Add close buttons to windows on overview mode.
[chromium-blink-merge.git] / base / memory / discardable_memory_allocator_android.cc
blob97e9abd7d6eec8baa54e2d58bed24fd6d1b2c3ba
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/memory/discardable_memory_allocator_android.h"
7 #include <sys/mman.h>
8 #include <unistd.h>
10 #include <algorithm>
11 #include <cmath>
12 #include <limits>
13 #include <set>
14 #include <utility>
16 #include "base/basictypes.h"
17 #include "base/containers/hash_tables.h"
18 #include "base/file_util.h"
19 #include "base/logging.h"
20 #include "base/memory/discardable_memory.h"
21 #include "base/memory/scoped_vector.h"
22 #include "base/synchronization/lock.h"
23 #include "base/threading/thread_checker.h"
24 #include "third_party/ashmem/ashmem.h"
26 // The allocator consists of three parts (classes):
27 // - DiscardableMemoryAllocator: entry point of all allocations (through its
28 // Allocate() method) that are dispatched to the AshmemRegion instances (which
29 // it owns).
30 // - AshmemRegion: manages allocations and destructions inside a single large
31 // (e.g. 32 MBytes) ashmem region.
32 // - DiscardableAshmemChunk: class implementing the DiscardableMemory interface
33 // whose instances are returned to the client. DiscardableAshmemChunk lets the
34 // client seamlessly operate on a subrange of the ashmem region managed by
35 // AshmemRegion.
37 namespace base {
38 namespace {
40 // Only tolerate fragmentation in used chunks *caused by the client* (as opposed
41 // to the allocator when a free chunk is reused). The client can cause such
42 // fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to
43 // 8192 by the allocator which would cause 4095 bytes of fragmentation (which is
44 // currently the maximum allowed). If the client requests 4096 bytes and a free
45 // chunk of 8192 bytes is available then the free chunk gets splitted into two
46 // pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater
47 // than 4095).
48 // TODO(pliard): tune this if splitting chunks too often leads to performance
49 // issues.
50 const size_t kMaxChunkFragmentationBytes = 4096 - 1;
52 const size_t kMinAshmemRegionSize = 32 * 1024 * 1024;
54 // Returns 0 if the provided size is too high to be aligned.
55 size_t AlignToNextPage(size_t size) {
56 const size_t kPageSize = 4096;
57 DCHECK_EQ(static_cast<int>(kPageSize), getpagesize());
58 if (size > std::numeric_limits<size_t>::max() - kPageSize + 1)
59 return 0;
60 const size_t mask = ~(kPageSize - 1);
61 return (size + kPageSize - 1) & mask;
64 bool CreateAshmemRegion(const char* name,
65 size_t size,
66 int* out_fd,
67 void** out_address) {
68 int fd = ashmem_create_region(name, size);
69 if (fd < 0) {
70 DLOG(ERROR) << "ashmem_create_region() failed";
71 return false;
73 file_util::ScopedFD fd_closer(&fd);
75 const int err = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
76 if (err < 0) {
77 DLOG(ERROR) << "Error " << err << " when setting protection of ashmem";
78 return false;
81 // There is a problem using MAP_PRIVATE here. As we are constantly calling
82 // Lock() and Unlock(), data could get lost if they are not written to the
83 // underlying file when Unlock() gets called.
84 void* const address = mmap(
85 NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
86 if (address == MAP_FAILED) {
87 DPLOG(ERROR) << "Failed to map memory.";
88 return false;
91 ignore_result(fd_closer.release());
92 *out_fd = fd;
93 *out_address = address;
94 return true;
97 bool CloseAshmemRegion(int fd, size_t size, void* address) {
98 if (munmap(address, size) == -1) {
99 DPLOG(ERROR) << "Failed to unmap memory.";
100 close(fd);
101 return false;
103 return close(fd) == 0;
106 DiscardableMemoryLockStatus LockAshmemRegion(int fd,
107 size_t off,
108 size_t size,
109 const void* address) {
110 const int result = ashmem_pin_region(fd, off, size);
111 DCHECK_EQ(0, mprotect(address, size, PROT_READ | PROT_WRITE));
112 return result == ASHMEM_WAS_PURGED ? DISCARDABLE_MEMORY_LOCK_STATUS_PURGED
113 : DISCARDABLE_MEMORY_LOCK_STATUS_SUCCESS;
116 bool UnlockAshmemRegion(int fd, size_t off, size_t size, const void* address) {
117 const int failed = ashmem_unpin_region(fd, off, size);
118 if (failed)
119 DLOG(ERROR) << "Failed to unpin memory.";
120 // This allows us to catch accesses to unlocked memory.
121 DCHECK_EQ(0, mprotect(address, size, PROT_NONE));
122 return !failed;
125 } // namespace
127 namespace internal {
129 class DiscardableMemoryAllocator::DiscardableAshmemChunk
130 : public DiscardableMemory {
131 public:
132 // Note that |ashmem_region| must outlive |this|.
133 DiscardableAshmemChunk(AshmemRegion* ashmem_region,
134 int fd,
135 void* address,
136 size_t offset,
137 size_t size)
138 : ashmem_region_(ashmem_region),
139 fd_(fd),
140 address_(address),
141 offset_(offset),
142 size_(size),
143 locked_(true) {
146 // Implemented below AshmemRegion since this requires the full definition of
147 // AshmemRegion.
148 virtual ~DiscardableAshmemChunk();
150 // DiscardableMemory:
151 virtual DiscardableMemoryLockStatus Lock() OVERRIDE {
152 DCHECK(!locked_);
153 locked_ = true;
154 return LockAshmemRegion(fd_, offset_, size_, address_);
157 virtual void Unlock() OVERRIDE {
158 DCHECK(locked_);
159 locked_ = false;
160 UnlockAshmemRegion(fd_, offset_, size_, address_);
163 virtual void* Memory() const OVERRIDE {
164 return address_;
167 private:
168 AshmemRegion* const ashmem_region_;
169 const int fd_;
170 void* const address_;
171 const size_t offset_;
172 const size_t size_;
173 bool locked_;
175 DISALLOW_COPY_AND_ASSIGN(DiscardableAshmemChunk);
178 class DiscardableMemoryAllocator::AshmemRegion {
179 public:
180 // Note that |allocator| must outlive |this|.
181 static scoped_ptr<AshmemRegion> Create(
182 size_t size,
183 const std::string& name,
184 DiscardableMemoryAllocator* allocator) {
185 DCHECK_EQ(size, AlignToNextPage(size));
186 int fd;
187 void* base;
188 if (!CreateAshmemRegion(name.c_str(), size, &fd, &base))
189 return scoped_ptr<AshmemRegion>();
190 return make_scoped_ptr(new AshmemRegion(fd, size, base, allocator));
193 ~AshmemRegion() {
194 const bool result = CloseAshmemRegion(fd_, size_, base_);
195 DCHECK(result);
196 DCHECK(!highest_allocated_chunk_);
199 // Returns a new instance of DiscardableMemory whose size is greater or equal
200 // than |actual_size| (which is expected to be greater or equal than
201 // |client_requested_size|).
202 // Allocation works as follows:
203 // 1) Reuse a previously freed chunk and return it if it succeeded. See
204 // ReuseFreeChunk_Locked() below for more information.
205 // 2) If no free chunk could be reused and the region is not big enough for
206 // the requested size then NULL is returned.
207 // 3) If there is enough room in the ashmem region then a new chunk is
208 // returned. This new chunk starts at |offset_| which is the end of the
209 // previously highest chunk in the region.
210 scoped_ptr<DiscardableMemory> Allocate_Locked(size_t client_requested_size,
211 size_t actual_size) {
212 DCHECK_LE(client_requested_size, actual_size);
213 allocator_->lock_.AssertAcquired();
215 // Check that the |highest_allocated_chunk_| field doesn't contain a stale
216 // pointer. It should point to either a free chunk or a used chunk.
217 DCHECK(!highest_allocated_chunk_ ||
218 address_to_free_chunk_map_.find(highest_allocated_chunk_) !=
219 address_to_free_chunk_map_.end() ||
220 used_to_previous_chunk_map_.find(highest_allocated_chunk_) !=
221 used_to_previous_chunk_map_.end());
223 scoped_ptr<DiscardableMemory> memory = ReuseFreeChunk_Locked(
224 client_requested_size, actual_size);
225 if (memory)
226 return memory.Pass();
228 if (size_ - offset_ < actual_size) {
229 // This region does not have enough space left to hold the requested size.
230 return scoped_ptr<DiscardableMemory>();
233 void* const address = static_cast<char*>(base_) + offset_;
234 memory.reset(
235 new DiscardableAshmemChunk(this, fd_, address, offset_, actual_size));
237 used_to_previous_chunk_map_.insert(
238 std::make_pair(address, highest_allocated_chunk_));
239 highest_allocated_chunk_ = address;
240 offset_ += actual_size;
241 DCHECK_LE(offset_, size_);
242 return memory.Pass();
245 void OnChunkDeletion(void* chunk, size_t size) {
246 AutoLock auto_lock(allocator_->lock_);
247 MergeAndAddFreeChunk_Locked(chunk, size);
248 // Note that |this| might be deleted beyond this point.
251 private:
252 struct FreeChunk {
253 FreeChunk() : previous_chunk(NULL), start(NULL), size(0) {}
255 explicit FreeChunk(size_t size)
256 : previous_chunk(NULL),
257 start(NULL),
258 size(size) {
261 FreeChunk(void* previous_chunk, void* start, size_t size)
262 : previous_chunk(previous_chunk),
263 start(start),
264 size(size) {
265 DCHECK_LT(previous_chunk, start);
268 void* const previous_chunk;
269 void* const start;
270 const size_t size;
272 bool is_null() const { return !start; }
274 bool operator<(const FreeChunk& other) const {
275 return size < other.size;
279 // Note that |allocator| must outlive |this|.
280 AshmemRegion(int fd,
281 size_t size,
282 void* base,
283 DiscardableMemoryAllocator* allocator)
284 : fd_(fd),
285 size_(size),
286 base_(base),
287 allocator_(allocator),
288 highest_allocated_chunk_(NULL),
289 offset_(0) {
290 DCHECK_GE(fd_, 0);
291 DCHECK_GE(size, kMinAshmemRegionSize);
292 DCHECK(base);
293 DCHECK(allocator);
296 // Tries to reuse a previously freed chunk by doing a closest size match.
297 scoped_ptr<DiscardableMemory> ReuseFreeChunk_Locked(
298 size_t client_requested_size,
299 size_t actual_size) {
300 allocator_->lock_.AssertAcquired();
301 const FreeChunk reused_chunk = RemoveFreeChunkFromIterator_Locked(
302 free_chunks_.lower_bound(FreeChunk(actual_size)));
303 if (reused_chunk.is_null())
304 return scoped_ptr<DiscardableMemory>();
306 used_to_previous_chunk_map_.insert(
307 std::make_pair(reused_chunk.start, reused_chunk.previous_chunk));
308 size_t reused_chunk_size = reused_chunk.size;
309 // |client_requested_size| is used below rather than |actual_size| to
310 // reflect the amount of bytes that would not be usable by the client (i.e.
311 // wasted). Using |actual_size| instead would not allow us to detect
312 // fragmentation caused by the client if he did misaligned allocations.
313 DCHECK_GE(reused_chunk.size, client_requested_size);
314 const size_t fragmentation_bytes =
315 reused_chunk.size - client_requested_size;
317 if (fragmentation_bytes > kMaxChunkFragmentationBytes) {
318 // Split the free chunk being recycled so that its unused tail doesn't get
319 // reused (i.e. locked) which would prevent it from being evicted under
320 // memory pressure.
321 reused_chunk_size = actual_size;
322 void* const new_chunk_start =
323 static_cast<char*>(reused_chunk.start) + actual_size;
324 if (reused_chunk.start == highest_allocated_chunk_) {
325 // We also need to update the pointer to the highest allocated chunk in
326 // case we are splitting the highest chunk.
327 highest_allocated_chunk_ = new_chunk_start;
329 DCHECK_GT(reused_chunk.size, actual_size);
330 const size_t new_chunk_size = reused_chunk.size - actual_size;
331 // Note that merging is not needed here since there can't be contiguous
332 // free chunks at this point.
333 AddFreeChunk_Locked(
334 FreeChunk(reused_chunk.start, new_chunk_start, new_chunk_size));
337 const size_t offset =
338 static_cast<char*>(reused_chunk.start) - static_cast<char*>(base_);
339 LockAshmemRegion(fd_, offset, reused_chunk_size, reused_chunk.start);
340 scoped_ptr<DiscardableMemory> memory(
341 new DiscardableAshmemChunk(this, fd_, reused_chunk.start, offset,
342 reused_chunk_size));
343 return memory.Pass();
346 // Makes the chunk identified with the provided arguments free and possibly
347 // merges this chunk with the previous and next contiguous ones.
348 // If the provided chunk is the only one used (and going to be freed) in the
349 // region then the internal ashmem region is closed so that the underlying
350 // physical pages are immediately released.
351 // Note that free chunks are unlocked therefore they can be reclaimed by the
352 // kernel if needed (under memory pressure) but they are not immediately
353 // released unfortunately since madvise(MADV_REMOVE) and
354 // fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might
355 // change in versions of kernel >=3.5 though. The fact that free chunks are
356 // not immediately released is the reason why we are trying to minimize
357 // fragmentation in order not to cause "artificial" memory pressure.
358 void MergeAndAddFreeChunk_Locked(void* chunk, size_t size) {
359 allocator_->lock_.AssertAcquired();
360 size_t new_free_chunk_size = size;
361 // Merge with the previous chunk.
362 void* first_free_chunk = chunk;
363 DCHECK(!used_to_previous_chunk_map_.empty());
364 const hash_map<void*, void*>::iterator previous_chunk_it =
365 used_to_previous_chunk_map_.find(chunk);
366 DCHECK(previous_chunk_it != used_to_previous_chunk_map_.end());
367 void* previous_chunk = previous_chunk_it->second;
368 used_to_previous_chunk_map_.erase(previous_chunk_it);
370 if (previous_chunk) {
371 const FreeChunk free_chunk = RemoveFreeChunk_Locked(previous_chunk);
372 if (!free_chunk.is_null()) {
373 new_free_chunk_size += free_chunk.size;
374 first_free_chunk = previous_chunk;
375 if (chunk == highest_allocated_chunk_)
376 highest_allocated_chunk_ = previous_chunk;
378 // There should not be more contiguous previous free chunks.
379 previous_chunk = free_chunk.previous_chunk;
380 DCHECK(!address_to_free_chunk_map_.count(previous_chunk));
384 // Merge with the next chunk if free and present.
385 void* next_chunk = static_cast<char*>(chunk) + size;
386 const FreeChunk next_free_chunk = RemoveFreeChunk_Locked(next_chunk);
387 if (!next_free_chunk.is_null()) {
388 new_free_chunk_size += next_free_chunk.size;
389 if (next_free_chunk.start == highest_allocated_chunk_)
390 highest_allocated_chunk_ = first_free_chunk;
392 // Same as above.
393 DCHECK(!address_to_free_chunk_map_.count(static_cast<char*>(next_chunk) +
394 next_free_chunk.size));
397 const bool whole_ashmem_region_is_free =
398 used_to_previous_chunk_map_.empty();
399 if (!whole_ashmem_region_is_free) {
400 AddFreeChunk_Locked(
401 FreeChunk(previous_chunk, first_free_chunk, new_free_chunk_size));
402 return;
405 // The whole ashmem region is free thus it can be deleted.
406 DCHECK_EQ(base_, first_free_chunk);
407 DCHECK_EQ(base_, highest_allocated_chunk_);
408 DCHECK(free_chunks_.empty());
409 DCHECK(address_to_free_chunk_map_.empty());
410 DCHECK(used_to_previous_chunk_map_.empty());
411 highest_allocated_chunk_ = NULL;
412 allocator_->DeleteAshmemRegion_Locked(this); // Deletes |this|.
415 void AddFreeChunk_Locked(const FreeChunk& free_chunk) {
416 allocator_->lock_.AssertAcquired();
417 const std::multiset<FreeChunk>::iterator it = free_chunks_.insert(
418 free_chunk);
419 address_to_free_chunk_map_.insert(std::make_pair(free_chunk.start, it));
420 // Update the next used contiguous chunk, if any, since its previous chunk
421 // may have changed due to free chunks merging/splitting.
422 void* const next_used_contiguous_chunk =
423 static_cast<char*>(free_chunk.start) + free_chunk.size;
424 hash_map<void*, void*>::iterator previous_it =
425 used_to_previous_chunk_map_.find(next_used_contiguous_chunk);
426 if (previous_it != used_to_previous_chunk_map_.end())
427 previous_it->second = free_chunk.start;
430 // Finds and removes the free chunk, if any, whose start address is
431 // |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk
432 // whose content is null if it was not found.
433 FreeChunk RemoveFreeChunk_Locked(void* chunk_start) {
434 allocator_->lock_.AssertAcquired();
435 const hash_map<
436 void*, std::multiset<FreeChunk>::iterator>::iterator it =
437 address_to_free_chunk_map_.find(chunk_start);
438 if (it == address_to_free_chunk_map_.end())
439 return FreeChunk();
440 return RemoveFreeChunkFromIterator_Locked(it->second);
443 // Same as above but takes an iterator in.
444 FreeChunk RemoveFreeChunkFromIterator_Locked(
445 std::multiset<FreeChunk>::iterator free_chunk_it) {
446 allocator_->lock_.AssertAcquired();
447 if (free_chunk_it == free_chunks_.end())
448 return FreeChunk();
449 DCHECK(free_chunk_it != free_chunks_.end());
450 const FreeChunk free_chunk(*free_chunk_it);
451 address_to_free_chunk_map_.erase(free_chunk_it->start);
452 free_chunks_.erase(free_chunk_it);
453 return free_chunk;
456 const int fd_;
457 const size_t size_;
458 void* const base_;
459 DiscardableMemoryAllocator* const allocator_;
460 // Points to the chunk with the highest address in the region. This pointer
461 // needs to be carefully updated when chunks are merged/split.
462 void* highest_allocated_chunk_;
463 // Points to the end of |highest_allocated_chunk_|.
464 size_t offset_;
465 // Allows free chunks recycling (lookup, insertion and removal) in O(log N).
466 // Note that FreeChunk values are indexed by their size and also note that
467 // multiple free chunks can have the same size (which is why multiset<> is
468 // used instead of e.g. set<>).
469 std::multiset<FreeChunk> free_chunks_;
470 // Used while merging free contiguous chunks to erase free chunks (from their
471 // start address) in constant time. Note that multiset<>::{insert,erase}()
472 // don't invalidate iterators (except the one for the element being removed
473 // obviously).
474 hash_map<
475 void*, std::multiset<FreeChunk>::iterator> address_to_free_chunk_map_;
476 // Maps the address of *used* chunks to the address of their previous
477 // contiguous chunk.
478 hash_map<void*, void*> used_to_previous_chunk_map_;
480 DISALLOW_COPY_AND_ASSIGN(AshmemRegion);
483 DiscardableMemoryAllocator::DiscardableAshmemChunk::~DiscardableAshmemChunk() {
484 if (locked_)
485 UnlockAshmemRegion(fd_, offset_, size_, address_);
486 ashmem_region_->OnChunkDeletion(address_, size_);
489 DiscardableMemoryAllocator::DiscardableMemoryAllocator(
490 const std::string& name,
491 size_t ashmem_region_size)
492 : name_(name),
493 ashmem_region_size_(
494 std::max(kMinAshmemRegionSize, AlignToNextPage(ashmem_region_size))),
495 last_ashmem_region_size_(0) {
496 DCHECK_GE(ashmem_region_size_, kMinAshmemRegionSize);
499 DiscardableMemoryAllocator::~DiscardableMemoryAllocator() {
500 DCHECK(thread_checker_.CalledOnValidThread());
501 DCHECK(ashmem_regions_.empty());
504 scoped_ptr<DiscardableMemory> DiscardableMemoryAllocator::Allocate(
505 size_t size) {
506 const size_t aligned_size = AlignToNextPage(size);
507 if (!aligned_size)
508 return scoped_ptr<DiscardableMemory>();
509 // TODO(pliard): make this function less naive by e.g. moving the free chunks
510 // multiset to the allocator itself in order to decrease even more
511 // fragmentation/speedup allocation. Note that there should not be more than a
512 // couple (=5) of AshmemRegion instances in practice though.
513 AutoLock auto_lock(lock_);
514 DCHECK_LE(ashmem_regions_.size(), 5U);
515 for (ScopedVector<AshmemRegion>::iterator it = ashmem_regions_.begin();
516 it != ashmem_regions_.end(); ++it) {
517 scoped_ptr<DiscardableMemory> memory(
518 (*it)->Allocate_Locked(size, aligned_size));
519 if (memory)
520 return memory.Pass();
522 // The creation of the (large) ashmem region might fail if the address space
523 // is too fragmented. In case creation fails the allocator retries by
524 // repetitively dividing the size by 2.
525 const size_t min_region_size = std::max(kMinAshmemRegionSize, aligned_size);
526 for (size_t region_size = std::max(ashmem_region_size_, aligned_size);
527 region_size >= min_region_size;
528 region_size = AlignToNextPage(region_size / 2)) {
529 scoped_ptr<AshmemRegion> new_region(
530 AshmemRegion::Create(region_size, name_.c_str(), this));
531 if (!new_region)
532 continue;
533 last_ashmem_region_size_ = region_size;
534 ashmem_regions_.push_back(new_region.release());
535 return ashmem_regions_.back()->Allocate_Locked(size, aligned_size);
537 // TODO(pliard): consider adding an histogram to see how often this happens.
538 return scoped_ptr<DiscardableMemory>();
541 size_t DiscardableMemoryAllocator::last_ashmem_region_size() const {
542 AutoLock auto_lock(lock_);
543 return last_ashmem_region_size_;
546 void DiscardableMemoryAllocator::DeleteAshmemRegion_Locked(
547 AshmemRegion* region) {
548 lock_.AssertAcquired();
549 // Note that there should not be more than a couple of ashmem region instances
550 // in |ashmem_regions_|.
551 DCHECK_LE(ashmem_regions_.size(), 5U);
552 const ScopedVector<AshmemRegion>::iterator it = std::find(
553 ashmem_regions_.begin(), ashmem_regions_.end(), region);
554 DCHECK_NE(ashmem_regions_.end(), it);
555 std::swap(*it, ashmem_regions_.back());
556 ashmem_regions_.pop_back();
559 } // namespace internal
560 } // namespace base