Update about_credits.html by re-running license.py
[chromium-blink-merge.git] / gfx / skbitmap_operations.cc
blob68995530f8db4481b38639c63dd0c9ecf0859b5a
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "gfx/skbitmap_operations.h"
7 #include <algorithm>
8 #include <string.h>
10 #include "base/logging.h"
11 #include "third_party/skia/include/core/SkBitmap.h"
12 #include "third_party/skia/include/core/SkCanvas.h"
13 #include "third_party/skia/include/core/SkColorPriv.h"
14 #include "third_party/skia/include/core/SkUnPreMultiply.h"
16 // static
17 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
18 DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
20 SkAutoLockPixels lock_image(image);
22 SkBitmap inverted;
23 inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
24 0);
25 inverted.allocPixels();
26 inverted.eraseARGB(0, 0, 0, 0);
28 for (int y = 0; y < image.height(); ++y) {
29 uint32* image_row = image.getAddr32(0, y);
30 uint32* dst_row = inverted.getAddr32(0, y);
32 for (int x = 0; x < image.width(); ++x) {
33 uint32 image_pixel = image_row[x];
34 dst_row[x] = (image_pixel & 0xFF000000) |
35 (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
39 return inverted;
42 // static
43 SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
44 const SkBitmap& second) {
45 DCHECK(first.width() == second.width());
46 DCHECK(first.height() == second.height());
47 DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
48 DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
50 SkAutoLockPixels lock_first(first);
51 SkAutoLockPixels lock_second(second);
53 SkBitmap superimposed;
54 superimposed.setConfig(SkBitmap::kARGB_8888_Config,
55 first.width(), first.height());
56 superimposed.allocPixels();
57 superimposed.eraseARGB(0, 0, 0, 0);
59 SkCanvas canvas(superimposed);
61 SkRect rect;
62 rect.fLeft = 0;
63 rect.fTop = 0;
64 rect.fRight = SkIntToScalar(first.width());
65 rect.fBottom = SkIntToScalar(first.height());
67 canvas.drawBitmapRect(first, NULL, rect);
68 canvas.drawBitmapRect(second, NULL, rect);
70 return superimposed;
73 // static
74 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
75 const SkBitmap& second,
76 double alpha) {
77 DCHECK((alpha >= 0) && (alpha <= 1));
78 DCHECK(first.width() == second.width());
79 DCHECK(first.height() == second.height());
80 DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
81 DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
83 // Optimize for case where we won't need to blend anything.
84 static const double alpha_min = 1.0 / 255;
85 static const double alpha_max = 254.0 / 255;
86 if (alpha < alpha_min)
87 return first;
88 else if (alpha > alpha_max)
89 return second;
91 SkAutoLockPixels lock_first(first);
92 SkAutoLockPixels lock_second(second);
94 SkBitmap blended;
95 blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
96 0);
97 blended.allocPixels();
98 blended.eraseARGB(0, 0, 0, 0);
100 double first_alpha = 1 - alpha;
102 for (int y = 0; y < first.height(); ++y) {
103 uint32* first_row = first.getAddr32(0, y);
104 uint32* second_row = second.getAddr32(0, y);
105 uint32* dst_row = blended.getAddr32(0, y);
107 for (int x = 0; x < first.width(); ++x) {
108 uint32 first_pixel = first_row[x];
109 uint32 second_pixel = second_row[x];
111 int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
112 (SkColorGetA(second_pixel) * alpha));
113 int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
114 (SkColorGetR(second_pixel) * alpha));
115 int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
116 (SkColorGetG(second_pixel) * alpha));
117 int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
118 (SkColorGetB(second_pixel) * alpha));
120 dst_row[x] = SkColorSetARGB(a, r, g, b);
124 return blended;
127 // static
128 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
129 const SkBitmap& alpha) {
130 DCHECK(rgb.width() == alpha.width());
131 DCHECK(rgb.height() == alpha.height());
132 DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
133 DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
134 DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);
136 SkBitmap masked;
137 masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
138 masked.allocPixels();
139 masked.eraseARGB(0, 0, 0, 0);
141 SkAutoLockPixels lock_rgb(rgb);
142 SkAutoLockPixels lock_alpha(alpha);
143 SkAutoLockPixels lock_masked(masked);
145 for (int y = 0; y < masked.height(); ++y) {
146 uint32* rgb_row = rgb.getAddr32(0, y);
147 uint32* alpha_row = alpha.getAddr32(0, y);
148 uint32* dst_row = masked.getAddr32(0, y);
150 for (int x = 0; x < masked.width(); ++x) {
151 SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
152 int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x]));
153 dst_row[x] = SkColorSetARGB(alpha,
154 SkAlphaMul(SkColorGetR(rgb_pixel), alpha),
155 SkAlphaMul(SkColorGetG(rgb_pixel), alpha),
156 SkAlphaMul(SkColorGetB(rgb_pixel), alpha));
160 return masked;
163 // static
164 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
165 const SkBitmap& image,
166 const SkBitmap& mask) {
167 DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
168 DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);
170 SkBitmap background;
171 background.setConfig(
172 SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
173 background.allocPixels();
175 double bg_a = SkColorGetA(color);
176 double bg_r = SkColorGetR(color);
177 double bg_g = SkColorGetG(color);
178 double bg_b = SkColorGetB(color);
180 SkAutoLockPixels lock_mask(mask);
181 SkAutoLockPixels lock_image(image);
182 SkAutoLockPixels lock_background(background);
184 for (int y = 0; y < mask.height(); ++y) {
185 uint32* dst_row = background.getAddr32(0, y);
186 uint32* image_row = image.getAddr32(0, y % image.height());
187 uint32* mask_row = mask.getAddr32(0, y);
189 for (int x = 0; x < mask.width(); ++x) {
190 uint32 image_pixel = image_row[x % image.width()];
192 double img_a = SkColorGetA(image_pixel);
193 double img_r = SkColorGetR(image_pixel);
194 double img_g = SkColorGetG(image_pixel);
195 double img_b = SkColorGetB(image_pixel);
197 double img_alpha = static_cast<double>(img_a) / 255.0;
198 double img_inv = 1 - img_alpha;
200 double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
202 dst_row[x] = SkColorSetARGB(
203 static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
204 static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
205 static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
206 static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
210 return background;
213 namespace {
214 namespace HSLShift {
216 // TODO(viettrungluu): Some things have yet to be optimized at all.
218 // Notes on and conventions used in the following code
220 // Conventions:
221 // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
222 // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
223 // - variables derived from S, L shift parameters: |sdec| and |sinc| for S
224 // increase and decrease factors, |ldec| and |linc| for L (see also below)
226 // To try to optimize HSL shifts, we do several things:
227 // - Avoid unpremultiplying (then processing) then premultiplying. This means
228 // that R, G, B values (and also L, but not H and S) should be treated as
229 // having a range of 0..A (where A is alpha).
230 // - Do things in integer/fixed-point. This avoids costly conversions between
231 // floating-point and integer, though I should study the tradeoff more
232 // carefully (presumably, at some point of processing complexity, converting
233 // and processing using simpler floating-point code will begin to win in
234 // performance). Also to be studied is the speed/type of floating point
235 // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
237 // Conventions for fixed-point arithmetic
238 // - Each function has a constant denominator (called |den|, which should be a
239 // power of 2), appropriate for the computations done in that function.
240 // - A value |x| is then typically represented by a numerator, named |x_num|,
241 // so that its actual value is |x_num / den| (casting to floating-point
242 // before division).
243 // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
244 // den| (casting appropriately).
245 // - When necessary, a value |x| may also be represented as a numerator over
246 // the denominator squared (set |den2 = den * den|). In such a case, the
247 // corresponding variable is called |x_num2| (so that its actual value is
248 // |x_num^2 / den2|.
249 // - The representation of the product of |x| and |y| is be called |x_y_num| if
250 // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
251 // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
253 // Routine used to process a line; typically specialized for specific kinds of
254 // HSL shifts (to optimize).
255 typedef void (*LineProcessor)(color_utils::HSL,
256 const SkPMColor*,
257 SkPMColor*,
258 int width);
260 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
261 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
262 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
264 // Epsilon used to judge when shift values are close enough to various critical
265 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
266 // be small enough, but let's play it safe>
267 const double epsilon = 0.0005;
269 // Line processor: default/universal (i.e., old-school).
270 void LineProcDefault(color_utils::HSL hsl_shift, const SkPMColor* in,
271 SkPMColor* out, int width) {
272 for (int x = 0; x < width; x++) {
273 out[x] = SkPreMultiplyColor(color_utils::HSLShift(
274 SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
278 // Line processor: no-op (i.e., copy).
279 void LineProcCopy(color_utils::HSL hsl_shift, const SkPMColor* in,
280 SkPMColor* out, int width) {
281 DCHECK(hsl_shift.h < 0);
282 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
283 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
284 memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
287 // Line processor: H no-op, S no-op, L decrease.
288 void LineProcHnopSnopLdec(color_utils::HSL hsl_shift, const SkPMColor* in,
289 SkPMColor* out, int width) {
290 const uint32_t den = 65536;
292 DCHECK(hsl_shift.h < 0);
293 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
294 DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
296 uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
297 for (int x = 0; x < width; x++) {
298 uint32_t a = SkGetPackedA32(in[x]);
299 uint32_t r = SkGetPackedR32(in[x]);
300 uint32_t g = SkGetPackedG32(in[x]);
301 uint32_t b = SkGetPackedB32(in[x]);
302 r = r * ldec_num / den;
303 g = g * ldec_num / den;
304 b = b * ldec_num / den;
305 out[x] = SkPackARGB32(a, r, g, b);
309 // Line processor: H no-op, S no-op, L increase.
310 void LineProcHnopSnopLinc(color_utils::HSL hsl_shift, const SkPMColor* in,
311 SkPMColor* out, int width) {
312 const uint32_t den = 65536;
314 DCHECK(hsl_shift.h < 0);
315 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
316 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
318 uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
319 for (int x = 0; x < width; x++) {
320 uint32_t a = SkGetPackedA32(in[x]);
321 uint32_t r = SkGetPackedR32(in[x]);
322 uint32_t g = SkGetPackedG32(in[x]);
323 uint32_t b = SkGetPackedB32(in[x]);
324 r += (a - r) * linc_num / den;
325 g += (a - g) * linc_num / den;
326 b += (a - b) * linc_num / den;
327 out[x] = SkPackARGB32(a, r, g, b);
331 // Saturation changes modifications in RGB
333 // (Note that as a further complication, the values we deal in are
334 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical
335 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
336 // generality, assume that R/G/B values are in the range 0..1.)
338 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
339 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
341 // For H to remain constant, first, the (numerical) order of R/G/B (from
342 // smallest to largest) must remain the same. Second, all the ratios
343 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
344 // course, if Max = Min, then S = 0 and no saturation change is well-defined,
345 // since H is not well-defined).
347 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med
348 // the remaining colour. Increasing saturation (to the maximum) is accomplished
349 // by increasing the value of C_max while simultaneously decreasing C_min and
350 // changing C_med so that the ratios are maintained; for the latter, it suffices
351 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
352 // (Med-Min)/(Max-Min)).
354 // Line processor: H no-op, S decrease, L no-op.
355 void LineProcHnopSdecLnop(color_utils::HSL hsl_shift, const SkPMColor* in,
356 SkPMColor* out, int width) {
357 DCHECK(hsl_shift.h < 0);
358 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
359 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
361 const int32_t denom = 65536;
362 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
363 for (int x = 0; x < width; x++) {
364 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
365 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
366 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
367 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
369 int32_t vmax, vmin;
370 if (r > g) { // This uses 3 compares rather than 4.
371 vmax = std::max(r, b);
372 vmin = std::min(g, b);
373 } else {
374 vmax = std::max(g, b);
375 vmin = std::min(r, b);
378 // Use denom * L to avoid rounding.
379 int32_t denom_l = (vmax + vmin) * (denom / 2);
380 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
382 r = (denom_l + r * s_numer - s_numer_l) / denom;
383 g = (denom_l + g * s_numer - s_numer_l) / denom;
384 b = (denom_l + b * s_numer - s_numer_l) / denom;
385 out[x] = SkPackARGB32(a, r, g, b);
389 // Line processor: H no-op, S decrease, L decrease.
390 void LineProcHnopSdecLdec(color_utils::HSL hsl_shift, const SkPMColor* in,
391 SkPMColor* out, int width) {
392 DCHECK(hsl_shift.h < 0);
393 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
394 DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
396 // Can't be too big since we need room for denom*denom and a bit for sign.
397 const int32_t denom = 1024;
398 int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
399 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
400 for (int x = 0; x < width; x++) {
401 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
402 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
403 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
404 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
406 int32_t vmax, vmin;
407 if (r > g) { // This uses 3 compares rather than 4.
408 vmax = std::max(r, b);
409 vmin = std::min(g, b);
410 } else {
411 vmax = std::max(g, b);
412 vmin = std::min(r, b);
415 // Use denom * L to avoid rounding.
416 int32_t denom_l = (vmax + vmin) * (denom / 2);
417 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
419 r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
420 g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
421 b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
422 out[x] = SkPackARGB32(a, r, g, b);
426 // Line processor: H no-op, S decrease, L increase.
427 void LineProcHnopSdecLinc(color_utils::HSL hsl_shift, const SkPMColor* in,
428 SkPMColor* out, int width) {
429 DCHECK(hsl_shift.h < 0);
430 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
431 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
433 // Can't be too big since we need room for denom*denom and a bit for sign.
434 const int32_t denom = 1024;
435 int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
436 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
437 for (int x = 0; x < width; x++) {
438 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
439 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
440 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
441 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
443 int32_t vmax, vmin;
444 if (r > g) { // This uses 3 compares rather than 4.
445 vmax = std::max(r, b);
446 vmin = std::min(g, b);
447 } else {
448 vmax = std::max(g, b);
449 vmin = std::min(r, b);
452 // Use denom * L to avoid rounding.
453 int32_t denom_l = (vmax + vmin) * (denom / 2);
454 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
456 r = denom_l + r * s_numer - s_numer_l;
457 g = denom_l + g * s_numer - s_numer_l;
458 b = denom_l + b * s_numer - s_numer_l;
460 r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
461 g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
462 b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
463 out[x] = SkPackARGB32(a, r, g, b);
467 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
468 { // H: kOpHNone
469 { // S: kOpSNone
470 LineProcCopy, // L: kOpLNone
471 LineProcHnopSnopLdec, // L: kOpLDec
472 LineProcHnopSnopLinc // L: kOpLInc
474 { // S: kOpSDec
475 LineProcHnopSdecLnop, // L: kOpLNone
476 LineProcHnopSdecLdec, // L: kOpLDec
477 LineProcHnopSdecLinc // L: kOpLInc
479 { // S: kOpSInc
480 LineProcDefault, // L: kOpLNone
481 LineProcDefault, // L: kOpLDec
482 LineProcDefault // L: kOpLInc
485 { // H: kOpHShift
486 { // S: kOpSNone
487 LineProcDefault, // L: kOpLNone
488 LineProcDefault, // L: kOpLDec
489 LineProcDefault // L: kOpLInc
491 { // S: kOpSDec
492 LineProcDefault, // L: kOpLNone
493 LineProcDefault, // L: kOpLDec
494 LineProcDefault // L: kOpLInc
496 { // S: kOpSInc
497 LineProcDefault, // L: kOpLNone
498 LineProcDefault, // L: kOpLDec
499 LineProcDefault // L: kOpLInc
504 } // namespace HSLShift
505 } // namespace
507 // static
508 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
509 const SkBitmap& bitmap,
510 color_utils::HSL hsl_shift) {
511 // Default to NOPs.
512 HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
513 HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
514 HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
516 if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
517 H_op = HSLShift::kOpHShift;
519 // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
520 if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
521 S_op = HSLShift::kOpSDec;
522 else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
523 S_op = HSLShift::kOpSInc;
525 // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
526 if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
527 L_op = HSLShift::kOpLDec;
528 else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
529 L_op = HSLShift::kOpLInc;
531 HSLShift::LineProcessor line_proc =
532 HSLShift::kLineProcessors[H_op][S_op][L_op];
534 DCHECK(bitmap.empty() == false);
535 DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
537 SkBitmap shifted;
538 shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
539 bitmap.height(), 0);
540 shifted.allocPixels();
541 shifted.eraseARGB(0, 0, 0, 0);
542 shifted.setIsOpaque(false);
544 SkAutoLockPixels lock_bitmap(bitmap);
545 SkAutoLockPixels lock_shifted(shifted);
547 // Loop through the pixels of the original bitmap.
548 for (int y = 0; y < bitmap.height(); ++y) {
549 SkPMColor* pixels = bitmap.getAddr32(0, y);
550 SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
552 (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
555 return shifted;
558 // static
559 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
560 int src_x, int src_y,
561 int dst_w, int dst_h) {
562 DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config);
564 SkBitmap cropped;
565 cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
566 cropped.allocPixels();
567 cropped.eraseARGB(0, 0, 0, 0);
569 SkAutoLockPixels lock_source(source);
570 SkAutoLockPixels lock_cropped(cropped);
572 // Loop through the pixels of the original bitmap.
573 for (int y = 0; y < dst_h; ++y) {
574 int y_pix = (src_y + y) % source.height();
575 while (y_pix < 0)
576 y_pix += source.height();
578 uint32* source_row = source.getAddr32(0, y_pix);
579 uint32* dst_row = cropped.getAddr32(0, y);
581 for (int x = 0; x < dst_w; ++x) {
582 int x_pix = (src_x + x) % source.width();
583 while (x_pix < 0)
584 x_pix += source.width();
586 dst_row[x] = source_row[x_pix];
590 return cropped;
593 // static
594 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
595 int min_w, int min_h) {
596 if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
597 (min_w < 0) || (min_h < 0))
598 return bitmap;
600 // Since bitmaps are refcounted, this copy will be fast.
601 SkBitmap current = bitmap;
602 while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
603 (current.width() > 1) && (current.height() > 1))
604 current = DownsampleByTwo(current);
605 return current;
608 // static
609 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
610 // Handle the nop case.
611 if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
612 return bitmap;
614 SkBitmap result;
615 result.setConfig(SkBitmap::kARGB_8888_Config,
616 (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
617 result.allocPixels();
619 SkAutoLockPixels lock(bitmap);
620 for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
621 for (int dest_x = 0; dest_x < result.width(); ++dest_x) {
622 // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
623 // clever in that it does two channels at once: alpha and green ("ag")
624 // and red and blue ("rb"). Each channel gets averaged across 4 pixels
625 // to get the result.
626 int src_x = dest_x << 1;
627 int src_y = dest_y << 1;
628 const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y);
629 SkPMColor tmp, ag, rb;
631 // Top left pixel of the 2x2 block.
632 tmp = *cur_src;
633 ag = (tmp >> 8) & 0xFF00FF;
634 rb = tmp & 0xFF00FF;
635 if (src_x < (bitmap.width() - 1))
636 ++cur_src;
638 // Top right pixel of the 2x2 block.
639 tmp = *cur_src;
640 ag += (tmp >> 8) & 0xFF00FF;
641 rb += tmp & 0xFF00FF;
642 if (src_y < (bitmap.height() - 1))
643 cur_src = bitmap.getAddr32(src_x, src_y + 1);
644 else
645 cur_src = bitmap.getAddr32(src_x, src_y); // Move back to the first.
647 // Bottom left pixel of the 2x2 block.
648 tmp = *cur_src;
649 ag += (tmp >> 8) & 0xFF00FF;
650 rb += tmp & 0xFF00FF;
651 if (src_x < (bitmap.width() - 1))
652 ++cur_src;
654 // Bottom right pixel of the 2x2 block.
655 tmp = *cur_src;
656 ag += (tmp >> 8) & 0xFF00FF;
657 rb += tmp & 0xFF00FF;
659 // Put the channels back together, dividing each by 4 to get the average.
660 // |ag| has the alpha and green channels shifted right by 8 bits from
661 // there they should end up, so shifting left by 6 gives them in the
662 // correct position divided by 4.
663 *result.getAddr32(dest_x, dest_y) =
664 ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
668 return result;
671 // static
672 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
673 if (bitmap.isNull())
674 return bitmap;
675 if (bitmap.isOpaque())
676 return bitmap;
678 SkBitmap opaque_bitmap;
679 opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height());
680 opaque_bitmap.allocPixels();
683 SkAutoLockPixels bitmap_lock(bitmap);
684 SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
685 for (int y = 0; y < opaque_bitmap.height(); y++) {
686 for (int x = 0; x < opaque_bitmap.width(); x++) {
687 uint32 src_pixel = *bitmap.getAddr32(x, y);
688 uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
689 SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
690 *dst_pixel = unmultiplied;
695 opaque_bitmap.setIsOpaque(true);
696 return opaque_bitmap;
699 // static
700 SkBitmap SkBitmapOperations::CreateTransposedBtmap(const SkBitmap& image) {
701 DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
703 SkAutoLockPixels lock_image(image);
705 SkBitmap transposed;
706 transposed.setConfig(
707 SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0);
708 transposed.allocPixels();
709 transposed.eraseARGB(0, 0, 0, 0);
711 for (int y = 0; y < image.height(); ++y) {
712 uint32* image_row = image.getAddr32(0, y);
713 for (int x = 0; x < image.width(); ++x) {
714 uint32* dst = transposed.getAddr32(y, x);
715 *dst = image_row[x];
719 return transposed;