1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/bpf_dsl/policy_compiler.h"
8 #include <linux/filter.h>
9 #include <sys/syscall.h>
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "sandbox/linux/bpf_dsl/bpf_dsl.h"
16 #include "sandbox/linux/bpf_dsl/bpf_dsl_impl.h"
17 #include "sandbox/linux/bpf_dsl/codegen.h"
18 #include "sandbox/linux/bpf_dsl/policy.h"
19 #include "sandbox/linux/bpf_dsl/syscall_set.h"
20 #include "sandbox/linux/seccomp-bpf/die.h"
21 #include "sandbox/linux/seccomp-bpf/errorcode.h"
22 #include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
23 #include "sandbox/linux/seccomp-bpf/syscall.h"
30 #if defined(__i386__) || defined(__x86_64__)
31 const bool kIsIntel
= true;
33 const bool kIsIntel
= false;
35 #if defined(__x86_64__) && defined(__ILP32__)
36 const bool kIsX32
= true;
38 const bool kIsX32
= false;
41 const int kSyscallsRequiredForUnsafeTraps
[] = {
44 #if defined(__NR_sigprocmask)
47 #if defined(__NR_sigreturn)
52 bool HasExactlyOneBit(uint64_t x
) {
53 // Common trick; e.g., see http://stackoverflow.com/a/108329.
54 return x
!= 0 && (x
& (x
- 1)) == 0;
57 // A Trap() handler that returns an "errno" value. The value is encoded
58 // in the "aux" parameter.
59 intptr_t ReturnErrno(const struct arch_seccomp_data
&, void* aux
) {
60 // TrapFnc functions report error by following the native kernel convention
61 // of returning an exit code in the range of -1..-4096. They do not try to
62 // set errno themselves. The glibc wrapper that triggered the SIGSYS will
63 // ultimately do so for us.
64 int err
= reinterpret_cast<intptr_t>(aux
) & SECCOMP_RET_DATA
;
68 bool HasUnsafeTraps(const Policy
* policy
) {
70 for (uint32_t sysnum
: SyscallSet::ValidOnly()) {
71 if (policy
->EvaluateSyscall(sysnum
)->HasUnsafeTraps()) {
75 return policy
->InvalidSyscall()->HasUnsafeTraps();
80 struct PolicyCompiler::Range
{
85 PolicyCompiler::PolicyCompiler(const Policy
* policy
, TrapRegistry
* registry
)
90 has_unsafe_traps_(HasUnsafeTraps(policy_
)) {
94 PolicyCompiler::~PolicyCompiler() {
97 scoped_ptr
<CodeGen::Program
> PolicyCompiler::Compile() {
98 if (!policy_
->InvalidSyscall()->IsDeny()) {
99 SANDBOX_DIE("Policies should deny invalid system calls.");
102 // If our BPF program has unsafe traps, enable support for them.
103 if (has_unsafe_traps_
) {
104 // As support for unsafe jumps essentially defeats all the security
105 // measures that the sandbox provides, we print a big warning message --
106 // and of course, we make sure to only ever enable this feature if it
107 // is actually requested by the sandbox policy.
108 if (Syscall::Call(-1) == -1 && errno
== ENOSYS
) {
110 "Support for UnsafeTrap() has not yet been ported to this "
114 for (int sysnum
: kSyscallsRequiredForUnsafeTraps
) {
115 if (!policy_
->EvaluateSyscall(sysnum
)->IsAllow()) {
117 "Policies that use UnsafeTrap() must unconditionally allow all "
118 "required system calls");
122 if (!registry_
->EnableUnsafeTraps()) {
123 // We should never be able to get here, as UnsafeTrap() should never
124 // actually return a valid ErrorCode object unless the user set the
125 // CHROME_SANDBOX_DEBUGGING environment variable; and therefore,
126 // "has_unsafe_traps" would always be false. But better double-check
127 // than enabling dangerous code.
128 SANDBOX_DIE("We'd rather die than enable unsafe traps");
132 // Assemble the BPF filter program.
133 scoped_ptr
<CodeGen::Program
> program(new CodeGen::Program());
134 gen_
.Compile(AssemblePolicy(), program
.get());
135 return program
.Pass();
138 CodeGen::Node
PolicyCompiler::AssemblePolicy() {
139 // A compiled policy consists of three logical parts:
140 // 1. Check that the "arch" field matches the expected architecture.
141 // 2. If the policy involves unsafe traps, check if the syscall was
142 // invoked by Syscall::Call, and then allow it unconditionally.
143 // 3. Check the system call number and jump to the appropriate compiled
144 // system call policy number.
145 return CheckArch(MaybeAddEscapeHatch(DispatchSyscall()));
148 CodeGen::Node
PolicyCompiler::CheckArch(CodeGen::Node passed
) {
149 // If the architecture doesn't match SECCOMP_ARCH, disallow the
151 return gen_
.MakeInstruction(
152 BPF_LD
+ BPF_W
+ BPF_ABS
, SECCOMP_ARCH_IDX
,
153 gen_
.MakeInstruction(
154 BPF_JMP
+ BPF_JEQ
+ BPF_K
, SECCOMP_ARCH
, passed
,
155 CompileResult(Kill("Invalid audit architecture in BPF filter"))));
158 CodeGen::Node
PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest
) {
159 // If no unsafe traps, then simply return |rest|.
160 if (!has_unsafe_traps_
) {
164 // Allow system calls, if they originate from our magic return address
165 // (which we can query by calling Syscall::Call(-1)).
166 uint64_t syscall_entry_point
=
167 static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1)));
168 uint32_t low
= static_cast<uint32_t>(syscall_entry_point
);
169 uint32_t hi
= static_cast<uint32_t>(syscall_entry_point
>> 32);
171 // BPF cannot do native 64-bit comparisons, so we have to compare
172 // both 32-bit halves of the instruction pointer. If they match what
173 // we expect, we return ERR_ALLOWED. If either or both don't match,
174 // we continue evalutating the rest of the sandbox policy.
176 // For simplicity, we check the full 64-bit instruction pointer even
177 // on 32-bit architectures.
178 return gen_
.MakeInstruction(
179 BPF_LD
+ BPF_W
+ BPF_ABS
, SECCOMP_IP_LSB_IDX
,
180 gen_
.MakeInstruction(
181 BPF_JMP
+ BPF_JEQ
+ BPF_K
, low
,
182 gen_
.MakeInstruction(
183 BPF_LD
+ BPF_W
+ BPF_ABS
, SECCOMP_IP_MSB_IDX
,
184 gen_
.MakeInstruction(BPF_JMP
+ BPF_JEQ
+ BPF_K
, hi
,
185 CompileResult(Allow()), rest
)),
189 CodeGen::Node
PolicyCompiler::DispatchSyscall() {
190 // Evaluate all possible system calls and group their ErrorCodes into
191 // ranges of identical codes.
195 // Compile the system call ranges to an optimized BPF jumptable
196 CodeGen::Node jumptable
= AssembleJumpTable(ranges
.begin(), ranges
.end());
198 // Grab the system call number, so that we can check it and then
199 // execute the jump table.
200 return gen_
.MakeInstruction(
201 BPF_LD
+ BPF_W
+ BPF_ABS
, SECCOMP_NR_IDX
, CheckSyscallNumber(jumptable
));
204 CodeGen::Node
PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed
) {
206 // On Intel architectures, verify that system call numbers are in the
207 // expected number range.
208 CodeGen::Node invalidX32
=
209 CompileResult(Kill("Illegal mixing of system call ABIs"));
211 // The newer x32 API always sets bit 30.
212 return gen_
.MakeInstruction(
213 BPF_JMP
+ BPF_JSET
+ BPF_K
, 0x40000000, passed
, invalidX32
);
215 // The older i386 and x86-64 APIs clear bit 30 on all system calls.
216 return gen_
.MakeInstruction(
217 BPF_JMP
+ BPF_JSET
+ BPF_K
, 0x40000000, invalidX32
, passed
);
221 // TODO(mdempsky): Similar validation for other architectures?
225 void PolicyCompiler::FindRanges(Ranges
* ranges
) {
226 // Please note that "struct seccomp_data" defines system calls as a signed
227 // int32_t, but BPF instructions always operate on unsigned quantities. We
228 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
229 // and then verifying that the rest of the number range (both positive and
230 // negative) all return the same ErrorCode.
231 const CodeGen::Node invalid_node
= CompileResult(policy_
->InvalidSyscall());
232 uint32_t old_sysnum
= 0;
233 CodeGen::Node old_node
=
234 SyscallSet::IsValid(old_sysnum
)
235 ? CompileResult(policy_
->EvaluateSyscall(old_sysnum
))
238 for (uint32_t sysnum
: SyscallSet::All()) {
240 SyscallSet::IsValid(sysnum
)
241 ? CompileResult(policy_
->EvaluateSyscall(static_cast<int>(sysnum
)))
243 // N.B., here we rely on CodeGen folding (i.e., returning the same
244 // node value for) identical code sequences, otherwise our jump
245 // table will blow up in size.
246 if (node
!= old_node
) {
247 ranges
->push_back(Range
{old_sysnum
, old_node
});
252 ranges
->push_back(Range
{old_sysnum
, old_node
});
255 CodeGen::Node
PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start
,
256 Ranges::const_iterator stop
) {
257 // We convert the list of system call ranges into jump table that performs
258 // a binary search over the ranges.
259 // As a sanity check, we need to have at least one distinct ranges for us
260 // to be able to build a jump table.
261 if (stop
- start
<= 0) {
262 SANDBOX_DIE("Invalid set of system call ranges");
263 } else if (stop
- start
== 1) {
264 // If we have narrowed things down to a single range object, we can
265 // return from the BPF filter program.
269 // Pick the range object that is located at the mid point of our list.
270 // We compare our system call number against the lowest valid system call
271 // number in this range object. If our number is lower, it is outside of
272 // this range object. If it is greater or equal, it might be inside.
273 Ranges::const_iterator mid
= start
+ (stop
- start
) / 2;
275 // Sub-divide the list of ranges and continue recursively.
276 CodeGen::Node jf
= AssembleJumpTable(start
, mid
);
277 CodeGen::Node jt
= AssembleJumpTable(mid
, stop
);
278 return gen_
.MakeInstruction(BPF_JMP
+ BPF_JGE
+ BPF_K
, mid
->from
, jt
, jf
);
281 CodeGen::Node
PolicyCompiler::CompileResult(const ResultExpr
& res
) {
282 return RetExpression(res
->Compile(this));
285 CodeGen::Node
PolicyCompiler::RetExpression(const ErrorCode
& err
) {
286 switch (err
.error_type()) {
287 case ErrorCode::ET_COND
:
288 return CondExpression(err
);
289 case ErrorCode::ET_SIMPLE
:
290 case ErrorCode::ET_TRAP
:
291 return gen_
.MakeInstruction(BPF_RET
+ BPF_K
, err
.err());
293 SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program");
297 CodeGen::Node
PolicyCompiler::CondExpression(const ErrorCode
& cond
) {
298 // Sanity check that |cond| makes sense.
299 if (cond
.argno_
< 0 || cond
.argno_
>= 6) {
300 SANDBOX_DIE("sandbox_bpf: invalid argument number");
302 if (cond
.width_
!= ErrorCode::TP_32BIT
&&
303 cond
.width_
!= ErrorCode::TP_64BIT
) {
304 SANDBOX_DIE("sandbox_bpf: invalid argument width");
306 if (cond
.mask_
== 0) {
307 SANDBOX_DIE("sandbox_bpf: zero mask is invalid");
309 if ((cond
.value_
& cond
.mask_
) != cond
.value_
) {
310 SANDBOX_DIE("sandbox_bpf: value contains masked out bits");
312 if (cond
.width_
== ErrorCode::TP_32BIT
&&
313 ((cond
.mask_
>> 32) != 0 || (cond
.value_
>> 32) != 0)) {
314 SANDBOX_DIE("sandbox_bpf: test exceeds argument size");
316 // TODO(mdempsky): Reject TP_64BIT on 32-bit platforms. For now we allow it
317 // because some SandboxBPF unit tests exercise it.
319 CodeGen::Node passed
= RetExpression(*cond
.passed_
);
320 CodeGen::Node failed
= RetExpression(*cond
.failed_
);
322 // We want to emit code to check "(arg & mask) == value" where arg, mask, and
323 // value are 64-bit values, but the BPF machine is only 32-bit. We implement
324 // this by independently testing the upper and lower 32-bits and continuing to
325 // |passed| if both evaluate true, or to |failed| if either evaluate false.
326 return CondExpressionHalf(cond
,
328 CondExpressionHalf(cond
, LowerHalf
, passed
, failed
),
332 CodeGen::Node
PolicyCompiler::CondExpressionHalf(const ErrorCode
& cond
,
334 CodeGen::Node passed
,
335 CodeGen::Node failed
) {
336 if (cond
.width_
== ErrorCode::TP_32BIT
&& half
== UpperHalf
) {
337 // Special logic for sanity checking the upper 32-bits of 32-bit system
340 // TODO(mdempsky): Compile Unexpected64bitArgument() just per program.
341 CodeGen::Node invalid_64bit
= RetExpression(Unexpected64bitArgument());
343 const uint32_t upper
= SECCOMP_ARG_MSB_IDX(cond
.argno_
);
344 const uint32_t lower
= SECCOMP_ARG_LSB_IDX(cond
.argno_
);
346 if (sizeof(void*) == 4) {
347 // On 32-bit platforms, the upper 32-bits should always be 0:
349 // JEQ 0, passed, invalid
350 return gen_
.MakeInstruction(
351 BPF_LD
+ BPF_W
+ BPF_ABS
,
353 gen_
.MakeInstruction(
354 BPF_JMP
+ BPF_JEQ
+ BPF_K
, 0, passed
, invalid_64bit
));
357 // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow
358 // ~0 if the sign bit of the lower 32-bits is set too:
360 // JEQ 0, passed, (next)
361 // JEQ ~0, (next), invalid
363 // JSET (1<<31), passed, invalid
365 // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next
366 // instead, as the first instruction of passed should be "LDW [lower]".
367 return gen_
.MakeInstruction(
368 BPF_LD
+ BPF_W
+ BPF_ABS
,
370 gen_
.MakeInstruction(
371 BPF_JMP
+ BPF_JEQ
+ BPF_K
,
374 gen_
.MakeInstruction(
375 BPF_JMP
+ BPF_JEQ
+ BPF_K
,
376 std::numeric_limits
<uint32_t>::max(),
377 gen_
.MakeInstruction(
378 BPF_LD
+ BPF_W
+ BPF_ABS
,
380 gen_
.MakeInstruction(BPF_JMP
+ BPF_JSET
+ BPF_K
,
387 const uint32_t idx
= (half
== UpperHalf
) ? SECCOMP_ARG_MSB_IDX(cond
.argno_
)
388 : SECCOMP_ARG_LSB_IDX(cond
.argno_
);
389 const uint32_t mask
= (half
== UpperHalf
) ? cond
.mask_
>> 32 : cond
.mask_
;
390 const uint32_t value
= (half
== UpperHalf
) ? cond
.value_
>> 32 : cond
.value_
;
392 // Emit a suitable instruction sequence for (arg & mask) == value.
394 // For (arg & 0) == 0, just return passed.
400 // For (arg & ~0) == value, emit:
402 // JEQ value, passed, failed
403 if (mask
== std::numeric_limits
<uint32_t>::max()) {
404 return gen_
.MakeInstruction(
405 BPF_LD
+ BPF_W
+ BPF_ABS
,
407 gen_
.MakeInstruction(BPF_JMP
+ BPF_JEQ
+ BPF_K
, value
, passed
, failed
));
410 // For (arg & mask) == 0, emit:
412 // JSET mask, failed, passed
413 // (Note: failed and passed are intentionally swapped.)
415 return gen_
.MakeInstruction(
416 BPF_LD
+ BPF_W
+ BPF_ABS
,
418 gen_
.MakeInstruction(BPF_JMP
+ BPF_JSET
+ BPF_K
, mask
, failed
, passed
));
421 // For (arg & x) == x where x is a single-bit value, emit:
423 // JSET mask, passed, failed
424 if (mask
== value
&& HasExactlyOneBit(mask
)) {
425 return gen_
.MakeInstruction(
426 BPF_LD
+ BPF_W
+ BPF_ABS
,
428 gen_
.MakeInstruction(BPF_JMP
+ BPF_JSET
+ BPF_K
, mask
, passed
, failed
));
434 // JEQ value, passed, failed
435 return gen_
.MakeInstruction(
436 BPF_LD
+ BPF_W
+ BPF_ABS
,
438 gen_
.MakeInstruction(
439 BPF_ALU
+ BPF_AND
+ BPF_K
,
441 gen_
.MakeInstruction(
442 BPF_JMP
+ BPF_JEQ
+ BPF_K
, value
, passed
, failed
)));
445 ErrorCode
PolicyCompiler::Unexpected64bitArgument() {
446 return Kill("Unexpected 64bit argument detected")->Compile(this);
449 ErrorCode
PolicyCompiler::Error(int err
) {
450 if (has_unsafe_traps_
) {
451 // When inside an UnsafeTrap() callback, we want to allow all system calls.
452 // This means, we must conditionally disable the sandbox -- and that's not
453 // something that kernel-side BPF filters can do, as they cannot inspect
454 // any state other than the syscall arguments.
455 // But if we redirect all error handlers to user-space, then we can easily
456 // make this decision.
457 // The performance penalty for this extra round-trip to user-space is not
458 // actually that bad, as we only ever pay it for denied system calls; and a
459 // typical program has very few of these.
460 return Trap(ReturnErrno
, reinterpret_cast<void*>(err
), true);
463 return ErrorCode(err
);
466 ErrorCode
PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc
,
469 uint16_t trap_id
= registry_
->Add(fnc
, aux
, safe
);
470 return ErrorCode(trap_id
, fnc
, aux
, safe
);
473 bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno
) {
474 for (size_t i
= 0; i
< arraysize(kSyscallsRequiredForUnsafeTraps
); ++i
) {
475 if (sysno
== kSyscallsRequiredForUnsafeTraps
[i
]) {
482 ErrorCode
PolicyCompiler::CondMaskedEqual(int argno
,
483 ErrorCode::ArgType width
,
486 const ErrorCode
& passed
,
487 const ErrorCode
& failed
) {
488 return ErrorCode(argno
,
492 &*conds_
.insert(passed
).first
,
493 &*conds_
.insert(failed
).first
);
496 } // namespace bpf_dsl
497 } // namespace sandbox