mac: Let IPhotoDataProvider::GetAlbumNames() return albums in a deterministic order.
[chromium-blink-merge.git] / base / third_party / dmg_fp / dtoa.cc
blob502c16cc72f3ccc7ff217434ebf011e07acbf4a7
1 /****************************************************************
3 * The author of this software is David M. Gay.
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
18 ***************************************************************/
20 /* Please send bug reports to David M. Gay (dmg at acm dot org,
21 * with " at " changed at "@" and " dot " changed to "."). */
23 /* On a machine with IEEE extended-precision registers, it is
24 * necessary to specify double-precision (53-bit) rounding precision
25 * before invoking strtod or dtoa. If the machine uses (the equivalent
26 * of) Intel 80x87 arithmetic, the call
27 * _control87(PC_53, MCW_PC);
28 * does this with many compilers. Whether this or another call is
29 * appropriate depends on the compiler; for this to work, it may be
30 * necessary to #include "float.h" or another system-dependent header
31 * file.
34 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
36 * This strtod returns a nearest machine number to the input decimal
37 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
38 * broken by the IEEE round-even rule. Otherwise ties are broken by
39 * biased rounding (add half and chop).
41 * Inspired loosely by William D. Clinger's paper "How to Read Floating
42 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44 * Modifications:
46 * 1. We only require IEEE, IBM, or VAX double-precision
47 * arithmetic (not IEEE double-extended).
48 * 2. We get by with floating-point arithmetic in a case that
49 * Clinger missed -- when we're computing d * 10^n
50 * for a small integer d and the integer n is not too
51 * much larger than 22 (the maximum integer k for which
52 * we can represent 10^k exactly), we may be able to
53 * compute (d*10^k) * 10^(e-k) with just one roundoff.
54 * 3. Rather than a bit-at-a-time adjustment of the binary
55 * result in the hard case, we use floating-point
56 * arithmetic to determine the adjustment to within
57 * one bit; only in really hard cases do we need to
58 * compute a second residual.
59 * 4. Because of 3., we don't need a large table of powers of 10
60 * for ten-to-e (just some small tables, e.g. of 10^k
61 * for 0 <= k <= 22).
65 * #define IEEE_8087 for IEEE-arithmetic machines where the least
66 * significant byte has the lowest address.
67 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
68 * significant byte has the lowest address.
69 * #define Long int on machines with 32-bit ints and 64-bit longs.
70 * #define IBM for IBM mainframe-style floating-point arithmetic.
71 * #define VAX for VAX-style floating-point arithmetic (D_floating).
72 * #define No_leftright to omit left-right logic in fast floating-point
73 * computation of dtoa.
74 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
75 * and strtod and dtoa should round accordingly. Unless Trust_FLT_ROUNDS
76 * is also #defined, fegetround() will be queried for the rounding mode.
77 * Note that both FLT_ROUNDS and fegetround() are specified by the C99
78 * standard (and are specified to be consistent, with fesetround()
79 * affecting the value of FLT_ROUNDS), but that some (Linux) systems
80 * do not work correctly in this regard, so using fegetround() is more
81 * portable than using FLT_FOUNDS directly.
82 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
83 * and Honor_FLT_ROUNDS is not #defined.
84 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
85 * that use extended-precision instructions to compute rounded
86 * products and quotients) with IBM.
87 * #define ROUND_BIASED for IEEE-format with biased rounding.
88 * #define Inaccurate_Divide for IEEE-format with correctly rounded
89 * products but inaccurate quotients, e.g., for Intel i860.
90 * #define NO_LONG_LONG on machines that do not have a "long long"
91 * integer type (of >= 64 bits). On such machines, you can
92 * #define Just_16 to store 16 bits per 32-bit Long when doing
93 * high-precision integer arithmetic. Whether this speeds things
94 * up or slows things down depends on the machine and the number
95 * being converted. If long long is available and the name is
96 * something other than "long long", #define Llong to be the name,
97 * and if "unsigned Llong" does not work as an unsigned version of
98 * Llong, #define #ULLong to be the corresponding unsigned type.
99 * #define KR_headers for old-style C function headers.
100 * #define Bad_float_h if your system lacks a float.h or if it does not
101 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
102 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
103 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
104 * if memory is available and otherwise does something you deem
105 * appropriate. If MALLOC is undefined, malloc will be invoked
106 * directly -- and assumed always to succeed. Similarly, if you
107 * want something other than the system's free() to be called to
108 * recycle memory acquired from MALLOC, #define FREE to be the
109 * name of the alternate routine. (FREE or free is only called in
110 * pathological cases, e.g., in a dtoa call after a dtoa return in
111 * mode 3 with thousands of digits requested.)
112 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
113 * memory allocations from a private pool of memory when possible.
114 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
115 * unless #defined to be a different length. This default length
116 * suffices to get rid of MALLOC calls except for unusual cases,
117 * such as decimal-to-binary conversion of a very long string of
118 * digits. The longest string dtoa can return is about 751 bytes
119 * long. For conversions by strtod of strings of 800 digits and
120 * all dtoa conversions in single-threaded executions with 8-byte
121 * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
122 * pointers, PRIVATE_MEM >= 7112 appears adequate.
123 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
124 * #defined automatically on IEEE systems. On such systems,
125 * when INFNAN_CHECK is #defined, strtod checks
126 * for Infinity and NaN (case insensitively). On some systems
127 * (e.g., some HP systems), it may be necessary to #define NAN_WORD0
128 * appropriately -- to the most significant word of a quiet NaN.
129 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
130 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
131 * strtod also accepts (case insensitively) strings of the form
132 * NaN(x), where x is a string of hexadecimal digits and spaces;
133 * if there is only one string of hexadecimal digits, it is taken
134 * for the 52 fraction bits of the resulting NaN; if there are two
135 * or more strings of hex digits, the first is for the high 20 bits,
136 * the second and subsequent for the low 32 bits, with intervening
137 * white space ignored; but if this results in none of the 52
138 * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
139 * and NAN_WORD1 are used instead.
140 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
141 * multiple threads. In this case, you must provide (or suitably
142 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
143 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
144 * in pow5mult, ensures lazy evaluation of only one copy of high
145 * powers of 5; omitting this lock would introduce a small
146 * probability of wasting memory, but would otherwise be harmless.)
147 * You must also invoke freedtoa(s) to free the value s returned by
148 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
149 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
150 * avoids underflows on inputs whose result does not underflow.
151 * If you #define NO_IEEE_Scale on a machine that uses IEEE-format
152 * floating-point numbers and flushes underflows to zero rather
153 * than implementing gradual underflow, then you must also #define
154 * Sudden_Underflow.
155 * #define USE_LOCALE to use the current locale's decimal_point value.
156 * #define SET_INEXACT if IEEE arithmetic is being used and extra
157 * computation should be done to set the inexact flag when the
158 * result is inexact and avoid setting inexact when the result
159 * is exact. In this case, dtoa.c must be compiled in
160 * an environment, perhaps provided by #include "dtoa.c" in a
161 * suitable wrapper, that defines two functions,
162 * int get_inexact(void);
163 * void clear_inexact(void);
164 * such that get_inexact() returns a nonzero value if the
165 * inexact bit is already set, and clear_inexact() sets the
166 * inexact bit to 0. When SET_INEXACT is #defined, strtod
167 * also does extra computations to set the underflow and overflow
168 * flags when appropriate (i.e., when the result is tiny and
169 * inexact or when it is a numeric value rounded to +-infinity).
170 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
171 * the result overflows to +-Infinity or underflows to 0.
172 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
173 * values by strtod.
174 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
175 * to disable logic for "fast" testing of very long input strings
176 * to strtod. This testing proceeds by initially truncating the
177 * input string, then if necessary comparing the whole string with
178 * a decimal expansion to decide close cases. This logic is only
179 * used for input more than STRTOD_DIGLIM digits long (default 40).
182 #define IEEE_8087
183 #define NO_HEX_FP
185 #ifndef Long
186 #if __LP64__
187 #define Long int
188 #else
189 #define Long long
190 #endif
191 #endif
192 #ifndef ULong
193 typedef unsigned Long ULong;
194 #endif
196 #ifdef DEBUG
197 #include "stdio.h"
198 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
199 #endif
201 #include "stdlib.h"
202 #include "string.h"
204 #ifdef USE_LOCALE
205 #include "locale.h"
206 #endif
208 #ifdef Honor_FLT_ROUNDS
209 #ifndef Trust_FLT_ROUNDS
210 #include <fenv.h>
211 #endif
212 #endif
214 #ifdef MALLOC
215 #ifdef KR_headers
216 extern char *MALLOC();
217 #else
218 extern void *MALLOC(size_t);
219 #endif
220 #else
221 #define MALLOC malloc
222 #endif
224 #ifndef Omit_Private_Memory
225 #ifndef PRIVATE_MEM
226 #define PRIVATE_MEM 2304
227 #endif
228 #define PRIVATE_mem ((unsigned)((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)))
229 static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
230 #endif
232 #undef IEEE_Arith
233 #undef Avoid_Underflow
234 #ifdef IEEE_MC68k
235 #define IEEE_Arith
236 #endif
237 #ifdef IEEE_8087
238 #define IEEE_Arith
239 #endif
241 #ifdef IEEE_Arith
242 #ifndef NO_INFNAN_CHECK
243 #undef INFNAN_CHECK
244 #define INFNAN_CHECK
245 #endif
246 #else
247 #undef INFNAN_CHECK
248 #define NO_STRTOD_BIGCOMP
249 #endif
251 #include "errno.h"
253 #ifdef Bad_float_h
255 #ifdef IEEE_Arith
256 #define DBL_DIG 15
257 #define DBL_MAX_10_EXP 308
258 #define DBL_MAX_EXP 1024
259 #define FLT_RADIX 2
260 #endif /*IEEE_Arith*/
262 #ifdef IBM
263 #define DBL_DIG 16
264 #define DBL_MAX_10_EXP 75
265 #define DBL_MAX_EXP 63
266 #define FLT_RADIX 16
267 #define DBL_MAX 7.2370055773322621e+75
268 #endif
270 #ifdef VAX
271 #define DBL_DIG 16
272 #define DBL_MAX_10_EXP 38
273 #define DBL_MAX_EXP 127
274 #define FLT_RADIX 2
275 #define DBL_MAX 1.7014118346046923e+38
276 #endif
278 #ifndef LONG_MAX
279 #define LONG_MAX 2147483647
280 #endif
282 #else /* ifndef Bad_float_h */
283 #include "float.h"
284 #endif /* Bad_float_h */
286 #ifndef __MATH_H__
287 #include "math.h"
288 #endif
290 namespace dmg_fp {
292 #ifndef CONST
293 #ifdef KR_headers
294 #define CONST /* blank */
295 #else
296 #define CONST const
297 #endif
298 #endif
300 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
301 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
302 #endif
304 typedef union { double d; ULong L[2]; } U;
306 #ifdef IEEE_8087
307 #define word0(x) (x)->L[1]
308 #define word1(x) (x)->L[0]
309 #else
310 #define word0(x) (x)->L[0]
311 #define word1(x) (x)->L[1]
312 #endif
313 #define dval(x) (x)->d
315 #ifndef STRTOD_DIGLIM
316 #define STRTOD_DIGLIM 40
317 #endif
319 #ifdef DIGLIM_DEBUG
320 extern int strtod_diglim;
321 #else
322 #define strtod_diglim STRTOD_DIGLIM
323 #endif
325 /* The following definition of Storeinc is appropriate for MIPS processors.
326 * An alternative that might be better on some machines is
327 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
329 #if defined(IEEE_8087) + defined(VAX)
330 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
331 ((unsigned short *)a)[0] = (unsigned short)c, a++)
332 #else
333 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
334 ((unsigned short *)a)[1] = (unsigned short)c, a++)
335 #endif
337 /* #define P DBL_MANT_DIG */
338 /* Ten_pmax = floor(P*log(2)/log(5)) */
339 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
340 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
341 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
343 #ifdef IEEE_Arith
344 #define Exp_shift 20
345 #define Exp_shift1 20
346 #define Exp_msk1 0x100000
347 #define Exp_msk11 0x100000
348 #define Exp_mask 0x7ff00000
349 #define P 53
350 #define Nbits 53
351 #define Bias 1023
352 #define Emax 1023
353 #define Emin (-1022)
354 #define Exp_1 0x3ff00000
355 #define Exp_11 0x3ff00000
356 #define Ebits 11
357 #define Frac_mask 0xfffff
358 #define Frac_mask1 0xfffff
359 #define Ten_pmax 22
360 #define Bletch 0x10
361 #define Bndry_mask 0xfffff
362 #define Bndry_mask1 0xfffff
363 #define LSB 1
364 #define Sign_bit 0x80000000
365 #define Log2P 1
366 #define Tiny0 0
367 #define Tiny1 1
368 #define Quick_max 14
369 #define Int_max 14
370 #ifndef NO_IEEE_Scale
371 #define Avoid_Underflow
372 #ifdef Flush_Denorm /* debugging option */
373 #undef Sudden_Underflow
374 #endif
375 #endif
377 #ifndef Flt_Rounds
378 #ifdef FLT_ROUNDS
379 #define Flt_Rounds FLT_ROUNDS
380 #else
381 #define Flt_Rounds 1
382 #endif
383 #endif /*Flt_Rounds*/
385 #ifdef Honor_FLT_ROUNDS
386 #undef Check_FLT_ROUNDS
387 #define Check_FLT_ROUNDS
388 #else
389 #define Rounding Flt_Rounds
390 #endif
392 #else /* ifndef IEEE_Arith */
393 #undef Check_FLT_ROUNDS
394 #undef Honor_FLT_ROUNDS
395 #undef SET_INEXACT
396 #undef Sudden_Underflow
397 #define Sudden_Underflow
398 #ifdef IBM
399 #undef Flt_Rounds
400 #define Flt_Rounds 0
401 #define Exp_shift 24
402 #define Exp_shift1 24
403 #define Exp_msk1 0x1000000
404 #define Exp_msk11 0x1000000
405 #define Exp_mask 0x7f000000
406 #define P 14
407 #define Nbits 56
408 #define Bias 65
409 #define Emax 248
410 #define Emin (-260)
411 #define Exp_1 0x41000000
412 #define Exp_11 0x41000000
413 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
414 #define Frac_mask 0xffffff
415 #define Frac_mask1 0xffffff
416 #define Bletch 4
417 #define Ten_pmax 22
418 #define Bndry_mask 0xefffff
419 #define Bndry_mask1 0xffffff
420 #define LSB 1
421 #define Sign_bit 0x80000000
422 #define Log2P 4
423 #define Tiny0 0x100000
424 #define Tiny1 0
425 #define Quick_max 14
426 #define Int_max 15
427 #else /* VAX */
428 #undef Flt_Rounds
429 #define Flt_Rounds 1
430 #define Exp_shift 23
431 #define Exp_shift1 7
432 #define Exp_msk1 0x80
433 #define Exp_msk11 0x800000
434 #define Exp_mask 0x7f80
435 #define P 56
436 #define Nbits 56
437 #define Bias 129
438 #define Emax 126
439 #define Emin (-129)
440 #define Exp_1 0x40800000
441 #define Exp_11 0x4080
442 #define Ebits 8
443 #define Frac_mask 0x7fffff
444 #define Frac_mask1 0xffff007f
445 #define Ten_pmax 24
446 #define Bletch 2
447 #define Bndry_mask 0xffff007f
448 #define Bndry_mask1 0xffff007f
449 #define LSB 0x10000
450 #define Sign_bit 0x8000
451 #define Log2P 1
452 #define Tiny0 0x80
453 #define Tiny1 0
454 #define Quick_max 15
455 #define Int_max 15
456 #endif /* IBM, VAX */
457 #endif /* IEEE_Arith */
459 #ifndef IEEE_Arith
460 #define ROUND_BIASED
461 #endif
463 #ifdef RND_PRODQUOT
464 #define rounded_product(a,b) a = rnd_prod(a, b)
465 #define rounded_quotient(a,b) a = rnd_quot(a, b)
466 #ifdef KR_headers
467 extern double rnd_prod(), rnd_quot();
468 #else
469 extern double rnd_prod(double, double), rnd_quot(double, double);
470 #endif
471 #else
472 #define rounded_product(a,b) a *= b
473 #define rounded_quotient(a,b) a /= b
474 #endif
476 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
477 #define Big1 0xffffffff
479 #ifndef Pack_32
480 #define Pack_32
481 #endif
483 typedef struct BCinfo BCinfo;
484 struct
485 BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
487 #ifdef KR_headers
488 #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
489 #else
490 #define FFFFFFFF 0xffffffffUL
491 #endif
493 #ifdef NO_LONG_LONG
494 #undef ULLong
495 #ifdef Just_16
496 #undef Pack_32
497 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
498 * This makes some inner loops simpler and sometimes saves work
499 * during multiplications, but it often seems to make things slightly
500 * slower. Hence the default is now to store 32 bits per Long.
502 #endif
503 #else /* long long available */
504 #ifndef Llong
505 #define Llong long long
506 #endif
507 #ifndef ULLong
508 #define ULLong unsigned Llong
509 #endif
510 #endif /* NO_LONG_LONG */
512 #ifndef MULTIPLE_THREADS
513 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
514 #define FREE_DTOA_LOCK(n) /*nothing*/
515 #endif
517 #define Kmax 7
519 double strtod(const char *s00, char **se);
520 char *dtoa(double d, int mode, int ndigits,
521 int *decpt, int *sign, char **rve);
523 struct
524 Bigint {
525 struct Bigint *next;
526 int k, maxwds, sign, wds;
527 ULong x[1];
530 typedef struct Bigint Bigint;
532 static Bigint *freelist[Kmax+1];
534 static Bigint *
535 Balloc
536 #ifdef KR_headers
537 (k) int k;
538 #else
539 (int k)
540 #endif
542 int x;
543 Bigint *rv;
544 #ifndef Omit_Private_Memory
545 unsigned int len;
546 #endif
548 ACQUIRE_DTOA_LOCK(0);
549 /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
550 /* but this case seems very unlikely. */
551 if (k <= Kmax && freelist[k]) {
552 rv = freelist[k];
553 freelist[k] = rv->next;
555 else {
556 x = 1 << k;
557 #ifdef Omit_Private_Memory
558 rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
559 #else
560 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
561 /sizeof(double);
562 if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
563 rv = (Bigint*)pmem_next;
564 pmem_next += len;
566 else
567 rv = (Bigint*)MALLOC(len*sizeof(double));
568 #endif
569 rv->k = k;
570 rv->maxwds = x;
572 FREE_DTOA_LOCK(0);
573 rv->sign = rv->wds = 0;
574 return rv;
577 static void
578 Bfree
579 #ifdef KR_headers
580 (v) Bigint *v;
581 #else
582 (Bigint *v)
583 #endif
585 if (v) {
586 if (v->k > Kmax)
587 #ifdef FREE
588 FREE((void*)v);
589 #else
590 free((void*)v);
591 #endif
592 else {
593 ACQUIRE_DTOA_LOCK(0);
594 v->next = freelist[v->k];
595 freelist[v->k] = v;
596 FREE_DTOA_LOCK(0);
601 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
602 y->wds*sizeof(Long) + 2*sizeof(int))
604 static Bigint *
605 multadd
606 #ifdef KR_headers
607 (b, m, a) Bigint *b; int m, a;
608 #else
609 (Bigint *b, int m, int a) /* multiply by m and add a */
610 #endif
612 int i, wds;
613 #ifdef ULLong
614 ULong *x;
615 ULLong carry, y;
616 #else
617 ULong carry, *x, y;
618 #ifdef Pack_32
619 ULong xi, z;
620 #endif
621 #endif
622 Bigint *b1;
624 wds = b->wds;
625 x = b->x;
626 i = 0;
627 carry = a;
628 do {
629 #ifdef ULLong
630 y = *x * (ULLong)m + carry;
631 carry = y >> 32;
632 *x++ = y & FFFFFFFF;
633 #else
634 #ifdef Pack_32
635 xi = *x;
636 y = (xi & 0xffff) * m + carry;
637 z = (xi >> 16) * m + (y >> 16);
638 carry = z >> 16;
639 *x++ = (z << 16) + (y & 0xffff);
640 #else
641 y = *x * m + carry;
642 carry = y >> 16;
643 *x++ = y & 0xffff;
644 #endif
645 #endif
647 while(++i < wds);
648 if (carry) {
649 if (wds >= b->maxwds) {
650 b1 = Balloc(b->k+1);
651 Bcopy(b1, b);
652 Bfree(b);
653 b = b1;
655 b->x[wds++] = (ULong)carry;
656 b->wds = wds;
658 return b;
661 static Bigint *
663 #ifdef KR_headers
664 (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
665 #else
666 (CONST char *s, int nd0, int nd, ULong y9, int dplen)
667 #endif
669 Bigint *b;
670 int i, k;
671 Long x, y;
673 x = (nd + 8) / 9;
674 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
675 #ifdef Pack_32
676 b = Balloc(k);
677 b->x[0] = y9;
678 b->wds = 1;
679 #else
680 b = Balloc(k+1);
681 b->x[0] = y9 & 0xffff;
682 b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
683 #endif
685 i = 9;
686 if (9 < nd0) {
687 s += 9;
688 do b = multadd(b, 10, *s++ - '0');
689 while(++i < nd0);
690 s += dplen;
692 else
693 s += dplen + 9;
694 for(; i < nd; i++)
695 b = multadd(b, 10, *s++ - '0');
696 return b;
699 static int
700 hi0bits
701 #ifdef KR_headers
702 (x) ULong x;
703 #else
704 (ULong x)
705 #endif
707 int k = 0;
709 if (!(x & 0xffff0000)) {
710 k = 16;
711 x <<= 16;
713 if (!(x & 0xff000000)) {
714 k += 8;
715 x <<= 8;
717 if (!(x & 0xf0000000)) {
718 k += 4;
719 x <<= 4;
721 if (!(x & 0xc0000000)) {
722 k += 2;
723 x <<= 2;
725 if (!(x & 0x80000000)) {
726 k++;
727 if (!(x & 0x40000000))
728 return 32;
730 return k;
733 static int
734 lo0bits
735 #ifdef KR_headers
736 (y) ULong *y;
737 #else
738 (ULong *y)
739 #endif
741 int k;
742 ULong x = *y;
744 if (x & 7) {
745 if (x & 1)
746 return 0;
747 if (x & 2) {
748 *y = x >> 1;
749 return 1;
751 *y = x >> 2;
752 return 2;
754 k = 0;
755 if (!(x & 0xffff)) {
756 k = 16;
757 x >>= 16;
759 if (!(x & 0xff)) {
760 k += 8;
761 x >>= 8;
763 if (!(x & 0xf)) {
764 k += 4;
765 x >>= 4;
767 if (!(x & 0x3)) {
768 k += 2;
769 x >>= 2;
771 if (!(x & 1)) {
772 k++;
773 x >>= 1;
774 if (!x)
775 return 32;
777 *y = x;
778 return k;
781 static Bigint *
783 #ifdef KR_headers
784 (i) int i;
785 #else
786 (int i)
787 #endif
789 Bigint *b;
791 b = Balloc(1);
792 b->x[0] = i;
793 b->wds = 1;
794 return b;
797 static Bigint *
798 mult
799 #ifdef KR_headers
800 (a, b) Bigint *a, *b;
801 #else
802 (Bigint *a, Bigint *b)
803 #endif
805 Bigint *c;
806 int k, wa, wb, wc;
807 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
808 ULong y;
809 #ifdef ULLong
810 ULLong carry, z;
811 #else
812 ULong carry, z;
813 #ifdef Pack_32
814 ULong z2;
815 #endif
816 #endif
818 if (a->wds < b->wds) {
819 c = a;
820 a = b;
821 b = c;
823 k = a->k;
824 wa = a->wds;
825 wb = b->wds;
826 wc = wa + wb;
827 if (wc > a->maxwds)
828 k++;
829 c = Balloc(k);
830 for(x = c->x, xa = x + wc; x < xa; x++)
831 *x = 0;
832 xa = a->x;
833 xae = xa + wa;
834 xb = b->x;
835 xbe = xb + wb;
836 xc0 = c->x;
837 #ifdef ULLong
838 for(; xb < xbe; xc0++) {
839 y = *xb++;
840 if (y) {
841 x = xa;
842 xc = xc0;
843 carry = 0;
844 do {
845 z = *x++ * (ULLong)y + *xc + carry;
846 carry = z >> 32;
847 *xc++ = z & FFFFFFFF;
849 while(x < xae);
850 *xc = (ULong)carry;
853 #else
854 #ifdef Pack_32
855 for(; xb < xbe; xb++, xc0++) {
856 if (y = *xb & 0xffff) {
857 x = xa;
858 xc = xc0;
859 carry = 0;
860 do {
861 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
862 carry = z >> 16;
863 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
864 carry = z2 >> 16;
865 Storeinc(xc, z2, z);
867 while(x < xae);
868 *xc = carry;
870 if (y = *xb >> 16) {
871 x = xa;
872 xc = xc0;
873 carry = 0;
874 z2 = *xc;
875 do {
876 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
877 carry = z >> 16;
878 Storeinc(xc, z, z2);
879 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
880 carry = z2 >> 16;
882 while(x < xae);
883 *xc = z2;
886 #else
887 for(; xb < xbe; xc0++) {
888 if (y = *xb++) {
889 x = xa;
890 xc = xc0;
891 carry = 0;
892 do {
893 z = *x++ * y + *xc + carry;
894 carry = z >> 16;
895 *xc++ = z & 0xffff;
897 while(x < xae);
898 *xc = carry;
901 #endif
902 #endif
903 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
904 c->wds = wc;
905 return c;
908 static Bigint *p5s;
910 static Bigint *
911 pow5mult
912 #ifdef KR_headers
913 (b, k) Bigint *b; int k;
914 #else
915 (Bigint *b, int k)
916 #endif
918 Bigint *b1, *p5, *p51;
919 int i;
920 static int p05[3] = { 5, 25, 125 };
922 i = k & 3;
923 if (i)
924 b = multadd(b, p05[i-1], 0);
926 if (!(k >>= 2))
927 return b;
928 p5 = p5s;
929 if (!p5) {
930 /* first time */
931 #ifdef MULTIPLE_THREADS
932 ACQUIRE_DTOA_LOCK(1);
933 p5 = p5s;
934 if (!p5) {
935 p5 = p5s = i2b(625);
936 p5->next = 0;
938 FREE_DTOA_LOCK(1);
939 #else
940 p5 = p5s = i2b(625);
941 p5->next = 0;
942 #endif
944 for(;;) {
945 if (k & 1) {
946 b1 = mult(b, p5);
947 Bfree(b);
948 b = b1;
950 if (!(k >>= 1))
951 break;
952 p51 = p5->next;
953 if (!p51) {
954 #ifdef MULTIPLE_THREADS
955 ACQUIRE_DTOA_LOCK(1);
956 p51 = p5->next;
957 if (!p51) {
958 p51 = p5->next = mult(p5,p5);
959 p51->next = 0;
961 FREE_DTOA_LOCK(1);
962 #else
963 p51 = p5->next = mult(p5,p5);
964 p51->next = 0;
965 #endif
967 p5 = p51;
969 return b;
972 static Bigint *
973 lshift
974 #ifdef KR_headers
975 (b, k) Bigint *b; int k;
976 #else
977 (Bigint *b, int k)
978 #endif
980 int i, k1, n, n1;
981 Bigint *b1;
982 ULong *x, *x1, *xe, z;
984 #ifdef Pack_32
985 n = k >> 5;
986 #else
987 n = k >> 4;
988 #endif
989 k1 = b->k;
990 n1 = n + b->wds + 1;
991 for(i = b->maxwds; n1 > i; i <<= 1)
992 k1++;
993 b1 = Balloc(k1);
994 x1 = b1->x;
995 for(i = 0; i < n; i++)
996 *x1++ = 0;
997 x = b->x;
998 xe = x + b->wds;
999 #ifdef Pack_32
1000 if (k &= 0x1f) {
1001 k1 = 32 - k;
1002 z = 0;
1003 do {
1004 *x1++ = *x << k | z;
1005 z = *x++ >> k1;
1007 while(x < xe);
1008 *x1 = z;
1009 if (*x1)
1010 ++n1;
1012 #else
1013 if (k &= 0xf) {
1014 k1 = 16 - k;
1015 z = 0;
1016 do {
1017 *x1++ = *x << k & 0xffff | z;
1018 z = *x++ >> k1;
1020 while(x < xe);
1021 if (*x1 = z)
1022 ++n1;
1024 #endif
1025 else do
1026 *x1++ = *x++;
1027 while(x < xe);
1028 b1->wds = n1 - 1;
1029 Bfree(b);
1030 return b1;
1033 static int
1035 #ifdef KR_headers
1036 (a, b) Bigint *a, *b;
1037 #else
1038 (Bigint *a, Bigint *b)
1039 #endif
1041 ULong *xa, *xa0, *xb, *xb0;
1042 int i, j;
1044 i = a->wds;
1045 j = b->wds;
1046 #ifdef DEBUG
1047 if (i > 1 && !a->x[i-1])
1048 Bug("cmp called with a->x[a->wds-1] == 0");
1049 if (j > 1 && !b->x[j-1])
1050 Bug("cmp called with b->x[b->wds-1] == 0");
1051 #endif
1052 if (i -= j)
1053 return i;
1054 xa0 = a->x;
1055 xa = xa0 + j;
1056 xb0 = b->x;
1057 xb = xb0 + j;
1058 for(;;) {
1059 if (*--xa != *--xb)
1060 return *xa < *xb ? -1 : 1;
1061 if (xa <= xa0)
1062 break;
1064 return 0;
1067 static Bigint *
1068 diff
1069 #ifdef KR_headers
1070 (a, b) Bigint *a, *b;
1071 #else
1072 (Bigint *a, Bigint *b)
1073 #endif
1075 Bigint *c;
1076 int i, wa, wb;
1077 ULong *xa, *xae, *xb, *xbe, *xc;
1078 #ifdef ULLong
1079 ULLong borrow, y;
1080 #else
1081 ULong borrow, y;
1082 #ifdef Pack_32
1083 ULong z;
1084 #endif
1085 #endif
1087 i = cmp(a,b);
1088 if (!i) {
1089 c = Balloc(0);
1090 c->wds = 1;
1091 c->x[0] = 0;
1092 return c;
1094 if (i < 0) {
1095 c = a;
1096 a = b;
1097 b = c;
1098 i = 1;
1100 else
1101 i = 0;
1102 c = Balloc(a->k);
1103 c->sign = i;
1104 wa = a->wds;
1105 xa = a->x;
1106 xae = xa + wa;
1107 wb = b->wds;
1108 xb = b->x;
1109 xbe = xb + wb;
1110 xc = c->x;
1111 borrow = 0;
1112 #ifdef ULLong
1113 do {
1114 y = (ULLong)*xa++ - *xb++ - borrow;
1115 borrow = y >> 32 & (ULong)1;
1116 *xc++ = y & FFFFFFFF;
1118 while(xb < xbe);
1119 while(xa < xae) {
1120 y = *xa++ - borrow;
1121 borrow = y >> 32 & (ULong)1;
1122 *xc++ = y & FFFFFFFF;
1124 #else
1125 #ifdef Pack_32
1126 do {
1127 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1128 borrow = (y & 0x10000) >> 16;
1129 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1130 borrow = (z & 0x10000) >> 16;
1131 Storeinc(xc, z, y);
1133 while(xb < xbe);
1134 while(xa < xae) {
1135 y = (*xa & 0xffff) - borrow;
1136 borrow = (y & 0x10000) >> 16;
1137 z = (*xa++ >> 16) - borrow;
1138 borrow = (z & 0x10000) >> 16;
1139 Storeinc(xc, z, y);
1141 #else
1142 do {
1143 y = *xa++ - *xb++ - borrow;
1144 borrow = (y & 0x10000) >> 16;
1145 *xc++ = y & 0xffff;
1147 while(xb < xbe);
1148 while(xa < xae) {
1149 y = *xa++ - borrow;
1150 borrow = (y & 0x10000) >> 16;
1151 *xc++ = y & 0xffff;
1153 #endif
1154 #endif
1155 while(!*--xc)
1156 wa--;
1157 c->wds = wa;
1158 return c;
1161 static double
1163 #ifdef KR_headers
1164 (x) U *x;
1165 #else
1166 (U *x)
1167 #endif
1169 Long L;
1170 U u;
1172 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1173 #ifndef Avoid_Underflow
1174 #ifndef Sudden_Underflow
1175 if (L > 0) {
1176 #endif
1177 #endif
1178 #ifdef IBM
1179 L |= Exp_msk1 >> 4;
1180 #endif
1181 word0(&u) = L;
1182 word1(&u) = 0;
1183 #ifndef Avoid_Underflow
1184 #ifndef Sudden_Underflow
1186 else {
1187 L = -L >> Exp_shift;
1188 if (L < Exp_shift) {
1189 word0(&u) = 0x80000 >> L;
1190 word1(&u) = 0;
1192 else {
1193 word0(&u) = 0;
1194 L -= Exp_shift;
1195 word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1198 #endif
1199 #endif
1200 return dval(&u);
1203 static double
1205 #ifdef KR_headers
1206 (a, e) Bigint *a; int *e;
1207 #else
1208 (Bigint *a, int *e)
1209 #endif
1211 ULong *xa, *xa0, w, y, z;
1212 int k;
1213 U d;
1214 #ifdef VAX
1215 ULong d0, d1;
1216 #else
1217 #define d0 word0(&d)
1218 #define d1 word1(&d)
1219 #endif
1221 xa0 = a->x;
1222 xa = xa0 + a->wds;
1223 y = *--xa;
1224 #ifdef DEBUG
1225 if (!y) Bug("zero y in b2d");
1226 #endif
1227 k = hi0bits(y);
1228 *e = 32 - k;
1229 #ifdef Pack_32
1230 if (k < Ebits) {
1231 d0 = Exp_1 | y >> (Ebits - k);
1232 w = xa > xa0 ? *--xa : 0;
1233 d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1234 goto ret_d;
1236 z = xa > xa0 ? *--xa : 0;
1237 if (k -= Ebits) {
1238 d0 = Exp_1 | y << k | z >> (32 - k);
1239 y = xa > xa0 ? *--xa : 0;
1240 d1 = z << k | y >> (32 - k);
1242 else {
1243 d0 = Exp_1 | y;
1244 d1 = z;
1246 #else
1247 if (k < Ebits + 16) {
1248 z = xa > xa0 ? *--xa : 0;
1249 d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1250 w = xa > xa0 ? *--xa : 0;
1251 y = xa > xa0 ? *--xa : 0;
1252 d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1253 goto ret_d;
1255 z = xa > xa0 ? *--xa : 0;
1256 w = xa > xa0 ? *--xa : 0;
1257 k -= Ebits + 16;
1258 d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1259 y = xa > xa0 ? *--xa : 0;
1260 d1 = w << k + 16 | y << k;
1261 #endif
1262 ret_d:
1263 #ifdef VAX
1264 word0(&d) = d0 >> 16 | d0 << 16;
1265 word1(&d) = d1 >> 16 | d1 << 16;
1266 #else
1267 #undef d0
1268 #undef d1
1269 #endif
1270 return dval(&d);
1273 static Bigint *
1275 #ifdef KR_headers
1276 (d, e, bits) U *d; int *e, *bits;
1277 #else
1278 (U *d, int *e, int *bits)
1279 #endif
1281 Bigint *b;
1282 int de, k;
1283 ULong *x, y, z;
1284 #ifndef Sudden_Underflow
1285 int i;
1286 #endif
1287 #ifdef VAX
1288 ULong d0, d1;
1289 d0 = word0(d) >> 16 | word0(d) << 16;
1290 d1 = word1(d) >> 16 | word1(d) << 16;
1291 #else
1292 #define d0 word0(d)
1293 #define d1 word1(d)
1294 #endif
1296 #ifdef Pack_32
1297 b = Balloc(1);
1298 #else
1299 b = Balloc(2);
1300 #endif
1301 x = b->x;
1303 z = d0 & Frac_mask;
1304 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1305 #ifdef Sudden_Underflow
1306 de = (int)(d0 >> Exp_shift);
1307 #ifndef IBM
1308 z |= Exp_msk11;
1309 #endif
1310 #else
1311 de = (int)(d0 >> Exp_shift);
1312 if (de)
1313 z |= Exp_msk1;
1314 #endif
1315 #ifdef Pack_32
1316 y = d1;
1317 if (y) {
1318 k = lo0bits(&y);
1319 if (k) {
1320 x[0] = y | z << (32 - k);
1321 z >>= k;
1323 else
1324 x[0] = y;
1325 x[1] = z;
1326 b->wds = x[1] ? 2 : 1;
1327 #ifndef Sudden_Underflow
1328 i = b->wds;
1329 #endif
1331 else {
1332 k = lo0bits(&z);
1333 x[0] = z;
1334 #ifndef Sudden_Underflow
1336 #endif
1337 b->wds = 1;
1338 k += 32;
1340 #else
1341 if (y = d1) {
1342 if (k = lo0bits(&y))
1343 if (k >= 16) {
1344 x[0] = y | z << 32 - k & 0xffff;
1345 x[1] = z >> k - 16 & 0xffff;
1346 x[2] = z >> k;
1347 i = 2;
1349 else {
1350 x[0] = y & 0xffff;
1351 x[1] = y >> 16 | z << 16 - k & 0xffff;
1352 x[2] = z >> k & 0xffff;
1353 x[3] = z >> k+16;
1354 i = 3;
1356 else {
1357 x[0] = y & 0xffff;
1358 x[1] = y >> 16;
1359 x[2] = z & 0xffff;
1360 x[3] = z >> 16;
1361 i = 3;
1364 else {
1365 #ifdef DEBUG
1366 if (!z)
1367 Bug("Zero passed to d2b");
1368 #endif
1369 k = lo0bits(&z);
1370 if (k >= 16) {
1371 x[0] = z;
1372 i = 0;
1374 else {
1375 x[0] = z & 0xffff;
1376 x[1] = z >> 16;
1377 i = 1;
1379 k += 32;
1381 while(!x[i])
1382 --i;
1383 b->wds = i + 1;
1384 #endif
1385 #ifndef Sudden_Underflow
1386 if (de) {
1387 #endif
1388 #ifdef IBM
1389 *e = (de - Bias - (P-1) << 2) + k;
1390 *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1391 #else
1392 *e = de - Bias - (P-1) + k;
1393 *bits = P - k;
1394 #endif
1395 #ifndef Sudden_Underflow
1397 else {
1398 *e = de - Bias - (P-1) + 1 + k;
1399 #ifdef Pack_32
1400 *bits = 32*i - hi0bits(x[i-1]);
1401 #else
1402 *bits = (i+2)*16 - hi0bits(x[i]);
1403 #endif
1405 #endif
1406 return b;
1408 #undef d0
1409 #undef d1
1411 static double
1412 ratio
1413 #ifdef KR_headers
1414 (a, b) Bigint *a, *b;
1415 #else
1416 (Bigint *a, Bigint *b)
1417 #endif
1419 U da, db;
1420 int k, ka, kb;
1422 dval(&da) = b2d(a, &ka);
1423 dval(&db) = b2d(b, &kb);
1424 #ifdef Pack_32
1425 k = ka - kb + 32*(a->wds - b->wds);
1426 #else
1427 k = ka - kb + 16*(a->wds - b->wds);
1428 #endif
1429 #ifdef IBM
1430 if (k > 0) {
1431 word0(&da) += (k >> 2)*Exp_msk1;
1432 if (k &= 3)
1433 dval(&da) *= 1 << k;
1435 else {
1436 k = -k;
1437 word0(&db) += (k >> 2)*Exp_msk1;
1438 if (k &= 3)
1439 dval(&db) *= 1 << k;
1441 #else
1442 if (k > 0)
1443 word0(&da) += k*Exp_msk1;
1444 else {
1445 k = -k;
1446 word0(&db) += k*Exp_msk1;
1448 #endif
1449 return dval(&da) / dval(&db);
1452 static CONST double
1453 tens[] = {
1454 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1455 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1456 1e20, 1e21, 1e22
1457 #ifdef VAX
1458 , 1e23, 1e24
1459 #endif
1462 static CONST double
1463 #ifdef IEEE_Arith
1464 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1465 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1466 #ifdef Avoid_Underflow
1467 9007199254740992.*9007199254740992.e-256
1468 /* = 2^106 * 1e-256 */
1469 #else
1470 1e-256
1471 #endif
1473 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1474 /* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1475 #define Scale_Bit 0x10
1476 #define n_bigtens 5
1477 #else
1478 #ifdef IBM
1479 bigtens[] = { 1e16, 1e32, 1e64 };
1480 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1481 #define n_bigtens 3
1482 #else
1483 bigtens[] = { 1e16, 1e32 };
1484 static CONST double tinytens[] = { 1e-16, 1e-32 };
1485 #define n_bigtens 2
1486 #endif
1487 #endif
1489 #undef Need_Hexdig
1490 #ifdef INFNAN_CHECK
1491 #ifndef No_Hex_NaN
1492 #define Need_Hexdig
1493 #endif
1494 #endif
1496 #ifndef Need_Hexdig
1497 #ifndef NO_HEX_FP
1498 #define Need_Hexdig
1499 #endif
1500 #endif
1502 #ifdef Need_Hexdig /*{*/
1503 static unsigned char hexdig[256];
1505 static void
1506 #ifdef KR_headers
1507 htinit(h, s, inc) unsigned char *h; unsigned char *s; int inc;
1508 #else
1509 htinit(unsigned char *h, unsigned char *s, int inc)
1510 #endif
1512 int i, j;
1513 for(i = 0; (j = s[i]) !=0; i++)
1514 h[j] = (unsigned char)(i + inc);
1517 static void
1518 #ifdef KR_headers
1519 hexdig_init()
1520 #else
1521 hexdig_init(void)
1522 #endif
1524 #define USC (unsigned char *)
1525 htinit(hexdig, USC "0123456789", 0x10);
1526 htinit(hexdig, USC "abcdef", 0x10 + 10);
1527 htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1529 #endif /* } Need_Hexdig */
1531 #ifdef INFNAN_CHECK
1533 #ifndef NAN_WORD0
1534 #define NAN_WORD0 0x7ff80000
1535 #endif
1537 #ifndef NAN_WORD1
1538 #define NAN_WORD1 0
1539 #endif
1541 static int
1542 match
1543 #ifdef KR_headers
1544 (sp, t) char **sp, *t;
1545 #else
1546 (CONST char **sp, CONST char *t)
1547 #endif
1549 int c, d;
1550 CONST char *s = *sp;
1552 for(d = *t++; d; d = *t++) {
1553 if ((c = *++s) >= 'A' && c <= 'Z')
1554 c += 'a' - 'A';
1555 if (c != d)
1556 return 0;
1558 *sp = s + 1;
1559 return 1;
1562 #ifndef No_Hex_NaN
1563 static void
1564 hexnan
1565 #ifdef KR_headers
1566 (rvp, sp) U *rvp; CONST char **sp;
1567 #else
1568 (U *rvp, CONST char **sp)
1569 #endif
1571 ULong c, x[2];
1572 CONST char *s;
1573 int c1, havedig, udx0, xshift;
1575 if (!hexdig['0'])
1576 hexdig_init();
1577 x[0] = x[1] = 0;
1578 havedig = xshift = 0;
1579 udx0 = 1;
1580 s = *sp;
1581 /* allow optional initial 0x or 0X */
1582 for(c = *(CONST unsigned char*)(s+1); c && c <= ' '; c = *(CONST unsigned char*)(s+1))
1583 ++s;
1584 if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1585 s += 2;
1586 for(c = *(CONST unsigned char*)++s; c; c = *(CONST unsigned char*)++s) {
1587 c1 = hexdig[c];
1588 if (c1)
1589 c = c1 & 0xf;
1590 else if (c <= ' ') {
1591 if (udx0 && havedig) {
1592 udx0 = 0;
1593 xshift = 1;
1595 continue;
1597 #ifdef GDTOA_NON_PEDANTIC_NANCHECK
1598 else if (/*(*/ c == ')' && havedig) {
1599 *sp = s + 1;
1600 break;
1602 else
1603 return; /* invalid form: don't change *sp */
1604 #else
1605 else {
1606 do {
1607 if (/*(*/ c == ')') {
1608 *sp = s + 1;
1609 break;
1611 c = *++s;
1612 } while(c);
1613 break;
1615 #endif
1616 havedig = 1;
1617 if (xshift) {
1618 xshift = 0;
1619 x[0] = x[1];
1620 x[1] = 0;
1622 if (udx0)
1623 x[0] = (x[0] << 4) | (x[1] >> 28);
1624 x[1] = (x[1] << 4) | c;
1626 if ((x[0] &= 0xfffff) || x[1]) {
1627 word0(rvp) = Exp_mask | x[0];
1628 word1(rvp) = x[1];
1631 #endif /*No_Hex_NaN*/
1632 #endif /* INFNAN_CHECK */
1634 #ifdef Pack_32
1635 #define ULbits 32
1636 #define kshift 5
1637 #define kmask 31
1638 #else
1639 #define ULbits 16
1640 #define kshift 4
1641 #define kmask 15
1642 #endif
1643 #ifndef NO_HEX_FP /*{*/
1645 static void
1646 #ifdef KR_headers
1647 rshift(b, k) Bigint *b; int k;
1648 #else
1649 rshift(Bigint *b, int k)
1650 #endif
1652 ULong *x, *x1, *xe, y;
1653 int n;
1655 x = x1 = b->x;
1656 n = k >> kshift;
1657 if (n < b->wds) {
1658 xe = x + b->wds;
1659 x += n;
1660 if (k &= kmask) {
1661 n = 32 - k;
1662 y = *x++ >> k;
1663 while(x < xe) {
1664 *x1++ = (y | (*x << n)) & 0xffffffff;
1665 y = *x++ >> k;
1667 if ((*x1 = y) !=0)
1668 x1++;
1670 else
1671 while(x < xe)
1672 *x1++ = *x++;
1674 if ((b->wds = x1 - b->x) == 0)
1675 b->x[0] = 0;
1678 static ULong
1679 #ifdef KR_headers
1680 any_on(b, k) Bigint *b; int k;
1681 #else
1682 any_on(Bigint *b, int k)
1683 #endif
1685 int n, nwds;
1686 ULong *x, *x0, x1, x2;
1688 x = b->x;
1689 nwds = b->wds;
1690 n = k >> kshift;
1691 if (n > nwds)
1692 n = nwds;
1693 else if (n < nwds && (k &= kmask)) {
1694 x1 = x2 = x[n];
1695 x1 >>= k;
1696 x1 <<= k;
1697 if (x1 != x2)
1698 return 1;
1700 x0 = x;
1701 x += n;
1702 while(x > x0)
1703 if (*--x)
1704 return 1;
1705 return 0;
1708 enum { /* rounding values: same as FLT_ROUNDS */
1709 Round_zero = 0,
1710 Round_near = 1,
1711 Round_up = 2,
1712 Round_down = 3
1715 static Bigint *
1716 #ifdef KR_headers
1717 increment(b) Bigint *b;
1718 #else
1719 increment(Bigint *b)
1720 #endif
1722 ULong *x, *xe;
1723 Bigint *b1;
1725 x = b->x;
1726 xe = x + b->wds;
1727 do {
1728 if (*x < (ULong)0xffffffffL) {
1729 ++*x;
1730 return b;
1732 *x++ = 0;
1733 } while(x < xe);
1735 if (b->wds >= b->maxwds) {
1736 b1 = Balloc(b->k+1);
1737 Bcopy(b1,b);
1738 Bfree(b);
1739 b = b1;
1741 b->x[b->wds++] = 1;
1743 return b;
1746 void
1747 #ifdef KR_headers
1748 gethex(sp, rvp, rounding, sign)
1749 CONST char **sp; U *rvp; int rounding, sign;
1750 #else
1751 gethex( CONST char **sp, U *rvp, int rounding, int sign)
1752 #endif
1754 Bigint *b;
1755 CONST unsigned char *decpt, *s0, *s, *s1;
1756 Long e, e1;
1757 ULong L, lostbits, *x;
1758 int big, denorm, esign, havedig, k, n, nbits, up, zret;
1759 #ifdef IBM
1760 int j;
1761 #endif
1762 enum {
1763 #ifdef IEEE_Arith /*{{*/
1764 emax = 0x7fe - Bias - P + 1,
1765 emin = Emin - P + 1
1766 #else /*}{*/
1767 emin = Emin - P,
1768 #ifdef VAX
1769 emax = 0x7ff - Bias - P + 1
1770 #endif
1771 #ifdef IBM
1772 emax = 0x7f - Bias - P
1773 #endif
1774 #endif /*}}*/
1776 #ifdef USE_LOCALE
1777 int i;
1778 #ifdef NO_LOCALE_CACHE
1779 const unsigned char *decimalpoint = (unsigned char*)
1780 localeconv()->decimal_point;
1781 #else
1782 const unsigned char *decimalpoint;
1783 static unsigned char *decimalpoint_cache;
1784 if (!(s0 = decimalpoint_cache)) {
1785 s0 = (unsigned char*)localeconv()->decimal_point;
1786 if ((decimalpoint_cache = (unsigned char*)
1787 MALLOC(strlen((CONST char*)s0) + 1))) {
1788 strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1789 s0 = decimalpoint_cache;
1792 decimalpoint = s0;
1793 #endif
1794 #endif
1796 if (!hexdig['0'])
1797 hexdig_init();
1798 havedig = 0;
1799 s0 = *(CONST unsigned char **)sp + 2;
1800 while(s0[havedig] == '0')
1801 havedig++;
1802 s0 += havedig;
1803 s = s0;
1804 decpt = 0;
1805 zret = 0;
1806 e = 0;
1807 if (hexdig[*s])
1808 havedig++;
1809 else {
1810 zret = 1;
1811 #ifdef USE_LOCALE
1812 for(i = 0; decimalpoint[i]; ++i) {
1813 if (s[i] != decimalpoint[i])
1814 goto pcheck;
1816 decpt = s += i;
1817 #else
1818 if (*s != '.')
1819 goto pcheck;
1820 decpt = ++s;
1821 #endif
1822 if (!hexdig[*s])
1823 goto pcheck;
1824 while(*s == '0')
1825 s++;
1826 if (hexdig[*s])
1827 zret = 0;
1828 havedig = 1;
1829 s0 = s;
1831 while(hexdig[*s])
1832 s++;
1833 #ifdef USE_LOCALE
1834 if (*s == *decimalpoint && !decpt) {
1835 for(i = 1; decimalpoint[i]; ++i) {
1836 if (s[i] != decimalpoint[i])
1837 goto pcheck;
1839 decpt = s += i;
1840 #else
1841 if (*s == '.' && !decpt) {
1842 decpt = ++s;
1843 #endif
1844 while(hexdig[*s])
1845 s++;
1846 }/*}*/
1847 if (decpt)
1848 e = -(((Long)(s-decpt)) << 2);
1849 pcheck:
1850 s1 = s;
1851 big = esign = 0;
1852 switch(*s) {
1853 case 'p':
1854 case 'P':
1855 switch(*++s) {
1856 case '-':
1857 esign = 1;
1858 /* no break */
1859 case '+':
1860 s++;
1862 if ((n = hexdig[*s]) == 0 || n > 0x19) {
1863 s = s1;
1864 break;
1866 e1 = n - 0x10;
1867 while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1868 if (e1 & 0xf8000000)
1869 big = 1;
1870 e1 = 10*e1 + n - 0x10;
1872 if (esign)
1873 e1 = -e1;
1874 e += e1;
1876 *sp = (char*)s;
1877 if (!havedig)
1878 *sp = (char*)s0 - 1;
1879 if (zret)
1880 goto retz1;
1881 if (big) {
1882 if (esign) {
1883 #ifdef IEEE_Arith
1884 switch(rounding) {
1885 case Round_up:
1886 if (sign)
1887 break;
1888 goto ret_tiny;
1889 case Round_down:
1890 if (!sign)
1891 break;
1892 goto ret_tiny;
1894 #endif
1895 goto retz;
1896 #ifdef IEEE_Arith
1897 ret_tiny:
1898 #ifndef NO_ERRNO
1899 errno = ERANGE;
1900 #endif
1901 word0(rvp) = 0;
1902 word1(rvp) = 1;
1903 return;
1904 #endif /* IEEE_Arith */
1906 switch(rounding) {
1907 case Round_near:
1908 goto ovfl1;
1909 case Round_up:
1910 if (!sign)
1911 goto ovfl1;
1912 goto ret_big;
1913 case Round_down:
1914 if (sign)
1915 goto ovfl1;
1916 goto ret_big;
1918 ret_big:
1919 word0(rvp) = Big0;
1920 word1(rvp) = Big1;
1921 return;
1923 n = s1 - s0 - 1;
1924 for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1925 k++;
1926 b = Balloc(k);
1927 x = b->x;
1928 n = 0;
1929 L = 0;
1930 #ifdef USE_LOCALE
1931 for(i = 0; decimalpoint[i+1]; ++i);
1932 #endif
1933 while(s1 > s0) {
1934 #ifdef USE_LOCALE
1935 if (*--s1 == decimalpoint[i]) {
1936 s1 -= i;
1937 continue;
1939 #else
1940 if (*--s1 == '.')
1941 continue;
1942 #endif
1943 if (n == ULbits) {
1944 *x++ = L;
1945 L = 0;
1946 n = 0;
1948 L |= (hexdig[*s1] & 0x0f) << n;
1949 n += 4;
1951 *x++ = L;
1952 b->wds = n = x - b->x;
1953 n = ULbits*n - hi0bits(L);
1954 nbits = Nbits;
1955 lostbits = 0;
1956 x = b->x;
1957 if (n > nbits) {
1958 n -= nbits;
1959 if (any_on(b,n)) {
1960 lostbits = 1;
1961 k = n - 1;
1962 if (x[k>>kshift] & 1 << (k & kmask)) {
1963 lostbits = 2;
1964 if (k > 0 && any_on(b,k))
1965 lostbits = 3;
1968 rshift(b, n);
1969 e += n;
1971 else if (n < nbits) {
1972 n = nbits - n;
1973 b = lshift(b, n);
1974 e -= n;
1975 x = b->x;
1977 if (e > Emax) {
1978 ovfl:
1979 Bfree(b);
1980 ovfl1:
1981 #ifndef NO_ERRNO
1982 errno = ERANGE;
1983 #endif
1984 word0(rvp) = Exp_mask;
1985 word1(rvp) = 0;
1986 return;
1988 denorm = 0;
1989 if (e < emin) {
1990 denorm = 1;
1991 n = emin - e;
1992 if (n >= nbits) {
1993 #ifdef IEEE_Arith /*{*/
1994 switch (rounding) {
1995 case Round_near:
1996 if (n == nbits && (n < 2 || any_on(b,n-1)))
1997 goto ret_tiny;
1998 break;
1999 case Round_up:
2000 if (!sign)
2001 goto ret_tiny;
2002 break;
2003 case Round_down:
2004 if (sign)
2005 goto ret_tiny;
2007 #endif /* } IEEE_Arith */
2008 Bfree(b);
2009 retz:
2010 #ifndef NO_ERRNO
2011 errno = ERANGE;
2012 #endif
2013 retz1:
2014 rvp->d = 0.;
2015 return;
2017 k = n - 1;
2018 if (lostbits)
2019 lostbits = 1;
2020 else if (k > 0)
2021 lostbits = any_on(b,k);
2022 if (x[k>>kshift] & 1 << (k & kmask))
2023 lostbits |= 2;
2024 nbits -= n;
2025 rshift(b,n);
2026 e = emin;
2028 if (lostbits) {
2029 up = 0;
2030 switch(rounding) {
2031 case Round_zero:
2032 break;
2033 case Round_near:
2034 if (lostbits & 2
2035 && (lostbits & 1) | (x[0] & 1))
2036 up = 1;
2037 break;
2038 case Round_up:
2039 up = 1 - sign;
2040 break;
2041 case Round_down:
2042 up = sign;
2044 if (up) {
2045 k = b->wds;
2046 b = increment(b);
2047 x = b->x;
2048 if (denorm) {
2049 #if 0
2050 if (nbits == Nbits - 1
2051 && x[nbits >> kshift] & 1 << (nbits & kmask))
2052 denorm = 0; /* not currently used */
2053 #endif
2055 else if (b->wds > k
2056 || ((n = nbits & kmask) !=0
2057 && hi0bits(x[k-1]) < 32-n)) {
2058 rshift(b,1);
2059 if (++e > Emax)
2060 goto ovfl;
2064 #ifdef IEEE_Arith
2065 if (denorm)
2066 word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2067 else
2068 word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2069 word1(rvp) = b->x[0];
2070 #endif
2071 #ifdef IBM
2072 if ((j = e & 3)) {
2073 k = b->x[0] & ((1 << j) - 1);
2074 rshift(b,j);
2075 if (k) {
2076 switch(rounding) {
2077 case Round_up:
2078 if (!sign)
2079 increment(b);
2080 break;
2081 case Round_down:
2082 if (sign)
2083 increment(b);
2084 break;
2085 case Round_near:
2086 j = 1 << (j-1);
2087 if (k & j && ((k & (j-1)) | lostbits))
2088 increment(b);
2092 e >>= 2;
2093 word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2094 word1(rvp) = b->x[0];
2095 #endif
2096 #ifdef VAX
2097 /* The next two lines ignore swap of low- and high-order 2 bytes. */
2098 /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2099 /* word1(rvp) = b->x[0]; */
2100 word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2101 word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2102 #endif
2103 Bfree(b);
2105 #endif /*}!NO_HEX_FP*/
2107 static int
2108 #ifdef KR_headers
2109 dshift(b, p2) Bigint *b; int p2;
2110 #else
2111 dshift(Bigint *b, int p2)
2112 #endif
2114 int rv = hi0bits(b->x[b->wds-1]) - 4;
2115 if (p2 > 0)
2116 rv -= p2;
2117 return rv & kmask;
2120 static int
2121 quorem
2122 #ifdef KR_headers
2123 (b, S) Bigint *b, *S;
2124 #else
2125 (Bigint *b, Bigint *S)
2126 #endif
2128 int n;
2129 ULong *bx, *bxe, q, *sx, *sxe;
2130 #ifdef ULLong
2131 ULLong borrow, carry, y, ys;
2132 #else
2133 ULong borrow, carry, y, ys;
2134 #ifdef Pack_32
2135 ULong si, z, zs;
2136 #endif
2137 #endif
2139 n = S->wds;
2140 #ifdef DEBUG
2141 /*debug*/ if (b->wds > n)
2142 /*debug*/ Bug("oversize b in quorem");
2143 #endif
2144 if (b->wds < n)
2145 return 0;
2146 sx = S->x;
2147 sxe = sx + --n;
2148 bx = b->x;
2149 bxe = bx + n;
2150 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
2151 #ifdef DEBUG
2152 /*debug*/ if (q > 9)
2153 /*debug*/ Bug("oversized quotient in quorem");
2154 #endif
2155 if (q) {
2156 borrow = 0;
2157 carry = 0;
2158 do {
2159 #ifdef ULLong
2160 ys = *sx++ * (ULLong)q + carry;
2161 carry = ys >> 32;
2162 y = *bx - (ys & FFFFFFFF) - borrow;
2163 borrow = y >> 32 & (ULong)1;
2164 *bx++ = y & FFFFFFFF;
2165 #else
2166 #ifdef Pack_32
2167 si = *sx++;
2168 ys = (si & 0xffff) * q + carry;
2169 zs = (si >> 16) * q + (ys >> 16);
2170 carry = zs >> 16;
2171 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2172 borrow = (y & 0x10000) >> 16;
2173 z = (*bx >> 16) - (zs & 0xffff) - borrow;
2174 borrow = (z & 0x10000) >> 16;
2175 Storeinc(bx, z, y);
2176 #else
2177 ys = *sx++ * q + carry;
2178 carry = ys >> 16;
2179 y = *bx - (ys & 0xffff) - borrow;
2180 borrow = (y & 0x10000) >> 16;
2181 *bx++ = y & 0xffff;
2182 #endif
2183 #endif
2185 while(sx <= sxe);
2186 if (!*bxe) {
2187 bx = b->x;
2188 while(--bxe > bx && !*bxe)
2189 --n;
2190 b->wds = n;
2193 if (cmp(b, S) >= 0) {
2194 q++;
2195 borrow = 0;
2196 carry = 0;
2197 bx = b->x;
2198 sx = S->x;
2199 do {
2200 #ifdef ULLong
2201 ys = *sx++ + carry;
2202 carry = ys >> 32;
2203 y = *bx - (ys & FFFFFFFF) - borrow;
2204 borrow = y >> 32 & (ULong)1;
2205 *bx++ = y & FFFFFFFF;
2206 #else
2207 #ifdef Pack_32
2208 si = *sx++;
2209 ys = (si & 0xffff) + carry;
2210 zs = (si >> 16) + (ys >> 16);
2211 carry = zs >> 16;
2212 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2213 borrow = (y & 0x10000) >> 16;
2214 z = (*bx >> 16) - (zs & 0xffff) - borrow;
2215 borrow = (z & 0x10000) >> 16;
2216 Storeinc(bx, z, y);
2217 #else
2218 ys = *sx++ + carry;
2219 carry = ys >> 16;
2220 y = *bx - (ys & 0xffff) - borrow;
2221 borrow = (y & 0x10000) >> 16;
2222 *bx++ = y & 0xffff;
2223 #endif
2224 #endif
2226 while(sx <= sxe);
2227 bx = b->x;
2228 bxe = bx + n;
2229 if (!*bxe) {
2230 while(--bxe > bx && !*bxe)
2231 --n;
2232 b->wds = n;
2235 return q;
2238 #ifndef NO_STRTOD_BIGCOMP
2240 static void
2241 bigcomp
2242 #ifdef KR_headers
2243 (rv, s0, bc)
2244 U *rv; CONST char *s0; BCinfo *bc;
2245 #else
2246 (U *rv, CONST char *s0, BCinfo *bc)
2247 #endif
2249 Bigint *b, *d;
2250 int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2252 dsign = bc->dsign;
2253 nd = bc->nd;
2254 nd0 = bc->nd0;
2255 p5 = nd + bc->e0 - 1;
2256 dd = speccase = 0;
2257 #ifndef Sudden_Underflow
2258 if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2259 /* threshold was rounded to zero */
2260 b = i2b(1);
2261 p2 = Emin - P + 1;
2262 bbits = 1;
2263 #ifdef Avoid_Underflow
2264 word0(rv) = (P+2) << Exp_shift;
2265 #else
2266 word1(rv) = 1;
2267 #endif
2268 i = 0;
2269 #ifdef Honor_FLT_ROUNDS
2270 if (bc->rounding == 1)
2271 #endif
2273 speccase = 1;
2274 --p2;
2275 dsign = 0;
2276 goto have_i;
2279 else
2280 #endif
2281 b = d2b(rv, &p2, &bbits);
2282 #ifdef Avoid_Underflow
2283 p2 -= bc->scale;
2284 #endif
2285 /* floor(log2(rv)) == bbits - 1 + p2 */
2286 /* Check for denormal case. */
2287 i = P - bbits;
2288 if (i > (j = P - Emin - 1 + p2)) {
2289 #ifdef Sudden_Underflow
2290 Bfree(b);
2291 b = i2b(1);
2292 p2 = Emin;
2293 i = P - 1;
2294 #ifdef Avoid_Underflow
2295 word0(rv) = (1 + bc->scale) << Exp_shift;
2296 #else
2297 word0(rv) = Exp_msk1;
2298 #endif
2299 word1(rv) = 0;
2300 #else
2301 i = j;
2302 #endif
2304 #ifdef Honor_FLT_ROUNDS
2305 if (bc->rounding != 1) {
2306 if (i > 0)
2307 b = lshift(b, i);
2308 if (dsign)
2309 b = increment(b);
2311 else
2312 #endif
2314 b = lshift(b, ++i);
2315 b->x[0] |= 1;
2317 #ifndef Sudden_Underflow
2318 have_i:
2319 #endif
2320 p2 -= p5 + i;
2321 d = i2b(1);
2322 /* Arrange for convenient computation of quotients:
2323 * shift left if necessary so divisor has 4 leading 0 bits.
2325 if (p5 > 0)
2326 d = pow5mult(d, p5);
2327 else if (p5 < 0)
2328 b = pow5mult(b, -p5);
2329 if (p2 > 0) {
2330 b2 = p2;
2331 d2 = 0;
2333 else {
2334 b2 = 0;
2335 d2 = -p2;
2337 i = dshift(d, d2);
2338 if ((b2 += i) > 0)
2339 b = lshift(b, b2);
2340 if ((d2 += i) > 0)
2341 d = lshift(d, d2);
2343 /* Now b/d = exactly half-way between the two floating-point values */
2344 /* on either side of the input string. Compute first digit of b/d. */
2346 dig = quorem(b,d);
2347 if (!dig) {
2348 b = multadd(b, 10, 0); /* very unlikely */
2349 dig = quorem(b,d);
2352 /* Compare b/d with s0 */
2354 for(i = 0; i < nd0; ) {
2355 dd = s0[i++] - '0' - dig;
2356 if (dd)
2357 goto ret;
2358 if (!b->x[0] && b->wds == 1) {
2359 if (i < nd)
2360 dd = 1;
2361 goto ret;
2363 b = multadd(b, 10, 0);
2364 dig = quorem(b,d);
2366 for(j = bc->dp1; i++ < nd;) {
2367 dd = s0[j++] - '0' - dig;
2368 if (dd)
2369 goto ret;
2370 if (!b->x[0] && b->wds == 1) {
2371 if (i < nd)
2372 dd = 1;
2373 goto ret;
2375 b = multadd(b, 10, 0);
2376 dig = quorem(b,d);
2378 if (b->x[0] || b->wds > 1)
2379 dd = -1;
2380 ret:
2381 Bfree(b);
2382 Bfree(d);
2383 #ifdef Honor_FLT_ROUNDS
2384 if (bc->rounding != 1) {
2385 if (dd < 0) {
2386 if (bc->rounding == 0) {
2387 if (!dsign)
2388 goto retlow1;
2390 else if (dsign)
2391 goto rethi1;
2393 else if (dd > 0) {
2394 if (bc->rounding == 0) {
2395 if (dsign)
2396 goto rethi1;
2397 goto ret1;
2399 if (!dsign)
2400 goto rethi1;
2401 dval(rv) += 2.*ulp(rv);
2403 else {
2404 bc->inexact = 0;
2405 if (dsign)
2406 goto rethi1;
2409 else
2410 #endif
2411 if (speccase) {
2412 if (dd <= 0)
2413 rv->d = 0.;
2415 else if (dd < 0) {
2416 if (!dsign) /* does not happen for round-near */
2417 retlow1:
2418 dval(rv) -= ulp(rv);
2420 else if (dd > 0) {
2421 if (dsign) {
2422 rethi1:
2423 dval(rv) += ulp(rv);
2426 else {
2427 /* Exact half-way case: apply round-even rule. */
2428 if (word1(rv) & 1) {
2429 if (dsign)
2430 goto rethi1;
2431 goto retlow1;
2435 #ifdef Honor_FLT_ROUNDS
2436 ret1:
2437 #endif
2438 return;
2440 #endif /* NO_STRTOD_BIGCOMP */
2442 double
2443 strtod
2444 #ifdef KR_headers
2445 (s00, se) CONST char *s00; char **se;
2446 #else
2447 (CONST char *s00, char **se)
2448 #endif
2450 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2451 int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
2452 CONST char *s, *s0, *s1;
2453 double aadj, aadj1;
2454 Long L;
2455 U aadj2, adj, rv, rv0;
2456 ULong y, z;
2457 BCinfo bc;
2458 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2459 #ifdef SET_INEXACT
2460 int oldinexact;
2461 #endif
2462 #ifdef Honor_FLT_ROUNDS /*{*/
2463 #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2464 bc.rounding = Flt_Rounds;
2465 #else /*}{*/
2466 bc.rounding = 1;
2467 switch(fegetround()) {
2468 case FE_TOWARDZERO: bc.rounding = 0; break;
2469 case FE_UPWARD: bc.rounding = 2; break;
2470 case FE_DOWNWARD: bc.rounding = 3;
2472 #endif /*}}*/
2473 #endif /*}*/
2474 #ifdef USE_LOCALE
2475 CONST char *s2;
2476 #endif
2478 sign = nz0 = nz = bc.dplen = bc.uflchk = 0;
2479 dval(&rv) = 0.;
2480 for(s = s00;;s++) switch(*s) {
2481 case '-':
2482 sign = 1;
2483 /* no break */
2484 case '+':
2485 if (*++s)
2486 goto break2;
2487 /* no break */
2488 case 0:
2489 goto ret0;
2490 case '\t':
2491 case '\n':
2492 case '\v':
2493 case '\f':
2494 case '\r':
2495 case ' ':
2496 continue;
2497 default:
2498 goto break2;
2500 break2:
2501 if (*s == '0') {
2502 #ifndef NO_HEX_FP /*{*/
2503 switch(s[1]) {
2504 case 'x':
2505 case 'X':
2506 #ifdef Honor_FLT_ROUNDS
2507 gethex(&s, &rv, bc.rounding, sign);
2508 #else
2509 gethex(&s, &rv, 1, sign);
2510 #endif
2511 goto ret;
2513 #endif /*}*/
2514 nz0 = 1;
2515 while(*++s == '0') ;
2516 if (!*s)
2517 goto ret;
2519 s0 = s;
2520 y = z = 0;
2521 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2522 if (nd < 9)
2523 y = 10*y + c - '0';
2524 else if (nd < 16)
2525 z = 10*z + c - '0';
2526 nd0 = nd;
2527 bc.dp0 = bc.dp1 = s - s0;
2528 #ifdef USE_LOCALE
2529 s1 = localeconv()->decimal_point;
2530 if (c == *s1) {
2531 c = '.';
2532 if (*++s1) {
2533 s2 = s;
2534 for(;;) {
2535 if (*++s2 != *s1) {
2536 c = 0;
2537 break;
2539 if (!*++s1) {
2540 s = s2;
2541 break;
2546 #endif
2547 if (c == '.') {
2548 c = *++s;
2549 bc.dp1 = s - s0;
2550 bc.dplen = bc.dp1 - bc.dp0;
2551 if (!nd) {
2552 for(; c == '0'; c = *++s)
2553 nz++;
2554 if (c > '0' && c <= '9') {
2555 s0 = s;
2556 nf += nz;
2557 nz = 0;
2558 goto have_dig;
2560 goto dig_done;
2562 for(; c >= '0' && c <= '9'; c = *++s) {
2563 have_dig:
2564 nz++;
2565 if (c -= '0') {
2566 nf += nz;
2567 for(i = 1; i < nz; i++)
2568 if (nd++ < 9)
2569 y *= 10;
2570 else if (nd <= DBL_DIG + 1)
2571 z *= 10;
2572 if (nd++ < 9)
2573 y = 10*y + c;
2574 else if (nd <= DBL_DIG + 1)
2575 z = 10*z + c;
2576 nz = 0;
2580 dig_done:
2581 e = 0;
2582 if (c == 'e' || c == 'E') {
2583 if (!nd && !nz && !nz0) {
2584 goto ret0;
2586 s00 = s;
2587 esign = 0;
2588 switch(c = *++s) {
2589 case '-':
2590 esign = 1;
2591 case '+':
2592 c = *++s;
2594 if (c >= '0' && c <= '9') {
2595 while(c == '0')
2596 c = *++s;
2597 if (c > '0' && c <= '9') {
2598 L = c - '0';
2599 s1 = s;
2600 while((c = *++s) >= '0' && c <= '9')
2601 L = 10*L + c - '0';
2602 if (s - s1 > 8 || L > 19999)
2603 /* Avoid confusion from exponents
2604 * so large that e might overflow.
2606 e = 19999; /* safe for 16 bit ints */
2607 else
2608 e = (int)L;
2609 if (esign)
2610 e = -e;
2612 else
2613 e = 0;
2615 else
2616 s = s00;
2618 if (!nd) {
2619 if (!nz && !nz0) {
2620 #ifdef INFNAN_CHECK
2621 /* Check for Nan and Infinity */
2622 if (!bc.dplen)
2623 switch(c) {
2624 case 'i':
2625 case 'I':
2626 if (match(&s,"nf")) {
2627 --s;
2628 if (!match(&s,"inity"))
2629 ++s;
2630 word0(&rv) = 0x7ff00000;
2631 word1(&rv) = 0;
2632 goto ret;
2634 break;
2635 case 'n':
2636 case 'N':
2637 if (match(&s, "an")) {
2638 word0(&rv) = NAN_WORD0;
2639 word1(&rv) = NAN_WORD1;
2640 #ifndef No_Hex_NaN
2641 if (*s == '(') /*)*/
2642 hexnan(&rv, &s);
2643 #endif
2644 goto ret;
2647 #endif /* INFNAN_CHECK */
2648 ret0:
2649 s = s00;
2650 sign = 0;
2652 goto ret;
2654 bc.e0 = e1 = e -= nf;
2656 /* Now we have nd0 digits, starting at s0, followed by a
2657 * decimal point, followed by nd-nd0 digits. The number we're
2658 * after is the integer represented by those digits times
2659 * 10**e */
2661 if (!nd0)
2662 nd0 = nd;
2663 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
2664 dval(&rv) = y;
2665 if (k > 9) {
2666 #ifdef SET_INEXACT
2667 if (k > DBL_DIG)
2668 oldinexact = get_inexact();
2669 #endif
2670 dval(&rv) = tens[k - 9] * dval(&rv) + z;
2672 bd0 = 0;
2673 if (nd <= DBL_DIG
2674 #ifndef RND_PRODQUOT
2675 #ifndef Honor_FLT_ROUNDS
2676 && Flt_Rounds == 1
2677 #endif
2678 #endif
2680 if (!e)
2681 goto ret;
2682 if (e > 0) {
2683 if (e <= Ten_pmax) {
2684 #ifdef VAX
2685 goto vax_ovfl_check;
2686 #else
2687 #ifdef Honor_FLT_ROUNDS
2688 /* round correctly FLT_ROUNDS = 2 or 3 */
2689 if (sign) {
2690 rv.d = -rv.d;
2691 sign = 0;
2693 #endif
2694 /* rv = */ rounded_product(dval(&rv), tens[e]);
2695 goto ret;
2696 #endif
2698 i = DBL_DIG - nd;
2699 if (e <= Ten_pmax + i) {
2700 /* A fancier test would sometimes let us do
2701 * this for larger i values.
2703 #ifdef Honor_FLT_ROUNDS
2704 /* round correctly FLT_ROUNDS = 2 or 3 */
2705 if (sign) {
2706 rv.d = -rv.d;
2707 sign = 0;
2709 #endif
2710 e -= i;
2711 dval(&rv) *= tens[i];
2712 #ifdef VAX
2713 /* VAX exponent range is so narrow we must
2714 * worry about overflow here...
2716 vax_ovfl_check:
2717 word0(&rv) -= P*Exp_msk1;
2718 /* rv = */ rounded_product(dval(&rv), tens[e]);
2719 if ((word0(&rv) & Exp_mask)
2720 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2721 goto ovfl;
2722 word0(&rv) += P*Exp_msk1;
2723 #else
2724 /* rv = */ rounded_product(dval(&rv), tens[e]);
2725 #endif
2726 goto ret;
2729 #ifndef Inaccurate_Divide
2730 else if (e >= -Ten_pmax) {
2731 #ifdef Honor_FLT_ROUNDS
2732 /* round correctly FLT_ROUNDS = 2 or 3 */
2733 if (sign) {
2734 rv.d = -rv.d;
2735 sign = 0;
2737 #endif
2738 /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2739 goto ret;
2741 #endif
2743 e1 += nd - k;
2745 #ifdef IEEE_Arith
2746 #ifdef SET_INEXACT
2747 bc.inexact = 1;
2748 if (k <= DBL_DIG)
2749 oldinexact = get_inexact();
2750 #endif
2751 #ifdef Avoid_Underflow
2752 bc.scale = 0;
2753 #endif
2754 #ifdef Honor_FLT_ROUNDS
2755 if (bc.rounding >= 2) {
2756 if (sign)
2757 bc.rounding = bc.rounding == 2 ? 0 : 2;
2758 else
2759 if (bc.rounding != 2)
2760 bc.rounding = 0;
2762 #endif
2763 #endif /*IEEE_Arith*/
2765 /* Get starting approximation = rv * 10**e1 */
2767 if (e1 > 0) {
2768 i = e1 & 15;
2769 if (i)
2770 dval(&rv) *= tens[i];
2771 if (e1 &= ~15) {
2772 if (e1 > DBL_MAX_10_EXP) {
2773 ovfl:
2774 #ifndef NO_ERRNO
2775 errno = ERANGE;
2776 #endif
2777 /* Can't trust HUGE_VAL */
2778 #ifdef IEEE_Arith
2779 #ifdef Honor_FLT_ROUNDS
2780 switch(bc.rounding) {
2781 case 0: /* toward 0 */
2782 case 3: /* toward -infinity */
2783 word0(&rv) = Big0;
2784 word1(&rv) = Big1;
2785 break;
2786 default:
2787 word0(&rv) = Exp_mask;
2788 word1(&rv) = 0;
2790 #else /*Honor_FLT_ROUNDS*/
2791 word0(&rv) = Exp_mask;
2792 word1(&rv) = 0;
2793 #endif /*Honor_FLT_ROUNDS*/
2794 #ifdef SET_INEXACT
2795 /* set overflow bit */
2796 dval(&rv0) = 1e300;
2797 dval(&rv0) *= dval(&rv0);
2798 #endif
2799 #else /*IEEE_Arith*/
2800 word0(&rv) = Big0;
2801 word1(&rv) = Big1;
2802 #endif /*IEEE_Arith*/
2803 goto ret;
2805 e1 >>= 4;
2806 for(j = 0; e1 > 1; j++, e1 >>= 1)
2807 if (e1 & 1)
2808 dval(&rv) *= bigtens[j];
2809 /* The last multiplication could overflow. */
2810 word0(&rv) -= P*Exp_msk1;
2811 dval(&rv) *= bigtens[j];
2812 if ((z = word0(&rv) & Exp_mask)
2813 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2814 goto ovfl;
2815 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2816 /* set to largest number */
2817 /* (Can't trust DBL_MAX) */
2818 word0(&rv) = Big0;
2819 word1(&rv) = Big1;
2821 else
2822 word0(&rv) += P*Exp_msk1;
2825 else if (e1 < 0) {
2826 e1 = -e1;
2827 i = e1 & 15;
2828 if (i)
2829 dval(&rv) /= tens[i];
2830 if (e1 >>= 4) {
2831 if (e1 >= 1 << n_bigtens)
2832 goto undfl;
2833 #ifdef Avoid_Underflow
2834 if (e1 & Scale_Bit)
2835 bc.scale = 2*P;
2836 for(j = 0; e1 > 0; j++, e1 >>= 1)
2837 if (e1 & 1)
2838 dval(&rv) *= tinytens[j];
2839 if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2840 >> Exp_shift)) > 0) {
2841 /* scaled rv is denormal; clear j low bits */
2842 if (j >= 32) {
2843 word1(&rv) = 0;
2844 if (j >= 53)
2845 word0(&rv) = (P+2)*Exp_msk1;
2846 else
2847 word0(&rv) &= 0xffffffff << (j-32);
2849 else
2850 word1(&rv) &= 0xffffffff << j;
2852 #else
2853 for(j = 0; e1 > 1; j++, e1 >>= 1)
2854 if (e1 & 1)
2855 dval(&rv) *= tinytens[j];
2856 /* The last multiplication could underflow. */
2857 dval(&rv0) = dval(&rv);
2858 dval(&rv) *= tinytens[j];
2859 if (!dval(&rv)) {
2860 dval(&rv) = 2.*dval(&rv0);
2861 dval(&rv) *= tinytens[j];
2862 #endif
2863 if (!dval(&rv)) {
2864 undfl:
2865 dval(&rv) = 0.;
2866 #ifndef NO_ERRNO
2867 errno = ERANGE;
2868 #endif
2869 goto ret;
2871 #ifndef Avoid_Underflow
2872 word0(&rv) = Tiny0;
2873 word1(&rv) = Tiny1;
2874 /* The refinement below will clean
2875 * this approximation up.
2878 #endif
2882 /* Now the hard part -- adjusting rv to the correct value.*/
2884 /* Put digits into bd: true value = bd * 10^e */
2886 bc.nd = nd;
2887 #ifndef NO_STRTOD_BIGCOMP
2888 bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2889 /* to silence an erroneous warning about bc.nd0 */
2890 /* possibly not being initialized. */
2891 if (nd > strtod_diglim) {
2892 /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2893 /* minimum number of decimal digits to distinguish double values */
2894 /* in IEEE arithmetic. */
2895 i = j = 18;
2896 if (i > nd0)
2897 j += bc.dplen;
2898 for(;;) {
2899 if (--j <= bc.dp1 && j >= bc.dp0)
2900 j = bc.dp0 - 1;
2901 if (s0[j] != '0')
2902 break;
2903 --i;
2905 e += nd - i;
2906 nd = i;
2907 if (nd0 > nd)
2908 nd0 = nd;
2909 if (nd < 9) { /* must recompute y */
2910 y = 0;
2911 for(i = 0; i < nd0; ++i)
2912 y = 10*y + s0[i] - '0';
2913 for(j = bc.dp1; i < nd; ++i)
2914 y = 10*y + s0[j++] - '0';
2917 #endif
2918 bd0 = s2b(s0, nd0, nd, y, bc.dplen);
2920 for(;;) {
2921 bd = Balloc(bd0->k);
2922 Bcopy(bd, bd0);
2923 bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
2924 bs = i2b(1);
2926 if (e >= 0) {
2927 bb2 = bb5 = 0;
2928 bd2 = bd5 = e;
2930 else {
2931 bb2 = bb5 = -e;
2932 bd2 = bd5 = 0;
2934 if (bbe >= 0)
2935 bb2 += bbe;
2936 else
2937 bd2 -= bbe;
2938 bs2 = bb2;
2939 #ifdef Honor_FLT_ROUNDS
2940 if (bc.rounding != 1)
2941 bs2++;
2942 #endif
2943 #ifdef Avoid_Underflow
2944 j = bbe - bc.scale;
2945 i = j + bbbits - 1; /* logb(rv) */
2946 if (i < Emin) /* denormal */
2947 j += P - Emin;
2948 else
2949 j = P + 1 - bbbits;
2950 #else /*Avoid_Underflow*/
2951 #ifdef Sudden_Underflow
2952 #ifdef IBM
2953 j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
2954 #else
2955 j = P + 1 - bbbits;
2956 #endif
2957 #else /*Sudden_Underflow*/
2958 j = bbe;
2959 i = j + bbbits - 1; /* logb(rv) */
2960 if (i < Emin) /* denormal */
2961 j += P - Emin;
2962 else
2963 j = P + 1 - bbbits;
2964 #endif /*Sudden_Underflow*/
2965 #endif /*Avoid_Underflow*/
2966 bb2 += j;
2967 bd2 += j;
2968 #ifdef Avoid_Underflow
2969 bd2 += bc.scale;
2970 #endif
2971 i = bb2 < bd2 ? bb2 : bd2;
2972 if (i > bs2)
2973 i = bs2;
2974 if (i > 0) {
2975 bb2 -= i;
2976 bd2 -= i;
2977 bs2 -= i;
2979 if (bb5 > 0) {
2980 bs = pow5mult(bs, bb5);
2981 bb1 = mult(bs, bb);
2982 Bfree(bb);
2983 bb = bb1;
2985 if (bb2 > 0)
2986 bb = lshift(bb, bb2);
2987 if (bd5 > 0)
2988 bd = pow5mult(bd, bd5);
2989 if (bd2 > 0)
2990 bd = lshift(bd, bd2);
2991 if (bs2 > 0)
2992 bs = lshift(bs, bs2);
2993 delta = diff(bb, bd);
2994 bc.dsign = delta->sign;
2995 delta->sign = 0;
2996 i = cmp(delta, bs);
2997 #ifndef NO_STRTOD_BIGCOMP
2998 if (bc.nd > nd && i <= 0) {
2999 if (bc.dsign)
3000 break; /* Must use bigcomp(). */
3001 #ifdef Honor_FLT_ROUNDS
3002 if (bc.rounding != 1) {
3003 if (i < 0)
3004 break;
3006 else
3007 #endif
3009 bc.nd = nd;
3010 i = -1; /* Discarded digits make delta smaller. */
3013 #endif
3014 #ifdef Honor_FLT_ROUNDS
3015 if (bc.rounding != 1) {
3016 if (i < 0) {
3017 /* Error is less than an ulp */
3018 if (!delta->x[0] && delta->wds <= 1) {
3019 /* exact */
3020 #ifdef SET_INEXACT
3021 bc.inexact = 0;
3022 #endif
3023 break;
3025 if (bc.rounding) {
3026 if (bc.dsign) {
3027 adj.d = 1.;
3028 goto apply_adj;
3031 else if (!bc.dsign) {
3032 adj.d = -1.;
3033 if (!word1(&rv)
3034 && !(word0(&rv) & Frac_mask)) {
3035 y = word0(&rv) & Exp_mask;
3036 #ifdef Avoid_Underflow
3037 if (!bc.scale || y > 2*P*Exp_msk1)
3038 #else
3039 if (y)
3040 #endif
3042 delta = lshift(delta,Log2P);
3043 if (cmp(delta, bs) <= 0)
3044 adj.d = -0.5;
3047 apply_adj:
3048 #ifdef Avoid_Underflow
3049 if (bc.scale && (y = word0(&rv) & Exp_mask)
3050 <= 2*P*Exp_msk1)
3051 word0(&adj) += (2*P+1)*Exp_msk1 - y;
3052 #else
3053 #ifdef Sudden_Underflow
3054 if ((word0(&rv) & Exp_mask) <=
3055 P*Exp_msk1) {
3056 word0(&rv) += P*Exp_msk1;
3057 dval(&rv) += adj.d*ulp(dval(&rv));
3058 word0(&rv) -= P*Exp_msk1;
3060 else
3061 #endif /*Sudden_Underflow*/
3062 #endif /*Avoid_Underflow*/
3063 dval(&rv) += adj.d*ulp(&rv);
3065 break;
3067 adj.d = ratio(delta, bs);
3068 if (adj.d < 1.)
3069 adj.d = 1.;
3070 if (adj.d <= 0x7ffffffe) {
3071 /* adj = rounding ? ceil(adj) : floor(adj); */
3072 y = adj.d;
3073 if (y != adj.d) {
3074 if (!((bc.rounding>>1) ^ bc.dsign))
3075 y++;
3076 adj.d = y;
3079 #ifdef Avoid_Underflow
3080 if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3081 word0(&adj) += (2*P+1)*Exp_msk1 - y;
3082 #else
3083 #ifdef Sudden_Underflow
3084 if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3085 word0(&rv) += P*Exp_msk1;
3086 adj.d *= ulp(dval(&rv));
3087 if (bc.dsign)
3088 dval(&rv) += adj.d;
3089 else
3090 dval(&rv) -= adj.d;
3091 word0(&rv) -= P*Exp_msk1;
3092 goto cont;
3094 #endif /*Sudden_Underflow*/
3095 #endif /*Avoid_Underflow*/
3096 adj.d *= ulp(&rv);
3097 if (bc.dsign) {
3098 if (word0(&rv) == Big0 && word1(&rv) == Big1)
3099 goto ovfl;
3100 dval(&rv) += adj.d;
3102 else
3103 dval(&rv) -= adj.d;
3104 goto cont;
3106 #endif /*Honor_FLT_ROUNDS*/
3108 if (i < 0) {
3109 /* Error is less than half an ulp -- check for
3110 * special case of mantissa a power of two.
3112 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3113 #ifdef IEEE_Arith
3114 #ifdef Avoid_Underflow
3115 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3116 #else
3117 || (word0(&rv) & Exp_mask) <= Exp_msk1
3118 #endif
3119 #endif
3121 #ifdef SET_INEXACT
3122 if (!delta->x[0] && delta->wds <= 1)
3123 bc.inexact = 0;
3124 #endif
3125 break;
3127 if (!delta->x[0] && delta->wds <= 1) {
3128 /* exact result */
3129 #ifdef SET_INEXACT
3130 bc.inexact = 0;
3131 #endif
3132 break;
3134 delta = lshift(delta,Log2P);
3135 if (cmp(delta, bs) > 0)
3136 goto drop_down;
3137 break;
3139 if (i == 0) {
3140 /* exactly half-way between */
3141 if (bc.dsign) {
3142 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3143 && word1(&rv) == (
3144 #ifdef Avoid_Underflow
3145 (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3146 ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3147 #endif
3148 0xffffffff)) {
3149 /*boundary case -- increment exponent*/
3150 word0(&rv) = (word0(&rv) & Exp_mask)
3151 + Exp_msk1
3152 #ifdef IBM
3153 | Exp_msk1 >> 4
3154 #endif
3156 word1(&rv) = 0;
3157 #ifdef Avoid_Underflow
3158 bc.dsign = 0;
3159 #endif
3160 break;
3163 else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3164 drop_down:
3165 /* boundary case -- decrement exponent */
3166 #ifdef Sudden_Underflow /*{{*/
3167 L = word0(&rv) & Exp_mask;
3168 #ifdef IBM
3169 if (L < Exp_msk1)
3170 #else
3171 #ifdef Avoid_Underflow
3172 if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3173 #else
3174 if (L <= Exp_msk1)
3175 #endif /*Avoid_Underflow*/
3176 #endif /*IBM*/
3178 if (bc.nd >nd) {
3179 bc.uflchk = 1;
3180 break;
3182 goto undfl;
3184 L -= Exp_msk1;
3185 #else /*Sudden_Underflow}{*/
3186 #ifdef Avoid_Underflow
3187 if (bc.scale) {
3188 L = word0(&rv) & Exp_mask;
3189 if (L <= (2*P+1)*Exp_msk1) {
3190 if (L > (P+2)*Exp_msk1)
3191 /* round even ==> */
3192 /* accept rv */
3193 break;
3194 /* rv = smallest denormal */
3195 if (bc.nd >nd) {
3196 bc.uflchk = 1;
3197 break;
3199 goto undfl;
3202 #endif /*Avoid_Underflow*/
3203 L = (word0(&rv) & Exp_mask) - Exp_msk1;
3204 #endif /*Sudden_Underflow}}*/
3205 word0(&rv) = L | Bndry_mask1;
3206 word1(&rv) = 0xffffffff;
3207 #ifdef IBM
3208 goto cont;
3209 #else
3210 break;
3211 #endif
3213 #ifndef ROUND_BIASED
3214 if (!(word1(&rv) & LSB))
3215 break;
3216 #endif
3217 if (bc.dsign)
3218 dval(&rv) += ulp(&rv);
3219 #ifndef ROUND_BIASED
3220 else {
3221 dval(&rv) -= ulp(&rv);
3222 #ifndef Sudden_Underflow
3223 if (!dval(&rv)) {
3224 if (bc.nd >nd) {
3225 bc.uflchk = 1;
3226 break;
3228 goto undfl;
3230 #endif
3232 #ifdef Avoid_Underflow
3233 bc.dsign = 1 - bc.dsign;
3234 #endif
3235 #endif
3236 break;
3238 if ((aadj = ratio(delta, bs)) <= 2.) {
3239 if (bc.dsign)
3240 aadj = aadj1 = 1.;
3241 else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3242 #ifndef Sudden_Underflow
3243 if (word1(&rv) == Tiny1 && !word0(&rv)) {
3244 if (bc.nd >nd) {
3245 bc.uflchk = 1;
3246 break;
3248 goto undfl;
3250 #endif
3251 aadj = 1.;
3252 aadj1 = -1.;
3254 else {
3255 /* special case -- power of FLT_RADIX to be */
3256 /* rounded down... */
3258 if (aadj < 2./FLT_RADIX)
3259 aadj = 1./FLT_RADIX;
3260 else
3261 aadj *= 0.5;
3262 aadj1 = -aadj;
3265 else {
3266 aadj *= 0.5;
3267 aadj1 = bc.dsign ? aadj : -aadj;
3268 #ifdef Check_FLT_ROUNDS
3269 switch(bc.rounding) {
3270 case 2: /* towards +infinity */
3271 aadj1 -= 0.5;
3272 break;
3273 case 0: /* towards 0 */
3274 case 3: /* towards -infinity */
3275 aadj1 += 0.5;
3277 #else
3278 if (Flt_Rounds == 0)
3279 aadj1 += 0.5;
3280 #endif /*Check_FLT_ROUNDS*/
3282 y = word0(&rv) & Exp_mask;
3284 /* Check for overflow */
3286 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3287 dval(&rv0) = dval(&rv);
3288 word0(&rv) -= P*Exp_msk1;
3289 adj.d = aadj1 * ulp(&rv);
3290 dval(&rv) += adj.d;
3291 if ((word0(&rv) & Exp_mask) >=
3292 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3293 if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3294 goto ovfl;
3295 word0(&rv) = Big0;
3296 word1(&rv) = Big1;
3297 goto cont;
3299 else
3300 word0(&rv) += P*Exp_msk1;
3302 else {
3303 #ifdef Avoid_Underflow
3304 if (bc.scale && y <= 2*P*Exp_msk1) {
3305 if (aadj <= 0x7fffffff) {
3306 if ((z = (ULong)aadj) <= 0)
3307 z = 1;
3308 aadj = z;
3309 aadj1 = bc.dsign ? aadj : -aadj;
3311 dval(&aadj2) = aadj1;
3312 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3313 aadj1 = dval(&aadj2);
3315 adj.d = aadj1 * ulp(&rv);
3316 dval(&rv) += adj.d;
3317 #else
3318 #ifdef Sudden_Underflow
3319 if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3320 dval(&rv0) = dval(&rv);
3321 word0(&rv) += P*Exp_msk1;
3322 adj.d = aadj1 * ulp(&rv);
3323 dval(&rv) += adj.d;
3324 #ifdef IBM
3325 if ((word0(&rv) & Exp_mask) < P*Exp_msk1)
3326 #else
3327 if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3328 #endif
3330 if (word0(&rv0) == Tiny0
3331 && word1(&rv0) == Tiny1) {
3332 if (bc.nd >nd) {
3333 bc.uflchk = 1;
3334 break;
3336 goto undfl;
3338 word0(&rv) = Tiny0;
3339 word1(&rv) = Tiny1;
3340 goto cont;
3342 else
3343 word0(&rv) -= P*Exp_msk1;
3345 else {
3346 adj.d = aadj1 * ulp(&rv);
3347 dval(&rv) += adj.d;
3349 #else /*Sudden_Underflow*/
3350 /* Compute adj so that the IEEE rounding rules will
3351 * correctly round rv + adj in some half-way cases.
3352 * If rv * ulp(rv) is denormalized (i.e.,
3353 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3354 * trouble from bits lost to denormalization;
3355 * example: 1.2e-307 .
3357 if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3358 aadj1 = (double)(int)(aadj + 0.5);
3359 if (!bc.dsign)
3360 aadj1 = -aadj1;
3362 adj.d = aadj1 * ulp(&rv);
3363 dval(&rv) += adj.d;
3364 #endif /*Sudden_Underflow*/
3365 #endif /*Avoid_Underflow*/
3367 z = word0(&rv) & Exp_mask;
3368 #ifndef SET_INEXACT
3369 if (bc.nd == nd) {
3370 #ifdef Avoid_Underflow
3371 if (!bc.scale)
3372 #endif
3373 if (y == z) {
3374 /* Can we stop now? */
3375 L = (Long)aadj;
3376 aadj -= L;
3377 /* The tolerances below are conservative. */
3378 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3379 if (aadj < .4999999 || aadj > .5000001)
3380 break;
3382 else if (aadj < .4999999/FLT_RADIX)
3383 break;
3386 #endif
3387 cont:
3388 Bfree(bb);
3389 Bfree(bd);
3390 Bfree(bs);
3391 Bfree(delta);
3393 Bfree(bb);
3394 Bfree(bd);
3395 Bfree(bs);
3396 Bfree(bd0);
3397 Bfree(delta);
3398 #ifndef NO_STRTOD_BIGCOMP
3399 if (bc.nd > nd)
3400 bigcomp(&rv, s0, &bc);
3401 #endif
3402 #ifdef SET_INEXACT
3403 if (bc.inexact) {
3404 if (!oldinexact) {
3405 word0(&rv0) = Exp_1 + (70 << Exp_shift);
3406 word1(&rv0) = 0;
3407 dval(&rv0) += 1.;
3410 else if (!oldinexact)
3411 clear_inexact();
3412 #endif
3413 #ifdef Avoid_Underflow
3414 if (bc.scale) {
3415 word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3416 word1(&rv0) = 0;
3417 dval(&rv) *= dval(&rv0);
3418 #ifndef NO_ERRNO
3419 /* try to avoid the bug of testing an 8087 register value */
3420 #ifdef IEEE_Arith
3421 if (!(word0(&rv) & Exp_mask))
3422 #else
3423 if (word0(&rv) == 0 && word1(&rv) == 0)
3424 #endif
3425 errno = ERANGE;
3426 #endif
3428 #endif /* Avoid_Underflow */
3429 #ifdef SET_INEXACT
3430 if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3431 /* set underflow bit */
3432 dval(&rv0) = 1e-300;
3433 dval(&rv0) *= dval(&rv0);
3435 #endif
3436 ret:
3437 if (se)
3438 *se = (char *)s;
3439 return sign ? -dval(&rv) : dval(&rv);
3442 #ifndef MULTIPLE_THREADS
3443 static char *dtoa_result;
3444 #endif
3446 static char *
3447 #ifdef KR_headers
3448 rv_alloc(i) int i;
3449 #else
3450 rv_alloc(int i)
3451 #endif
3453 int j, k, *r;
3455 j = sizeof(ULong);
3456 for(k = 0;
3457 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (size_t)i;
3458 j <<= 1)
3459 k++;
3460 r = (int*)Balloc(k);
3461 *r = k;
3462 return
3463 #ifndef MULTIPLE_THREADS
3464 dtoa_result =
3465 #endif
3466 (char *)(r+1);
3469 static char *
3470 #ifdef KR_headers
3471 nrv_alloc(s, rve, n) char *s, **rve; int n;
3472 #else
3473 nrv_alloc(CONST char *s, char **rve, int n)
3474 #endif
3476 char *rv, *t;
3478 t = rv = rv_alloc(n);
3479 for(*t = *s++; *t; *t = *s++) t++;
3480 if (rve)
3481 *rve = t;
3482 return rv;
3485 /* freedtoa(s) must be used to free values s returned by dtoa
3486 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
3487 * but for consistency with earlier versions of dtoa, it is optional
3488 * when MULTIPLE_THREADS is not defined.
3491 void
3492 #ifdef KR_headers
3493 freedtoa(s) char *s;
3494 #else
3495 freedtoa(char *s)
3496 #endif
3498 Bigint *b = (Bigint *)((int *)s - 1);
3499 b->maxwds = 1 << (b->k = *(int*)b);
3500 Bfree(b);
3501 #ifndef MULTIPLE_THREADS
3502 if (s == dtoa_result)
3503 dtoa_result = 0;
3504 #endif
3507 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3509 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3510 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3512 * Modifications:
3513 * 1. Rather than iterating, we use a simple numeric overestimate
3514 * to determine k = floor(log10(d)). We scale relevant
3515 * quantities using O(log2(k)) rather than O(k) multiplications.
3516 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3517 * try to generate digits strictly left to right. Instead, we
3518 * compute with fewer bits and propagate the carry if necessary
3519 * when rounding the final digit up. This is often faster.
3520 * 3. Under the assumption that input will be rounded nearest,
3521 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3522 * That is, we allow equality in stopping tests when the
3523 * round-nearest rule will give the same floating-point value
3524 * as would satisfaction of the stopping test with strict
3525 * inequality.
3526 * 4. We remove common factors of powers of 2 from relevant
3527 * quantities.
3528 * 5. When converting floating-point integers less than 1e16,
3529 * we use floating-point arithmetic rather than resorting
3530 * to multiple-precision integers.
3531 * 6. When asked to produce fewer than 15 digits, we first try
3532 * to get by with floating-point arithmetic; we resort to
3533 * multiple-precision integer arithmetic only if we cannot
3534 * guarantee that the floating-point calculation has given
3535 * the correctly rounded result. For k requested digits and
3536 * "uniformly" distributed input, the probability is
3537 * something like 10^(k-15) that we must resort to the Long
3538 * calculation.
3541 char *
3542 dtoa
3543 #ifdef KR_headers
3544 (dd, mode, ndigits, decpt, sign, rve)
3545 double dd; int mode, ndigits, *decpt, *sign; char **rve;
3546 #else
3547 (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
3548 #endif
3550 /* Arguments ndigits, decpt, sign are similar to those
3551 of ecvt and fcvt; trailing zeros are suppressed from
3552 the returned string. If not null, *rve is set to point
3553 to the end of the return value. If d is +-Infinity or NaN,
3554 then *decpt is set to 9999.
3556 mode:
3557 0 ==> shortest string that yields d when read in
3558 and rounded to nearest.
3559 1 ==> like 0, but with Steele & White stopping rule;
3560 e.g. with IEEE P754 arithmetic , mode 0 gives
3561 1e23 whereas mode 1 gives 9.999999999999999e22.
3562 2 ==> max(1,ndigits) significant digits. This gives a
3563 return value similar to that of ecvt, except
3564 that trailing zeros are suppressed.
3565 3 ==> through ndigits past the decimal point. This
3566 gives a return value similar to that from fcvt,
3567 except that trailing zeros are suppressed, and
3568 ndigits can be negative.
3569 4,5 ==> similar to 2 and 3, respectively, but (in
3570 round-nearest mode) with the tests of mode 0 to
3571 possibly return a shorter string that rounds to d.
3572 With IEEE arithmetic and compilation with
3573 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3574 as modes 2 and 3 when FLT_ROUNDS != 1.
3575 6-9 ==> Debugging modes similar to mode - 4: don't try
3576 fast floating-point estimate (if applicable).
3578 Values of mode other than 0-9 are treated as mode 0.
3580 Sufficient space is allocated to the return value
3581 to hold the suppressed trailing zeros.
3584 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
3585 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
3586 spec_case, try_quick;
3587 Long L;
3588 #ifndef Sudden_Underflow
3589 int denorm;
3590 ULong x;
3591 #endif
3592 Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;
3593 U d2, eps, u;
3594 double ds;
3595 char *s, *s0;
3596 #ifdef SET_INEXACT
3597 int inexact, oldinexact;
3598 #endif
3599 #ifdef Honor_FLT_ROUNDS /*{*/
3600 int Rounding;
3601 #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3602 Rounding = Flt_Rounds;
3603 #else /*}{*/
3604 Rounding = 1;
3605 switch(fegetround()) {
3606 case FE_TOWARDZERO: Rounding = 0; break;
3607 case FE_UPWARD: Rounding = 2; break;
3608 case FE_DOWNWARD: Rounding = 3;
3610 #endif /*}}*/
3611 #endif /*}*/
3613 #ifndef MULTIPLE_THREADS
3614 if (dtoa_result) {
3615 freedtoa(dtoa_result);
3616 dtoa_result = 0;
3618 #endif
3620 u.d = dd;
3621 if (word0(&u) & Sign_bit) {
3622 /* set sign for everything, including 0's and NaNs */
3623 *sign = 1;
3624 word0(&u) &= ~Sign_bit; /* clear sign bit */
3626 else
3627 *sign = 0;
3629 #if defined(IEEE_Arith) + defined(VAX)
3630 #ifdef IEEE_Arith
3631 if ((word0(&u) & Exp_mask) == Exp_mask)
3632 #else
3633 if (word0(&u) == 0x8000)
3634 #endif
3636 /* Infinity or NaN */
3637 *decpt = 9999;
3638 #ifdef IEEE_Arith
3639 if (!word1(&u) && !(word0(&u) & 0xfffff))
3640 return nrv_alloc("Infinity", rve, 8);
3641 #endif
3642 return nrv_alloc("NaN", rve, 3);
3644 #endif
3645 #ifdef IBM
3646 dval(&u) += 0; /* normalize */
3647 #endif
3648 if (!dval(&u)) {
3649 *decpt = 1;
3650 return nrv_alloc("0", rve, 1);
3653 #ifdef SET_INEXACT
3654 try_quick = oldinexact = get_inexact();
3655 inexact = 1;
3656 #endif
3657 #ifdef Honor_FLT_ROUNDS
3658 if (Rounding >= 2) {
3659 if (*sign)
3660 Rounding = Rounding == 2 ? 0 : 2;
3661 else
3662 if (Rounding != 2)
3663 Rounding = 0;
3665 #endif
3667 b = d2b(&u, &be, &bbits);
3668 i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3669 #ifndef Sudden_Underflow
3670 if (i) {
3671 #endif
3672 dval(&d2) = dval(&u);
3673 word0(&d2) &= Frac_mask1;
3674 word0(&d2) |= Exp_11;
3675 #ifdef IBM
3676 if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3677 dval(&d2) /= 1 << j;
3678 #endif
3680 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3681 * log10(x) = log(x) / log(10)
3682 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3683 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3685 * This suggests computing an approximation k to log10(d) by
3687 * k = (i - Bias)*0.301029995663981
3688 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3690 * We want k to be too large rather than too small.
3691 * The error in the first-order Taylor series approximation
3692 * is in our favor, so we just round up the constant enough
3693 * to compensate for any error in the multiplication of
3694 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3695 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3696 * adding 1e-13 to the constant term more than suffices.
3697 * Hence we adjust the constant term to 0.1760912590558.
3698 * (We could get a more accurate k by invoking log10,
3699 * but this is probably not worthwhile.)
3702 i -= Bias;
3703 #ifdef IBM
3704 i <<= 2;
3705 i += j;
3706 #endif
3707 #ifndef Sudden_Underflow
3708 denorm = 0;
3710 else {
3711 /* d is denormalized */
3713 i = bbits + be + (Bias + (P-1) - 1);
3714 x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3715 : word1(&u) << (32 - i);
3716 dval(&d2) = x;
3717 word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3718 i -= (Bias + (P-1) - 1) + 1;
3719 denorm = 1;
3721 #endif
3722 ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3723 k = (int)ds;
3724 if (ds < 0. && ds != k)
3725 k--; /* want k = floor(ds) */
3726 k_check = 1;
3727 if (k >= 0 && k <= Ten_pmax) {
3728 if (dval(&u) < tens[k])
3729 k--;
3730 k_check = 0;
3732 j = bbits - i - 1;
3733 if (j >= 0) {
3734 b2 = 0;
3735 s2 = j;
3737 else {
3738 b2 = -j;
3739 s2 = 0;
3741 if (k >= 0) {
3742 b5 = 0;
3743 s5 = k;
3744 s2 += k;
3746 else {
3747 b2 -= k;
3748 b5 = -k;
3749 s5 = 0;
3751 if (mode < 0 || mode > 9)
3752 mode = 0;
3754 #ifndef SET_INEXACT
3755 #ifdef Check_FLT_ROUNDS
3756 try_quick = Rounding == 1;
3757 #else
3758 try_quick = 1;
3759 #endif
3760 #endif /*SET_INEXACT*/
3762 if (mode > 5) {
3763 mode -= 4;
3764 try_quick = 0;
3766 leftright = 1;
3767 ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
3768 /* silence erroneous "gcc -Wall" warning. */
3769 switch(mode) {
3770 case 0:
3771 case 1:
3772 i = 18;
3773 ndigits = 0;
3774 break;
3775 case 2:
3776 leftright = 0;
3777 /* no break */
3778 case 4:
3779 if (ndigits <= 0)
3780 ndigits = 1;
3781 ilim = ilim1 = i = ndigits;
3782 break;
3783 case 3:
3784 leftright = 0;
3785 /* no break */
3786 case 5:
3787 i = ndigits + k + 1;
3788 ilim = i;
3789 ilim1 = i - 1;
3790 if (i <= 0)
3791 i = 1;
3793 s = s0 = rv_alloc(i);
3795 #ifdef Honor_FLT_ROUNDS
3796 if (mode > 1 && Rounding != 1)
3797 leftright = 0;
3798 #endif
3800 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3802 /* Try to get by with floating-point arithmetic. */
3804 i = 0;
3805 dval(&d2) = dval(&u);
3806 k0 = k;
3807 ilim0 = ilim;
3808 ieps = 2; /* conservative */
3809 if (k > 0) {
3810 ds = tens[k&0xf];
3811 j = k >> 4;
3812 if (j & Bletch) {
3813 /* prevent overflows */
3814 j &= Bletch - 1;
3815 dval(&u) /= bigtens[n_bigtens-1];
3816 ieps++;
3818 for(; j; j >>= 1, i++)
3819 if (j & 1) {
3820 ieps++;
3821 ds *= bigtens[i];
3823 dval(&u) /= ds;
3825 else {
3826 j1 = -k;
3827 if (j1) {
3828 dval(&u) *= tens[j1 & 0xf];
3829 for(j = j1 >> 4; j; j >>= 1, i++)
3830 if (j & 1) {
3831 ieps++;
3832 dval(&u) *= bigtens[i];
3836 if (k_check && dval(&u) < 1. && ilim > 0) {
3837 if (ilim1 <= 0)
3838 goto fast_failed;
3839 ilim = ilim1;
3840 k--;
3841 dval(&u) *= 10.;
3842 ieps++;
3844 dval(&eps) = ieps*dval(&u) + 7.;
3845 word0(&eps) -= (P-1)*Exp_msk1;
3846 if (ilim == 0) {
3847 S = mhi = 0;
3848 dval(&u) -= 5.;
3849 if (dval(&u) > dval(&eps))
3850 goto one_digit;
3851 if (dval(&u) < -dval(&eps))
3852 goto no_digits;
3853 goto fast_failed;
3855 #ifndef No_leftright
3856 if (leftright) {
3857 /* Use Steele & White method of only
3858 * generating digits needed.
3860 dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
3861 for(i = 0;;) {
3862 L = (long)dval(&u);
3863 dval(&u) -= L;
3864 *s++ = '0' + (char)L;
3865 if (dval(&u) < dval(&eps))
3866 goto ret1;
3867 if (1. - dval(&u) < dval(&eps))
3868 goto bump_up;
3869 if (++i >= ilim)
3870 break;
3871 dval(&eps) *= 10.;
3872 dval(&u) *= 10.;
3875 else {
3876 #endif
3877 /* Generate ilim digits, then fix them up. */
3878 dval(&eps) *= tens[ilim-1];
3879 for(i = 1;; i++, dval(&u) *= 10.) {
3880 L = (Long)(dval(&u));
3881 if (!(dval(&u) -= L))
3882 ilim = i;
3883 *s++ = '0' + (char)L;
3884 if (i == ilim) {
3885 if (dval(&u) > 0.5 + dval(&eps))
3886 goto bump_up;
3887 else if (dval(&u) < 0.5 - dval(&eps)) {
3888 while(*--s == '0') {}
3889 s++;
3890 goto ret1;
3892 break;
3895 #ifndef No_leftright
3897 #endif
3898 fast_failed:
3899 s = s0;
3900 dval(&u) = dval(&d2);
3901 k = k0;
3902 ilim = ilim0;
3905 /* Do we have a "small" integer? */
3907 if (be >= 0 && k <= Int_max) {
3908 /* Yes. */
3909 ds = tens[k];
3910 if (ndigits < 0 && ilim <= 0) {
3911 S = mhi = 0;
3912 if (ilim < 0 || dval(&u) <= 5*ds)
3913 goto no_digits;
3914 goto one_digit;
3916 for(i = 1; i <= k + 1; i++, dval(&u) *= 10.) {
3917 L = (Long)(dval(&u) / ds);
3918 dval(&u) -= L*ds;
3919 #ifdef Check_FLT_ROUNDS
3920 /* If FLT_ROUNDS == 2, L will usually be high by 1 */
3921 if (dval(&u) < 0) {
3922 L--;
3923 dval(&u) += ds;
3925 #endif
3926 *s++ = '0' + (char)L;
3927 if (!dval(&u)) {
3928 #ifdef SET_INEXACT
3929 inexact = 0;
3930 #endif
3931 break;
3933 if (i == ilim) {
3934 #ifdef Honor_FLT_ROUNDS
3935 if (mode > 1)
3936 switch(Rounding) {
3937 case 0: goto ret1;
3938 case 2: goto bump_up;
3940 #endif
3941 dval(&u) += dval(&u);
3942 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
3943 bump_up:
3944 while(*--s == '9')
3945 if (s == s0) {
3946 k++;
3947 *s = '0';
3948 break;
3950 ++*s++;
3952 break;
3955 goto ret1;
3958 m2 = b2;
3959 m5 = b5;
3960 mhi = mlo = 0;
3961 if (leftright) {
3963 #ifndef Sudden_Underflow
3964 denorm ? be + (Bias + (P-1) - 1 + 1) :
3965 #endif
3966 #ifdef IBM
3967 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
3968 #else
3969 1 + P - bbits;
3970 #endif
3971 b2 += i;
3972 s2 += i;
3973 mhi = i2b(1);
3975 if (m2 > 0 && s2 > 0) {
3976 i = m2 < s2 ? m2 : s2;
3977 b2 -= i;
3978 m2 -= i;
3979 s2 -= i;
3981 if (b5 > 0) {
3982 if (leftright) {
3983 if (m5 > 0) {
3984 mhi = pow5mult(mhi, m5);
3985 b1 = mult(mhi, b);
3986 Bfree(b);
3987 b = b1;
3989 j = b5 - m5;
3990 if (j)
3991 b = pow5mult(b, j);
3993 else
3994 b = pow5mult(b, b5);
3996 S = i2b(1);
3997 if (s5 > 0)
3998 S = pow5mult(S, s5);
4000 /* Check for special case that d is a normalized power of 2. */
4002 spec_case = 0;
4003 if ((mode < 2 || leftright)
4004 #ifdef Honor_FLT_ROUNDS
4005 && Rounding == 1
4006 #endif
4008 if (!word1(&u) && !(word0(&u) & Bndry_mask)
4009 #ifndef Sudden_Underflow
4010 && word0(&u) & (Exp_mask & ~Exp_msk1)
4011 #endif
4013 /* The special case */
4014 b2 += Log2P;
4015 s2 += Log2P;
4016 spec_case = 1;
4020 /* Arrange for convenient computation of quotients:
4021 * shift left if necessary so divisor has 4 leading 0 bits.
4023 * Perhaps we should just compute leading 28 bits of S once
4024 * and for all and pass them and a shift to quorem, so it
4025 * can do shifts and ors to compute the numerator for q.
4027 #ifdef Pack_32
4028 i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f;
4029 if (i)
4030 i = 32 - i;
4031 #define iInc 28
4032 #else
4033 if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
4034 i = 16 - i;
4035 #define iInc 12
4036 #endif
4037 i = dshift(S, s2);
4038 b2 += i;
4039 m2 += i;
4040 s2 += i;
4041 if (b2 > 0)
4042 b = lshift(b, b2);
4043 if (s2 > 0)
4044 S = lshift(S, s2);
4045 if (k_check) {
4046 if (cmp(b,S) < 0) {
4047 k--;
4048 b = multadd(b, 10, 0); /* we botched the k estimate */
4049 if (leftright)
4050 mhi = multadd(mhi, 10, 0);
4051 ilim = ilim1;
4054 if (ilim <= 0 && (mode == 3 || mode == 5)) {
4055 if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4056 /* no digits, fcvt style */
4057 no_digits:
4058 k = -1 - ndigits;
4059 goto ret;
4061 one_digit:
4062 *s++ = '1';
4063 k++;
4064 goto ret;
4066 if (leftright) {
4067 if (m2 > 0)
4068 mhi = lshift(mhi, m2);
4070 /* Compute mlo -- check for special case
4071 * that d is a normalized power of 2.
4074 mlo = mhi;
4075 if (spec_case) {
4076 mhi = Balloc(mhi->k);
4077 Bcopy(mhi, mlo);
4078 mhi = lshift(mhi, Log2P);
4081 for(i = 1;;i++) {
4082 dig = quorem(b,S) + '0';
4083 /* Do we yet have the shortest decimal string
4084 * that will round to d?
4086 j = cmp(b, mlo);
4087 delta = diff(S, mhi);
4088 j1 = delta->sign ? 1 : cmp(b, delta);
4089 Bfree(delta);
4090 #ifndef ROUND_BIASED
4091 if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4092 #ifdef Honor_FLT_ROUNDS
4093 && Rounding >= 1
4094 #endif
4096 if (dig == '9')
4097 goto round_9_up;
4098 if (j > 0)
4099 dig++;
4100 #ifdef SET_INEXACT
4101 else if (!b->x[0] && b->wds <= 1)
4102 inexact = 0;
4103 #endif
4104 *s++ = (char)dig;
4105 goto ret;
4107 #endif
4108 if (j < 0 || (j == 0 && mode != 1
4109 #ifndef ROUND_BIASED
4110 && !(word1(&u) & 1)
4111 #endif
4112 )) {
4113 if (!b->x[0] && b->wds <= 1) {
4114 #ifdef SET_INEXACT
4115 inexact = 0;
4116 #endif
4117 goto accept_dig;
4119 #ifdef Honor_FLT_ROUNDS
4120 if (mode > 1)
4121 switch(Rounding) {
4122 case 0: goto accept_dig;
4123 case 2: goto keep_dig;
4125 #endif /*Honor_FLT_ROUNDS*/
4126 if (j1 > 0) {
4127 b = lshift(b, 1);
4128 j1 = cmp(b, S);
4129 if ((j1 > 0 || (j1 == 0 && dig & 1))
4130 && dig++ == '9')
4131 goto round_9_up;
4133 accept_dig:
4134 *s++ = (char)dig;
4135 goto ret;
4137 if (j1 > 0) {
4138 #ifdef Honor_FLT_ROUNDS
4139 if (!Rounding)
4140 goto accept_dig;
4141 #endif
4142 if (dig == '9') { /* possible if i == 1 */
4143 round_9_up:
4144 *s++ = '9';
4145 goto roundoff;
4147 *s++ = (char)dig + 1;
4148 goto ret;
4150 #ifdef Honor_FLT_ROUNDS
4151 keep_dig:
4152 #endif
4153 *s++ = (char)dig;
4154 if (i == ilim)
4155 break;
4156 b = multadd(b, 10, 0);
4157 if (mlo == mhi)
4158 mlo = mhi = multadd(mhi, 10, 0);
4159 else {
4160 mlo = multadd(mlo, 10, 0);
4161 mhi = multadd(mhi, 10, 0);
4165 else
4166 for(i = 1;; i++) {
4167 dig = quorem(b,S) + '0';
4168 *s++ = (char)dig;
4169 if (!b->x[0] && b->wds <= 1) {
4170 #ifdef SET_INEXACT
4171 inexact = 0;
4172 #endif
4173 goto ret;
4175 if (i >= ilim)
4176 break;
4177 b = multadd(b, 10, 0);
4180 /* Round off last digit */
4182 #ifdef Honor_FLT_ROUNDS
4183 switch(Rounding) {
4184 case 0: goto trimzeros;
4185 case 2: goto roundoff;
4187 #endif
4188 b = lshift(b, 1);
4189 j = cmp(b, S);
4190 if (j > 0 || (j == 0 && dig & 1)) {
4191 roundoff:
4192 while(*--s == '9')
4193 if (s == s0) {
4194 k++;
4195 *s++ = '1';
4196 goto ret;
4198 ++*s++;
4200 else {
4201 #ifdef Honor_FLT_ROUNDS
4202 trimzeros:
4203 #endif
4204 while(*--s == '0') {}
4205 s++;
4207 ret:
4208 Bfree(S);
4209 if (mhi) {
4210 if (mlo && mlo != mhi)
4211 Bfree(mlo);
4212 Bfree(mhi);
4214 ret1:
4215 #ifdef SET_INEXACT
4216 if (inexact) {
4217 if (!oldinexact) {
4218 word0(&u) = Exp_1 + (70 << Exp_shift);
4219 word1(&u) = 0;
4220 dval(&u) += 1.;
4223 else if (!oldinexact)
4224 clear_inexact();
4225 #endif
4226 Bfree(b);
4227 *s = 0;
4228 *decpt = k + 1;
4229 if (rve)
4230 *rve = s;
4231 return s0;
4234 } // namespace dmg_fp