WebKit Roll 77251:77261.
[chromium-blink-merge.git] / courgette / adjustment_method_2.cc
blobcacf33ea1753e12759cfda58d0742e1255e96a3c
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/adjustment_method.h"
7 #include <algorithm>
8 #include <limits>
9 #include <list>
10 #include <map>
11 #include <set>
12 #include <string>
13 #include <vector>
15 #include "base/basictypes.h"
16 #include "base/format_macros.h"
17 #include "base/logging.h"
18 #include "base/string_util.h"
19 #include "base/time.h"
21 #include "courgette/assembly_program.h"
22 #include "courgette/courgette.h"
23 #include "courgette/encoded_program.h"
24 #include "courgette/image_info.h"
28 Shingle weighting matching.
30 We have a sequence S1 of symbols from alphabet A1={A,B,C,...} called the 'model'
31 and a second sequence of S2 of symbols from alphabet A2={U,V,W,....} called the
32 'program'. Each symbol in A1 has a unique numerical name or index. We can
33 transcribe the sequence S1 to a sequence T1 of indexes of the symbols. We wish
34 to assign indexes to the symbols in A2 so that when we transcribe S2 into T2, T2
35 has long subsequences that occur in T1. This will ensure that the sequence
36 T1;T2 compresses to be only slightly larger than the compressed T1.
38 The algorithm for matching members of S2 with members of S1 is eager - it makes
39 matches without backtracking, until no more matches can be made. Each variable
40 (symbol) U,V,... in A2 has a set of candidates from A1, each candidate with a
41 weight summarizing the evidence for the match. We keep a VariableQueue of
42 U,V,... sorted by how much the evidence for the best choice outweighs the
43 evidence for the second choice, i.e. prioritized by how 'clear cut' the best
44 assignment is. We pick the variable with the most clear-cut candidate, make the
45 assignment, adjust the evidence and repeat.
47 What has not been described so far is how the evidence is gathered and
48 maintained. We are working under the assumption that S1 and S2 are largely
49 similar. (A different assumption might be that S1 and S2 are dissimilar except
50 for many long subsequences.)
52 A naive algorithm would consider all pairs (A,U) and for each pair assess the
53 benefit, or score, the assignment U:=A. The score might count the number of
54 occurrences of U in S2 which appear in similar contexts to A in S1.
56 To distinguish contexts we view S1 and S2 as a sequence of overlapping k-length
57 substrings or 'shingles'. Two shingles are compatible if the symbols in one
58 shingle could be matched with the symbols in the other symbol. For example, ABC
59 is *not* compatible with UVU because it would require conflicting matches A=U
60 and C=U. ABC is compatible with UVW, UWV, WUV, VUW etc. We can't tell which
61 until we make an assignment - the compatible shingles form an equivalence class.
62 After assigning U:=A then only UVW and UWV (equivalently AVW, AWV) are
63 compatible. As we make assignments the number of equivalence classes of
64 shingles increases and the number of members of each equivalence class
65 decreases. The compatibility test becomes more restrictive.
67 We gather evidence for the potential assignment U:=A by counting how many
68 shingles containing U are compatible with shingles containing A. Thus symbols
69 occurring a large number of times in compatible contexts will be assigned first.
71 Finding the 'most clear-cut' assignment by considering all pairs symbols and for
72 each pair comparing the contexts of each pair of occurrences of the symbols is
73 computationally infeasible. We get the job done in a reasonable time by
74 approaching it 'backwards' and making incremental changes as we make
75 assignments.
77 First the shingles are partitioned according to compatibility. In S1=ABCDD and
78 S2=UVWXX we have a total of 6 shingles, each occuring once. (ABC:1 BCD:1 CDD:1;
79 UVW:1 VWX: WXX:1) all fit the pattern <V0 V1 V2> or the pattern <V0 V1 V1>. The
80 first pattern indicates that each position matches a different symbol, the
81 second pattern indicates that the second symbol is repeated.
83 pattern S1 members S2 members
84 <V0 V1 V2>: {ABC:1, BCD:1}; {UVW:1, VWX:1}
85 <V0 V1 V1>: {CDD:1} {WXX:1}
87 The second pattern appears to have a unique assignment but we don't make the
88 assignment on such scant evidence. If S1 and S2 do not match exactly, there
89 will be numerous spurious low-score matches like this. Instead we must see what
90 assignments are indicated by considering all of the evidence.
92 First pattern has 2 x 2 = 4 shingle pairs. For each pair we count the number
93 of symbol assignments. For ABC:a * UVW:b accumulate min(a,b) to each of
94 {U:=A, V:=B, W:=C}.
95 After accumulating over all 2 x 2 pairs:
96 U: {A:1 B:1}
97 V: {A:1 B:2 C:1}
98 W: {B:1 C:2 D:1 }
99 X: {C:1 D:1}
100 The second pattern contributes:
101 W: {C:1}
102 X: {D:2}
103 Sum:
104 U: {A:1 B:1}
105 V: {A:1 B:2 C:1}
106 W: {B:1 C:3 D:1}
107 X: {C:1 D:3}
109 From this we decide to assign X:=D (because this assignment has both the largest
110 difference above the next candidate (X:=C) and this is also the largest
111 proportionately over the sum of alternatives).
113 Lets assume D has numerical 'name' 77. The assignment X:=D sets X to 77 too.
114 Next we repartition all the shingles containing X or D:
116 pattern S1 members S2 members
117 <V0 V1 V2>: {ABC:1}; {UVW:1}
118 <V0 V1 77>: {BCD:1}; {VWX:1}
119 <V0 77 77>: {CDD:1} {WXX:1}
120 As we repartition, we recalculate the contributions to the scores:
121 U: {A:1}
122 V: {B:2}
123 W: {C:3}
124 All the remaining assignments are now fixed.
126 There is one step in the incremental algorithm that is still infeasibly
127 expensive: the contributions due to the cross product of large equivalence
128 classes. We settle for making an approximation by computing the contribution of
129 the cross product of only the most common shingles. The hope is that the noise
130 from the long tail of uncounted shingles is well below the scores being used to
131 pick assignments. The second hope is that as assignment are made, the large
132 equivalence class will be partitioned into smaller equivalence classes, reducing
133 the noise over time.
135 In the code below the shingles are bigger (Shingle::kWidth = 5).
136 Class ShinglePattern holds the data for one pattern.
138 There is an optimization for this case:
139 <V0 V1 V1>: {CDD:1} {WXX:1}
141 Above we said that we don't make an assignment on this "scant evidence". There
142 is an exception: if there is only one variable unassigned (more like the <V0 77
143 77> pattern) AND there are no occurrences of C and W other than those counted in
144 this pattern, then there is no competing evidence and we go ahead with the
145 assignment immediately. This produces slightly better results because these
146 cases tend to be low-scoring and susceptible to small mistakes made in
147 low-scoring assignments in the approximation for large equivalence classes.
151 namespace courgette {
152 namespace adjustment_method_2 {
154 ////////////////////////////////////////////////////////////////////////////////
156 class AssignmentCandidates;
157 class LabelInfoMaker;
158 class Shingle;
159 class ShinglePattern;
161 // The purpose of adjustment is to assign indexes to Labels of a program 'p' to
162 // make the sequence of indexes similar to a 'model' program 'm'. Labels
163 // themselves don't have enough information to do this job, so we work with a
164 // LabelInfo surrogate for each label.
166 class LabelInfo {
167 public:
168 // Just a no-argument constructor and copy constructor. Actual LabelInfo
169 // objects are allocated in std::pair structs in a std::map.
170 LabelInfo()
171 : label_(NULL), is_model_(false), debug_index_(0), refs_(0),
172 assignment_(NULL), candidates_(NULL)
175 ~LabelInfo();
177 AssignmentCandidates* candidates();
179 Label* label_; // The label that this info a surrogate for.
181 uint32 is_model_ : 1; // Is the label in the model?
182 uint32 debug_index_ : 31; // A small number for naming the label in debug
183 // output. The pair (is_model_, debug_index_) is
184 // unique.
186 int refs_; // Number of times this Label is referenced.
188 LabelInfo* assignment_; // Label from other program corresponding to this.
190 std::vector<uint32> positions_; // Offsets into the trace of references.
192 private:
193 AssignmentCandidates* candidates_;
195 void operator=(const LabelInfo*); // Disallow assignment only.
196 // Public compiler generated copy constructor is needed to constuct
197 // std::pair<Label*, LabelInfo> so that fresh LabelInfos can be allocated
198 // inside a std::map.
201 typedef std::vector<LabelInfo*> Trace;
203 std::string ToString(const LabelInfo* info) {
204 std::string s;
205 base::StringAppendF(&s, "%c%d", "pm"[info->is_model_], info->debug_index_);
206 if (info->label_->index_ != Label::kNoIndex)
207 base::StringAppendF(&s, " (%d)", info->label_->index_);
209 base::StringAppendF(&s, " #%u", info->refs_);
210 return s;
213 // LabelInfoMaker maps labels to their surrogate LabelInfo objects.
214 class LabelInfoMaker {
215 public:
216 LabelInfoMaker() : debug_label_index_gen_(0) {}
218 LabelInfo* MakeLabelInfo(Label* label, bool is_model, uint32 position) {
219 LabelInfo& slot = label_infos_[label];
220 if (slot.label_ == NULL) {
221 slot.label_ = label;
222 slot.is_model_ = is_model;
223 slot.debug_index_ = ++debug_label_index_gen_;
225 slot.positions_.push_back(position);
226 ++slot.refs_;
227 return &slot;
230 void ResetDebugLabel() { debug_label_index_gen_ = 0; }
232 private:
233 int debug_label_index_gen_;
235 // Note LabelInfo is allocated 'flat' inside map::value_type, so the LabelInfo
236 // lifetimes are managed by the map.
237 std::map<Label*, LabelInfo> label_infos_;
239 DISALLOW_COPY_AND_ASSIGN(LabelInfoMaker);
242 struct OrderLabelInfo {
243 bool operator()(const LabelInfo* a, const LabelInfo* b) const {
244 if (a->label_->rva_ < b->label_->rva_) return true;
245 if (a->label_->rva_ > b->label_->rva_) return false;
246 if (a == b) return false;
247 return a->positions_ < b->positions_; // Lexicographic ordering of vector.
251 // AssignmentCandidates is a priority queue of candidate assignments to
252 // a single program LabelInfo, |program_info_|.
253 class AssignmentCandidates {
254 public:
255 explicit AssignmentCandidates(LabelInfo* program_info)
256 : program_info_(program_info) {}
258 LabelInfo* program_info() const { return program_info_; }
260 bool empty() const { return label_to_score_.empty(); }
262 LabelInfo* top_candidate() const { return queue_.begin()->second; }
264 void Update(LabelInfo* model_info, int delta_score) {
265 LOG_ASSERT(delta_score != 0);
266 int old_score = 0;
267 int new_score = 0;
268 LabelToScore::iterator p = label_to_score_.find(model_info);
269 if (p != label_to_score_.end()) {
270 old_score = p->second;
271 new_score = old_score + delta_score;
272 queue_.erase(ScoreAndLabel(old_score, p->first));
273 if (new_score == 0) {
274 label_to_score_.erase(p);
275 } else {
276 p->second = new_score;
277 queue_.insert(ScoreAndLabel(new_score, model_info));
279 } else {
280 new_score = delta_score;
281 label_to_score_.insert(std::make_pair(model_info, new_score));
282 queue_.insert(ScoreAndLabel(new_score, model_info));
284 LOG_ASSERT(queue_.size() == label_to_score_.size());
287 int TopScore() const {
288 int first_value = 0;
289 int second_value = 0;
290 Queue::const_iterator p = queue_.begin();
291 if (p != queue_.end()) {
292 first_value = p->first;
293 ++p;
294 if (p != queue_.end()) {
295 second_value = p->first;
298 return first_value - second_value;
301 bool HasPendingUpdates() { return !pending_updates_.empty(); }
303 void AddPendingUpdate(LabelInfo* model_info, int delta_score) {
304 LOG_ASSERT(delta_score != 0);
305 pending_updates_[model_info] += delta_score;
308 void ApplyPendingUpdates() {
309 // TODO(sra): try to walk |pending_updates_| and |label_to_score_| in
310 // lockstep. Try to batch updates to |queue_|.
311 size_t zeroes = 0;
312 for (LabelToScore::iterator p = pending_updates_.begin();
313 p != pending_updates_.end();
314 ++p) {
315 if (p->second != 0)
316 Update(p->first, p->second);
317 else
318 ++zeroes;
320 pending_updates_.clear();
323 void Print(int max) {
324 VLOG(2) << "score " << TopScore() << " " << ToString(program_info_)
325 << " := ?";
326 if (!pending_updates_.empty())
327 VLOG(2) << pending_updates_.size() << " pending";
328 int count = 0;
329 for (Queue::iterator q = queue_.begin(); q != queue_.end(); ++q) {
330 if (++count > max) break;
331 VLOG(2) << " " << q->first << " " << ToString(q->second);
335 private:
336 typedef std::map<LabelInfo*, int, OrderLabelInfo> LabelToScore;
337 typedef std::pair<int, LabelInfo*> ScoreAndLabel;
338 struct OrderScoreAndLabelByScoreDecreasing {
339 OrderLabelInfo tie_breaker;
340 bool operator()(const ScoreAndLabel& a, const ScoreAndLabel& b) const {
341 if (a.first > b.first) return true;
342 if (a.first < b.first) return false;
343 return tie_breaker(a.second, b.second);
346 typedef std::set<ScoreAndLabel, OrderScoreAndLabelByScoreDecreasing> Queue;
348 LabelInfo* program_info_;
349 LabelToScore label_to_score_;
350 LabelToScore pending_updates_;
351 Queue queue_;
354 AssignmentCandidates* LabelInfo::candidates() {
355 if (candidates_ == NULL)
356 candidates_ = new AssignmentCandidates(this);
357 return candidates_;
360 LabelInfo::~LabelInfo() {
361 delete candidates_;
364 // A Shingle is a short fixed-length string of LabelInfos that actually occurs
365 // in a Trace. A Shingle may occur many times. We repesent the Shingle by the
366 // position of one of the occurrences in the Trace.
367 class Shingle {
368 public:
369 static const size_t kWidth = 5;
371 struct InterningLess {
372 bool operator()(const Shingle& a, const Shingle& b) const;
375 typedef std::set<Shingle, InterningLess> OwningSet;
377 static Shingle* Find(const Trace& trace, size_t position,
378 OwningSet* owning_set) {
379 std::pair<OwningSet::iterator, bool> pair =
380 owning_set->insert(Shingle(trace, position));
381 // pair.first iterator 'points' to the newly inserted Shingle or the
382 // previouly inserted one that looks the same according to the comparator.
384 // const_cast required because key is const. We modify the Shingle
385 // extensively but not in a way that affects InterningLess.
386 Shingle* shingle = const_cast<Shingle*>(&*pair.first);
387 shingle->add_position(position);
388 return shingle;
391 LabelInfo* at(size_t i) const { return trace_[exemplar_position_ + i]; }
392 void add_position(size_t position) {
393 positions_.push_back(static_cast<uint32>(position));
395 int position_count() const { return static_cast<int>(positions_.size()); }
397 bool InModel() const { return at(0)->is_model_; }
399 ShinglePattern* pattern() const { return pattern_; }
400 void set_pattern(ShinglePattern* pattern) { pattern_ = pattern; }
402 struct PointerLess {
403 bool operator()(const Shingle* a, const Shingle* b) const {
404 // Arbitrary but repeatable (memory-address) independent ordering:
405 return a->exemplar_position_ < b->exemplar_position_;
406 // return InterningLess()(*a, *b);
410 private:
411 Shingle(const Trace& trace, size_t exemplar_position)
412 : trace_(trace),
413 exemplar_position_(exemplar_position),
414 pattern_(NULL) {
417 const Trace& trace_; // The shingle lives inside trace_.
418 size_t exemplar_position_; // At this position (and other positions).
419 std::vector<uint32> positions_; // Includes exemplar_position_.
421 ShinglePattern* pattern_; // Pattern changes as LabelInfos are assigned.
423 friend std::string ToString(const Shingle* instance);
425 // We can't disallow the copy constructor because we use std::set<Shingle> and
426 // VS2005's implementation of std::set<T>::set() requires T to have a copy
427 // constructor.
428 // DISALLOW_COPY_AND_ASSIGN(Shingle);
429 void operator=(const Shingle&); // Disallow assignment only.
432 std::string ToString(const Shingle* instance) {
433 std::string s;
434 const char* sep = "<";
435 for (size_t i = 0; i < Shingle::kWidth; ++i) {
436 // base::StringAppendF(&s, "%s%x ", sep, instance.at(i)->label_->rva_);
437 s += sep;
438 s += ToString(instance->at(i));
439 sep = ", ";
441 base::StringAppendF(&s, ">(%" PRIuS ")@{%d}",
442 instance->exemplar_position_,
443 instance->position_count());
444 return s;
448 bool Shingle::InterningLess::operator()(
449 const Shingle& a,
450 const Shingle& b) const {
451 for (size_t i = 0; i < kWidth; ++i) {
452 LabelInfo* info_a = a.at(i);
453 LabelInfo* info_b = b.at(i);
454 if (info_a->label_->rva_ < info_b->label_->rva_)
455 return true;
456 if (info_a->label_->rva_ > info_b->label_->rva_)
457 return false;
458 if (info_a->is_model_ < info_b->is_model_)
459 return true;
460 if (info_a->is_model_ > info_b->is_model_)
461 return false;
462 if (info_a != info_b) {
463 NOTREACHED();
466 return false;
469 class ShinglePattern {
470 public:
471 enum { kOffsetMask = 7, // Offset lives in low bits.
472 kFixed = 0, // kind & kVariable == 0 => fixed.
473 kVariable = 8 // kind & kVariable == 1 => variable.
475 // sequence[position + (kinds_[i] & kOffsetMask)] gives LabelInfo for position
476 // i of shingle. Below, second 'A' is duplicate of position 1, second '102'
477 // is duplicate of position 0.
479 // <102, A, 103, A , 102>
480 // --> <kFixed+0, kVariable+1, kFixed+2, kVariable+1, kFixed+0>
481 struct Index {
482 explicit Index(const Shingle* instance);
483 uint8 kinds_[Shingle::kWidth];
484 uint8 variables_;
485 uint8 unique_variables_;
486 uint8 first_variable_index_;
487 uint32 hash_;
488 int assigned_indexes_[Shingle::kWidth];
491 // ShinglePattern keeps histograms of member Shingle instances, ordered by
492 // decreasing number of occurrences. We don't have a pair (occurrence count,
493 // Shingle instance), so we use a FreqView adapter to make the instance
494 // pointer look like the pair.
495 class FreqView {
496 public:
497 explicit FreqView(const Shingle* instance) : instance_(instance) {}
498 int count() const { return instance_->position_count(); }
499 const Shingle* instance() const { return instance_; }
500 struct Greater {
501 bool operator()(const FreqView& a, const FreqView& b) const {
502 if (a.count() > b.count()) return true;
503 if (a.count() < b.count()) return false;
504 return resolve_ties(a.instance(), b.instance());
506 private:
507 Shingle::PointerLess resolve_ties;
509 private:
510 const Shingle* instance_;
513 typedef std::set<FreqView, FreqView::Greater> Histogram;
515 ShinglePattern() : index_(NULL), model_coverage_(0), program_coverage_(0) {}
517 const Index* index_; // Points to the key in the owning map value_type.
518 Histogram model_histogram_;
519 Histogram program_histogram_;
520 int model_coverage_;
521 int program_coverage_;
524 std::string ToString(const ShinglePattern::Index* index) {
525 std::string s;
526 if (index == NULL) {
527 s = "<null>";
528 } else {
529 base::StringAppendF(&s, "<%d: ", index->variables_);
530 const char* sep = "";
531 for (size_t i = 0; i < Shingle::kWidth; ++i) {
532 s += sep;
533 sep = ", ";
534 uint32 kind = index->kinds_[i];
535 int offset = kind & ShinglePattern::kOffsetMask;
536 if (kind & ShinglePattern::kVariable)
537 base::StringAppendF(&s, "V%d", offset);
538 else
539 base::StringAppendF(&s, "%d", index->assigned_indexes_[offset]);
541 base::StringAppendF(&s, " %x", index->hash_);
542 s += ">";
544 return s;
547 std::string HistogramToString(const ShinglePattern::Histogram& histogram,
548 size_t snippet_max) {
549 std::string s;
550 size_t histogram_size = histogram.size();
551 size_t snippet_size = 0;
552 for (ShinglePattern::Histogram::const_iterator p = histogram.begin();
553 p != histogram.end();
554 ++p) {
555 if (++snippet_size > snippet_max && snippet_size != histogram_size) {
556 s += " ...";
557 break;
559 base::StringAppendF(&s, " %d", p->count());
561 return s;
564 std::string HistogramToStringFull(const ShinglePattern::Histogram& histogram,
565 const char* indent,
566 size_t snippet_max) {
567 std::string s;
569 size_t histogram_size = histogram.size();
570 size_t snippet_size = 0;
571 for (ShinglePattern::Histogram::const_iterator p = histogram.begin();
572 p != histogram.end();
573 ++p) {
574 s += indent;
575 if (++snippet_size > snippet_max && snippet_size != histogram_size) {
576 s += "...\n";
577 break;
579 base::StringAppendF(&s, "(%d) ", p->count());
580 s += ToString(&(*p->instance()));
581 s += "\n";
583 return s;
586 std::string ToString(const ShinglePattern* pattern, size_t snippet_max = 3) {
587 std::string s;
588 if (pattern == NULL) {
589 s = "<null>";
590 } else {
591 s = "{";
592 s += ToString(pattern->index_);
593 base::StringAppendF(&s, "; %d(%d):",
594 static_cast<int>(pattern->model_histogram_.size()),
595 pattern->model_coverage_);
597 s += HistogramToString(pattern->model_histogram_, snippet_max);
598 base::StringAppendF(&s, "; %d(%d):",
599 static_cast<int>(pattern->program_histogram_.size()),
600 pattern->program_coverage_);
601 s += HistogramToString(pattern->program_histogram_, snippet_max);
602 s += "}";
604 return s;
607 std::string ShinglePatternToStringFull(const ShinglePattern* pattern,
608 size_t max) {
609 std::string s;
610 s += ToString(pattern->index_);
611 s += "\n";
612 size_t model_size = pattern->model_histogram_.size();
613 size_t program_size = pattern->program_histogram_.size();
614 base::StringAppendF(&s, " model shingles %" PRIuS "\n", model_size);
615 s += HistogramToStringFull(pattern->model_histogram_, " ", max);
616 base::StringAppendF(&s, " program shingles %" PRIuS "\n", program_size);
617 s += HistogramToStringFull(pattern->program_histogram_, " ", max);
618 return s;
621 struct ShinglePatternIndexLess {
622 bool operator()(const ShinglePattern::Index& a,
623 const ShinglePattern::Index& b) const {
624 if (a.hash_ < b.hash_) return true;
625 if (a.hash_ > b.hash_) return false;
627 for (size_t i = 0; i < Shingle::kWidth; ++i) {
628 if (a.kinds_[i] < b.kinds_[i]) return true;
629 if (a.kinds_[i] > b.kinds_[i]) return false;
630 if ((a.kinds_[i] & ShinglePattern::kVariable) == 0) {
631 if (a.assigned_indexes_[i] < b.assigned_indexes_[i])
632 return true;
633 if (a.assigned_indexes_[i] > b.assigned_indexes_[i])
634 return false;
637 return false;
641 static uint32 hash_combine(uint32 h, uint32 v) {
642 h += v;
643 return (h * (37 + 0x0000d100)) ^ (h >> 13);
646 ShinglePattern::Index::Index(const Shingle* instance) {
647 uint32 hash = 0;
648 variables_ = 0;
649 unique_variables_ = 0;
650 first_variable_index_ = 255;
652 for (uint32 i = 0; i < Shingle::kWidth; ++i) {
653 LabelInfo* info = instance->at(i);
654 uint32 kind = 0;
655 int code = -1;
656 size_t j = 0;
657 for ( ; j < i; ++j) {
658 if (info == instance->at(j)) { // Duplicate LabelInfo
659 kind = kinds_[j];
660 break;
663 if (j == i) { // Not found above.
664 if (info->assignment_) {
665 code = info->label_->index_;
666 assigned_indexes_[i] = code;
667 kind = kFixed + i;
668 } else {
669 kind = kVariable + i;
670 ++unique_variables_;
671 if (i < first_variable_index_)
672 first_variable_index_ = i;
675 if (kind & kVariable) ++variables_;
676 hash = hash_combine(hash, code);
677 hash = hash_combine(hash, kind);
678 kinds_[i] = kind;
679 assigned_indexes_[i] = code;
681 hash_ = hash;
684 struct ShinglePatternLess {
685 bool operator()(const ShinglePattern& a, const ShinglePattern& b) const {
686 return index_less(*a.index_, *b.index_);
688 ShinglePatternIndexLess index_less;
691 struct ShinglePatternPointerLess {
692 bool operator()(const ShinglePattern* a, const ShinglePattern* b) const {
693 return pattern_less(*a, *b);
695 ShinglePatternLess pattern_less;
698 template<int (*Scorer)(const ShinglePattern*)>
699 struct OrderShinglePatternByScoreDescending {
700 bool operator()(const ShinglePattern* a, const ShinglePattern* b) const {
701 int score_a = Scorer(a);
702 int score_b = Scorer(b);
703 if (score_a > score_b) return true;
704 if (score_a < score_b) return false;
705 return break_ties(a, b);
707 ShinglePatternPointerLess break_ties;
710 // Returns a score for a 'Single Use' rule. Returns -1 if the rule is not
711 // applicable.
712 int SingleUseScore(const ShinglePattern* pattern) {
713 if (pattern->index_->variables_ != 1)
714 return -1;
716 if (pattern->model_histogram_.size() != 1 ||
717 pattern->program_histogram_.size() != 1)
718 return -1;
720 // Does this pattern account for all uses of the variable?
721 const ShinglePattern::FreqView& program_freq =
722 *pattern->program_histogram_.begin();
723 const ShinglePattern::FreqView& model_freq =
724 *pattern->model_histogram_.begin();
725 int p1 = program_freq.count();
726 int m1 = model_freq.count();
727 if (p1 == m1) {
728 const Shingle* program_instance = program_freq.instance();
729 const Shingle* model_instance = model_freq.instance();
730 size_t variable_index = pattern->index_->first_variable_index_;
731 LabelInfo* program_info = program_instance->at(variable_index);
732 LabelInfo* model_info = model_instance->at(variable_index);
733 if (!program_info->assignment_) {
734 if (program_info->refs_ == p1 && model_info->refs_ == m1) {
735 return p1;
739 return -1;
742 // The VariableQueue is a priority queue of unassigned LabelInfos from
743 // the 'program' (the 'variables') and their AssignmentCandidates.
744 class VariableQueue {
745 public:
746 typedef std::pair<int, LabelInfo*> ScoreAndLabel;
748 VariableQueue() {}
750 bool empty() const { return queue_.empty(); }
752 const ScoreAndLabel& first() const { return *queue_.begin(); }
754 // For debugging only.
755 void Print() const {
756 for (Queue::const_iterator p = queue_.begin(); p != queue_.end(); ++p) {
757 AssignmentCandidates* candidates = p->second->candidates();
758 candidates->Print(std::numeric_limits<int>::max());
762 void AddPendingUpdate(LabelInfo* program_info, LabelInfo* model_info,
763 int delta_score) {
764 AssignmentCandidates* candidates = program_info->candidates();
765 if (!candidates->HasPendingUpdates()) {
766 pending_update_candidates_.push_back(candidates);
768 candidates->AddPendingUpdate(model_info, delta_score);
771 void ApplyPendingUpdates() {
772 for (size_t i = 0; i < pending_update_candidates_.size(); ++i) {
773 AssignmentCandidates* candidates = pending_update_candidates_[i];
774 int old_score = candidates->TopScore();
775 queue_.erase(ScoreAndLabel(old_score, candidates->program_info()));
776 candidates->ApplyPendingUpdates();
777 if (!candidates->empty()) {
778 int new_score = candidates->TopScore();
779 queue_.insert(ScoreAndLabel(new_score, candidates->program_info()));
782 pending_update_candidates_.clear();
785 private:
786 struct OrderScoreAndLabelByScoreDecreasing {
787 bool operator()(const ScoreAndLabel& a, const ScoreAndLabel& b) const {
788 if (a.first > b.first) return true;
789 if (a.first < b.first) return false;
790 return OrderLabelInfo()(a.second, b.second);
793 typedef std::set<ScoreAndLabel, OrderScoreAndLabelByScoreDecreasing> Queue;
795 Queue queue_;
796 std::vector<AssignmentCandidates*> pending_update_candidates_;
798 DISALLOW_COPY_AND_ASSIGN(VariableQueue);
802 class AssignmentProblem {
803 public:
804 AssignmentProblem(const Trace& trace, size_t model_end)
805 : trace_(trace),
806 model_end_(model_end) {
807 VLOG(2) << "AssignmentProblem::AssignmentProblem " << model_end << ", "
808 << trace.size();
811 bool Solve() {
812 if (model_end_ < Shingle::kWidth ||
813 trace_.size() - model_end_ < Shingle::kWidth) {
814 // Nothing much we can do with such a short problem.
815 return true;
817 instances_.resize(trace_.size() - Shingle::kWidth + 1, NULL);
818 AddShingles(0, model_end_);
819 AddShingles(model_end_, trace_.size());
820 InitialClassify();
821 AddPatternsNeedingUpdatesToQueues();
823 patterns_needing_updates_.clear();
824 while (FindAndAssignBestLeader())
825 patterns_needing_updates_.clear();
826 PrintActivePatterns();
828 return true;
831 private:
832 typedef std::set<Shingle*, Shingle::PointerLess> ShingleSet;
834 typedef std::set<const ShinglePattern*, ShinglePatternPointerLess>
835 ShinglePatternSet;
837 // Patterns are partitioned into the following sets:
839 // * Retired patterns (not stored). No shingles exist for this pattern (they
840 // all now match more specialized patterns).
841 // * Useless patterns (not stored). There are no 'program' shingles for this
842 // pattern (they all now match more specialized patterns).
843 // * Single-use patterns - single_use_pattern_queue_.
844 // * Other patterns - active_non_single_use_patterns_ / variable_queue_.
846 typedef std::set<const ShinglePattern*,
847 OrderShinglePatternByScoreDescending<&SingleUseScore> >
848 SingleUsePatternQueue;
850 void PrintPatternsHeader() const {
851 VLOG(2) << shingle_instances_.size() << " instances "
852 << trace_.size() << " trace length "
853 << patterns_.size() << " shingle indexes "
854 << single_use_pattern_queue_.size() << " single use patterns "
855 << active_non_single_use_patterns_.size() << " active patterns";
858 void PrintActivePatterns() const {
859 for (ShinglePatternSet::const_iterator p =
860 active_non_single_use_patterns_.begin();
861 p != active_non_single_use_patterns_.end();
862 ++p) {
863 const ShinglePattern* pattern = *p;
864 VLOG(2) << ToString(pattern, 10);
868 void PrintPatterns() const {
869 PrintAllPatterns();
870 PrintActivePatterns();
871 PrintAllShingles();
874 void PrintAllPatterns() const {
875 for (IndexToPattern::const_iterator p = patterns_.begin();
876 p != patterns_.end();
877 ++p) {
878 const ShinglePattern& pattern = p->second;
879 VLOG(2) << ToString(&pattern, 10);
883 void PrintAllShingles() const {
884 for (Shingle::OwningSet::const_iterator p = shingle_instances_.begin();
885 p != shingle_instances_.end();
886 ++p) {
887 const Shingle& instance = *p;
888 VLOG(2) << ToString(&instance) << " " << ToString(instance.pattern());
893 void AddShingles(size_t begin, size_t end) {
894 for (size_t i = begin; i + Shingle::kWidth - 1 < end; ++i) {
895 instances_[i] = Shingle::Find(trace_, i, &shingle_instances_);
899 void Declassify(Shingle* shingle) {
900 ShinglePattern* pattern = shingle->pattern();
901 if (shingle->InModel()) {
902 pattern->model_histogram_.erase(ShinglePattern::FreqView(shingle));
903 pattern->model_coverage_ -= shingle->position_count();
904 } else {
905 pattern->program_histogram_.erase(ShinglePattern::FreqView(shingle));
906 pattern->program_coverage_ -= shingle->position_count();
908 shingle->set_pattern(NULL);
911 void Reclassify(Shingle* shingle) {
912 ShinglePattern* pattern = shingle->pattern();
913 LOG_ASSERT(pattern == NULL);
915 ShinglePattern::Index index(shingle);
916 if (index.variables_ == 0)
917 return;
919 std::pair<IndexToPattern::iterator, bool> inserted =
920 patterns_.insert(std::make_pair(index, ShinglePattern()));
922 pattern = &inserted.first->second;
923 pattern->index_ = &inserted.first->first;
924 shingle->set_pattern(pattern);
925 patterns_needing_updates_.insert(pattern);
927 if (shingle->InModel()) {
928 pattern->model_histogram_.insert(ShinglePattern::FreqView(shingle));
929 pattern->model_coverage_ += shingle->position_count();
930 } else {
931 pattern->program_histogram_.insert(ShinglePattern::FreqView(shingle));
932 pattern->program_coverage_ += shingle->position_count();
936 void InitialClassify() {
937 for (Shingle::OwningSet::iterator p = shingle_instances_.begin();
938 p != shingle_instances_.end();
939 ++p) {
940 // GCC's set<T>::iterator::operator *() returns a const object.
941 Reclassify(const_cast<Shingle*>(&*p));
945 // For the positions in |info|, find the shingles that overlap that position.
946 void AddAffectedPositions(LabelInfo* info, ShingleSet* affected_shingles) {
947 const size_t kWidth = Shingle::kWidth;
948 for (size_t i = 0; i < info->positions_.size(); ++i) {
949 size_t position = info->positions_[i];
950 // Find bounds to the subrange of |trace_| we are in.
951 size_t start = position < model_end_ ? 0 : model_end_;
952 size_t end = position < model_end_ ? model_end_ : trace_.size();
954 // Clip [position-kWidth+1, position+1)
955 size_t low = position > start + kWidth - 1
956 ? position - kWidth + 1
957 : start;
958 size_t high = position + kWidth < end ? position + 1 : end - kWidth + 1;
960 for (size_t shingle_position = low;
961 shingle_position < high;
962 ++shingle_position) {
963 Shingle* overlapping_shingle = instances_.at(shingle_position);
964 affected_shingles->insert(overlapping_shingle);
969 void RemovePatternsNeedingUpdatesFromQueues() {
970 for (ShinglePatternSet::iterator p = patterns_needing_updates_.begin();
971 p != patterns_needing_updates_.end();
972 ++p) {
973 RemovePatternFromQueues(*p);
977 void AddPatternsNeedingUpdatesToQueues() {
978 for (ShinglePatternSet::iterator p = patterns_needing_updates_.begin();
979 p != patterns_needing_updates_.end();
980 ++p) {
981 AddPatternToQueues(*p);
983 variable_queue_.ApplyPendingUpdates();
986 void RemovePatternFromQueues(const ShinglePattern* pattern) {
987 int single_use_score = SingleUseScore(pattern);
988 if (single_use_score > 0) {
989 size_t n = single_use_pattern_queue_.erase(pattern);
990 LOG_ASSERT(n == 1);
991 } else if (pattern->program_histogram_.size() == 0 &&
992 pattern->model_histogram_.size() == 0) {
993 NOTREACHED(); // Should not come back to life.
994 } else if (pattern->program_histogram_.size() == 0) {
995 // Useless pattern.
996 } else {
997 active_non_single_use_patterns_.erase(pattern);
998 AddPatternToLabelQueue(pattern, -1);
1002 void AddPatternToQueues(const ShinglePattern* pattern) {
1003 int single_use_score = SingleUseScore(pattern);
1004 if (single_use_score > 0) {
1005 single_use_pattern_queue_.insert(pattern);
1006 } else if (pattern->program_histogram_.size() == 0 &&
1007 pattern->model_histogram_.size() == 0) {
1008 } else if (pattern->program_histogram_.size() == 0) {
1009 // Useless pattern.
1010 } else {
1011 active_non_single_use_patterns_.insert(pattern);
1012 AddPatternToLabelQueue(pattern, +1);
1016 void AddPatternToLabelQueue(const ShinglePattern* pattern, int sign) {
1017 // For each possible assignment in this pattern, update the potential
1018 // contributions to the LabelInfo queues.
1020 // We want to find for each symbol (LabelInfo) the maximum contribution that
1021 // could be achieved by making shingle-wise assignments between shingles in
1022 // the model and shingles in the program.
1024 // If the shingles in the histograms are independent (no two shingles have a
1025 // symbol in common) then any permutation of the assignments is possible,
1026 // and the maximum contribution can be found by taking the maximum over all
1027 // the pairs.
1029 // If the shingles are dependent two things happen. The maximum
1030 // contribution to any given symbol is a sum because the symbol has
1031 // contributions from all the shingles containing it. Second, some
1032 // assignments are blocked by previous incompatible assignments. We want to
1033 // avoid a combinatorial search, so we ignore the blocking.
1035 const size_t kUnwieldy = 5;
1037 typedef std::map<LabelInfo*, int> LabelToScore;
1038 typedef std::map<LabelInfo*, LabelToScore > ScoreSet;
1039 ScoreSet maxima;
1041 size_t n_model_samples = 0;
1042 for (ShinglePattern::Histogram::const_iterator model_iter =
1043 pattern->model_histogram_.begin();
1044 model_iter != pattern->model_histogram_.end();
1045 ++model_iter) {
1046 if (++n_model_samples > kUnwieldy) break;
1047 const ShinglePattern::FreqView& model_freq = *model_iter;
1048 int m1 = model_freq.count();
1049 const Shingle* model_instance = model_freq.instance();
1051 ScoreSet sums;
1052 size_t n_program_samples = 0;
1053 for (ShinglePattern::Histogram::const_iterator program_iter =
1054 pattern->program_histogram_.begin();
1055 program_iter != pattern->program_histogram_.end();
1056 ++program_iter) {
1057 if (++n_program_samples > kUnwieldy) break;
1058 const ShinglePattern::FreqView& program_freq = *program_iter;
1059 int p1 = program_freq.count();
1060 const Shingle* program_instance = program_freq.instance();
1062 // int score = p1; // ? weigh all equally??
1063 int score = std::min(p1, m1);
1065 for (size_t i = 0; i < Shingle::kWidth; ++i) {
1066 LabelInfo* program_info = program_instance->at(i);
1067 LabelInfo* model_info = model_instance->at(i);
1068 if ((model_info->assignment_ == NULL) !=
1069 (program_info->assignment_ == NULL)) {
1070 VLOG(2) << "ERROR " << i
1071 << "\n\t" << ToString(pattern, 10)
1072 << "\n\t" << ToString(program_instance)
1073 << "\n\t" << ToString(model_instance);
1075 if (!program_info->assignment_ && !model_info->assignment_) {
1076 sums[program_info][model_info] += score;
1080 for (ScoreSet::iterator assignee_iterator = sums.begin();
1081 assignee_iterator != sums.end();
1082 ++assignee_iterator) {
1083 LabelInfo* program_info = assignee_iterator->first;
1084 for (LabelToScore::iterator p = assignee_iterator->second.begin();
1085 p != assignee_iterator->second.end();
1086 ++p) {
1087 LabelInfo* model_info = p->first;
1088 int score = p->second;
1089 int* slot = &maxima[program_info][model_info];
1090 *slot = std::max(*slot, score);
1096 for (ScoreSet::iterator assignee_iterator = maxima.begin();
1097 assignee_iterator != maxima.end();
1098 ++assignee_iterator) {
1099 LabelInfo* program_info = assignee_iterator->first;
1100 for (LabelToScore::iterator p = assignee_iterator->second.begin();
1101 p != assignee_iterator->second.end();
1102 ++p) {
1103 LabelInfo* model_info = p->first;
1104 int score = sign * p->second;
1105 variable_queue_.AddPendingUpdate(program_info, model_info, score);
1110 void AssignOne(LabelInfo* model_info, LabelInfo* program_info) {
1111 LOG_ASSERT(!model_info->assignment_);
1112 LOG_ASSERT(!program_info->assignment_);
1113 LOG_ASSERT(model_info->is_model_);
1114 LOG_ASSERT(!program_info->is_model_);
1116 VLOG(3) << "Assign " << ToString(program_info)
1117 << " := " << ToString(model_info);
1119 ShingleSet affected_shingles;
1120 AddAffectedPositions(model_info, &affected_shingles);
1121 AddAffectedPositions(program_info, &affected_shingles);
1123 for (ShingleSet::iterator p = affected_shingles.begin();
1124 p != affected_shingles.end();
1125 ++p) {
1126 patterns_needing_updates_.insert((*p)->pattern());
1129 RemovePatternsNeedingUpdatesFromQueues();
1131 for (ShingleSet::iterator p = affected_shingles.begin();
1132 p != affected_shingles.end();
1133 ++p) {
1134 Declassify(*p);
1137 program_info->label_->index_ = model_info->label_->index_;
1138 // Mark as assigned
1139 model_info->assignment_ = program_info;
1140 program_info->assignment_ = model_info;
1142 for (ShingleSet::iterator p = affected_shingles.begin();
1143 p != affected_shingles.end();
1144 ++p) {
1145 Reclassify(*p);
1148 AddPatternsNeedingUpdatesToQueues();
1151 bool AssignFirstVariableOfHistogramHead(const ShinglePattern& pattern) {
1152 const ShinglePattern::FreqView& program_1 =
1153 *pattern.program_histogram_.begin();
1154 const ShinglePattern::FreqView& model_1 = *pattern.model_histogram_.begin();
1155 const Shingle* program_instance = program_1.instance();
1156 const Shingle* model_instance = model_1.instance();
1157 size_t variable_index = pattern.index_->first_variable_index_;
1158 LabelInfo* program_info = program_instance->at(variable_index);
1159 LabelInfo* model_info = model_instance->at(variable_index);
1160 AssignOne(model_info, program_info);
1161 return true;
1164 bool FindAndAssignBestLeader() {
1165 LOG_ASSERT(patterns_needing_updates_.empty());
1167 if (!single_use_pattern_queue_.empty()) {
1168 const ShinglePattern& pattern = **single_use_pattern_queue_.begin();
1169 return AssignFirstVariableOfHistogramHead(pattern);
1172 if (variable_queue_.empty())
1173 return false;
1175 const VariableQueue::ScoreAndLabel best = variable_queue_.first();
1176 int score = best.first;
1177 LabelInfo* assignee = best.second;
1179 // TODO(sra): score (best.first) can be zero. A zero score means we are
1180 // blindly picking between two (or more) alternatives which look the same.
1181 // If we exit on the first zero-score we sometimes get 3-4% better total
1182 // compression. This indicates that 'infill' is doing a better job than
1183 // picking blindly. Perhaps we can use an extended region around the
1184 // undistinguished competing alternatives to break the tie.
1185 if (score == 0) {
1186 variable_queue_.Print();
1187 return false;
1190 AssignmentCandidates* candidates = assignee->candidates();
1191 if (candidates->empty())
1192 return false; // Should not happen.
1194 AssignOne(candidates->top_candidate(), assignee);
1195 return true;
1198 private:
1199 // The trace vector contains the model sequence [0, model_end_) followed by
1200 // the program sequence [model_end_, trace.end())
1201 const Trace& trace_;
1202 size_t model_end_;
1204 // |shingle_instances_| is the set of 'interned' shingles.
1205 Shingle::OwningSet shingle_instances_;
1207 // |instances_| maps from position in |trace_| to Shingle at that position.
1208 std::vector<Shingle*> instances_;
1210 SingleUsePatternQueue single_use_pattern_queue_;
1211 ShinglePatternSet active_non_single_use_patterns_;
1212 VariableQueue variable_queue_;
1214 // Transient information: when we make an assignment, we need to recompute
1215 // priority queue information derived from these ShinglePatterns.
1216 ShinglePatternSet patterns_needing_updates_;
1218 typedef std::map<ShinglePattern::Index,
1219 ShinglePattern, ShinglePatternIndexLess> IndexToPattern;
1220 IndexToPattern patterns_;
1222 DISALLOW_COPY_AND_ASSIGN(AssignmentProblem);
1225 class Adjuster : public AdjustmentMethod {
1226 public:
1227 Adjuster() : prog_(NULL), model_(NULL) {}
1228 ~Adjuster() {}
1230 bool Adjust(const AssemblyProgram& model, AssemblyProgram* program) {
1231 VLOG(1) << "Adjuster::Adjust";
1232 prog_ = program;
1233 model_ = &model;
1234 return Finish();
1237 bool Finish() {
1238 prog_->UnassignIndexes();
1239 Trace abs32_trace_;
1240 Trace rel32_trace_;
1241 CollectTraces(model_, &abs32_trace_, &rel32_trace_, true);
1242 size_t abs32_model_end = abs32_trace_.size();
1243 size_t rel32_model_end = rel32_trace_.size();
1244 CollectTraces(prog_, &abs32_trace_, &rel32_trace_, false);
1245 Solve(abs32_trace_, abs32_model_end);
1246 Solve(rel32_trace_, rel32_model_end);
1247 prog_->AssignRemainingIndexes();
1248 return true;
1251 private:
1252 void CollectTraces(const AssemblyProgram* program, Trace* abs32, Trace* rel32,
1253 bool is_model) {
1254 label_info_maker_.ResetDebugLabel();
1255 const std::vector<Instruction*>& instructions = program->instructions();
1256 for (size_t i = 0; i < instructions.size(); ++i) {
1257 Instruction* instruction = instructions.at(i);
1258 if (Label* label = program->InstructionAbs32Label(instruction))
1259 ReferenceLabel(abs32, label, is_model);
1260 if (Label* label = program->InstructionRel32Label(instruction))
1261 ReferenceLabel(rel32, label, is_model);
1263 // TODO(sra): we could simply append all the labels in index order to
1264 // incorporate some costing for entropy (bigger deltas) that will be
1265 // introduced into the label address table by non-monotonic ordering. This
1266 // would have some knock-on effects to parts of the algorithm that work on
1267 // single-occurrence labels.
1270 void Solve(const Trace& model, size_t model_end) {
1271 base::Time start_time = base::Time::Now();
1272 AssignmentProblem a(model, model_end);
1273 a.Solve();
1274 VLOG(1) << " Adjuster::Solve "
1275 << (base::Time::Now() - start_time).InSecondsF();
1278 void ReferenceLabel(Trace* trace, Label* label, bool is_model) {
1279 trace->push_back(
1280 label_info_maker_.MakeLabelInfo(label, is_model,
1281 static_cast<uint32>(trace->size())));
1284 AssemblyProgram* prog_; // Program to be adjusted, owned by caller.
1285 const AssemblyProgram* model_; // Program to be mimicked, owned by caller.
1287 LabelInfoMaker label_info_maker_;
1289 private:
1290 DISALLOW_COPY_AND_ASSIGN(Adjuster);
1293 ////////////////////////////////////////////////////////////////////////////////
1295 } // namespace adjustment_method_2
1297 AdjustmentMethod* AdjustmentMethod::MakeShingleAdjustmentMethod() {
1298 return new adjustment_method_2::Adjuster();
1301 } // namespace courgette