),
6513 plrStartOffset(&plReader), plrEndOffset(&plReader));
6514 }else if( DL_DEFAULT==DL_POSITIONS ){
6515 sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
6516 }else{
6517 assert( NULL=="Unhandled DL_DEFAULT value");
6519 dataBufferAppend(&dump, buf, strlen(buf));
6521 plrDestroy(&plReader);
6523 assert( dump.nData>0 );
6524 dump.nData--; /* Overwrite trailing space. */
6525 assert( dump.pData[dump.nData]==' ');
6526 dataBufferAppend(&dump, "]] ", 3);
6529 dlrDestroy(&dlReader);
6531 assert( dump.nData>0 );
6532 dump.nData--; /* Overwrite trailing space. */
6533 assert( dump.pData[dump.nData]==' ');
6534 dump.pData[dump.nData] = '\0';
6535 assert( dump.nData>0 );
6537 /* Passes ownership of dump's buffer to pContext. */
6538 sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
6539 dump.pData = NULL;
6540 dump.nData = dump.nCapacity = 0;
6543 /* Implements dump_doclist() for use in inspecting the fts2 index from
6544 ** tests. TEXT result containing a string representation of the
6545 ** doclist for the indicated term. dump_doclist(t, term, level, idx)
6546 ** dumps the doclist for term from the segment specified by level, idx
6547 ** (in %_segdir), while dump_doclist(t, term) dumps the logical
6548 ** doclist for the term across all segments. The per-segment doclist
6549 ** can contain deletions, while the full-index doclist will not
6550 ** (deletions are omitted).
6552 ** Result formats differ with the setting of DL_DEFAULTS. Examples:
6554 ** DL_DOCIDS: [1] [3] [7]
6555 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
6556 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
6558 ** In each case the number after the outer '[' is the docid. In the
6559 ** latter two cases, the number before the inner '[' is the column
6560 ** associated with the values within. For DL_POSITIONS the numbers
6561 ** within are the positions, for DL_POSITIONS_OFFSETS they are the
6562 ** position, the start offset, and the end offset.
6564 static void dumpDoclistFunc(
6565 sqlite3_context *pContext,
6566 int argc, sqlite3_value **argv
6568 fulltext_cursor *pCursor;
6569 if( argc!=2 && argc!=4 ){
6570 generateError(pContext, "dump_doclist", "incorrect arguments");
6571 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6572 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6573 generateError(pContext, "dump_doclist", "illegal first argument");
6574 }else if( sqlite3_value_text(argv[1])==NULL ||
6575 sqlite3_value_text(argv[1])[0]=='\0' ){
6576 generateError(pContext, "dump_doclist", "empty second argument");
6577 }else{
6578 const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
6579 const int nTerm = strlen(pTerm);
6580 fulltext_vtab *v;
6581 int rc;
6582 DataBuffer doclist;
6584 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6585 v = cursor_vtab(pCursor);
6587 dataBufferInit(&doclist, 0);
6589 /* termSelect() yields the same logical doclist that queries are
6590 ** run against.
6592 if( argc==2 ){
6593 rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
6594 }else{
6595 sqlite3_stmt *s = NULL;
6597 /* Get our specific segment's information. */
6598 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
6599 if( rc==SQLITE_OK ){
6600 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
6601 if( rc==SQLITE_OK ){
6602 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
6606 if( rc==SQLITE_OK ){
6607 rc = sqlite3_step(s);
6609 if( rc==SQLITE_DONE ){
6610 dataBufferDestroy(&doclist);
6611 generateError(pContext, "dump_doclist", "segment not found");
6612 return;
6615 /* Found a segment, load it into doclist. */
6616 if( rc==SQLITE_ROW ){
6617 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
6618 const char *pData = sqlite3_column_blob(s, 2);
6619 const int nData = sqlite3_column_bytes(s, 2);
6621 /* loadSegment() is used by termSelect() to load each
6622 ** segment's data.
6624 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
6625 &doclist);
6626 if( rc==SQLITE_OK ){
6627 rc = sqlite3_step(s);
6629 /* Should not have more than one matching segment. */
6630 if( rc!=SQLITE_DONE ){
6631 sqlite3_reset(s);
6632 dataBufferDestroy(&doclist);
6633 generateError(pContext, "dump_doclist", "invalid segdir");
6634 return;
6636 rc = SQLITE_OK;
6641 sqlite3_reset(s);
6644 if( rc==SQLITE_OK ){
6645 if( doclist.nData>0 ){
6646 createDoclistResult(pContext, doclist.pData, doclist.nData);
6647 }else{
6648 /* TODO(shess): This can happen if the term is not present, or
6649 ** if all instances of the term have been deleted and this is
6650 ** an all-index dump. It may be interesting to distinguish
6651 ** these cases.
6653 sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
6655 }else if( rc==SQLITE_NOMEM ){
6656 /* Handle out-of-memory cases specially because if they are
6657 ** generated in fts2 code they may not be reflected in the db
6658 ** handle.
6660 /* TODO(shess): Handle this more comprehensively.
6661 ** sqlite3ErrStr() has what I need, but is internal.
6663 generateError(pContext, "dump_doclist", "out of memory");
6664 }else{
6665 generateError(pContext, "dump_doclist", NULL);
6668 dataBufferDestroy(&doclist);
6671 #endif
6674 ** This routine implements the xFindFunction method for the FTS2
6675 ** virtual table.
6677 static int fulltextFindFunction(
6678 sqlite3_vtab *pVtab,
6679 int nArg,
6680 const char *zName,
6681 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
6682 void **ppArg
6684 if( strcmp(zName,"snippet")==0 ){
6685 *pxFunc = snippetFunc;
6686 return 1;
6687 }else if( strcmp(zName,"offsets")==0 ){
6688 *pxFunc = snippetOffsetsFunc;
6689 return 1;
6690 }else if( strcmp(zName,"optimize")==0 ){
6691 *pxFunc = optimizeFunc;
6692 return 1;
6693 #ifdef SQLITE_TEST
6694 /* NOTE(shess): These functions are present only for testing
6695 ** purposes. No particular effort is made to optimize their
6696 ** execution or how they build their results.
6698 }else if( strcmp(zName,"dump_terms")==0 ){
6699 /* fprintf(stderr, "Found dump_terms\n"); */
6700 *pxFunc = dumpTermsFunc;
6701 return 1;
6702 }else if( strcmp(zName,"dump_doclist")==0 ){
6703 /* fprintf(stderr, "Found dump_doclist\n"); */
6704 *pxFunc = dumpDoclistFunc;
6705 return 1;
6706 #endif
6708 return 0;
6712 ** Rename an fts2 table.
6714 static int fulltextRename(
6715 sqlite3_vtab *pVtab,
6716 const char *zName
6718 fulltext_vtab *p = (fulltext_vtab *)pVtab;
6719 int rc = SQLITE_NOMEM;
6720 char *zSql = sqlite3_mprintf(
6721 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
6722 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
6723 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
6724 , p->zDb, p->zName, zName
6725 , p->zDb, p->zName, zName
6726 , p->zDb, p->zName, zName
6728 if( zSql ){
6729 rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
6730 sqlite3_free(zSql);
6732 return rc;
6735 static const sqlite3_module fts2Module = {
6736 /* iVersion */ 0,
6737 /* xCreate */ fulltextCreate,
6738 /* xConnect */ fulltextConnect,
6739 /* xBestIndex */ fulltextBestIndex,
6740 /* xDisconnect */ fulltextDisconnect,
6741 /* xDestroy */ fulltextDestroy,
6742 /* xOpen */ fulltextOpen,
6743 /* xClose */ fulltextClose,
6744 /* xFilter */ fulltextFilter,
6745 /* xNext */ fulltextNext,
6746 /* xEof */ fulltextEof,
6747 /* xColumn */ fulltextColumn,
6748 /* xRowid */ fulltextRowid,
6749 /* xUpdate */ fulltextUpdate,
6750 /* xBegin */ fulltextBegin,
6751 /* xSync */ fulltextSync,
6752 /* xCommit */ fulltextCommit,
6753 /* xRollback */ fulltextRollback,
6754 /* xFindFunction */ fulltextFindFunction,
6755 /* xRename */ fulltextRename,
6758 static void hashDestroy(void *p){
6759 fts2Hash *pHash = (fts2Hash *)p;
6760 sqlite3Fts2HashClear(pHash);
6761 sqlite3_free(pHash);
6765 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented
6766 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following
6767 ** two forward declarations are for functions declared in these files
6768 ** used to retrieve the respective implementations.
6770 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed
6771 ** to by the argument to point a the "simple" tokenizer implementation.
6772 ** Function ...PorterTokenizerModule() sets *pModule to point to the
6773 ** porter tokenizer/stemmer implementation.
6775 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
6776 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
6777 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
6779 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *);
6782 ** Initialize the fts2 extension. If this extension is built as part
6783 ** of the sqlite library, then this function is called directly by
6784 ** SQLite. If fts2 is built as a dynamically loadable extension, this
6785 ** function is called by the sqlite3_extension_init() entry point.
6787 int sqlite3Fts2Init(sqlite3 *db){
6788 int rc = SQLITE_OK;
6789 fts2Hash *pHash = 0;
6790 const sqlite3_tokenizer_module *pSimple = 0;
6791 const sqlite3_tokenizer_module *pPorter = 0;
6792 const sqlite3_tokenizer_module *pIcu = 0;
6794 sqlite3Fts2SimpleTokenizerModule(&pSimple);
6795 sqlite3Fts2PorterTokenizerModule(&pPorter);
6796 #ifdef SQLITE_ENABLE_ICU
6797 sqlite3Fts2IcuTokenizerModule(&pIcu);
6798 #endif
6800 /* Allocate and initialize the hash-table used to store tokenizers. */
6801 pHash = sqlite3_malloc(sizeof(fts2Hash));
6802 if( !pHash ){
6803 rc = SQLITE_NOMEM;
6804 }else{
6805 sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1);
6808 /* Load the built-in tokenizers into the hash table */
6809 if( rc==SQLITE_OK ){
6810 if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple)
6811 || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter)
6812 || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu))
6814 rc = SQLITE_NOMEM;
6818 /* Create the virtual table wrapper around the hash-table and overload
6819 ** the two scalar functions. If this is successful, register the
6820 ** module with sqlite.
6822 if( SQLITE_OK==rc
6823 && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer"))
6824 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
6825 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
6826 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
6827 #ifdef SQLITE_TEST
6828 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
6829 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
6830 #endif
6832 return sqlite3_create_module_v2(
6833 db, "fts2", &fts2Module, (void *)pHash, hashDestroy
6837 /* An error has occurred. Delete the hash table and return the error code. */
6838 assert( rc!=SQLITE_OK );
6839 if( pHash ){
6840 sqlite3Fts2HashClear(pHash);
6841 sqlite3_free(pHash);
6843 return rc;
6846 #if !SQLITE_CORE
6847 #ifdef _WIN32
6848 __declspec(dllexport)
6849 #endif
6850 int sqlite3_fts2_init(
6851 sqlite3 *db,
6852 char **pzErrMsg,
6853 const sqlite3_api_routines *pApi
6855 SQLITE_EXTENSION_INIT2(pApi)
6856 return sqlite3Fts2Init(db);
6858 #endif
6860 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */