Disable view source for Developer Tools.
[chromium-blink-merge.git] / net / disk_cache / v3 / backend_impl_v3.cc
blob92ea272226bf7a49f24e8988f881c9fd657f44ef
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/backend_impl.h"
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/file_util.h"
10 #include "base/files/file_path.h"
11 #include "base/hash.h"
12 #include "base/message_loop/message_loop.h"
13 #include "base/metrics/field_trial.h"
14 #include "base/metrics/histogram.h"
15 #include "base/metrics/stats_counters.h"
16 #include "base/rand_util.h"
17 #include "base/strings/string_util.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/sys_info.h"
20 #include "base/threading/thread_restrictions.h"
21 #include "base/time/time.h"
22 #include "base/timer/timer.h"
23 #include "net/base/net_errors.h"
24 #include "net/disk_cache/cache_util.h"
25 #include "net/disk_cache/entry_impl.h"
26 #include "net/disk_cache/errors.h"
27 #include "net/disk_cache/experiments.h"
28 #include "net/disk_cache/file.h"
30 // This has to be defined before including histogram_macros.h from this file.
31 #define NET_DISK_CACHE_BACKEND_IMPL_CC_
32 #include "net/disk_cache/histogram_macros.h"
34 using base::Time;
35 using base::TimeDelta;
36 using base::TimeTicks;
38 namespace {
40 const char* kIndexName = "index";
42 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
43 // Note that the actual target is to keep the index table load factor under 55%
44 // for most users.
45 const int k64kEntriesStore = 240 * 1000 * 1000;
46 const int kBaseTableLen = 64 * 1024;
47 const int kDefaultCacheSize = 80 * 1024 * 1024;
49 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
50 const int kTrimDelay = 10;
52 int DesiredIndexTableLen(int32 storage_size) {
53 if (storage_size <= k64kEntriesStore)
54 return kBaseTableLen;
55 if (storage_size <= k64kEntriesStore * 2)
56 return kBaseTableLen * 2;
57 if (storage_size <= k64kEntriesStore * 4)
58 return kBaseTableLen * 4;
59 if (storage_size <= k64kEntriesStore * 8)
60 return kBaseTableLen * 8;
62 // The biggest storage_size for int32 requires a 4 MB table.
63 return kBaseTableLen * 16;
66 int MaxStorageSizeForTable(int table_len) {
67 return table_len * (k64kEntriesStore / kBaseTableLen);
70 size_t GetIndexSize(int table_len) {
71 size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
72 return sizeof(disk_cache::IndexHeader) + table_size;
75 } // namespace
77 // ------------------------------------------------------------------------
79 namespace disk_cache {
81 BackendImpl::BackendImpl(const base::FilePath& path,
82 base::MessageLoopProxy* cache_thread,
83 net::NetLog* net_log)
84 : background_queue_(this, cache_thread),
85 path_(path),
86 block_files_(path),
87 mask_(0),
88 max_size_(0),
89 up_ticks_(0),
90 cache_type_(net::DISK_CACHE),
91 uma_report_(0),
92 user_flags_(0),
93 init_(false),
94 restarted_(false),
95 unit_test_(false),
96 read_only_(false),
97 disabled_(false),
98 new_eviction_(false),
99 first_timer_(true),
100 user_load_(false),
101 net_log_(net_log),
102 done_(true, false),
103 ptr_factory_(this) {
106 BackendImpl::BackendImpl(const base::FilePath& path,
107 uint32 mask,
108 base::MessageLoopProxy* cache_thread,
109 net::NetLog* net_log)
110 : background_queue_(this, cache_thread),
111 path_(path),
112 block_files_(path),
113 mask_(mask),
114 max_size_(0),
115 up_ticks_(0),
116 cache_type_(net::DISK_CACHE),
117 uma_report_(0),
118 user_flags_(kMask),
119 init_(false),
120 restarted_(false),
121 unit_test_(false),
122 read_only_(false),
123 disabled_(false),
124 new_eviction_(false),
125 first_timer_(true),
126 user_load_(false),
127 net_log_(net_log),
128 done_(true, false),
129 ptr_factory_(this) {
132 BackendImpl::~BackendImpl() {
133 if (user_flags_ & kNoRandom) {
134 // This is a unit test, so we want to be strict about not leaking entries
135 // and completing all the work.
136 background_queue_.WaitForPendingIO();
137 } else {
138 // This is most likely not a test, so we want to do as little work as
139 // possible at this time, at the price of leaving dirty entries behind.
140 background_queue_.DropPendingIO();
143 if (background_queue_.BackgroundIsCurrentThread()) {
144 // Unit tests may use the same thread for everything.
145 CleanupCache();
146 } else {
147 background_queue_.background_thread()->PostTask(
148 FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
149 // http://crbug.com/74623
150 base::ThreadRestrictions::ScopedAllowWait allow_wait;
151 done_.Wait();
155 int BackendImpl::Init(const CompletionCallback& callback) {
156 background_queue_.Init(callback);
157 return net::ERR_IO_PENDING;
160 // ------------------------------------------------------------------------
162 int BackendImpl::OpenPrevEntry(void** iter, Entry** prev_entry,
163 const CompletionCallback& callback) {
164 DCHECK(!callback.is_null());
165 background_queue_.OpenPrevEntry(iter, prev_entry, callback);
166 return net::ERR_IO_PENDING;
169 bool BackendImpl::SetMaxSize(int max_bytes) {
170 COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
171 if (max_bytes < 0)
172 return false;
174 // Zero size means use the default.
175 if (!max_bytes)
176 return true;
178 // Avoid a DCHECK later on.
179 if (max_bytes >= kint32max - kint32max / 10)
180 max_bytes = kint32max - kint32max / 10 - 1;
182 user_flags_ |= kMaxSize;
183 max_size_ = max_bytes;
184 return true;
187 void BackendImpl::SetType(net::CacheType type) {
188 DCHECK_NE(net::MEMORY_CACHE, type);
189 cache_type_ = type;
192 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
193 Addr* block_address) {
194 return block_files_.CreateBlock(block_type, block_count, block_address);
197 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
198 if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
199 return;
200 eviction_.UpdateRank(entry, modified);
203 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
204 uint32 hash = entry->GetHash();
205 std::string key = entry->GetKey();
206 Addr entry_addr = entry->entry()->address();
207 bool error;
208 EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
209 CacheAddr child(entry->GetNextAddress());
211 Trace("Doom entry 0x%p", entry);
213 if (!entry->doomed()) {
214 // We may have doomed this entry from within MatchEntry.
215 eviction_.OnDoomEntry(entry);
216 entry->InternalDoom();
217 if (!new_eviction_) {
218 DecreaseNumEntries();
220 stats_.OnEvent(Stats::DOOM_ENTRY);
223 if (parent_entry) {
224 parent_entry->SetNextAddress(Addr(child));
225 parent_entry->Release();
226 } else if (!error) {
227 data_->table[hash & mask_] = child;
230 FlushIndex();
233 void BackendImpl::OnEntryDestroyBegin(Addr address) {
234 EntriesMap::iterator it = open_entries_.find(address.value());
235 if (it != open_entries_.end())
236 open_entries_.erase(it);
239 void BackendImpl::OnEntryDestroyEnd() {
240 DecreaseNumRefs();
241 if (data_->header.num_bytes > max_size_ && !read_only_ &&
242 (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
243 eviction_.TrimCache(false);
246 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
247 DCHECK(rankings->HasData());
248 EntriesMap::const_iterator it =
249 open_entries_.find(rankings->Data()->contents);
250 if (it != open_entries_.end()) {
251 // We have this entry in memory.
252 return it->second;
255 return NULL;
258 int BackendImpl::MaxFileSize() const {
259 return max_size_ / 8;
262 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
263 if (disabled_ || old_size == new_size)
264 return;
265 if (old_size > new_size)
266 SubstractStorageSize(old_size - new_size);
267 else
268 AddStorageSize(new_size - old_size);
270 FlushIndex();
272 // Update the usage statistics.
273 stats_.ModifyStorageStats(old_size, new_size);
276 void BackendImpl::TooMuchStorageRequested(int32 size) {
277 stats_.ModifyStorageStats(0, size);
280 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
281 DCHECK_GT(new_size, current_size);
282 if (user_flags_ & kNoBuffering)
283 return false;
285 int to_add = new_size - current_size;
286 if (buffer_bytes_ + to_add > MaxBuffersSize())
287 return false;
289 buffer_bytes_ += to_add;
290 CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
291 return true;
294 void BackendImpl::BufferDeleted(int size) {
295 buffer_bytes_ -= size;
296 DCHECK_GE(size, 0);
299 bool BackendImpl::IsLoaded() const {
300 CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
301 if (user_flags_ & kNoLoadProtection)
302 return false;
304 return (num_pending_io_ > 5 || user_load_);
307 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
308 if (!experiment)
309 return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
310 return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
311 name, experiment);
314 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
315 return ptr_factory_.GetWeakPtr();
318 // We want to remove biases from some histograms so we only send data once per
319 // week.
320 bool BackendImpl::ShouldReportAgain() {
321 if (uma_report_)
322 return uma_report_ == 2;
324 uma_report_++;
325 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
326 Time last_time = Time::FromInternalValue(last_report);
327 if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
328 stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
329 uma_report_++;
330 return true;
332 return false;
335 void BackendImpl::FirstEviction() {
336 DCHECK(data_->header.create_time);
337 if (!GetEntryCount())
338 return; // This is just for unit tests.
340 Time create_time = Time::FromInternalValue(data_->header.create_time);
341 CACHE_UMA(AGE, "FillupAge", 0, create_time);
343 int64 use_time = stats_.GetCounter(Stats::TIMER);
344 CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
345 CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
347 if (!use_time)
348 use_time = 1;
349 CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
350 static_cast<int>(data_->header.num_entries / use_time));
351 CACHE_UMA(COUNTS, "FirstByteIORate", 0,
352 static_cast<int>((data_->header.num_bytes / 1024) / use_time));
354 int avg_size = data_->header.num_bytes / GetEntryCount();
355 CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
357 int large_entries_bytes = stats_.GetLargeEntriesSize();
358 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
359 CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
361 if (new_eviction_) {
362 CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
363 CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
364 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
365 CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
366 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
367 CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
368 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
371 stats_.ResetRatios();
374 void BackendImpl::OnEvent(Stats::Counters an_event) {
375 stats_.OnEvent(an_event);
378 void BackendImpl::OnRead(int32 bytes) {
379 DCHECK_GE(bytes, 0);
380 byte_count_ += bytes;
381 if (byte_count_ < 0)
382 byte_count_ = kint32max;
385 void BackendImpl::OnWrite(int32 bytes) {
386 // We use the same implementation as OnRead... just log the number of bytes.
387 OnRead(bytes);
390 void BackendImpl::OnStatsTimer() {
391 stats_.OnEvent(Stats::TIMER);
392 int64 time = stats_.GetCounter(Stats::TIMER);
393 int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
395 // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
396 // the bias towards 0.
397 if (num_refs_ && (current != num_refs_)) {
398 int64 diff = (num_refs_ - current) / 50;
399 if (!diff)
400 diff = num_refs_ > current ? 1 : -1;
401 current = current + diff;
402 stats_.SetCounter(Stats::OPEN_ENTRIES, current);
403 stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
406 CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
408 CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
409 CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
411 // These values cover about 99.5% of the population (Oct 2011).
412 user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
413 entry_count_ = 0;
414 byte_count_ = 0;
415 up_ticks_++;
417 if (!data_)
418 first_timer_ = false;
419 if (first_timer_) {
420 first_timer_ = false;
421 if (ShouldReportAgain())
422 ReportStats();
425 // Save stats to disk at 5 min intervals.
426 if (time % 10 == 0)
427 StoreStats();
430 void BackendImpl::SetUnitTestMode() {
431 user_flags_ |= kUnitTestMode;
432 unit_test_ = true;
435 void BackendImpl::SetUpgradeMode() {
436 user_flags_ |= kUpgradeMode;
437 read_only_ = true;
440 void BackendImpl::SetNewEviction() {
441 user_flags_ |= kNewEviction;
442 new_eviction_ = true;
445 void BackendImpl::SetFlags(uint32 flags) {
446 user_flags_ |= flags;
449 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
450 background_queue_.FlushQueue(callback);
451 return net::ERR_IO_PENDING;
454 void BackendImpl::TrimForTest(bool empty) {
455 eviction_.SetTestMode();
456 eviction_.TrimCache(empty);
459 void BackendImpl::TrimDeletedListForTest(bool empty) {
460 eviction_.SetTestMode();
461 eviction_.TrimDeletedList(empty);
464 int BackendImpl::SelfCheck() {
465 if (!init_) {
466 LOG(ERROR) << "Init failed";
467 return ERR_INIT_FAILED;
470 int num_entries = rankings_.SelfCheck();
471 if (num_entries < 0) {
472 LOG(ERROR) << "Invalid rankings list, error " << num_entries;
473 #if !defined(NET_BUILD_STRESS_CACHE)
474 return num_entries;
475 #endif
478 if (num_entries != data_->header.num_entries) {
479 LOG(ERROR) << "Number of entries mismatch";
480 #if !defined(NET_BUILD_STRESS_CACHE)
481 return ERR_NUM_ENTRIES_MISMATCH;
482 #endif
485 return CheckAllEntries();
488 // ------------------------------------------------------------------------
490 net::CacheType BackendImpl::GetCacheType() const {
491 return cache_type_;
494 int32 BackendImpl::GetEntryCount() const {
495 if (!index_.get() || disabled_)
496 return 0;
497 // num_entries includes entries already evicted.
498 int32 not_deleted = data_->header.num_entries -
499 data_->header.lru.sizes[Rankings::DELETED];
501 if (not_deleted < 0) {
502 NOTREACHED();
503 not_deleted = 0;
506 return not_deleted;
509 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
510 if (disabled_)
511 return NULL;
513 TimeTicks start = TimeTicks::Now();
514 uint32 hash = base::Hash(key);
515 Trace("Open hash 0x%x", hash);
517 bool error;
518 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
519 if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
520 // The entry was already evicted.
521 cache_entry->Release();
522 cache_entry = NULL;
525 int current_size = data_->header.num_bytes / (1024 * 1024);
526 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
527 int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
528 int64 use_hours = total_hours - no_use_hours;
530 if (!cache_entry) {
531 CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
532 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
533 CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0, total_hours);
534 CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0, use_hours);
535 stats_.OnEvent(Stats::OPEN_MISS);
536 return NULL;
539 eviction_.OnOpenEntry(cache_entry);
540 entry_count_++;
542 Trace("Open hash 0x%x end: 0x%x", hash,
543 cache_entry->entry()->address().value());
544 CACHE_UMA(AGE_MS, "OpenTime", 0, start);
545 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
546 CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0, total_hours);
547 CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0, use_hours);
548 stats_.OnEvent(Stats::OPEN_HIT);
549 SIMPLE_STATS_COUNTER("disk_cache.hit");
550 return cache_entry;
553 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
554 if (disabled_ || key.empty())
555 return NULL;
557 TimeTicks start = TimeTicks::Now();
558 Trace("Create hash 0x%x", hash);
560 scoped_refptr<EntryImpl> parent;
561 Addr entry_address(data_->table[hash & mask_]);
562 if (entry_address.is_initialized()) {
563 // We have an entry already. It could be the one we are looking for, or just
564 // a hash conflict.
565 bool error;
566 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
567 if (old_entry)
568 return ResurrectEntry(old_entry);
570 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
571 DCHECK(!error);
572 if (parent_entry) {
573 parent.swap(&parent_entry);
574 } else if (data_->table[hash & mask_]) {
575 // We should have corrected the problem.
576 NOTREACHED();
577 return NULL;
581 // The general flow is to allocate disk space and initialize the entry data,
582 // followed by saving that to disk, then linking the entry though the index
583 // and finally through the lists. If there is a crash in this process, we may
584 // end up with:
585 // a. Used, unreferenced empty blocks on disk (basically just garbage).
586 // b. Used, unreferenced but meaningful data on disk (more garbage).
587 // c. A fully formed entry, reachable only through the index.
588 // d. A fully formed entry, also reachable through the lists, but still dirty.
590 // Anything after (b) can be automatically cleaned up. We may consider saving
591 // the current operation (as we do while manipulating the lists) so that we
592 // can detect and cleanup (a) and (b).
594 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
595 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
596 LOG(ERROR) << "Create entry failed " << key.c_str();
597 stats_.OnEvent(Stats::CREATE_ERROR);
598 return NULL;
601 Addr node_address(0);
602 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
603 block_files_.DeleteBlock(entry_address, false);
604 LOG(ERROR) << "Create entry failed " << key.c_str();
605 stats_.OnEvent(Stats::CREATE_ERROR);
606 return NULL;
609 scoped_refptr<EntryImpl> cache_entry(
610 new EntryImpl(this, entry_address, false));
611 IncreaseNumRefs();
613 if (!cache_entry->CreateEntry(node_address, key, hash)) {
614 block_files_.DeleteBlock(entry_address, false);
615 block_files_.DeleteBlock(node_address, false);
616 LOG(ERROR) << "Create entry failed " << key.c_str();
617 stats_.OnEvent(Stats::CREATE_ERROR);
618 return NULL;
621 cache_entry->BeginLogging(net_log_, true);
623 // We are not failing the operation; let's add this to the map.
624 open_entries_[entry_address.value()] = cache_entry.get();
626 // Save the entry.
627 cache_entry->entry()->Store();
628 cache_entry->rankings()->Store();
629 IncreaseNumEntries();
630 entry_count_++;
632 // Link this entry through the index.
633 if (parent.get()) {
634 parent->SetNextAddress(entry_address);
635 } else {
636 data_->table[hash & mask_] = entry_address.value();
639 // Link this entry through the lists.
640 eviction_.OnCreateEntry(cache_entry.get());
642 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
643 stats_.OnEvent(Stats::CREATE_HIT);
644 SIMPLE_STATS_COUNTER("disk_cache.miss");
645 Trace("create entry hit ");
646 FlushIndex();
647 cache_entry->AddRef();
648 return cache_entry.get();
651 int BackendImpl::SyncDoomEntry(const std::string& key) {
652 if (disabled_)
653 return net::ERR_FAILED;
655 EntryImpl* entry = OpenEntryImpl(key);
656 if (!entry)
657 return net::ERR_FAILED;
659 entry->DoomImpl();
660 entry->Release();
661 return net::OK;
664 int BackendImpl::SyncDoomAllEntries() {
665 // This is not really an error, but it is an interesting condition.
666 ReportError(ERR_CACHE_DOOMED);
667 stats_.OnEvent(Stats::DOOM_CACHE);
668 if (!num_refs_) {
669 RestartCache(false);
670 return disabled_ ? net::ERR_FAILED : net::OK;
671 } else {
672 if (disabled_)
673 return net::ERR_FAILED;
675 eviction_.TrimCache(true);
676 return net::OK;
680 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
681 const base::Time end_time) {
682 DCHECK_NE(net::APP_CACHE, cache_type_);
683 if (end_time.is_null())
684 return SyncDoomEntriesSince(initial_time);
686 DCHECK(end_time >= initial_time);
688 if (disabled_)
689 return net::ERR_FAILED;
691 EntryImpl* node;
692 void* iter = NULL;
693 EntryImpl* next = OpenNextEntryImpl(&iter);
694 if (!next)
695 return net::OK;
697 while (next) {
698 node = next;
699 next = OpenNextEntryImpl(&iter);
701 if (node->GetLastUsed() >= initial_time &&
702 node->GetLastUsed() < end_time) {
703 node->DoomImpl();
704 } else if (node->GetLastUsed() < initial_time) {
705 if (next)
706 next->Release();
707 next = NULL;
708 SyncEndEnumeration(iter);
711 node->Release();
714 return net::OK;
717 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
718 // entries that are too old.
719 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
720 DCHECK_NE(net::APP_CACHE, cache_type_);
721 if (disabled_)
722 return net::ERR_FAILED;
724 stats_.OnEvent(Stats::DOOM_RECENT);
725 for (;;) {
726 void* iter = NULL;
727 EntryImpl* entry = OpenNextEntryImpl(&iter);
728 if (!entry)
729 return net::OK;
731 if (initial_time > entry->GetLastUsed()) {
732 entry->Release();
733 SyncEndEnumeration(iter);
734 return net::OK;
737 entry->DoomImpl();
738 entry->Release();
739 SyncEndEnumeration(iter); // Dooming the entry invalidates the iterator.
743 int BackendImpl::OpenNextEntry(void** iter, Entry** next_entry,
744 const CompletionCallback& callback) {
745 DCHECK(!callback.is_null());
746 background_queue_.OpenNextEntry(iter, next_entry, callback);
747 return net::ERR_IO_PENDING;
750 void BackendImpl::EndEnumeration(void** iter) {
751 background_queue_.EndEnumeration(*iter);
752 *iter = NULL;
755 void BackendImpl::GetStats(StatsItems* stats) {
756 if (disabled_)
757 return;
759 std::pair<std::string, std::string> item;
761 item.first = "Entries";
762 item.second = base::StringPrintf("%d", data_->header.num_entries);
763 stats->push_back(item);
765 item.first = "Pending IO";
766 item.second = base::StringPrintf("%d", num_pending_io_);
767 stats->push_back(item);
769 item.first = "Max size";
770 item.second = base::StringPrintf("%d", max_size_);
771 stats->push_back(item);
773 item.first = "Current size";
774 item.second = base::StringPrintf("%d", data_->header.num_bytes);
775 stats->push_back(item);
777 item.first = "Cache type";
778 item.second = "Blockfile Cache";
779 stats->push_back(item);
781 stats_.GetItems(stats);
784 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
785 if (disabled_)
786 return;
788 uint32 hash = base::Hash(key);
789 bool error;
790 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
791 if (cache_entry) {
792 if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
793 UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
795 cache_entry->Release();
799 // ------------------------------------------------------------------------
801 // The maximum cache size will be either set explicitly by the caller, or
802 // calculated by this code.
803 void BackendImpl::AdjustMaxCacheSize(int table_len) {
804 if (max_size_)
805 return;
807 // If table_len is provided, the index file exists.
808 DCHECK(!table_len || data_->header.magic);
810 // The user is not setting the size, let's figure it out.
811 int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
812 if (available < 0) {
813 max_size_ = kDefaultCacheSize;
814 return;
817 if (table_len)
818 available += data_->header.num_bytes;
820 max_size_ = PreferedCacheSize(available);
822 // Let's not use more than the default size while we tune-up the performance
823 // of bigger caches. TODO(rvargas): remove this limit.
824 if (max_size_ > kDefaultCacheSize * 4)
825 max_size_ = kDefaultCacheSize * 4;
827 if (!table_len)
828 return;
830 // If we already have a table, adjust the size to it.
831 int current_max_size = MaxStorageSizeForTable(table_len);
832 if (max_size_ > current_max_size)
833 max_size_= current_max_size;
836 bool BackendImpl::InitStats() {
837 Addr address(data_->header.stats);
838 int size = stats_.StorageSize();
840 if (!address.is_initialized()) {
841 FileType file_type = Addr::RequiredFileType(size);
842 DCHECK_NE(file_type, EXTERNAL);
843 int num_blocks = Addr::RequiredBlocks(size, file_type);
845 if (!CreateBlock(file_type, num_blocks, &address))
846 return false;
847 return stats_.Init(NULL, 0, address);
850 if (!address.is_block_file()) {
851 NOTREACHED();
852 return false;
855 // Load the required data.
856 size = address.num_blocks() * address.BlockSize();
857 MappedFile* file = File(address);
858 if (!file)
859 return false;
861 scoped_ptr<char[]> data(new char[size]);
862 size_t offset = address.start_block() * address.BlockSize() +
863 kBlockHeaderSize;
864 if (!file->Read(data.get(), size, offset))
865 return false;
867 if (!stats_.Init(data.get(), size, address))
868 return false;
869 if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
870 stats_.InitSizeHistogram();
871 return true;
874 void BackendImpl::StoreStats() {
875 int size = stats_.StorageSize();
876 scoped_ptr<char[]> data(new char[size]);
877 Addr address;
878 size = stats_.SerializeStats(data.get(), size, &address);
879 DCHECK(size);
880 if (!address.is_initialized())
881 return;
883 MappedFile* file = File(address);
884 if (!file)
885 return;
887 size_t offset = address.start_block() * address.BlockSize() +
888 kBlockHeaderSize;
889 file->Write(data.get(), size, offset); // ignore result.
892 void BackendImpl::RestartCache(bool failure) {
893 int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
894 int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
895 int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
896 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
898 PrepareForRestart();
899 if (failure) {
900 DCHECK(!num_refs_);
901 DCHECK(!open_entries_.size());
902 DelayedCacheCleanup(path_);
903 } else {
904 DeleteCache(path_, false);
907 // Don't call Init() if directed by the unit test: we are simulating a failure
908 // trying to re-enable the cache.
909 if (unit_test_)
910 init_ = true; // Let the destructor do proper cleanup.
911 else if (SyncInit() == net::OK) {
912 stats_.SetCounter(Stats::FATAL_ERROR, errors);
913 stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
914 stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
915 stats_.SetCounter(Stats::LAST_REPORT, last_report);
919 void BackendImpl::PrepareForRestart() {
920 // Reset the mask_ if it was not given by the user.
921 if (!(user_flags_ & kMask))
922 mask_ = 0;
924 if (!(user_flags_ & kNewEviction))
925 new_eviction_ = false;
927 disabled_ = true;
928 data_->header.crash = 0;
929 index_->Flush();
930 index_ = NULL;
931 data_ = NULL;
932 block_files_.CloseFiles();
933 rankings_.Reset();
934 init_ = false;
935 restarted_ = true;
938 void BackendImpl::CleanupCache() {
939 Trace("Backend Cleanup");
940 eviction_.Stop();
941 timer_.reset();
943 if (init_) {
944 StoreStats();
945 if (data_)
946 data_->header.crash = 0;
948 if (user_flags_ & kNoRandom) {
949 // This is a net_unittest, verify that we are not 'leaking' entries.
950 File::WaitForPendingIO(&num_pending_io_);
951 DCHECK(!num_refs_);
952 } else {
953 File::DropPendingIO();
956 block_files_.CloseFiles();
957 FlushIndex();
958 index_ = NULL;
959 ptr_factory_.InvalidateWeakPtrs();
960 done_.Signal();
963 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
964 EntriesMap::iterator it = open_entries_.find(address.value());
965 if (it != open_entries_.end()) {
966 // Easy job. This entry is already in memory.
967 EntryImpl* this_entry = it->second;
968 this_entry->AddRef();
969 *entry = this_entry;
970 return 0;
973 STRESS_DCHECK(block_files_.IsValid(address));
975 if (!address.SanityCheckForEntry()) {
976 LOG(WARNING) << "Wrong entry address.";
977 STRESS_NOTREACHED();
978 return ERR_INVALID_ADDRESS;
981 scoped_refptr<EntryImpl> cache_entry(
982 new EntryImpl(this, address, read_only_));
983 IncreaseNumRefs();
984 *entry = NULL;
986 TimeTicks start = TimeTicks::Now();
987 if (!cache_entry->entry()->Load())
988 return ERR_READ_FAILURE;
990 if (IsLoaded()) {
991 CACHE_UMA(AGE_MS, "LoadTime", 0, start);
994 if (!cache_entry->SanityCheck()) {
995 LOG(WARNING) << "Messed up entry found.";
996 STRESS_NOTREACHED();
997 return ERR_INVALID_ENTRY;
1000 STRESS_DCHECK(block_files_.IsValid(
1001 Addr(cache_entry->entry()->Data()->rankings_node)));
1003 if (!cache_entry->LoadNodeAddress())
1004 return ERR_READ_FAILURE;
1006 if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
1007 STRESS_NOTREACHED();
1008 cache_entry->SetDirtyFlag(0);
1009 // Don't remove this from the list (it is not linked properly). Instead,
1010 // break the link back to the entry because it is going away, and leave the
1011 // rankings node to be deleted if we find it through a list.
1012 rankings_.SetContents(cache_entry->rankings(), 0);
1013 } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
1014 STRESS_NOTREACHED();
1015 cache_entry->SetDirtyFlag(0);
1016 rankings_.SetContents(cache_entry->rankings(), address.value());
1019 if (!cache_entry->DataSanityCheck()) {
1020 LOG(WARNING) << "Messed up entry found.";
1021 cache_entry->SetDirtyFlag(0);
1022 cache_entry->FixForDelete();
1025 // Prevent overwriting the dirty flag on the destructor.
1026 cache_entry->SetDirtyFlag(GetCurrentEntryId());
1028 if (cache_entry->dirty()) {
1029 Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
1030 address.value());
1033 open_entries_[address.value()] = cache_entry.get();
1035 cache_entry->BeginLogging(net_log_, false);
1036 cache_entry.swap(entry);
1037 return 0;
1040 // This is the actual implementation for OpenNextEntry and OpenPrevEntry.
1041 EntryImpl* BackendImpl::OpenFollowingEntry(bool forward, void** iter) {
1042 if (disabled_)
1043 return NULL;
1045 DCHECK(iter);
1047 const int kListsToSearch = 3;
1048 scoped_refptr<EntryImpl> entries[kListsToSearch];
1049 scoped_ptr<Rankings::Iterator> iterator(
1050 reinterpret_cast<Rankings::Iterator*>(*iter));
1051 *iter = NULL;
1053 if (!iterator.get()) {
1054 iterator.reset(new Rankings::Iterator(&rankings_));
1055 bool ret = false;
1057 // Get an entry from each list.
1058 for (int i = 0; i < kListsToSearch; i++) {
1059 EntryImpl* temp = NULL;
1060 ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i),
1061 &iterator->nodes[i], &temp);
1062 entries[i].swap(&temp); // The entry was already addref'd.
1064 if (!ret)
1065 return NULL;
1066 } else {
1067 // Get the next entry from the last list, and the actual entries for the
1068 // elements on the other lists.
1069 for (int i = 0; i < kListsToSearch; i++) {
1070 EntryImpl* temp = NULL;
1071 if (iterator->list == i) {
1072 OpenFollowingEntryFromList(forward, iterator->list,
1073 &iterator->nodes[i], &temp);
1074 } else {
1075 temp = GetEnumeratedEntry(iterator->nodes[i],
1076 static_cast<Rankings::List>(i));
1079 entries[i].swap(&temp); // The entry was already addref'd.
1083 int newest = -1;
1084 int oldest = -1;
1085 Time access_times[kListsToSearch];
1086 for (int i = 0; i < kListsToSearch; i++) {
1087 if (entries[i].get()) {
1088 access_times[i] = entries[i]->GetLastUsed();
1089 if (newest < 0) {
1090 DCHECK_LT(oldest, 0);
1091 newest = oldest = i;
1092 continue;
1094 if (access_times[i] > access_times[newest])
1095 newest = i;
1096 if (access_times[i] < access_times[oldest])
1097 oldest = i;
1101 if (newest < 0 || oldest < 0)
1102 return NULL;
1104 EntryImpl* next_entry;
1105 if (forward) {
1106 next_entry = entries[newest].get();
1107 iterator->list = static_cast<Rankings::List>(newest);
1108 } else {
1109 next_entry = entries[oldest].get();
1110 iterator->list = static_cast<Rankings::List>(oldest);
1113 *iter = iterator.release();
1114 next_entry->AddRef();
1115 return next_entry;
1118 void BackendImpl::AddStorageSize(int32 bytes) {
1119 data_->header.num_bytes += bytes;
1120 DCHECK_GE(data_->header.num_bytes, 0);
1123 void BackendImpl::SubstractStorageSize(int32 bytes) {
1124 data_->header.num_bytes -= bytes;
1125 DCHECK_GE(data_->header.num_bytes, 0);
1128 void BackendImpl::IncreaseNumRefs() {
1129 num_refs_++;
1130 if (max_refs_ < num_refs_)
1131 max_refs_ = num_refs_;
1134 void BackendImpl::DecreaseNumRefs() {
1135 DCHECK(num_refs_);
1136 num_refs_--;
1138 if (!num_refs_ && disabled_)
1139 base::MessageLoop::current()->PostTask(
1140 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1143 void BackendImpl::IncreaseNumEntries() {
1144 data_->header.num_entries++;
1145 DCHECK_GT(data_->header.num_entries, 0);
1148 void BackendImpl::DecreaseNumEntries() {
1149 data_->header.num_entries--;
1150 if (data_->header.num_entries < 0) {
1151 NOTREACHED();
1152 data_->header.num_entries = 0;
1156 int BackendImpl::SyncInit() {
1157 #if defined(NET_BUILD_STRESS_CACHE)
1158 // Start evictions right away.
1159 up_ticks_ = kTrimDelay * 2;
1160 #endif
1161 DCHECK(!init_);
1162 if (init_)
1163 return net::ERR_FAILED;
1165 bool create_files = false;
1166 if (!InitBackingStore(&create_files)) {
1167 ReportError(ERR_STORAGE_ERROR);
1168 return net::ERR_FAILED;
1171 num_refs_ = num_pending_io_ = max_refs_ = 0;
1172 entry_count_ = byte_count_ = 0;
1174 if (!restarted_) {
1175 buffer_bytes_ = 0;
1176 trace_object_ = TraceObject::GetTraceObject();
1177 // Create a recurrent timer of 30 secs.
1178 int timer_delay = unit_test_ ? 1000 : 30000;
1179 timer_.reset(new base::RepeatingTimer<BackendImpl>());
1180 timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
1181 &BackendImpl::OnStatsTimer);
1184 init_ = true;
1185 Trace("Init");
1187 if (data_->header.experiment != NO_EXPERIMENT &&
1188 cache_type_ != net::DISK_CACHE) {
1189 // No experiment for other caches.
1190 return net::ERR_FAILED;
1193 if (!(user_flags_ & kNoRandom)) {
1194 // The unit test controls directly what to test.
1195 new_eviction_ = (cache_type_ == net::DISK_CACHE);
1198 if (!CheckIndex()) {
1199 ReportError(ERR_INIT_FAILED);
1200 return net::ERR_FAILED;
1203 if (!restarted_ && (create_files || !data_->header.num_entries))
1204 ReportError(ERR_CACHE_CREATED);
1206 if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
1207 !InitExperiment(&data_->header, create_files)) {
1208 return net::ERR_FAILED;
1211 // We don't care if the value overflows. The only thing we care about is that
1212 // the id cannot be zero, because that value is used as "not dirty".
1213 // Increasing the value once per second gives us many years before we start
1214 // having collisions.
1215 data_->header.this_id++;
1216 if (!data_->header.this_id)
1217 data_->header.this_id++;
1219 bool previous_crash = (data_->header.crash != 0);
1220 data_->header.crash = 1;
1222 if (!block_files_.Init(create_files))
1223 return net::ERR_FAILED;
1225 // We want to minimize the changes to cache for an AppCache.
1226 if (cache_type() == net::APP_CACHE) {
1227 DCHECK(!new_eviction_);
1228 read_only_ = true;
1229 } else if (cache_type() == net::SHADER_CACHE) {
1230 DCHECK(!new_eviction_);
1233 eviction_.Init(this);
1235 // stats_ and rankings_ may end up calling back to us so we better be enabled.
1236 disabled_ = false;
1237 if (!InitStats())
1238 return net::ERR_FAILED;
1240 disabled_ = !rankings_.Init(this, new_eviction_);
1242 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
1243 trace_object_->EnableTracing(false);
1244 int sc = SelfCheck();
1245 if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
1246 NOTREACHED();
1247 trace_object_->EnableTracing(true);
1248 #endif
1250 if (previous_crash) {
1251 ReportError(ERR_PREVIOUS_CRASH);
1252 } else if (!restarted_) {
1253 ReportError(ERR_NO_ERROR);
1256 FlushIndex();
1258 return disabled_ ? net::ERR_FAILED : net::OK;
1261 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
1262 if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
1263 deleted_entry->Release();
1264 stats_.OnEvent(Stats::CREATE_MISS);
1265 Trace("create entry miss ");
1266 return NULL;
1269 // We are attempting to create an entry and found out that the entry was
1270 // previously deleted.
1272 eviction_.OnCreateEntry(deleted_entry);
1273 entry_count_++;
1275 stats_.OnEvent(Stats::RESURRECT_HIT);
1276 Trace("Resurrect entry hit ");
1277 return deleted_entry;
1280 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
1281 if (disabled_ || key.empty())
1282 return NULL;
1284 TimeTicks start = TimeTicks::Now();
1285 Trace("Create hash 0x%x", hash);
1287 scoped_refptr<EntryImpl> parent;
1288 Addr entry_address(data_->table[hash & mask_]);
1289 if (entry_address.is_initialized()) {
1290 // We have an entry already. It could be the one we are looking for, or just
1291 // a hash conflict.
1292 bool error;
1293 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
1294 if (old_entry)
1295 return ResurrectEntry(old_entry);
1297 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
1298 DCHECK(!error);
1299 if (parent_entry) {
1300 parent.swap(&parent_entry);
1301 } else if (data_->table[hash & mask_]) {
1302 // We should have corrected the problem.
1303 NOTREACHED();
1304 return NULL;
1308 // The general flow is to allocate disk space and initialize the entry data,
1309 // followed by saving that to disk, then linking the entry though the index
1310 // and finally through the lists. If there is a crash in this process, we may
1311 // end up with:
1312 // a. Used, unreferenced empty blocks on disk (basically just garbage).
1313 // b. Used, unreferenced but meaningful data on disk (more garbage).
1314 // c. A fully formed entry, reachable only through the index.
1315 // d. A fully formed entry, also reachable through the lists, but still dirty.
1317 // Anything after (b) can be automatically cleaned up. We may consider saving
1318 // the current operation (as we do while manipulating the lists) so that we
1319 // can detect and cleanup (a) and (b).
1321 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
1322 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
1323 LOG(ERROR) << "Create entry failed " << key.c_str();
1324 stats_.OnEvent(Stats::CREATE_ERROR);
1325 return NULL;
1328 Addr node_address(0);
1329 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
1330 block_files_.DeleteBlock(entry_address, false);
1331 LOG(ERROR) << "Create entry failed " << key.c_str();
1332 stats_.OnEvent(Stats::CREATE_ERROR);
1333 return NULL;
1336 scoped_refptr<EntryImpl> cache_entry(
1337 new EntryImpl(this, entry_address, false));
1338 IncreaseNumRefs();
1340 if (!cache_entry->CreateEntry(node_address, key, hash)) {
1341 block_files_.DeleteBlock(entry_address, false);
1342 block_files_.DeleteBlock(node_address, false);
1343 LOG(ERROR) << "Create entry failed " << key.c_str();
1344 stats_.OnEvent(Stats::CREATE_ERROR);
1345 return NULL;
1348 cache_entry->BeginLogging(net_log_, true);
1350 // We are not failing the operation; let's add this to the map.
1351 open_entries_[entry_address.value()] = cache_entry;
1353 // Save the entry.
1354 cache_entry->entry()->Store();
1355 cache_entry->rankings()->Store();
1356 IncreaseNumEntries();
1357 entry_count_++;
1359 // Link this entry through the index.
1360 if (parent.get()) {
1361 parent->SetNextAddress(entry_address);
1362 } else {
1363 data_->table[hash & mask_] = entry_address.value();
1366 // Link this entry through the lists.
1367 eviction_.OnCreateEntry(cache_entry);
1369 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
1370 stats_.OnEvent(Stats::CREATE_HIT);
1371 SIMPLE_STATS_COUNTER("disk_cache.miss");
1372 Trace("create entry hit ");
1373 FlushIndex();
1374 cache_entry->AddRef();
1375 return cache_entry.get();
1378 void BackendImpl::LogStats() {
1379 StatsItems stats;
1380 GetStats(&stats);
1382 for (size_t index = 0; index < stats.size(); index++)
1383 VLOG(1) << stats[index].first << ": " << stats[index].second;
1386 void BackendImpl::ReportStats() {
1387 CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
1389 int current_size = data_->header.num_bytes / (1024 * 1024);
1390 int max_size = max_size_ / (1024 * 1024);
1391 int hit_ratio_as_percentage = stats_.GetHitRatio();
1393 CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
1394 // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
1395 // ratio of that bin's total count to the count in the same bin in the Size2
1396 // histogram.
1397 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1398 CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
1399 CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
1400 if (!max_size)
1401 max_size++;
1402 CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
1404 CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
1405 static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
1406 CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
1407 static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
1408 stats_.SetCounter(Stats::MAX_ENTRIES, 0);
1410 CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
1411 static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
1412 CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
1413 static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
1414 CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
1415 static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
1416 stats_.SetCounter(Stats::FATAL_ERROR, 0);
1417 stats_.SetCounter(Stats::DOOM_CACHE, 0);
1418 stats_.SetCounter(Stats::DOOM_RECENT, 0);
1420 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
1421 if (!data_->header.create_time || !data_->header.lru.filled) {
1422 int cause = data_->header.create_time ? 0 : 1;
1423 if (!data_->header.lru.filled)
1424 cause |= 2;
1425 CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
1426 CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
1427 return;
1430 // This is an up to date client that will report FirstEviction() data. After
1431 // that event, start reporting this:
1433 CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
1434 // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
1435 // time is the ratio of that bin's total count to the count in the same bin in
1436 // the TotalTime histogram.
1437 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1438 CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, implicit_cast<int>(total_hours));
1440 int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
1441 stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
1443 // We may see users with no use_hours at this point if this is the first time
1444 // we are running this code.
1445 if (use_hours)
1446 use_hours = total_hours - use_hours;
1448 if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
1449 return;
1451 CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
1452 // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
1453 // is the ratio of that bin's total count to the count in the same bin in the
1454 // UseTime histogram.
1455 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1456 CACHE_UMA(HOURS, "HitRatioByUseTime", 0, implicit_cast<int>(use_hours));
1457 CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
1459 int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
1460 CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
1462 int avg_size = data_->header.num_bytes / GetEntryCount();
1463 CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
1464 CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
1466 CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
1467 data_->header.num_entries * 100 / (mask_ + 1));
1469 int large_entries_bytes = stats_.GetLargeEntriesSize();
1470 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1471 CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
1473 if (new_eviction_) {
1474 CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
1475 CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
1476 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1477 CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
1478 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1479 CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
1480 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1481 CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
1482 data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
1485 stats_.ResetRatios();
1486 stats_.SetCounter(Stats::TRIM_ENTRY, 0);
1488 if (cache_type_ == net::DISK_CACHE)
1489 block_files_.ReportStats();
1492 void BackendImpl::ReportError(int error) {
1493 STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
1494 error == ERR_CACHE_CREATED);
1496 // We transmit positive numbers, instead of direct error codes.
1497 DCHECK_LE(error, 0);
1498 CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
1501 bool BackendImpl::CheckIndex() {
1502 DCHECK(data_);
1504 size_t current_size = index_->GetLength();
1505 if (current_size < sizeof(Index)) {
1506 LOG(ERROR) << "Corrupt Index file";
1507 return false;
1510 if (new_eviction_) {
1511 // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
1512 if (kIndexMagic != data_->header.magic ||
1513 kCurrentVersion >> 16 != data_->header.version >> 16) {
1514 LOG(ERROR) << "Invalid file version or magic";
1515 return false;
1517 if (kCurrentVersion == data_->header.version) {
1518 // We need file version 2.1 for the new eviction algorithm.
1519 UpgradeTo2_1();
1521 } else {
1522 if (kIndexMagic != data_->header.magic ||
1523 kCurrentVersion != data_->header.version) {
1524 LOG(ERROR) << "Invalid file version or magic";
1525 return false;
1529 if (!data_->header.table_len) {
1530 LOG(ERROR) << "Invalid table size";
1531 return false;
1534 if (current_size < GetIndexSize(data_->header.table_len) ||
1535 data_->header.table_len & (kBaseTableLen - 1)) {
1536 LOG(ERROR) << "Corrupt Index file";
1537 return false;
1540 AdjustMaxCacheSize(data_->header.table_len);
1542 #if !defined(NET_BUILD_STRESS_CACHE)
1543 if (data_->header.num_bytes < 0 ||
1544 (max_size_ < kint32max - kDefaultCacheSize &&
1545 data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
1546 LOG(ERROR) << "Invalid cache (current) size";
1547 return false;
1549 #endif
1551 if (data_->header.num_entries < 0) {
1552 LOG(ERROR) << "Invalid number of entries";
1553 return false;
1556 if (!mask_)
1557 mask_ = data_->header.table_len - 1;
1559 // Load the table into memory with a single read.
1560 scoped_ptr<char[]> buf(new char[current_size]);
1561 return index_->Read(buf.get(), current_size, 0);
1564 int BackendImpl::CheckAllEntries() {
1565 int num_dirty = 0;
1566 int num_entries = 0;
1567 DCHECK(mask_ < kuint32max);
1568 for (unsigned int i = 0; i <= mask_; i++) {
1569 Addr address(data_->table[i]);
1570 if (!address.is_initialized())
1571 continue;
1572 for (;;) {
1573 EntryImpl* tmp;
1574 int ret = NewEntry(address, &tmp);
1575 if (ret) {
1576 STRESS_NOTREACHED();
1577 return ret;
1579 scoped_refptr<EntryImpl> cache_entry;
1580 cache_entry.swap(&tmp);
1582 if (cache_entry->dirty())
1583 num_dirty++;
1584 else if (CheckEntry(cache_entry.get()))
1585 num_entries++;
1586 else
1587 return ERR_INVALID_ENTRY;
1589 DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
1590 address.set_value(cache_entry->GetNextAddress());
1591 if (!address.is_initialized())
1592 break;
1596 Trace("CheckAllEntries End");
1597 if (num_entries + num_dirty != data_->header.num_entries) {
1598 LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
1599 " " << data_->header.num_entries;
1600 DCHECK_LT(num_entries, data_->header.num_entries);
1601 return ERR_NUM_ENTRIES_MISMATCH;
1604 return num_dirty;
1607 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
1608 bool ok = block_files_.IsValid(cache_entry->entry()->address());
1609 ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
1610 EntryStore* data = cache_entry->entry()->Data();
1611 for (size_t i = 0; i < arraysize(data->data_addr); i++) {
1612 if (data->data_addr[i]) {
1613 Addr address(data->data_addr[i]);
1614 if (address.is_block_file())
1615 ok = ok && block_files_.IsValid(address);
1619 return ok && cache_entry->rankings()->VerifyHash();
1622 int BackendImpl::MaxBuffersSize() {
1623 static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
1624 static bool done = false;
1626 if (!done) {
1627 const int kMaxBuffersSize = 30 * 1024 * 1024;
1629 // We want to use up to 2% of the computer's memory.
1630 total_memory = total_memory * 2 / 100;
1631 if (total_memory > kMaxBuffersSize || total_memory <= 0)
1632 total_memory = kMaxBuffersSize;
1634 done = true;
1637 return static_cast<int>(total_memory);
1640 } // namespace disk_cache