3 # The author disclaims copyright to this source code. In place of
4 # a legal notice, here is a blessing:
6 # May you do good and not evil.
7 # May you find forgiveness for yourself and forgive others.
8 # May you share freely, never taking more than you give.
10 #***********************************************************************
11 # This file implements regression tests for SQLite library. The
12 # focus of this file is testing the operation of the library in
13 # "PRAGMA journal_mode=WAL" mode.
16 set testdir [file dirname $argv0]
17 source $testdir/tester.tcl
18 source $testdir/lock_common.tcl
19 source $testdir/malloc_common.tcl
20 source $testdir/wal_common.tcl
24 ifcapable !wal {finish_test ; return }
28 forcedelete test.db test.db-wal test.db-wal-summary
29 sqlite3_wal db test.db
35 return [string range [string repeat "${::blobcnt}x" $nByte] 1 $nByte]
38 proc sqlite3_wal {args} {
40 [lindex $args 0] eval { PRAGMA auto_vacuum = 0 }
41 [lindex $args 0] eval { PRAGMA page_size = 1024 }
42 [lindex $args 0] eval { PRAGMA journal_mode = wal }
43 [lindex $args 0] eval { PRAGMA synchronous = normal }
44 [lindex $args 0] function blob blob
47 proc log_deleted {logfile} {
48 return [expr [file exists $logfile]==0]
52 # These are 'warm-body' tests used while developing the WAL code. They
53 # serve to prove that a few really simple cases work:
55 # wal-1.*: Read and write the database.
56 # wal-2.*: Test MVCC with one reader, one writer.
57 # wal-3.*: Test transaction rollback.
58 # wal-4.*: Test savepoint/statement rollback.
59 # wal-5.*: Test the temp database.
60 # wal-6.*: Test creating databases with different page sizes.
65 execsql { PRAGMA auto_vacuum = 0 }
66 execsql { PRAGMA synchronous = normal }
67 execsql { PRAGMA journal_mode = wal }
76 CREATE TABLE t1(a, b);
78 list [file exists test.db-journal] \
79 [file exists test.db-wal] \
84 list [file exists test.db-journal] [file exists test.db-wal]
87 # There are now two pages in the log.
89 } [wal_file_size 2 1024]
92 execsql { SELECT * FROM sqlite_master }
93 } {table t1 t1 2 {CREATE TABLE t1(a, b)}}
96 execsql { INSERT INTO t1 VALUES(1, 2) }
97 execsql { INSERT INTO t1 VALUES(3, 4) }
98 execsql { INSERT INTO t1 VALUES(5, 6) }
99 execsql { INSERT INTO t1 VALUES(7, 8) }
100 execsql { INSERT INTO t1 VALUES(9, 10) }
104 execsql { SELECT * FROM t1 }
105 } {1 2 3 4 5 6 7 8 9 10}
108 sqlite3_wal db2 ./test.db
109 execsql { BEGIN; SELECT * FROM t1 } db2
110 } {1 2 3 4 5 6 7 8 9 10}
113 execsql { INSERT INTO t1 VALUES(11, 12) }
114 execsql { SELECT * FROM t1 }
115 } {1 2 3 4 5 6 7 8 9 10 11 12}
118 execsql { SELECT * FROM t1 } db2
119 } {1 2 3 4 5 6 7 8 9 10}
122 execsql { INSERT INTO t1 VALUES(13, 14) }
123 execsql { SELECT * FROM t1 }
124 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
127 execsql { SELECT * FROM t1 } db2
128 } {1 2 3 4 5 6 7 8 9 10}
131 execsql { COMMIT; SELECT * FROM t1 } db2
132 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
135 execsql { BEGIN; DELETE FROM t1 }
136 execsql { SELECT * FROM t1 }
139 execsql { SELECT * FROM t1 } db2
140 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
143 execsql { SELECT * FROM t1 }
144 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
147 #-------------------------------------------------------------------------
148 # The following tests, wal-4.*, test that savepoints work with WAL
155 INSERT INTO t1 VALUES('a', 'b');
157 INSERT INTO t1 VALUES('c', 'd');
178 list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
181 execsql { PRAGMA cache_size = 10 }
183 CREATE TABLE t2(a, b);
184 INSERT INTO t2 VALUES(blob(400), blob(400));
186 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
187 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
188 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
189 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
190 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
191 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
192 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
193 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
194 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
195 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
196 SELECT count(*) FROM t2;
200 execsql { ROLLBACK TO tr }
203 set logsize [file size test.db-wal]
205 INSERT INTO t1 VALUES('x', 'y');
208 expr { $logsize == [file size test.db-wal] }
211 execsql { SELECT count(*) FROM t2 }
214 forcecopy test.db test2.db
215 forcecopy test.db-wal test2.db-wal
217 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
220 execsql { PRAGMA integrity_check } db2
228 PRAGMA journal_mode = WAL;
229 CREATE TABLE t1(a, b);
230 INSERT INTO t1 VALUES('a', 'b');
234 list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
237 execsql { PRAGMA cache_size = 10 }
239 CREATE TABLE t2(a, b);
241 INSERT INTO t2 VALUES(blob(400), blob(400));
243 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
244 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
245 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
246 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
247 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
248 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
249 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
250 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
251 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
252 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
253 SELECT count(*) FROM t2;
257 execsql { ROLLBACK TO tr }
260 set logsize [file size test.db-wal]
262 INSERT INTO t1 VALUES('x', 'y');
266 expr { $logsize == [file size test.db-wal] }
269 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 }
272 forcecopy test.db test2.db
273 forcecopy test.db-wal test2.db-wal
275 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
278 execsql { PRAGMA integrity_check } db2
285 PRAGMA wal_checkpoint;
287 INSERT INTO t2 VALUES('w', 'x');
289 INSERT INTO t2 VALUES('y', 'z');
293 execsql { SELECT * FROM t2 }
300 CREATE TEMP TABLE t2(a, b);
301 INSERT INTO t2 VALUES(1, 2);
307 INSERT INTO t2 VALUES(3, 4);
319 CREATE TEMP TABLE t3(x UNIQUE);
321 INSERT INTO t2 VALUES(3, 4);
322 INSERT INTO t3 VALUES('abc');
324 catchsql { INSERT INTO t3 VALUES('abc') }
325 } {1 {UNIQUE constraint failed: t3.x}}
334 foreach sector {512 4096} {
335 sqlite3_simulate_device -sectorsize $sector
336 foreach pgsz {512 1024 2048 4096} {
337 forcedelete test.db test.db-wal
338 do_test wal-6.$sector.$pgsz.1 {
339 sqlite3 db test.db -vfs devsym
341 PRAGMA page_size = $pgsz;
342 PRAGMA auto_vacuum = 0;
343 PRAGMA journal_mode = wal;
346 CREATE TABLE t1(a, b);
347 INSERT INTO t1 VALUES(1, 2);
353 do_test wal-6.$sector.$pgsz.2 {
354 log_deleted test.db-wal
360 forcedelete test.db test.db-wal
361 sqlite3_wal db test.db
363 PRAGMA page_size = 1024;
364 CREATE TABLE t1(a, b);
365 INSERT INTO t1 VALUES(1, 2);
367 list [file size test.db] [file size test.db-wal]
368 } [list 1024 [wal_file_size 3 1024]]
370 execsql { PRAGMA wal_checkpoint }
371 list [file size test.db] [file size test.db-wal]
372 } [list 2048 [wal_file_size 3 1024]]
374 # Execute some transactions in auto-vacuum mode to test database file
380 forcedelete test.db test.db-wal
383 db function blob blob
385 PRAGMA auto_vacuum = 1;
386 PRAGMA journal_mode = wal;
392 PRAGMA page_size = 1024;
394 INSERT INTO t1 VALUES(blob(900));
395 INSERT INTO t1 VALUES(blob(900));
396 INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
397 INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
398 INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
399 INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
400 INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
401 PRAGMA wal_checkpoint;
407 DELETE FROM t1 WHERE rowid<54;
408 PRAGMA wal_checkpoint;
413 # Run some "warm-body" tests to ensure that log-summary files with more
414 # than 256 entries (log summaries that contain index blocks) work Ok.
419 PRAGMA cache_size=2000;
420 CREATE TABLE t1(x PRIMARY KEY);
421 INSERT INTO t1 VALUES(blob(900));
422 INSERT INTO t1 VALUES(blob(900));
423 INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
424 INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
425 INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
426 INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
427 INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
428 INSERT INTO t1 SELECT blob(900) FROM t1; /* 128 */
429 INSERT INTO t1 SELECT blob(900) FROM t1; /* 256 */
434 sqlite3_wal db2 test.db
435 execsql {PRAGMA integrity_check } db2
439 forcedelete test2.db test2.db-wal
440 copy_file test.db test2.db
441 copy_file test.db-wal test2.db-wal
442 sqlite3_wal db3 test2.db
443 execsql {PRAGMA integrity_check } db3
448 execsql { PRAGMA wal_checkpoint }
450 sqlite3_wal db2 test.db
451 execsql {PRAGMA integrity_check } db2
454 foreach handle {db db2 db3} { catch { $handle close } }
457 #-------------------------------------------------------------------------
458 # The following block of tests - wal-10.* - test that the WAL locking
459 # scheme works in simple cases. This block of tests is run twice. Once
460 # using multiple connections in the address space of the current process,
461 # and once with all connections except one running in external processes.
463 do_multiclient_test tn {
465 # Initialize the database schema and contents.
467 do_test wal-10.$tn.1 {
469 PRAGMA auto_vacuum = 0;
470 PRAGMA journal_mode = wal;
471 CREATE TABLE t1(a, b);
472 INSERT INTO t1 VALUES(1, 2);
477 # Open a transaction and write to the database using [db]. Check that [db2]
478 # is still able to read the snapshot before the transaction was opened.
480 do_test wal-10.$tn.2 {
481 execsql { BEGIN; INSERT INTO t1 VALUES(3, 4); }
482 sql2 {SELECT * FROM t1}
485 # Have [db] commit the transaction. Check that [db2] is now seeing the
486 # new, updated snapshot.
488 do_test wal-10.$tn.3 {
490 sql2 {SELECT * FROM t1}
493 # Have [db2] open a read transaction. Then write to the db via [db]. Check
494 # that [db2] is still seeing the original snapshot. Then read with [db3].
495 # [db3] should see the newly committed data.
497 do_test wal-10.$tn.4 {
498 sql2 { BEGIN ; SELECT * FROM t1}
500 do_test wal-10.$tn.5 {
501 execsql { INSERT INTO t1 VALUES(5, 6); }
502 sql2 {SELECT * FROM t1}
504 do_test wal-10.$tn.6 {
505 sql3 {SELECT * FROM t1}
507 do_test wal-10.$tn.7 {
511 # Have [db2] open a write transaction. Then attempt to write to the
512 # database via [db]. This should fail (writer lock cannot be obtained).
514 # Then open a read-transaction with [db]. Commit the [db2] transaction
515 # to disk. Verify that [db] still cannot write to the database (because
516 # it is reading an old snapshot).
518 # Close the current [db] transaction. Open a new one. [db] can now write
519 # to the database (as it is not locked and [db] is reading the latest
522 do_test wal-10.$tn.7 {
523 sql2 { BEGIN; INSERT INTO t1 VALUES(7, 8) ; }
524 catchsql { INSERT INTO t1 VALUES(9, 10) }
525 } {1 {database is locked}}
526 do_test wal-10.$tn.8 {
527 execsql { BEGIN ; SELECT * FROM t1 }
529 do_test wal-10.$tn.9 {
531 catchsql { INSERT INTO t1 VALUES(9, 10) }
532 } {1 {database is locked}}
533 do_test wal-10.$tn.10 {
536 execsql { INSERT INTO t1 VALUES(9, 10) }
538 execsql { SELECT * FROM t1 }
539 } {1 2 3 4 5 6 7 8 9 10}
541 # Open a read transaction with [db2]. Check that this prevents [db] from
542 # checkpointing the database. But not from writing to it.
544 do_test wal-10.$tn.11 {
545 sql2 { BEGIN; SELECT * FROM t1 }
546 } {1 2 3 4 5 6 7 8 9 10}
547 do_test wal-10.$tn.12 {
548 catchsql { PRAGMA wal_checkpoint }
549 } {0 {0 7 7}} ;# Reader no longer block checkpoints
550 do_test wal-10.$tn.13 {
551 execsql { INSERT INTO t1 VALUES(11, 12) }
552 sql2 {SELECT * FROM t1}
553 } {1 2 3 4 5 6 7 8 9 10}
555 # Writers do not block checkpoints any more either.
557 do_test wal-10.$tn.14 {
558 catchsql { PRAGMA wal_checkpoint }
561 # The following series of test cases used to verify another blocking
562 # case in WAL - a case which no longer blocks.
564 do_test wal-10.$tn.15 {
565 sql2 { COMMIT; BEGIN; SELECT * FROM t1; }
566 } {1 2 3 4 5 6 7 8 9 10 11 12}
567 do_test wal-10.$tn.16 {
568 catchsql { PRAGMA wal_checkpoint }
570 do_test wal-10.$tn.17 {
571 execsql { PRAGMA wal_checkpoint }
573 do_test wal-10.$tn.18 {
574 sql3 { BEGIN; SELECT * FROM t1 }
575 } {1 2 3 4 5 6 7 8 9 10 11 12}
576 do_test wal-10.$tn.19 {
577 catchsql { INSERT INTO t1 VALUES(13, 14) }
579 do_test wal-10.$tn.20 {
580 execsql { SELECT * FROM t1 }
581 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
582 do_test wal-10.$tn.21 {
586 do_test wal-10.$tn.22 {
587 execsql { SELECT * FROM t1 }
588 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
590 # Another series of tests that used to demonstrate blocking behavior
591 # but which now work.
593 do_test wal-10.$tn.23 {
594 execsql { PRAGMA wal_checkpoint }
596 do_test wal-10.$tn.24 {
597 sql2 { BEGIN; SELECT * FROM t1; }
598 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
599 do_test wal-10.$tn.25 {
600 execsql { PRAGMA wal_checkpoint }
602 do_test wal-10.$tn.26 {
603 catchsql { INSERT INTO t1 VALUES(15, 16) }
605 do_test wal-10.$tn.27 {
606 sql3 { INSERT INTO t1 VALUES(17, 18) }
608 do_test wal-10.$tn.28 {
610 set ::STMT [sqlite3_prepare db3 "SELECT * FROM t1" -1 TAIL]
613 execsql { SELECT * FROM t1 }
614 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18}
615 do_test wal-10.$tn.29 {
616 execsql { INSERT INTO t1 VALUES(19, 20) }
617 catchsql { PRAGMA wal_checkpoint }
619 do_test wal-10.$tn.30 {
620 code3 { sqlite3_finalize $::STMT }
621 execsql { PRAGMA wal_checkpoint }
624 # At one point, if a reader failed to upgrade to a writer because it
625 # was reading an old snapshot, the write-locks were not being released.
626 # Test that this bug has been fixed.
628 do_test wal-10.$tn.31 {
630 execsql { BEGIN ; SELECT * FROM t1 }
631 sql2 { INSERT INTO t1 VALUES(21, 22) }
632 catchsql { INSERT INTO t1 VALUES(23, 24) }
633 } {1 {database is locked}}
634 do_test wal-10.$tn.32 {
635 # This statement would fail when the bug was present.
636 sql2 { INSERT INTO t1 VALUES(23, 24) }
638 do_test wal-10.$tn.33 {
639 execsql { SELECT * FROM t1 ; COMMIT }
640 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
641 do_test wal-10.$tn.34 {
642 execsql { SELECT * FROM t1 }
643 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
645 # Test that if a checkpointer cannot obtain the required locks, it
646 # releases all locks before returning a busy error.
648 do_test wal-10.$tn.35 {
651 INSERT INTO t1 VALUES('a', 'b');
652 INSERT INTO t1 VALUES('c', 'd');
659 do_test wal-10.$tn.36 {
660 catchsql { PRAGMA wal_checkpoint }
662 do_test wal-10.$tn.36 {
663 sql3 { INSERT INTO t1 VALUES('e', 'f') }
664 sql2 { SELECT * FROM t1 }
666 do_test wal-10.$tn.37 {
668 execsql { PRAGMA wal_checkpoint }
672 #-------------------------------------------------------------------------
673 # This block of tests, wal-11.*, test that nothing goes terribly wrong
674 # if frames must be written to the log file before a transaction is
675 # committed (in order to free up memory).
680 PRAGMA cache_size = 10;
681 PRAGMA page_size = 1024;
682 CREATE TABLE t1(x PRIMARY KEY);
684 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
687 execsql { PRAGMA wal_checkpoint }
688 list [expr [file size test.db]/1024] [file size test.db-wal]
689 } [list 3 [wal_file_size 3 1024]]
691 execsql { INSERT INTO t1 VALUES( blob(900) ) }
692 list [expr [file size test.db]/1024] [file size test.db-wal]
693 } [list 3 [wal_file_size 4 1024]]
698 INSERT INTO t1 SELECT blob(900) FROM t1; -- 2
699 INSERT INTO t1 SELECT blob(900) FROM t1; -- 4
700 INSERT INTO t1 SELECT blob(900) FROM t1; -- 8
701 INSERT INTO t1 SELECT blob(900) FROM t1; -- 16
703 list [expr [file size test.db]/1024] [file size test.db-wal]
704 } [list 3 [wal_file_size 32 1024]]
707 SELECT count(*) FROM t1;
708 PRAGMA integrity_check;
713 list [expr [file size test.db]/1024] [file size test.db-wal]
714 } [list 3 [wal_file_size 41 1024]]
717 SELECT count(*) FROM t1;
718 PRAGMA integrity_check;
722 execsql { PRAGMA wal_checkpoint }
723 list [expr [file size test.db]/1024] [file size test.db-wal]
724 } [list 37 [wal_file_size 41 1024]]
727 list [expr [file size test.db]/1024] [log_deleted test.db-wal]
729 sqlite3_wal db test.db
731 if {[permutation]!="mmap"} {set nWal 37}
732 ifcapable !mmap {set nWal 37}
735 PRAGMA cache_size = 10;
737 INSERT INTO t1 SELECT blob(900) FROM t1; -- 32
738 SELECT count(*) FROM t1;
740 list [expr [file size test.db]/1024] [file size test.db-wal]
741 } [list 37 [wal_file_size $nWal 1024]]
744 SELECT count(*) FROM t1;
746 SELECT count(*) FROM t1;
750 list [expr [file size test.db]/1024] [file size test.db-wal]
751 } [list 37 [wal_file_size $nWal 1024]]
754 INSERT INTO t1 VALUES( blob(900) );
755 SELECT count(*) FROM t1;
756 PRAGMA integrity_check;
760 list [expr [file size test.db]/1024] [file size test.db-wal]
761 } [list 37 [wal_file_size $nWal 1024]]
764 #-------------------------------------------------------------------------
765 # This block of tests, wal-12.*, tests the fix for a problem that
766 # could occur if a log that is a prefix of an older log is written
767 # into a reused log file.
772 PRAGMA page_size = 1024;
773 CREATE TABLE t1(x, y);
774 CREATE TABLE t2(x, y);
775 INSERT INTO t1 VALUES('A', 1);
777 list [expr [file size test.db]/1024] [file size test.db-wal]
778 } [list 1 [wal_file_size 5 1024]]
783 PRAGMA synchronous = normal;
784 UPDATE t1 SET y = 0 WHERE x = 'A';
786 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
789 execsql { INSERT INTO t2 VALUES('B', 1) }
790 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
793 forcecopy test.db test2.db
794 forcecopy test.db-wal test2.db-wal
795 sqlite3_wal db2 test2.db
796 execsql { SELECT * FROM t2 } db2
801 PRAGMA wal_checkpoint;
802 UPDATE t2 SET y = 2 WHERE x = 'B';
803 PRAGMA wal_checkpoint;
804 UPDATE t1 SET y = 1 WHERE x = 'A';
805 PRAGMA wal_checkpoint;
806 UPDATE t1 SET y = 0 WHERE x = 'A';
808 execsql { SELECT * FROM t2 }
811 forcecopy test.db test2.db
812 forcecopy test.db-wal test2.db-wal
813 sqlite3_wal db2 test2.db
814 execsql { SELECT * FROM t2 } db2
819 #-------------------------------------------------------------------------
820 # Test large log summaries.
822 # In this case "large" usually means a log file that requires a wal-index
823 # mapping larger than 64KB (the default initial allocation). A 64KB wal-index
824 # is large enough for a log file that contains approximately 13100 frames.
825 # So the following tests create logs containing at least this many frames.
827 # wal-13.1.*: This test case creates a very large log file within the
828 # file-system (around 200MB). The log file does not contain
829 # any valid frames. Test that the database file can still be
830 # opened and queried, and that the invalid log file causes no
833 # wal-13.2.*: Test that a process may create a large log file and query
834 # the database (including the log file that it itself created).
836 # wal-13.3.*: Test that if a very large log file is created, and then a
837 # second connection is opened on the database file, it is possible
838 # to query the database (and the very large log) using the
841 # wal-13.4.*: Same test as wal-13.3.*. Except in this case the second
842 # connection is opened by an external process.
845 list [file exists test.db] [file exists test.db-wal]
848 set fd [open test.db-wal w]
849 seek $fd [expr 200*1024*1024]
853 execsql { SELECT * FROM t2 }
857 file exists test.db-wal
862 execsql { SELECT count(*) FROM t2 }
865 db function blob blob
866 for {set i 0} {$i < 16} {incr i} {
867 execsql { INSERT INTO t2 SELECT blob(400), blob(400) FROM t2 }
869 execsql { SELECT count(*) FROM t2 }
870 } [expr int(pow(2, 16))]
872 expr [file size test.db-wal] > [wal_file_size 33000 1024]
875 do_multiclient_test tn {
878 do_test wal-13.$tn.0 {
880 PRAGMA journal_mode = WAL;
882 INSERT INTO t1 SELECT randomblob(800);
884 sql1 { SELECT count(*) FROM t1 }
887 for {set ii 1} {$ii<16} {incr ii} {
888 do_test wal-13.$tn.$ii.a {
889 sql2 { INSERT INTO t1 SELECT randomblob(800) FROM t1 }
890 sql2 { SELECT count(*) FROM t1 }
892 do_test wal-13.$tn.$ii.b {
893 sql1 { SELECT count(*) FROM t1 }
895 do_test wal-13.$tn.$ii.c {
896 sql1 { SELECT count(*) FROM t1 }
898 do_test wal-13.$tn.$ii.d {
899 sql1 { PRAGMA integrity_check }
904 #-------------------------------------------------------------------------
905 # Check a fun corruption case has been fixed.
907 # The problem was that after performing a checkpoint using a connection
908 # that had an out-of-date pager-cache, the next time the connection was
909 # used it did not realize the cache was out-of-date and proceeded to
910 # operate with an inconsistent cache. Leading to corruption.
915 forcedelete test.db test.db-wal
920 PRAGMA journal_mode = WAL;
921 CREATE TABLE t1(a PRIMARY KEY, b);
922 INSERT INTO t1 VALUES(randomblob(10), randomblob(100));
923 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
924 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
925 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
929 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
930 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
931 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
932 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
935 # After executing the "PRAGMA wal_checkpoint", connection [db] was being
936 # left with an inconsistent cache. Running the CREATE INDEX statement
937 # in this state led to database corruption.
939 PRAGMA wal_checkpoint;
940 CREATE INDEX i1 on t1(b);
943 db2 eval { PRAGMA integrity_check }
949 #-------------------------------------------------------------------------
950 # The following block of tests - wal-15.* - focus on testing the
951 # implementation of the sqlite3_wal_checkpoint() interface.
953 forcedelete test.db test.db-wal
957 PRAGMA auto_vacuum = 0;
958 PRAGMA page_size = 1024;
959 PRAGMA journal_mode = WAL;
962 CREATE TABLE t1(a, b);
963 INSERT INTO t1 VALUES(1, 2);
967 # Test that an error is returned if the database name is not recognized
970 sqlite3_wal_checkpoint db aux
977 } {unknown database: aux}
979 # Test that an error is returned if an attempt is made to checkpoint
980 # if a transaction is open on the database.
985 INSERT INTO t1 VALUES(3, 4);
987 sqlite3_wal_checkpoint db main
994 } {database table is locked}
996 # Earlier versions returned an error is returned if the db cannot be
997 # checkpointed because of locks held by another connection. Check that
998 # this is no longer the case.
1001 do_test wal-15.4.1 {
1007 do_test wal-15.4.2 {
1009 sqlite3_wal_checkpoint db
1011 do_test wal-15.4.3 {
1015 # After [db2] drops its lock, [db] may checkpoint the db.
1017 do_test wal-15.4.4 {
1018 execsql { COMMIT } db2
1019 sqlite3_wal_checkpoint db
1021 do_test wal-15.4.5 {
1024 do_test wal-15.4.6 {
1031 #-------------------------------------------------------------------------
1032 # The following block of tests - wal-16.* - test that if a NULL pointer or
1033 # an empty string is passed as the second argument of the wal_checkpoint()
1034 # API, an attempt is made to checkpoint all attached databases.
1036 foreach {tn ckpt_cmd ckpt_res ckpt_main ckpt_aux} {
1037 1 {sqlite3_wal_checkpoint db} SQLITE_OK 1 1
1038 2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1
1039 3 {db eval "PRAGMA wal_checkpoint"} {0 10 10} 1 1
1041 4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0
1042 5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1
1043 6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0
1044 7 {db eval "PRAGMA main.wal_checkpoint"} {0 10 10} 1 0
1045 8 {db eval "PRAGMA aux.wal_checkpoint"} {0 13 13} 0 1
1046 9 {db eval "PRAGMA temp.wal_checkpoint"} {0 -1 -1} 0 0
1048 do_test wal-16.$tn.1 {
1049 forcedelete test2.db test2.db-wal test2.db-journal
1050 forcedelete test.db test.db-wal test.db-journal
1054 ATTACH 'test2.db' AS aux;
1055 PRAGMA main.auto_vacuum = 0;
1056 PRAGMA aux.auto_vacuum = 0;
1057 PRAGMA main.journal_mode = WAL;
1058 PRAGMA aux.journal_mode = WAL;
1059 PRAGMA main.synchronous = NORMAL;
1060 PRAGMA aux.synchronous = NORMAL;
1064 do_test wal-16.$tn.2 {
1066 CREATE TABLE main.t1(a, b, PRIMARY KEY(a, b));
1067 CREATE TABLE aux.t2(a, b, PRIMARY KEY(a, b));
1069 INSERT INTO t2 VALUES(1, randomblob(1000));
1070 INSERT INTO t2 VALUES(2, randomblob(1000));
1071 INSERT INTO t1 SELECT * FROM t2;
1074 list [file size test.db] [file size test.db-wal]
1075 } [list [expr 1*1024] [wal_file_size 10 1024]]
1076 do_test wal-16.$tn.3 {
1077 list [file size test2.db] [file size test2.db-wal]
1078 } [list [expr 1*1024] [wal_file_size 13 1024]]
1080 do_test wal-16.$tn.4 [list eval $ckpt_cmd] $ckpt_res
1082 do_test wal-16.$tn.5 {
1083 list [file size test.db] [file size test.db-wal]
1084 } [list [expr ($ckpt_main ? 7 : 1)*1024] [wal_file_size 10 1024]]
1086 do_test wal-16.$tn.6 {
1087 list [file size test2.db] [file size test2.db-wal]
1088 } [list [expr ($ckpt_aux ? 7 : 1)*1024] [wal_file_size 13 1024]]
1093 #-------------------------------------------------------------------------
1094 # The following tests - wal-17.* - attempt to verify that the correct
1095 # number of "padding" frames are appended to the log file when a transaction
1096 # is committed in synchronous=FULL mode.
1098 # Do this by creating a database that uses 512 byte pages. Then writing
1099 # a transaction that modifies 171 pages. In synchronous=NORMAL mode, this
1100 # produces a log file of:
1102 # 32 + (24+512)*171 = 90312 bytes.
1104 # Slightly larger than 11*8192 = 90112 bytes.
1106 # Run the test using various different sector-sizes. In each case, the
1107 # WAL code should write the 90300 bytes of log file containing the
1108 # transaction, then append as may frames as are required to extend the
1109 # log file so that no part of the next transaction will be written into
1110 # a disk-sector used by transaction just committed.
1112 set old_pending_byte [sqlite3_test_control_pending_byte 0x10000000]
1114 foreach {tn sectorsize logsize} "
1115 1 128 [wal_file_size 172 512]
1116 2 256 [wal_file_size 172 512]
1117 3 512 [wal_file_size 172 512]
1118 4 1024 [wal_file_size 172 512]
1119 5 2048 [wal_file_size 172 512]
1120 6 4096 [wal_file_size 176 512]
1121 7 8192 [wal_file_size 184 512]
1123 forcedelete test.db test.db-wal test.db-journal
1124 sqlite3_simulate_device -sectorsize $sectorsize
1125 sqlite3 db test.db -vfs devsym
1127 do_test wal-17.$tn.1 {
1129 PRAGMA auto_vacuum = 0;
1130 PRAGMA page_size = 512;
1131 PRAGMA cache_size = -2000;
1132 PRAGMA journal_mode = WAL;
1133 PRAGMA synchronous = FULL;
1139 for {set i 0} {$i<166} {incr i} {
1140 execsql { INSERT INTO t VALUES(randomblob(400)) }
1144 file size test.db-wal
1147 do_test wal-17.$tn.2 {
1151 do_test wal-17.$tn.3 {
1156 sqlite3_test_control_pending_byte $old_pending_byte
1158 #-------------------------------------------------------------------------
1159 # This test - wal-18.* - verifies a couple of specific conditions that
1160 # may be encountered while recovering a log file are handled correctly:
1162 # wal-18.1.* When the first 32-bits of a frame checksum is correct but
1163 # the second 32-bits are false, and
1165 # wal-18.2.* When the page-size field that occurs at the start of a log
1166 # file is a power of 2 greater than 16384 or smaller than 512.
1168 forcedelete test.db test.db-wal test.db-journal
1172 PRAGMA page_size = 1024;
1173 PRAGMA auto_vacuum = 0;
1174 PRAGMA journal_mode = WAL;
1175 PRAGMA synchronous = OFF;
1177 CREATE TABLE t1(a, b, UNIQUE(a, b));
1178 INSERT INTO t1 VALUES(0, 0);
1179 PRAGMA wal_checkpoint;
1181 INSERT INTO t1 VALUES(1, 2); -- frames 1 and 2
1182 INSERT INTO t1 VALUES(3, 4); -- frames 3 and 4
1183 INSERT INTO t1 VALUES(5, 6); -- frames 5 and 6
1186 forcecopy test.db testX.db
1187 forcecopy test.db-wal testX.db-wal
1189 list [file size testX.db] [file size testX.db-wal]
1190 } [list [expr 3*1024] [wal_file_size 6 1024]]
1192 unset -nocomplain nFrame result
1193 foreach {nFrame result} {
1202 do_test wal-18.1.$nFrame {
1203 forcecopy testX.db test.db
1204 forcecopy testX.db-wal test.db-wal
1206 hexio_write test.db-wal [expr 24 + $nFrame*(24+1024) + 20] 00000000
1211 PRAGMA integrity_check;
1213 } [concat $result ok]
1217 proc randomblob {pgsz} {
1218 sqlite3 rbdb :memory:
1219 set blob [rbdb one {SELECT randomblob($pgsz)}]
1224 proc logcksum {ckv1 ckv2 blob} {
1228 # Since the magic number at the start of the -wal file header is
1229 # 931071618 that indicates that the content should always be read as
1234 binary scan $blob $scanpattern values
1235 foreach {v1 v2} $values {
1236 set c1 [expr {($c1 + $v1 + $c2)&0xFFFFFFFF}]
1237 set c2 [expr {($c2 + $v2 + $c1)&0xFFFFFFFF}]
1241 forcecopy test.db testX.db
1242 foreach {tn pgsz works} {
1257 if {$::SQLITE_MAX_PAGE_SIZE < $pgsz} {
1261 for {set pg 1} {$pg <= 3} {incr pg} {
1262 forcecopy testX.db test.db
1263 forcedelete test.db-wal
1265 # Check that the database now exists and consists of three pages. And
1266 # that there is no associated wal file.
1268 do_test wal-18.2.$tn.$pg.1 { file exists test.db-wal } 0
1269 do_test wal-18.2.$tn.$pg.2 { file exists test.db } 1
1270 do_test wal-18.2.$tn.$pg.3 { file size test.db } [expr 1024*3]
1272 do_test wal-18.2.$tn.$pg.4 {
1274 # Create a wal file that contains a single frame (database page
1275 # number $pg) with the commit flag set. The frame checksum is
1276 # correct, but the contents of the database page are corrupt.
1278 # The page-size in the log file header is set to $pgsz. If the
1279 # WAL code considers $pgsz to be a valid SQLite database file page-size,
1280 # the database will be corrupt (because the garbage frame contents
1281 # will be treated as valid content). If $pgsz is invalid (too small
1282 # or too large), the db will not be corrupt as the log file will
1285 set walhdr [binary format IIIIII 931071618 3007000 $pgsz 1234 22 23]
1286 set framebody [randomblob $pgsz]
1287 set framehdr [binary format IIII $pg 5 22 23]
1290 logcksum c1 c2 $walhdr
1292 append walhdr [binary format II $c1 $c2]
1293 logcksum c1 c2 [string range $framehdr 0 7]
1294 logcksum c1 c2 $framebody
1295 set framehdr [binary format IIIIII $pg 5 22 23 $c1 $c2]
1297 set fd [open test.db-wal w]
1298 fconfigure $fd -encoding binary -translation binary
1299 puts -nonewline $fd $walhdr
1300 puts -nonewline $fd $framehdr
1301 puts -nonewline $fd $framebody
1304 file size test.db-wal
1305 } [wal_file_size 1 $pgsz]
1307 do_test wal-18.2.$tn.$pg.5 {
1309 set rc [catch { db one {PRAGMA integrity_check} } msg]
1310 expr { $rc!=0 || $msg!="ok" }
1317 #-------------------------------------------------------------------------
1318 # The following test - wal-19.* - fixes a bug that was present during
1321 # When a database connection in WAL mode is closed, it attempts an
1322 # EXCLUSIVE lock on the database file. If the lock is obtained, the
1323 # connection knows that it is the last connection to disconnect from
1324 # the database, so it runs a checkpoint operation. The bug was that
1325 # the connection was not updating its private copy of the wal-index
1326 # header before doing so, meaning that it could checkpoint an old
1330 forcedelete test.db test.db-wal test.db-journal
1334 PRAGMA journal_mode = WAL;
1335 CREATE TABLE t1(a, b);
1336 INSERT INTO t1 VALUES(1, 2);
1337 INSERT INTO t1 VALUES(3, 4);
1339 execsql { SELECT * FROM t1 } db2
1343 INSERT INTO t1 VALUES(5, 6);
1350 file exists test.db-wal
1353 # When the bug was present, the following was returning {1 2 3 4} only,
1354 # as [db2] had an out-of-date copy of the wal-index header when it was
1358 execsql { SELECT * FROM t1 }
1361 #-------------------------------------------------------------------------
1362 # This test - wal-20.* - uses two connections. One in this process and
1363 # the other in an external process. The procedure is:
1365 # 1. Using connection 1, create the database schema.
1367 # 2. Using connection 2 (in an external process), add so much
1368 # data to the database without checkpointing that a wal-index
1369 # larger than 64KB is required.
1371 # 3. Using connection 1, checkpoint the database. Make sure all
1372 # the data is present and the database is not corrupt.
1374 # At one point, SQLite was failing to grow the mapping of the wal-index
1375 # file in step 3 and the checkpoint was corrupting the database file.
1379 forcedelete test.db test.db-wal test.db-journal
1382 PRAGMA journal_mode = WAL;
1384 INSERT INTO t1 VALUES(randomblob(900));
1385 SELECT count(*) FROM t1;
1389 set ::buddy [launch_testfixture]
1390 testfixture $::buddy {
1392 db transaction { db eval {
1393 PRAGMA wal_autocheckpoint = 0;
1394 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2 */
1395 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4 */
1396 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8 */
1397 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16 */
1398 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32 */
1399 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 64 */
1400 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 128 */
1401 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 256 */
1402 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 512 */
1403 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 1024 */
1404 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2048 */
1405 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4096 */
1406 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8192 */
1407 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16384 */
1413 execsql { PRAGMA wal_checkpoint }
1414 execsql { SELECT count(*) FROM t1 }
1419 execsql { SELECT count(*) FROM t1 }
1421 integrity_check wal-20.5
1427 faultsim_delete_and_reopen
1429 PRAGMA journal_mode = WAL;
1430 CREATE TABLE t1(a, b);
1431 INSERT INTO t1 VALUES(1, 2);
1432 INSERT INTO t1 VALUES(3, 4);
1433 INSERT INTO t1 VALUES(5, 6);
1434 INSERT INTO t1 VALUES(7, 8);
1435 INSERT INTO t1 VALUES(9, 10);
1436 INSERT INTO t1 VALUES(11, 12);
1441 PRAGMA cache_size = 10;
1442 PRAGMA wal_checkpoint;
1445 INSERT INTO t1 SELECT randomblob(900), randomblob(900) FROM t1;
1449 execsql { SELECT * FROM t1 }
1450 } {1 2 3 4 5 6 7 8 9 10 11 12}
1452 execsql { PRAGMA integrity_check }
1455 #-------------------------------------------------------------------------
1456 # Test reading and writing of databases with different page-sizes.
1458 foreach pgsz {512 1024 2048 4096 8192 16384 32768 65536} {
1459 do_multiclient_test tn [string map [list %PGSZ% $pgsz] {
1460 do_test wal-22.%PGSZ%.$tn.1 {
1462 PRAGMA main.page_size = %PGSZ%;
1463 PRAGMA auto_vacuum = 0;
1464 PRAGMA journal_mode = WAL;
1465 CREATE TABLE t1(x UNIQUE);
1466 INSERT INTO t1 SELECT randomblob(800);
1467 INSERT INTO t1 SELECT randomblob(800);
1468 INSERT INTO t1 SELECT randomblob(800);
1471 do_test wal-22.%PGSZ%.$tn.2 { sql2 { PRAGMA integrity_check } } {ok}
1472 do_test wal-22.%PGSZ%.$tn.3 {
1473 sql1 {PRAGMA wal_checkpoint}
1474 expr {[file size test.db] % %PGSZ%}
1479 #-------------------------------------------------------------------------
1480 # Test that when 1 or more pages are recovered from a WAL file,
1481 # sqlite3_log() is invoked to report this to the user.
1484 set walfile [file nativename [file join [get_pwd] test.db-wal]]
1486 set walfile test.db-wal
1491 faultsim_delete_and_reopen
1493 CREATE TABLE t1(a, b);
1494 PRAGMA journal_mode = WAL;
1495 INSERT INTO t1 VALUES(1, 2);
1496 INSERT INTO t1 VALUES(3, 4);
1498 faultsim_save_and_close
1501 test_sqlite3_log [list lappend ::log]
1504 execsql { SELECT * FROM t1 }
1506 do_test wal-23.2 { set ::log } {}
1511 faultsim_restore_and_reopen
1512 execsql { SELECT * FROM t1 }
1516 } [list SQLITE_NOTICE_RECOVER_WAL \
1517 "recovered 2 frames from WAL file $walfile"]
1520 ifcapable autovacuum {
1521 # This block tests that if the size of a database is reduced by a
1522 # transaction (because of an incremental or auto-vacuum), that no
1523 # data is written to the WAL file for the truncated pages as part
1524 # of the commit. e.g. if a transaction reduces the size of a database
1525 # to N pages, data for page N+1 should not be written to the WAL file
1526 # when committing the transaction. At one point such data was being
1532 do_execsql_test 24.1 {
1533 PRAGMA auto_vacuum = 2;
1534 PRAGMA journal_mode = WAL;
1535 PRAGMA page_size = 1024;
1537 INSERT INTO t1 VALUES(randomblob(5000));
1538 INSERT INTO t1 SELECT * FROM t1;
1539 INSERT INTO t1 SELECT * FROM t1;
1540 INSERT INTO t1 SELECT * FROM t1;
1541 INSERT INTO t1 SELECT * FROM t1;
1546 PRAGMA wal_checkpoint;
1550 file exists test.db-wal
1557 PRAGMA cache_size = 200;
1558 PRAGMA incremental_vacuum;
1559 PRAGMA wal_checkpoint;
1564 # WAL file now contains a single frame - the new root page for table t1.
1565 # It would be two frames (the new root page and a padding frame) if the
1566 # ZERO_DAMAGE flag were not set.
1568 file size test.db-wal
1569 } [wal_file_size 1 1024]
1577 # Make sure PRAGMA journal_mode=WAL works with ATTACHED databases in
1578 # all journal modes.
1580 foreach mode {OFF MEMORY PERSIST DELETE TRUNCATE WAL} {
1581 delete_file test.db test2.db
1583 do_test wal-25.$mode {
1584 db eval "PRAGMA journal_mode=$mode"
1585 db eval {ATTACH 'test2.db' AS t2; PRAGMA journal_mode=WAL;}