Add explicit |forceOnlineSignin| to user pod status
[chromium-blink-merge.git] / media / base / vector_math.cc
blob32584f5cf64ad2a1ecf400cbccd8f9341851cfa4
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/base/vector_math.h"
6 #include "media/base/vector_math_testing.h"
8 #include <algorithm>
10 #include "base/cpu.h"
11 #include "base/logging.h"
12 #include "build/build_config.h"
14 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
15 #include <arm_neon.h>
16 #endif
18 namespace media {
19 namespace vector_math {
21 // If we know the minimum architecture at compile time, avoid CPU detection.
22 // Force NaCl code to use C routines since (at present) nothing there uses these
23 // methods and plumbing the -msse built library is non-trivial.
24 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
25 #if defined(__SSE__)
26 #define FMAC_FUNC FMAC_SSE
27 #define FMUL_FUNC FMUL_SSE
28 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
29 void Initialize() {}
30 #else
31 // X86 CPU detection required. Functions will be set by Initialize().
32 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
33 #define FMAC_FUNC g_fmac_proc_
34 #define FMUL_FUNC g_fmul_proc_
35 #define EWMAAndMaxPower_FUNC g_ewma_power_proc_
37 typedef void (*MathProc)(const float src[], float scale, int len, float dest[]);
38 static MathProc g_fmac_proc_ = NULL;
39 static MathProc g_fmul_proc_ = NULL;
40 typedef std::pair<float, float> (*EWMAAndMaxPowerProc)(
41 float initial_value, const float src[], int len, float smoothing_factor);
42 static EWMAAndMaxPowerProc g_ewma_power_proc_ = NULL;
44 void Initialize() {
45 CHECK(!g_fmac_proc_);
46 CHECK(!g_fmul_proc_);
47 CHECK(!g_ewma_power_proc_);
48 const bool kUseSSE = base::CPU().has_sse();
49 g_fmac_proc_ = kUseSSE ? FMAC_SSE : FMAC_C;
50 g_fmul_proc_ = kUseSSE ? FMUL_SSE : FMUL_C;
51 g_ewma_power_proc_ = kUseSSE ? EWMAAndMaxPower_SSE : EWMAAndMaxPower_C;
53 #endif
54 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
55 #define FMAC_FUNC FMAC_NEON
56 #define FMUL_FUNC FMUL_NEON
57 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
58 void Initialize() {}
59 #else
60 // Unknown architecture.
61 #define FMAC_FUNC FMAC_C
62 #define FMUL_FUNC FMUL_C
63 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
64 void Initialize() {}
65 #endif
67 void FMAC(const float src[], float scale, int len, float dest[]) {
68 // Ensure |src| and |dest| are 16-byte aligned.
69 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
70 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
71 return FMAC_FUNC(src, scale, len, dest);
74 void FMAC_C(const float src[], float scale, int len, float dest[]) {
75 for (int i = 0; i < len; ++i)
76 dest[i] += src[i] * scale;
79 void FMUL(const float src[], float scale, int len, float dest[]) {
80 // Ensure |src| and |dest| are 16-byte aligned.
81 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
82 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
83 return FMUL_FUNC(src, scale, len, dest);
86 void FMUL_C(const float src[], float scale, int len, float dest[]) {
87 for (int i = 0; i < len; ++i)
88 dest[i] = src[i] * scale;
91 std::pair<float, float> EWMAAndMaxPower(
92 float initial_value, const float src[], int len, float smoothing_factor) {
93 // Ensure |src| is 16-byte aligned.
94 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
95 return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor);
98 std::pair<float, float> EWMAAndMaxPower_C(
99 float initial_value, const float src[], int len, float smoothing_factor) {
100 std::pair<float, float> result(initial_value, 0.0f);
101 const float weight_prev = 1.0f - smoothing_factor;
102 for (int i = 0; i < len; ++i) {
103 result.first *= weight_prev;
104 const float sample = src[i];
105 const float sample_squared = sample * sample;
106 result.first += sample_squared * smoothing_factor;
107 result.second = std::max(result.second, sample_squared);
109 return result;
112 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
113 void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
114 const int rem = len % 4;
115 const int last_index = len - rem;
116 float32x4_t m_scale = vmovq_n_f32(scale);
117 for (int i = 0; i < last_index; i += 4) {
118 vst1q_f32(dest + i, vmlaq_f32(
119 vld1q_f32(dest + i), vld1q_f32(src + i), m_scale));
122 // Handle any remaining values that wouldn't fit in an NEON pass.
123 for (int i = last_index; i < len; ++i)
124 dest[i] += src[i] * scale;
127 void FMUL_NEON(const float src[], float scale, int len, float dest[]) {
128 const int rem = len % 4;
129 const int last_index = len - rem;
130 float32x4_t m_scale = vmovq_n_f32(scale);
131 for (int i = 0; i < last_index; i += 4)
132 vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale));
134 // Handle any remaining values that wouldn't fit in an NEON pass.
135 for (int i = last_index; i < len; ++i)
136 dest[i] = src[i] * scale;
139 std::pair<float, float> EWMAAndMaxPower_NEON(
140 float initial_value, const float src[], int len, float smoothing_factor) {
141 // When the recurrence is unrolled, we see that we can split it into 4
142 // separate lanes of evaluation:
144 // y[n] = a(S[n]^2) + (1-a)(y[n-1])
145 // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
146 // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
148 // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
150 // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
151 // each of the 4 lanes, and then combine them to give y[n].
153 const int rem = len % 4;
154 const int last_index = len - rem;
156 const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor);
157 const float weight_prev = 1.0f - smoothing_factor;
158 const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev);
159 const float32x4_t weight_prev_squared_x4 =
160 vmulq_f32(weight_prev_x4, weight_prev_x4);
161 const float32x4_t weight_prev_4th_x4 =
162 vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4);
164 // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
165 // 0, respectively.
166 float32x4_t max_x4 = vdupq_n_f32(0.0f);
167 float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3);
168 int i;
169 for (i = 0; i < last_index; i += 4) {
170 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4);
171 const float32x4_t sample_x4 = vld1q_f32(src + i);
172 const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4);
173 max_x4 = vmaxq_f32(max_x4, sample_squared_x4);
174 ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4);
177 // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
178 float ewma = vgetq_lane_f32(ewma_x4, 3);
179 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
180 ewma += vgetq_lane_f32(ewma_x4, 2);
181 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
182 ewma += vgetq_lane_f32(ewma_x4, 1);
183 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
184 ewma += vgetq_lane_f32(ewma_x4, 0);
186 // Fold the maximums together to get the overall maximum.
187 float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4));
188 max_x2 = vpmax_f32(max_x2, max_x2);
190 std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0));
192 // Handle remaining values at the end of |src|.
193 for (; i < len; ++i) {
194 result.first *= weight_prev;
195 const float sample = src[i];
196 const float sample_squared = sample * sample;
197 result.first += sample_squared * smoothing_factor;
198 result.second = std::max(result.second, sample_squared);
201 return result;
203 #endif
205 } // namespace vector_math
206 } // namespace media