Supervised user import: Listen for profile creation/deletion
[chromium-blink-merge.git] / ash / wm / workspace / workspace_window_resizer.cc
blobbd1ef257747d2e1e568c615c36496843f3c44771
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ash/wm/workspace/workspace_window_resizer.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <utility>
10 #include <vector>
12 #include "ash/display/display_controller.h"
13 #include "ash/metrics/user_metrics_recorder.h"
14 #include "ash/root_window_controller.h"
15 #include "ash/screen_util.h"
16 #include "ash/shell.h"
17 #include "ash/shell_window_ids.h"
18 #include "ash/wm/default_window_resizer.h"
19 #include "ash/wm/dock/docked_window_layout_manager.h"
20 #include "ash/wm/dock/docked_window_resizer.h"
21 #include "ash/wm/drag_window_resizer.h"
22 #include "ash/wm/panels/panel_window_resizer.h"
23 #include "ash/wm/window_state.h"
24 #include "ash/wm/window_util.h"
25 #include "ash/wm/wm_event.h"
26 #include "ash/wm/workspace/phantom_window_controller.h"
27 #include "ash/wm/workspace/two_step_edge_cycler.h"
28 #include "base/command_line.h"
29 #include "base/memory/weak_ptr.h"
30 #include "ui/aura/client/aura_constants.h"
31 #include "ui/aura/client/screen_position_client.h"
32 #include "ui/aura/window.h"
33 #include "ui/aura/window_delegate.h"
34 #include "ui/aura/window_event_dispatcher.h"
35 #include "ui/base/hit_test.h"
36 #include "ui/compositor/layer.h"
37 #include "ui/gfx/screen.h"
38 #include "ui/gfx/transform.h"
39 #include "ui/wm/core/coordinate_conversion.h"
40 #include "ui/wm/core/window_util.h"
41 #include "ui/wm/public/window_types.h"
43 namespace ash {
45 scoped_ptr<WindowResizer> CreateWindowResizer(
46 aura::Window* window,
47 const gfx::Point& point_in_parent,
48 int window_component,
49 aura::client::WindowMoveSource source) {
50 DCHECK(window);
51 wm::WindowState* window_state = wm::GetWindowState(window);
52 // No need to return a resizer when the window cannot get resized or when a
53 // resizer already exists for this window.
54 if ((!window_state->CanResize() && window_component != HTCAPTION) ||
55 window_state->drag_details()) {
56 return scoped_ptr<WindowResizer>();
59 if (window_component == HTCAPTION && !window_state->can_be_dragged())
60 return scoped_ptr<WindowResizer>();
62 // TODO(varkha): The chaining of window resizers causes some of the logic
63 // to be repeated and the logic flow difficult to control. With some windows
64 // classes using reparenting during drag operations it becomes challenging to
65 // implement proper transition from one resizer to another during or at the
66 // end of the drag. This also causes http://crbug.com/247085.
67 // It seems the only thing the panel or dock resizer needs to do is notify the
68 // layout manager when a docked window is being dragged. We should have a
69 // better way of doing this, perhaps by having a way of observing drags or
70 // having a generic drag window wrapper which informs a layout manager that a
71 // drag has started or stopped.
72 // It may be possible to refactor and eliminate chaining.
73 WindowResizer* window_resizer = NULL;
75 if (!window_state->IsNormalOrSnapped() && !window_state->IsDocked())
76 return scoped_ptr<WindowResizer>();
78 int bounds_change = WindowResizer::GetBoundsChangeForWindowComponent(
79 window_component);
80 if (bounds_change == WindowResizer::kBoundsChangeDirection_None)
81 return scoped_ptr<WindowResizer>();
83 window_state->CreateDragDetails(window, point_in_parent, window_component,
84 source);
85 if (window->parent() &&
86 (window->parent()->id() == kShellWindowId_DefaultContainer ||
87 window->parent()->id() == kShellWindowId_DockedContainer ||
88 window->parent()->id() == kShellWindowId_PanelContainer)) {
89 window_resizer = WorkspaceWindowResizer::Create(
90 window_state, std::vector<aura::Window*>());
91 } else {
92 window_resizer = DefaultWindowResizer::Create(window_state);
94 window_resizer = DragWindowResizer::Create(window_resizer, window_state);
95 if (window->type() == ui::wm::WINDOW_TYPE_PANEL)
96 window_resizer = PanelWindowResizer::Create(window_resizer, window_state);
97 if (window_resizer && window->parent() &&
98 !::wm::GetTransientParent(window) &&
99 (window->parent()->id() == kShellWindowId_DefaultContainer ||
100 window->parent()->id() == kShellWindowId_DockedContainer ||
101 window->parent()->id() == kShellWindowId_PanelContainer)) {
102 window_resizer = DockedWindowResizer::Create(window_resizer, window_state);
104 return make_scoped_ptr<WindowResizer>(window_resizer);
107 namespace {
109 // Snapping distance used instead of WorkspaceWindowResizer::kScreenEdgeInset
110 // when resizing a window using touchscreen.
111 const int kScreenEdgeInsetForTouchDrag = 32;
113 // Current instance for use by the WorkspaceWindowResizerTest.
114 WorkspaceWindowResizer* instance = NULL;
116 // Returns true if the window should stick to the edge.
117 bool ShouldStickToEdge(int distance_from_edge, int sticky_size) {
118 return distance_from_edge < sticky_size &&
119 distance_from_edge > -sticky_size * 2;
122 // Returns the coordinate along the secondary axis to snap to.
123 int CoordinateAlongSecondaryAxis(SecondaryMagnetismEdge edge,
124 int leading,
125 int trailing,
126 int none) {
127 switch (edge) {
128 case SECONDARY_MAGNETISM_EDGE_LEADING:
129 return leading;
130 case SECONDARY_MAGNETISM_EDGE_TRAILING:
131 return trailing;
132 case SECONDARY_MAGNETISM_EDGE_NONE:
133 return none;
135 NOTREACHED();
136 return none;
139 // Returns the origin for |src| when magnetically attaching to |attach_to| along
140 // the edges |edges|. |edges| is a bitmask of the MagnetismEdges.
141 gfx::Point OriginForMagneticAttach(const gfx::Rect& src,
142 const gfx::Rect& attach_to,
143 const MatchedEdge& edge) {
144 int x = 0, y = 0;
145 switch (edge.primary_edge) {
146 case MAGNETISM_EDGE_TOP:
147 y = attach_to.bottom();
148 break;
149 case MAGNETISM_EDGE_LEFT:
150 x = attach_to.right();
151 break;
152 case MAGNETISM_EDGE_BOTTOM:
153 y = attach_to.y() - src.height();
154 break;
155 case MAGNETISM_EDGE_RIGHT:
156 x = attach_to.x() - src.width();
157 break;
159 switch (edge.primary_edge) {
160 case MAGNETISM_EDGE_TOP:
161 case MAGNETISM_EDGE_BOTTOM:
162 x = CoordinateAlongSecondaryAxis(
163 edge.secondary_edge, attach_to.x(), attach_to.right() - src.width(),
164 src.x());
165 break;
166 case MAGNETISM_EDGE_LEFT:
167 case MAGNETISM_EDGE_RIGHT:
168 y = CoordinateAlongSecondaryAxis(
169 edge.secondary_edge, attach_to.y(), attach_to.bottom() - src.height(),
170 src.y());
171 break;
173 return gfx::Point(x, y);
176 // Returns the bounds for a magnetic attach when resizing. |src| is the bounds
177 // of window being resized, |attach_to| the bounds of the window to attach to
178 // and |edge| identifies the edge to attach to.
179 gfx::Rect BoundsForMagneticResizeAttach(const gfx::Rect& src,
180 const gfx::Rect& attach_to,
181 const MatchedEdge& edge) {
182 int x = src.x();
183 int y = src.y();
184 int w = src.width();
185 int h = src.height();
186 gfx::Point attach_origin(OriginForMagneticAttach(src, attach_to, edge));
187 switch (edge.primary_edge) {
188 case MAGNETISM_EDGE_LEFT:
189 x = attach_origin.x();
190 w = src.right() - x;
191 break;
192 case MAGNETISM_EDGE_RIGHT:
193 w += attach_origin.x() - src.x();
194 break;
195 case MAGNETISM_EDGE_TOP:
196 y = attach_origin.y();
197 h = src.bottom() - y;
198 break;
199 case MAGNETISM_EDGE_BOTTOM:
200 h += attach_origin.y() - src.y();
201 break;
203 switch (edge.primary_edge) {
204 case MAGNETISM_EDGE_LEFT:
205 case MAGNETISM_EDGE_RIGHT:
206 if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
207 y = attach_origin.y();
208 h = src.bottom() - y;
209 } else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
210 h += attach_origin.y() - src.y();
212 break;
213 case MAGNETISM_EDGE_TOP:
214 case MAGNETISM_EDGE_BOTTOM:
215 if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
216 x = attach_origin.x();
217 w = src.right() - x;
218 } else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
219 w += attach_origin.x() - src.x();
221 break;
223 return gfx::Rect(x, y, w, h);
226 // Converts a window component edge to the magnetic edge to snap to.
227 uint32 WindowComponentToMagneticEdge(int window_component) {
228 switch (window_component) {
229 case HTTOPLEFT:
230 return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_TOP;
231 case HTTOPRIGHT:
232 return MAGNETISM_EDGE_TOP | MAGNETISM_EDGE_RIGHT;
233 case HTBOTTOMLEFT:
234 return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_BOTTOM;
235 case HTBOTTOMRIGHT:
236 return MAGNETISM_EDGE_RIGHT | MAGNETISM_EDGE_BOTTOM;
237 case HTTOP:
238 return MAGNETISM_EDGE_TOP;
239 case HTBOTTOM:
240 return MAGNETISM_EDGE_BOTTOM;
241 case HTRIGHT:
242 return MAGNETISM_EDGE_RIGHT;
243 case HTLEFT:
244 return MAGNETISM_EDGE_LEFT;
245 default:
246 break;
248 return 0;
251 } // namespace
253 // static
254 const int WorkspaceWindowResizer::kMinOnscreenSize = 20;
256 // static
257 const int WorkspaceWindowResizer::kMinOnscreenHeight = 32;
259 // static
260 const int WorkspaceWindowResizer::kScreenEdgeInset = 8;
262 WorkspaceWindowResizer* WorkspaceWindowResizer::GetInstanceForTest() {
263 return instance;
266 // Represents the width or height of a window with constraints on its minimum
267 // and maximum size. 0 represents a lack of a constraint.
268 class WindowSize {
269 public:
270 WindowSize(int size, int min, int max)
271 : size_(size),
272 min_(min),
273 max_(max) {
274 // Grow the min/max bounds to include the starting size.
275 if (is_underflowing())
276 min_ = size_;
277 if (is_overflowing())
278 max_ = size_;
281 bool is_at_capacity(bool shrinking) {
282 return size_ == (shrinking ? min_ : max_);
285 int size() const {
286 return size_;
289 bool has_min() const {
290 return min_ != 0;
293 bool has_max() const {
294 return max_ != 0;
297 bool is_valid() const {
298 return !is_overflowing() && !is_underflowing();
301 bool is_overflowing() const {
302 return has_max() && size_ > max_;
305 bool is_underflowing() const {
306 return has_min() && size_ < min_;
309 // Add |amount| to this WindowSize not exceeding min or max size constraints.
310 // Returns by how much |size_| + |amount| exceeds the min/max constraints.
311 int Add(int amount) {
312 DCHECK(is_valid());
313 int new_value = size_ + amount;
315 if (has_min() && new_value < min_) {
316 size_ = min_;
317 return new_value - min_;
320 if (has_max() && new_value > max_) {
321 size_ = max_;
322 return new_value - max_;
325 size_ = new_value;
326 return 0;
329 private:
330 int size_;
331 int min_;
332 int max_;
335 WorkspaceWindowResizer::~WorkspaceWindowResizer() {
336 if (did_lock_cursor_) {
337 Shell* shell = Shell::GetInstance();
338 shell->cursor_manager()->UnlockCursor();
340 if (instance == this)
341 instance = NULL;
344 // static
345 WorkspaceWindowResizer* WorkspaceWindowResizer::Create(
346 wm::WindowState* window_state,
347 const std::vector<aura::Window*>& attached_windows) {
348 return new WorkspaceWindowResizer(window_state, attached_windows);
351 void WorkspaceWindowResizer::Drag(const gfx::Point& location_in_parent,
352 int event_flags) {
353 last_mouse_location_ = location_in_parent;
355 int sticky_size;
356 if (event_flags & ui::EF_CONTROL_DOWN) {
357 sticky_size = 0;
358 } else if ((details().bounds_change & kBoundsChange_Resizes) &&
359 details().source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
360 sticky_size = kScreenEdgeInsetForTouchDrag;
361 } else {
362 sticky_size = kScreenEdgeInset;
364 // |bounds| is in |GetTarget()->parent()|'s coordinates.
365 gfx::Rect bounds = CalculateBoundsForDrag(location_in_parent);
366 AdjustBoundsForMainWindow(sticky_size, &bounds);
368 if (bounds != GetTarget()->bounds()) {
369 if (!did_move_or_resize_) {
370 if (!details().restore_bounds.IsEmpty())
371 window_state()->ClearRestoreBounds();
372 RestackWindows();
374 did_move_or_resize_ = true;
377 gfx::Point location_in_screen = location_in_parent;
378 ::wm::ConvertPointToScreen(GetTarget()->parent(), &location_in_screen);
380 aura::Window* root = NULL;
381 gfx::Display display =
382 ScreenUtil::FindDisplayContainingPoint(location_in_screen);
383 // Track the last screen that the pointer was on to keep the snap phantom
384 // window there.
385 if (display.is_valid()) {
386 root = Shell::GetInstance()->display_controller()->
387 GetRootWindowForDisplayId(display.id());
389 if (!attached_windows_.empty())
390 LayoutAttachedWindows(&bounds);
391 if (bounds != GetTarget()->bounds()) {
392 // SetBounds needs to be called to update the layout which affects where the
393 // phantom window is drawn. Keep track if the window was destroyed during
394 // the drag and quit early if so.
395 base::WeakPtr<WorkspaceWindowResizer> resizer(
396 weak_ptr_factory_.GetWeakPtr());
397 GetTarget()->SetBounds(bounds);
398 if (!resizer)
399 return;
401 const bool in_original_root = !root || root == GetTarget()->GetRootWindow();
402 // Hide a phantom window for snapping if the cursor is in another root window.
403 if (in_original_root) {
404 UpdateSnapPhantomWindow(location_in_parent, bounds);
405 } else {
406 snap_type_ = SNAP_NONE;
407 snap_phantom_window_controller_.reset();
408 edge_cycler_.reset();
409 SetDraggedWindowDocked(false);
413 void WorkspaceWindowResizer::CompleteDrag() {
414 if (!did_move_or_resize_)
415 return;
417 window_state()->set_bounds_changed_by_user(true);
418 snap_phantom_window_controller_.reset();
420 // If the window's state type changed over the course of the drag do not snap
421 // the window. This happens when the user minimizes or maximizes the window
422 // using a keyboard shortcut while dragging it.
423 if (window_state()->GetStateType() != details().initial_state_type)
424 return;
426 bool snapped = false;
427 if (snap_type_ == SNAP_LEFT || snap_type_ == SNAP_RIGHT) {
428 if (!window_state()->HasRestoreBounds()) {
429 gfx::Rect initial_bounds = ScreenUtil::ConvertRectToScreen(
430 GetTarget()->parent(), details().initial_bounds_in_parent);
431 window_state()->SetRestoreBoundsInScreen(
432 details().restore_bounds.IsEmpty() ?
433 initial_bounds :
434 details().restore_bounds);
436 if (!dock_layout_->is_dragged_window_docked()) {
437 UserMetricsRecorder* metrics = Shell::GetInstance()->metrics();
438 // TODO(oshima): Add event source type to WMEvent and move
439 // metrics recording inside WindowState::OnWMEvent.
440 const wm::WMEvent event(snap_type_ == SNAP_LEFT ?
441 wm::WM_EVENT_SNAP_LEFT : wm::WM_EVENT_SNAP_RIGHT);
442 window_state()->OnWMEvent(&event);
443 metrics->RecordUserMetricsAction(
444 snap_type_ == SNAP_LEFT ?
445 UMA_DRAG_MAXIMIZE_LEFT : UMA_DRAG_MAXIMIZE_RIGHT);
446 snapped = true;
450 if (!snapped) {
451 if (window_state()->IsSnapped()) {
452 // Keep the window snapped if the user resizes the window such that the
453 // window has valid bounds for a snapped window. Always unsnap the window
454 // if the user dragged the window via the caption area because doing this
455 // is slightly less confusing.
456 if (details().window_component == HTCAPTION ||
457 !AreBoundsValidSnappedBounds(window_state()->GetStateType(),
458 GetTarget()->bounds())) {
459 // Set the window to WINDOW_STATE_TYPE_NORMAL but keep the
460 // window at the bounds that the user has moved/resized the
461 // window to. ClearRestoreBounds() is used instead of
462 // SaveCurrentBoundsForRestore() because most of the restore
463 // logic is skipped because we are still in the middle of a
464 // drag. TODO(pkotwicz): Fix this and use
465 // SaveCurrentBoundsForRestore().
466 window_state()->ClearRestoreBounds();
467 window_state()->Restore();
469 } else if (!dock_layout_->is_dragged_window_docked()) {
470 // The window was not snapped and is not snapped. This is a user
471 // resize/drag and so the current bounds should be maintained, clearing
472 // any prior restore bounds. When the window is docked the restore bound
473 // must be kept so the docked state can be reverted properly.
474 window_state()->ClearRestoreBounds();
479 void WorkspaceWindowResizer::RevertDrag() {
480 window_state()->set_bounds_changed_by_user(initial_bounds_changed_by_user_);
481 snap_phantom_window_controller_.reset();
483 if (!did_move_or_resize_)
484 return;
486 GetTarget()->SetBounds(details().initial_bounds_in_parent);
487 if (!details().restore_bounds.IsEmpty()) {
488 window_state()->SetRestoreBoundsInScreen(details().restore_bounds);
491 if (details().window_component == HTRIGHT) {
492 int last_x = details().initial_bounds_in_parent.right();
493 for (size_t i = 0; i < attached_windows_.size(); ++i) {
494 gfx::Rect bounds(attached_windows_[i]->bounds());
495 bounds.set_x(last_x);
496 bounds.set_width(initial_size_[i]);
497 attached_windows_[i]->SetBounds(bounds);
498 last_x = attached_windows_[i]->bounds().right();
500 } else {
501 int last_y = details().initial_bounds_in_parent.bottom();
502 for (size_t i = 0; i < attached_windows_.size(); ++i) {
503 gfx::Rect bounds(attached_windows_[i]->bounds());
504 bounds.set_y(last_y);
505 bounds.set_height(initial_size_[i]);
506 attached_windows_[i]->SetBounds(bounds);
507 last_y = attached_windows_[i]->bounds().bottom();
512 WorkspaceWindowResizer::WorkspaceWindowResizer(
513 wm::WindowState* window_state,
514 const std::vector<aura::Window*>& attached_windows)
515 : WindowResizer(window_state),
516 attached_windows_(attached_windows),
517 did_lock_cursor_(false),
518 did_move_or_resize_(false),
519 initial_bounds_changed_by_user_(window_state_->bounds_changed_by_user()),
520 total_min_(0),
521 total_initial_size_(0),
522 snap_type_(SNAP_NONE),
523 num_mouse_moves_since_bounds_change_(0),
524 magnetism_window_(NULL),
525 weak_ptr_factory_(this) {
526 DCHECK(details().is_resizable);
528 // A mousemove should still show the cursor even if the window is
529 // being moved or resized with touch, so do not lock the cursor.
530 if (details().source != aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
531 Shell* shell = Shell::GetInstance();
532 shell->cursor_manager()->LockCursor();
533 did_lock_cursor_ = true;
536 aura::Window* dock_container = Shell::GetContainer(
537 GetTarget()->GetRootWindow(), kShellWindowId_DockedContainer);
538 dock_layout_ = static_cast<DockedWindowLayoutManager*>(
539 dock_container->layout_manager());
541 // Only support attaching to the right/bottom.
542 DCHECK(attached_windows_.empty() ||
543 (details().window_component == HTRIGHT ||
544 details().window_component == HTBOTTOM));
546 // TODO: figure out how to deal with window going off the edge.
548 // Calculate sizes so that we can maintain the ratios if we need to resize.
549 int total_available = 0;
550 for (size_t i = 0; i < attached_windows_.size(); ++i) {
551 gfx::Size min(attached_windows_[i]->delegate()->GetMinimumSize());
552 int initial_size = PrimaryAxisSize(attached_windows_[i]->bounds().size());
553 initial_size_.push_back(initial_size);
554 // If current size is smaller than the min, use the current size as the min.
555 // This way we don't snap on resize.
556 int min_size = std::min(initial_size,
557 std::max(PrimaryAxisSize(min), kMinOnscreenSize));
558 total_min_ += min_size;
559 total_initial_size_ += initial_size;
560 total_available += std::max(min_size, initial_size) - min_size;
562 instance = this;
565 void WorkspaceWindowResizer::LayoutAttachedWindows(
566 gfx::Rect* bounds) {
567 gfx::Rect work_area(ScreenUtil::GetDisplayWorkAreaBoundsInParent(
568 GetTarget()));
569 int initial_size = PrimaryAxisSize(details().initial_bounds_in_parent.size());
570 int current_size = PrimaryAxisSize(bounds->size());
571 int start = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
572 int end = PrimaryAxisCoordinate(work_area.right(), work_area.bottom());
574 int delta = current_size - initial_size;
575 int available_size = end - start;
576 std::vector<int> sizes;
577 int leftovers = CalculateAttachedSizes(delta, available_size, &sizes);
579 // leftovers > 0 means that the attached windows can't grow to compensate for
580 // the shrinkage of the main window. This line causes the attached windows to
581 // be moved so they are still flush against the main window, rather than the
582 // main window being prevented from shrinking.
583 leftovers = std::min(0, leftovers);
584 // Reallocate any leftover pixels back into the main window. This is
585 // necessary when, for example, the main window shrinks, but none of the
586 // attached windows can grow without exceeding their max size constraints.
587 // Adding the pixels back to the main window effectively prevents the main
588 // window from resizing too far.
589 if (details().window_component == HTRIGHT)
590 bounds->set_width(bounds->width() + leftovers);
591 else
592 bounds->set_height(bounds->height() + leftovers);
594 DCHECK_EQ(attached_windows_.size(), sizes.size());
595 int last = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
596 for (size_t i = 0; i < attached_windows_.size(); ++i) {
597 gfx::Rect attached_bounds(attached_windows_[i]->bounds());
598 if (details().window_component == HTRIGHT) {
599 attached_bounds.set_x(last);
600 attached_bounds.set_width(sizes[i]);
601 } else {
602 attached_bounds.set_y(last);
603 attached_bounds.set_height(sizes[i]);
605 attached_windows_[i]->SetBounds(attached_bounds);
606 last += sizes[i];
610 int WorkspaceWindowResizer::CalculateAttachedSizes(
611 int delta,
612 int available_size,
613 std::vector<int>* sizes) const {
614 std::vector<WindowSize> window_sizes;
615 CreateBucketsForAttached(&window_sizes);
617 // How much we need to grow the attached by (collectively).
618 int grow_attached_by = 0;
619 if (delta > 0) {
620 // If the attached windows don't fit when at their initial size, we will
621 // have to shrink them by how much they overflow.
622 if (total_initial_size_ >= available_size)
623 grow_attached_by = available_size - total_initial_size_;
624 } else {
625 // If we're shrinking, we grow the attached so the total size remains
626 // constant.
627 grow_attached_by = -delta;
630 int leftover_pixels = 0;
631 while (grow_attached_by != 0) {
632 int leftovers = GrowFairly(grow_attached_by, window_sizes);
633 if (leftovers == grow_attached_by) {
634 leftover_pixels = leftovers;
635 break;
637 grow_attached_by = leftovers;
640 for (size_t i = 0; i < window_sizes.size(); ++i)
641 sizes->push_back(window_sizes[i].size());
643 return leftover_pixels;
646 int WorkspaceWindowResizer::GrowFairly(
647 int pixels,
648 std::vector<WindowSize>& sizes) const {
649 bool shrinking = pixels < 0;
650 std::vector<WindowSize*> nonfull_windows;
651 for (size_t i = 0; i < sizes.size(); ++i) {
652 if (!sizes[i].is_at_capacity(shrinking))
653 nonfull_windows.push_back(&sizes[i]);
655 std::vector<float> ratios;
656 CalculateGrowthRatios(nonfull_windows, &ratios);
658 int remaining_pixels = pixels;
659 bool add_leftover_pixels_to_last = true;
660 for (size_t i = 0; i < nonfull_windows.size(); ++i) {
661 int grow_by = pixels * ratios[i];
662 // Put any leftover pixels into the last window.
663 if (i == nonfull_windows.size() - 1 && add_leftover_pixels_to_last)
664 grow_by = remaining_pixels;
665 int remainder = nonfull_windows[i]->Add(grow_by);
666 int consumed = grow_by - remainder;
667 remaining_pixels -= consumed;
668 if (nonfull_windows[i]->is_at_capacity(shrinking) && remainder > 0) {
669 // Because this window overflowed, some of the pixels in
670 // |remaining_pixels| aren't there due to rounding errors. Rather than
671 // unfairly giving all those pixels to the last window, we refrain from
672 // allocating them so that this function can be called again to distribute
673 // the pixels fairly.
674 add_leftover_pixels_to_last = false;
677 return remaining_pixels;
680 void WorkspaceWindowResizer::CalculateGrowthRatios(
681 const std::vector<WindowSize*>& sizes,
682 std::vector<float>* out_ratios) const {
683 DCHECK(out_ratios->empty());
684 int total_value = 0;
685 for (size_t i = 0; i < sizes.size(); ++i)
686 total_value += sizes[i]->size();
688 for (size_t i = 0; i < sizes.size(); ++i)
689 out_ratios->push_back(
690 (static_cast<float>(sizes[i]->size())) / total_value);
693 void WorkspaceWindowResizer::CreateBucketsForAttached(
694 std::vector<WindowSize>* sizes) const {
695 for (size_t i = 0; i < attached_windows_.size(); i++) {
696 int initial_size = initial_size_[i];
697 aura::WindowDelegate* delegate = attached_windows_[i]->delegate();
698 int min = PrimaryAxisSize(delegate->GetMinimumSize());
699 int max = PrimaryAxisSize(delegate->GetMaximumSize());
701 sizes->push_back(WindowSize(initial_size, min, max));
705 void WorkspaceWindowResizer::MagneticallySnapToOtherWindows(gfx::Rect* bounds) {
706 if (UpdateMagnetismWindow(*bounds, kAllMagnetismEdges)) {
707 gfx::Point point = OriginForMagneticAttach(
708 ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), *bounds),
709 magnetism_window_->GetBoundsInScreen(),
710 magnetism_edge_);
711 aura::client::GetScreenPositionClient(GetTarget()->GetRootWindow())->
712 ConvertPointFromScreen(GetTarget()->parent(), &point);
713 bounds->set_origin(point);
717 void WorkspaceWindowResizer::MagneticallySnapResizeToOtherWindows(
718 gfx::Rect* bounds) {
719 const uint32 edges = WindowComponentToMagneticEdge(
720 details().window_component);
721 if (UpdateMagnetismWindow(*bounds, edges)) {
722 *bounds = ScreenUtil::ConvertRectFromScreen(
723 GetTarget()->parent(),
724 BoundsForMagneticResizeAttach(
725 ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), *bounds),
726 magnetism_window_->GetBoundsInScreen(),
727 magnetism_edge_));
731 bool WorkspaceWindowResizer::UpdateMagnetismWindow(const gfx::Rect& bounds,
732 uint32 edges) {
733 // |bounds| are in coordinates of original window's parent.
734 gfx::Rect bounds_in_screen =
735 ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), bounds);
736 MagnetismMatcher matcher(bounds_in_screen, edges);
738 // If we snapped to a window then check it first. That way we don't bounce
739 // around when close to multiple edges.
740 if (magnetism_window_) {
741 if (window_tracker_.Contains(magnetism_window_) &&
742 matcher.ShouldAttach(magnetism_window_->GetBoundsInScreen(),
743 &magnetism_edge_)) {
744 return true;
746 window_tracker_.Remove(magnetism_window_);
747 magnetism_window_ = NULL;
750 // Avoid magnetically snapping windows that are not resizable.
751 // TODO(oshima): change this to window.type() == TYPE_NORMAL.
752 if (!window_state()->CanResize())
753 return false;
755 aura::Window::Windows root_windows = Shell::GetAllRootWindows();
756 for (aura::Window::Windows::iterator iter = root_windows.begin();
757 iter != root_windows.end(); ++iter) {
758 const aura::Window* root_window = *iter;
759 // Test all children from the desktop in each root window.
760 const aura::Window::Windows& children = Shell::GetContainer(
761 root_window, kShellWindowId_DefaultContainer)->children();
762 for (aura::Window::Windows::const_reverse_iterator i = children.rbegin();
763 i != children.rend() && !matcher.AreEdgesObscured(); ++i) {
764 wm::WindowState* other_state = wm::GetWindowState(*i);
765 if (other_state->window() == GetTarget() ||
766 !other_state->window()->IsVisible() ||
767 !other_state->IsNormalOrSnapped() ||
768 !other_state->CanResize()) {
769 continue;
771 if (matcher.ShouldAttach(
772 other_state->window()->GetBoundsInScreen(), &magnetism_edge_)) {
773 magnetism_window_ = other_state->window();
774 window_tracker_.Add(magnetism_window_);
775 return true;
779 return false;
782 void WorkspaceWindowResizer::AdjustBoundsForMainWindow(
783 int sticky_size,
784 gfx::Rect* bounds) {
785 gfx::Point last_mouse_location_in_screen = last_mouse_location_;
786 ::wm::ConvertPointToScreen(GetTarget()->parent(),
787 &last_mouse_location_in_screen);
788 gfx::Display display = Shell::GetScreen()->GetDisplayNearestPoint(
789 last_mouse_location_in_screen);
790 gfx::Rect work_area =
791 ScreenUtil::ConvertRectFromScreen(GetTarget()->parent(),
792 display.work_area());
793 if (details().window_component == HTCAPTION) {
794 // Adjust the bounds to the work area where the mouse cursor is located.
795 // Always keep kMinOnscreenHeight or the window height (whichever is less)
796 // on the bottom.
797 int max_y = work_area.bottom() - std::min(kMinOnscreenHeight,
798 bounds->height());
799 if (bounds->y() > max_y) {
800 bounds->set_y(max_y);
801 } else if (bounds->y() <= work_area.y()) {
802 // Don't allow dragging above the top of the display until the mouse
803 // cursor reaches the work area above if any.
804 bounds->set_y(work_area.y());
807 if (sticky_size > 0) {
808 // Possibly stick to edge except when a mouse pointer is outside the
809 // work area.
810 if (display.work_area().Contains(last_mouse_location_in_screen))
811 StickToWorkAreaOnMove(work_area, sticky_size, bounds);
812 MagneticallySnapToOtherWindows(bounds);
814 } else if (sticky_size > 0) {
815 MagneticallySnapResizeToOtherWindows(bounds);
816 if (!magnetism_window_ && sticky_size > 0)
817 StickToWorkAreaOnResize(work_area, sticky_size, bounds);
820 if (attached_windows_.empty())
821 return;
823 if (details().window_component == HTRIGHT) {
824 bounds->set_width(std::min(bounds->width(),
825 work_area.right() - total_min_ - bounds->x()));
826 } else {
827 DCHECK_EQ(HTBOTTOM, details().window_component);
828 bounds->set_height(std::min(bounds->height(),
829 work_area.bottom() - total_min_ - bounds->y()));
833 bool WorkspaceWindowResizer::StickToWorkAreaOnMove(
834 const gfx::Rect& work_area,
835 int sticky_size,
836 gfx::Rect* bounds) const {
837 const int left_edge = work_area.x();
838 const int right_edge = work_area.right();
839 const int top_edge = work_area.y();
840 const int bottom_edge = work_area.bottom();
841 bool updated = false;
842 if (ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
843 bounds->set_x(left_edge);
844 updated = true;
845 } else if (ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
846 bounds->set_x(right_edge - bounds->width());
847 updated = true;
849 if (ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
850 bounds->set_y(top_edge);
851 updated = true;
852 } else if (ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size) &&
853 bounds->height() < (bottom_edge - top_edge)) {
854 // Only snap to the bottom if the window is smaller than the work area.
855 // Doing otherwise can lead to window snapping in weird ways as it bounces
856 // between snapping to top then bottom.
857 bounds->set_y(bottom_edge - bounds->height());
858 updated = true;
860 return updated;
863 void WorkspaceWindowResizer::StickToWorkAreaOnResize(
864 const gfx::Rect& work_area,
865 int sticky_size,
866 gfx::Rect* bounds) const {
867 const uint32 edges = WindowComponentToMagneticEdge(
868 details().window_component);
869 const int left_edge = work_area.x();
870 const int right_edge = work_area.right();
871 const int top_edge = work_area.y();
872 const int bottom_edge = work_area.bottom();
873 if (edges & MAGNETISM_EDGE_TOP &&
874 ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
875 bounds->set_height(bounds->bottom() - top_edge);
876 bounds->set_y(top_edge);
878 if (edges & MAGNETISM_EDGE_LEFT &&
879 ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
880 bounds->set_width(bounds->right() - left_edge);
881 bounds->set_x(left_edge);
883 if (edges & MAGNETISM_EDGE_BOTTOM &&
884 ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size)) {
885 bounds->set_height(bottom_edge - bounds->y());
887 if (edges & MAGNETISM_EDGE_RIGHT &&
888 ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
889 bounds->set_width(right_edge - bounds->x());
893 int WorkspaceWindowResizer::PrimaryAxisSize(const gfx::Size& size) const {
894 return PrimaryAxisCoordinate(size.width(), size.height());
897 int WorkspaceWindowResizer::PrimaryAxisCoordinate(int x, int y) const {
898 switch (details().window_component) {
899 case HTRIGHT:
900 return x;
901 case HTBOTTOM:
902 return y;
903 default:
904 NOTREACHED();
906 return 0;
909 void WorkspaceWindowResizer::UpdateSnapPhantomWindow(const gfx::Point& location,
910 const gfx::Rect& bounds) {
911 if (!did_move_or_resize_ || details().window_component != HTCAPTION)
912 return;
914 SnapType last_type = snap_type_;
915 snap_type_ = GetSnapType(location);
916 if (snap_type_ == SNAP_NONE || snap_type_ != last_type) {
917 snap_phantom_window_controller_.reset();
918 edge_cycler_.reset();
919 if (snap_type_ == SNAP_NONE) {
920 SetDraggedWindowDocked(false);
921 return;
925 DCHECK(snap_type_ == SNAP_LEFT || snap_type_ == SNAP_RIGHT);
926 DockedAlignment desired_alignment = (snap_type_ == SNAP_LEFT) ?
927 DOCKED_ALIGNMENT_LEFT : DOCKED_ALIGNMENT_RIGHT;
928 const bool can_dock =
929 dock_layout_->CanDockWindow(GetTarget(), desired_alignment) &&
930 dock_layout_->GetAlignmentOfWindow(GetTarget()) != DOCKED_ALIGNMENT_NONE;
931 if (!can_dock) {
932 // If the window cannot be docked, undock the window. This may change the
933 // workspace bounds and hence |snap_type_|.
934 SetDraggedWindowDocked(false);
935 snap_type_ = GetSnapType(location);
937 const bool can_snap = snap_type_ != SNAP_NONE && window_state()->CanSnap();
938 if (!can_snap && !can_dock) {
939 snap_type_ = SNAP_NONE;
940 snap_phantom_window_controller_.reset();
941 edge_cycler_.reset();
942 return;
944 if (!edge_cycler_)
945 edge_cycler_.reset(new TwoStepEdgeCycler(location));
946 else
947 edge_cycler_->OnMove(location);
949 // Update phantom window with snapped or docked guide bounds.
950 // Windows that cannot be snapped or are less wide than kMaxDockWidth can get
951 // docked without going through a snapping sequence.
952 gfx::Rect phantom_bounds;
953 const bool should_dock = can_dock &&
954 (!can_snap ||
955 GetTarget()->bounds().width() <=
956 DockedWindowLayoutManager::kMaxDockWidth ||
957 edge_cycler_->use_second_mode() ||
958 dock_layout_->is_dragged_window_docked());
959 if (should_dock) {
960 SetDraggedWindowDocked(true);
961 phantom_bounds = ScreenUtil::ConvertRectFromScreen(
962 GetTarget()->parent(), dock_layout_->dragged_bounds());
963 } else {
964 phantom_bounds = (snap_type_ == SNAP_LEFT) ?
965 wm::GetDefaultLeftSnappedWindowBoundsInParent(GetTarget()) :
966 wm::GetDefaultRightSnappedWindowBoundsInParent(GetTarget());
969 if (!snap_phantom_window_controller_) {
970 snap_phantom_window_controller_.reset(
971 new PhantomWindowController(GetTarget()));
973 snap_phantom_window_controller_->Show(ScreenUtil::ConvertRectToScreen(
974 GetTarget()->parent(), phantom_bounds));
977 void WorkspaceWindowResizer::RestackWindows() {
978 if (attached_windows_.empty())
979 return;
980 // Build a map from index in children to window, returning if there is a
981 // window with a different parent.
982 typedef std::map<size_t, aura::Window*> IndexToWindowMap;
983 IndexToWindowMap map;
984 aura::Window* parent = GetTarget()->parent();
985 const aura::Window::Windows& windows(parent->children());
986 map[std::find(windows.begin(), windows.end(), GetTarget()) -
987 windows.begin()] = GetTarget();
988 for (std::vector<aura::Window*>::const_iterator i =
989 attached_windows_.begin(); i != attached_windows_.end(); ++i) {
990 if ((*i)->parent() != parent)
991 return;
992 size_t index =
993 std::find(windows.begin(), windows.end(), *i) - windows.begin();
994 map[index] = *i;
997 // Reorder the windows starting at the topmost.
998 parent->StackChildAtTop(map.rbegin()->second);
999 for (IndexToWindowMap::const_reverse_iterator i = map.rbegin();
1000 i != map.rend(); ) {
1001 aura::Window* window = i->second;
1002 ++i;
1003 if (i != map.rend())
1004 parent->StackChildBelow(i->second, window);
1008 WorkspaceWindowResizer::SnapType WorkspaceWindowResizer::GetSnapType(
1009 const gfx::Point& location) const {
1010 // TODO: this likely only wants total display area, not the area of a single
1011 // display.
1012 gfx::Rect area(ScreenUtil::GetDisplayWorkAreaBoundsInParent(GetTarget()));
1013 if (details().source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
1014 // Increase tolerance for touch-snapping near the screen edges. This is only
1015 // necessary when the work area left or right edge is same as screen edge.
1016 gfx::Rect display_bounds(ScreenUtil::GetDisplayBoundsInParent(GetTarget()));
1017 int inset_left = 0;
1018 if (area.x() == display_bounds.x())
1019 inset_left = kScreenEdgeInsetForTouchDrag;
1020 int inset_right = 0;
1021 if (area.right() == display_bounds.right())
1022 inset_right = kScreenEdgeInsetForTouchDrag;
1023 area.Inset(inset_left, 0, inset_right, 0);
1025 if (location.x() <= area.x())
1026 return SNAP_LEFT;
1027 if (location.x() >= area.right() - 1)
1028 return SNAP_RIGHT;
1029 return SNAP_NONE;
1032 void WorkspaceWindowResizer::SetDraggedWindowDocked(bool should_dock) {
1033 if (should_dock) {
1034 if (!dock_layout_->is_dragged_window_docked()) {
1035 window_state()->set_bounds_changed_by_user(false);
1036 dock_layout_->DockDraggedWindow(GetTarget());
1038 } else {
1039 if (dock_layout_->is_dragged_window_docked()) {
1040 dock_layout_->UndockDraggedWindow();
1041 window_state()->set_bounds_changed_by_user(true);
1046 bool WorkspaceWindowResizer::AreBoundsValidSnappedBounds(
1047 wm::WindowStateType snapped_type,
1048 const gfx::Rect& bounds_in_parent) const {
1049 DCHECK(snapped_type == wm::WINDOW_STATE_TYPE_LEFT_SNAPPED ||
1050 snapped_type == wm::WINDOW_STATE_TYPE_RIGHT_SNAPPED);
1051 gfx::Rect snapped_bounds = ScreenUtil::GetDisplayWorkAreaBoundsInParent(
1052 GetTarget());
1053 if (snapped_type == wm::WINDOW_STATE_TYPE_RIGHT_SNAPPED)
1054 snapped_bounds.set_x(snapped_bounds.right() - bounds_in_parent.width());
1055 snapped_bounds.set_width(bounds_in_parent.width());
1056 return bounds_in_parent == snapped_bounds;
1059 } // namespace ash