1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Various Google-specific macros.
7 // This code is compiled directly on many platforms, including client
8 // platforms like Windows, Mac, and embedded systems. Before making
9 // any changes here, make sure that you're not breaking any platforms.
12 #ifndef BASE_MACROS_H_
13 #define BASE_MACROS_H_
15 #include <stddef.h> // For size_t
17 #include "base/type_traits.h"
20 // The COMPILE_ASSERT macro can be used to verify that a compile time
21 // expression is true. For example, you could use it to verify the
22 // size of a static array:
24 // COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
25 // content_type_names_incorrect_size);
27 // or to make sure a struct is smaller than a certain size:
29 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
31 // The second argument to the macro is the name of the variable. If
32 // the expression is false, most compilers will issue a warning/error
33 // containing the name of the variable.
35 #define COMPILE_ASSERT(expr, msg) \
36 typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
38 // Implementation details of COMPILE_ASSERT:
40 // - COMPILE_ASSERT works by defining an array type that has -1
41 // elements (and thus is invalid) when the expression is false.
43 // - The simpler definition
45 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
47 // does not work, as gcc supports variable-length arrays whose sizes
48 // are determined at run-time (this is gcc's extension and not part
49 // of the C++ standard). As a result, gcc fails to reject the
50 // following code with the simple definition:
53 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
54 // // not a compile-time constant.
56 // - By using the type CompileAssert<(bool(expr))>, we ensures that
57 // expr is a compile-time constant. (Template arguments must be
58 // determined at compile-time.)
60 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
61 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
63 // CompileAssert<bool(expr)>
65 // instead, these compilers will refuse to compile
67 // COMPILE_ASSERT(5 > 0, some_message);
69 // (They seem to think the ">" in "5 > 0" marks the end of the
70 // template argument list.)
72 // - The array size is (bool(expr) ? 1 : -1), instead of simply
76 // This is to avoid running into a bug in MS VC 7.1, which
77 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
80 // A macro to disallow the copy constructor and operator= functions
81 // This should be used in the private: declarations for a class
83 // For disallowing only assign or copy, write the code directly, but declare
84 // the intend in a comment, for example:
85 // void operator=(const TypeName&); // DISALLOW_ASSIGN
86 // Note, that most uses of DISALLOW_ASSIGN and DISALLOW_COPY are broken
87 // semantically, one should either use disallow both or neither. Try to
88 // avoid these in new code.
89 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
90 TypeName(const TypeName&); \
91 void operator=(const TypeName&)
93 // An older, politically incorrect name for the above.
94 // Prefer DISALLOW_COPY_AND_ASSIGN for new code.
95 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
97 // A macro to disallow all the implicit constructors, namely the
98 // default constructor, copy constructor and operator= functions.
100 // This should be used in the private: declarations for a class
101 // that wants to prevent anyone from instantiating it. This is
102 // especially useful for classes containing only static methods.
103 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
105 DISALLOW_COPY_AND_ASSIGN(TypeName)
107 // The arraysize(arr) macro returns the # of elements in an array arr.
108 // The expression is a compile-time constant, and therefore can be
109 // used in defining new arrays, for example. If you use arraysize on
110 // a pointer by mistake, you will get a compile-time error.
112 // One caveat is that arraysize() doesn't accept any array of an
113 // anonymous type or a type defined inside a function. In these rare
114 // cases, you have to use the unsafe ARRAYSIZE() macro below. This is
115 // due to a limitation in C++'s template system. The limitation might
116 // eventually be removed, but it hasn't happened yet.
118 // This template function declaration is used in defining arraysize.
119 // Note that the function doesn't need an implementation, as we only
121 template <typename T
, size_t N
>
122 char (&ArraySizeHelper(T (&array
)[N
]))[N
];
124 // That gcc wants both of these prototypes seems mysterious. VC, for
125 // its part, can't decide which to use (another mystery). Matching of
126 // template overloads: the final frontier.
127 #ifndef COMPILER_MSVC
128 template <typename T
, size_t N
>
129 char (&ArraySizeHelper(const T (&array
)[N
]))[N
];
132 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
134 // ARRAYSIZE performs essentially the same calculation as arraysize,
135 // but can be used on anonymous types or types defined inside
136 // functions. It's less safe than arraysize as it accepts some
137 // (although not all) pointers. Therefore, you should use arraysize
138 // whenever possible.
140 // The expression ARRAYSIZE(a) is a compile-time constant of type
143 // ARRAYSIZE catches a few type errors. If you see a compiler error
145 // "warning: division by zero in ..."
147 // when using ARRAYSIZE, you are (wrongfully) giving it a pointer.
148 // You should only use ARRAYSIZE on statically allocated arrays.
150 // The following comments are on the implementation details, and can
151 // be ignored by the users.
153 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
154 // the array) and sizeof(*(arr)) (the # of bytes in one array
155 // element). If the former is divisible by the latter, perhaps arr is
156 // indeed an array, in which case the division result is the # of
157 // elements in the array. Otherwise, arr cannot possibly be an array,
158 // and we generate a compiler error to prevent the code from
161 // Since the size of bool is implementation-defined, we need to cast
162 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
163 // result has type size_t.
165 // This macro is not perfect as it wrongfully accepts certain
166 // pointers, namely where the pointer size is divisible by the pointee
167 // size. Since all our code has to go through a 32-bit compiler,
168 // where a pointer is 4 bytes, this means all pointers to a type whose
169 // size is 3 or greater than 4 will be (righteously) rejected.
171 // Kudos to Jorg Brown for this simple and elegant implementation.
175 // Starting with Visual C++ 2005, WinNT.h includes ARRAYSIZE.
176 #if !defined(COMPILER_MSVC) || (defined(_MSC_VER) && _MSC_VER < 1400)
177 #define ARRAYSIZE(a) \
178 ((sizeof(a) / sizeof(*(a))) / \
179 static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
182 // A macro to turn a symbol into a string
183 #define AS_STRING(x) AS_STRING_INTERNAL(x)
184 #define AS_STRING_INTERNAL(x) #x
187 // One of the type traits, is_pod, makes it possible to query whether
188 // a type is a POD type. It is impossible for type_traits.h to get
189 // this right without compiler support, so it fails conservatively. It
190 // knows that fundamental types and pointers are PODs, but it can't
191 // tell whether user classes are PODs. The DECLARE_POD macro is used
192 // to inform the type traits library that a user class is a POD.
194 // Implementation note: the typedef at the end is just to make it legal
195 // to put a semicolon after DECLARE_POD(foo).
198 // So what's a POD? The C++ standard (clause 9 paragraph 4) gives a
199 // full definition, but a good rule of thumb is that a struct is a POD
200 // ("plain old data") if it doesn't use any of the features that make
201 // C++ different from C. A POD struct can't have constructors,
202 // destructors, assignment operators, base classes, private or
203 // protected members, or virtual functions, and all of its member
204 // variables must themselves be PODs.
206 #define DECLARE_POD(TypeName) \
208 template<> struct is_pod<TypeName> : true_type { }; \
210 typedef int Dummy_Type_For_DECLARE_POD \
212 // We once needed a different technique to assert that a nested class
213 // is a POD. This is no longer necessary, and DECLARE_NESTED_POD is
214 // just a synonym for DECLARE_POD. We continue to provide
215 // DECLARE_NESTED_POD only so we don't have to change client
216 // code. Regardless of whether you use DECLARE_POD or
217 // DECLARE_NESTED_POD: use it after the outer class. Using it within a
218 // class definition will give a compiler error.
219 #define DECLARE_NESTED_POD(TypeName) DECLARE_POD(TypeName)
221 // Declare that TemplateName<T> is a POD whenever T is
222 #define PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT(TemplateName) \
224 template <typename T> struct is_pod<TemplateName<T> > : is_pod<T> { }; \
226 typedef int Dummy_Type_For_PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT
228 // Macro that does nothing if TypeName is a POD, and gives a compiler
229 // error if TypeName is a non-POD. You should put a descriptive
230 // comment right next to the macro call so that people can tell what
231 // the compiler error is about.
233 // Implementation note: this works by taking the size of a type that's
234 // complete when TypeName is a POD and incomplete otherwise.
236 template <typename Boolean
> struct ERROR_TYPE_MUST_BE_POD
;
237 template <> struct ERROR_TYPE_MUST_BE_POD
<base::true_type
> { };
238 #define ENFORCE_POD(TypeName) \
239 enum { dummy_##TypeName \
240 = sizeof(ERROR_TYPE_MUST_BE_POD< \
241 typename base::is_pod<TypeName>::type>) }
243 #endif // BASE_MACROS_H_