1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #define _USE_MATH_DEFINES
10 #include "skia/ext/image_operations.h"
12 // TODO(pkasting): skia/ext should not depend on base/!
13 #include "base/containers/stack_container.h"
14 #include "base/debug/trace_event.h"
15 #include "base/logging.h"
16 #include "base/metrics/histogram.h"
17 #include "base/time/time.h"
18 #include "build/build_config.h"
19 #include "skia/ext/convolver.h"
20 #include "third_party/skia/include/core/SkColorPriv.h"
21 #include "third_party/skia/include/core/SkFontHost.h"
22 #include "third_party/skia/include/core/SkRect.h"
28 // Returns the ceiling/floor as an integer.
29 inline int CeilInt(float val
) {
30 return static_cast<int>(ceil(val
));
32 inline int FloorInt(float val
) {
33 return static_cast<int>(floor(val
));
36 // Filter function computation -------------------------------------------------
38 // Evaluates the box filter, which goes from -0.5 to +0.5.
39 float EvalBox(float x
) {
40 return (x
>= -0.5f
&& x
< 0.5f
) ? 1.0f
: 0.0f
;
43 // Evaluates the Lanczos filter of the given filter size window for the given
46 // |filter_size| is the width of the filter (the "window"), outside of which
47 // the value of the function is 0. Inside of the window, the value is the
48 // normalized sinc function:
49 // lanczos(x) = sinc(x) * sinc(x / filter_size);
51 // sinc(x) = sin(pi*x) / (pi*x);
52 float EvalLanczos(int filter_size
, float x
) {
53 if (x
<= -filter_size
|| x
>= filter_size
)
54 return 0.0f
; // Outside of the window.
55 if (x
> -std::numeric_limits
<float>::epsilon() &&
56 x
< std::numeric_limits
<float>::epsilon())
57 return 1.0f
; // Special case the discontinuity at the origin.
58 float xpi
= x
* static_cast<float>(M_PI
);
59 return (sin(xpi
) / xpi
) * // sinc(x)
60 sin(xpi
/ filter_size
) / (xpi
/ filter_size
); // sinc(x/filter_size)
63 // Evaluates the Hamming filter of the given filter size window for the given
66 // The filter covers [-filter_size, +filter_size]. Outside of this window
67 // the value of the function is 0. Inside of the window, the value is sinus
68 // cardinal multiplied by a recentered Hamming function. The traditional
69 // Hamming formula for a window of size N and n ranging in [0, N-1] is:
70 // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
71 // In our case we want the function centered for x == 0 and at its minimum
72 // on both ends of the window (x == +/- filter_size), hence the adjusted
74 // hamming(x) = (0.54 -
75 // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
76 // = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
77 // = 0.54 + 0.46 * cos(pi * x / filter_size)
78 float EvalHamming(int filter_size
, float x
) {
79 if (x
<= -filter_size
|| x
>= filter_size
)
80 return 0.0f
; // Outside of the window.
81 if (x
> -std::numeric_limits
<float>::epsilon() &&
82 x
< std::numeric_limits
<float>::epsilon())
83 return 1.0f
; // Special case the sinc discontinuity at the origin.
84 const float xpi
= x
* static_cast<float>(M_PI
);
86 return ((sin(xpi
) / xpi
) * // sinc(x)
87 (0.54f
+ 0.46f
* cos(xpi
/ filter_size
))); // hamming(x)
90 // ResizeFilter ----------------------------------------------------------------
92 // Encapsulates computation and storage of the filters required for one complete
96 ResizeFilter(ImageOperations::ResizeMethod method
,
97 int src_full_width
, int src_full_height
,
98 int dest_width
, int dest_height
,
99 const SkIRect
& dest_subset
);
101 // Returns the filled filter values.
102 const ConvolutionFilter1D
& x_filter() { return x_filter_
; }
103 const ConvolutionFilter1D
& y_filter() { return y_filter_
; }
106 // Returns the number of pixels that the filer spans, in filter space (the
107 // destination image).
108 float GetFilterSupport(float scale
) {
110 case ImageOperations::RESIZE_BOX
:
111 // The box filter just scales with the image scaling.
112 return 0.5f
; // Only want one side of the filter = /2.
113 case ImageOperations::RESIZE_HAMMING1
:
114 // The Hamming filter takes as much space in the source image in
115 // each direction as the size of the window = 1 for Hamming1.
117 case ImageOperations::RESIZE_LANCZOS2
:
118 // The Lanczos filter takes as much space in the source image in
119 // each direction as the size of the window = 2 for Lanczos2.
121 case ImageOperations::RESIZE_LANCZOS3
:
122 // The Lanczos filter takes as much space in the source image in
123 // each direction as the size of the window = 3 for Lanczos3.
131 // Computes one set of filters either horizontally or vertically. The caller
132 // will specify the "min" and "max" rather than the bottom/top and
133 // right/bottom so that the same code can be re-used in each dimension.
135 // |src_depend_lo| and |src_depend_size| gives the range for the source
136 // depend rectangle (horizontally or vertically at the caller's discretion
137 // -- see above for what this means).
139 // Likewise, the range of destination values to compute and the scale factor
140 // for the transform is also specified.
141 void ComputeFilters(int src_size
,
142 int dest_subset_lo
, int dest_subset_size
,
144 ConvolutionFilter1D
* output
);
146 // Computes the filter value given the coordinate in filter space.
147 inline float ComputeFilter(float pos
) {
149 case ImageOperations::RESIZE_BOX
:
151 case ImageOperations::RESIZE_HAMMING1
:
152 return EvalHamming(1, pos
);
153 case ImageOperations::RESIZE_LANCZOS2
:
154 return EvalLanczos(2, pos
);
155 case ImageOperations::RESIZE_LANCZOS3
:
156 return EvalLanczos(3, pos
);
163 ImageOperations::ResizeMethod method_
;
165 // Size of the filter support on one side only in the destination space.
166 // See GetFilterSupport.
167 float x_filter_support_
;
168 float y_filter_support_
;
170 // Subset of scaled destination bitmap to compute.
173 ConvolutionFilter1D x_filter_
;
174 ConvolutionFilter1D y_filter_
;
176 DISALLOW_COPY_AND_ASSIGN(ResizeFilter
);
179 ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method
,
180 int src_full_width
, int src_full_height
,
181 int dest_width
, int dest_height
,
182 const SkIRect
& dest_subset
)
184 out_bounds_(dest_subset
) {
185 // method_ will only ever refer to an "algorithm method".
186 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD
<= method
) &&
187 (method
<= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD
));
189 float scale_x
= static_cast<float>(dest_width
) /
190 static_cast<float>(src_full_width
);
191 float scale_y
= static_cast<float>(dest_height
) /
192 static_cast<float>(src_full_height
);
194 ComputeFilters(src_full_width
, dest_subset
.fLeft
, dest_subset
.width(),
195 scale_x
, &x_filter_
);
196 ComputeFilters(src_full_height
, dest_subset
.fTop
, dest_subset
.height(),
197 scale_y
, &y_filter_
);
200 // TODO(egouriou): Take advantage of periods in the convolution.
201 // Practical resizing filters are periodic outside of the border area.
202 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
203 // source become p pixels in the destination) will have a period of p.
204 // A nice consequence is a period of 1 when downscaling by an integral
205 // factor. Downscaling from typical display resolutions is also bound
206 // to produce interesting periods as those are chosen to have multiple
208 // Small periods reduce computational load and improve cache usage if
209 // the coefficients can be shared. For periods of 1 we can consider
210 // loading the factors only once outside the borders.
211 void ResizeFilter::ComputeFilters(int src_size
,
212 int dest_subset_lo
, int dest_subset_size
,
214 ConvolutionFilter1D
* output
) {
215 int dest_subset_hi
= dest_subset_lo
+ dest_subset_size
; // [lo, hi)
217 // When we're doing a magnification, the scale will be larger than one. This
218 // means the destination pixels are much smaller than the source pixels, and
219 // that the range covered by the filter won't necessarily cover any source
220 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
221 // some computations.
222 float clamped_scale
= std::min(1.0f
, scale
);
224 // This is how many source pixels from the center we need to count
225 // to support the filtering function.
226 float src_support
= GetFilterSupport(clamped_scale
) / clamped_scale
;
228 // Speed up the divisions below by turning them into multiplies.
229 float inv_scale
= 1.0f
/ scale
;
231 base::StackVector
<float, 64> filter_values
;
232 base::StackVector
<int16
, 64> fixed_filter_values
;
234 // Loop over all pixels in the output range. We will generate one set of
235 // filter values for each one. Those values will tell us how to blend the
236 // source pixels to compute the destination pixel.
237 for (int dest_subset_i
= dest_subset_lo
; dest_subset_i
< dest_subset_hi
;
239 // Reset the arrays. We don't declare them inside so they can re-use the
240 // same malloc-ed buffer.
241 filter_values
->clear();
242 fixed_filter_values
->clear();
244 // This is the pixel in the source directly under the pixel in the dest.
245 // Note that we base computations on the "center" of the pixels. To see
246 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
247 // downscale should "cover" the pixels around the pixel with *its center*
248 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
249 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
250 float src_pixel
= (static_cast<float>(dest_subset_i
) + 0.5f
) * inv_scale
;
252 // Compute the (inclusive) range of source pixels the filter covers.
253 int src_begin
= std::max(0, FloorInt(src_pixel
- src_support
));
254 int src_end
= std::min(src_size
- 1, CeilInt(src_pixel
+ src_support
));
256 // Compute the unnormalized filter value at each location of the source
258 float filter_sum
= 0.0f
; // Sub of the filter values for normalizing.
259 for (int cur_filter_pixel
= src_begin
; cur_filter_pixel
<= src_end
;
260 cur_filter_pixel
++) {
261 // Distance from the center of the filter, this is the filter coordinate
262 // in source space. We also need to consider the center of the pixel
263 // when comparing distance against 'src_pixel'. In the 5x downscale
264 // example used above the distance from the center of the filter to
265 // the pixel with coordinates (2, 2) should be 0, because its center
267 float src_filter_dist
=
268 ((static_cast<float>(cur_filter_pixel
) + 0.5f
) - src_pixel
);
270 // Since the filter really exists in dest space, map it there.
271 float dest_filter_dist
= src_filter_dist
* clamped_scale
;
273 // Compute the filter value at that location.
274 float filter_value
= ComputeFilter(dest_filter_dist
);
275 filter_values
->push_back(filter_value
);
277 filter_sum
+= filter_value
;
279 DCHECK(!filter_values
->empty()) << "We should always get a filter!";
281 // The filter must be normalized so that we don't affect the brightness of
282 // the image. Convert to normalized fixed point.
284 for (size_t i
= 0; i
< filter_values
->size(); i
++) {
285 int16 cur_fixed
= output
->FloatToFixed(filter_values
[i
] / filter_sum
);
286 fixed_sum
+= cur_fixed
;
287 fixed_filter_values
->push_back(cur_fixed
);
290 // The conversion to fixed point will leave some rounding errors, which
291 // we add back in to avoid affecting the brightness of the image. We
292 // arbitrarily add this to the center of the filter array (this won't always
293 // be the center of the filter function since it could get clipped on the
294 // edges, but it doesn't matter enough to worry about that case).
295 int16 leftovers
= output
->FloatToFixed(1.0f
) - fixed_sum
;
296 fixed_filter_values
[fixed_filter_values
->size() / 2] += leftovers
;
298 // Now it's ready to go.
299 output
->AddFilter(src_begin
, &fixed_filter_values
[0],
300 static_cast<int>(fixed_filter_values
->size()));
303 output
->PaddingForSIMD();
306 ImageOperations::ResizeMethod
ResizeMethodToAlgorithmMethod(
307 ImageOperations::ResizeMethod method
) {
308 // Convert any "Quality Method" into an "Algorithm Method"
309 if (method
>= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD
&&
310 method
<= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD
) {
313 // The call to ImageOperationsGtv::Resize() above took care of
314 // GPU-acceleration in the cases where it is possible. So now we just
315 // pick the appropriate software method for each resize quality.
317 // Users of RESIZE_GOOD are willing to trade a lot of quality to
318 // get speed, allowing the use of linear resampling to get hardware
319 // acceleration (SRB). Hence any of our "good" software filters
320 // will be acceptable, and we use the fastest one, Hamming-1.
321 case ImageOperations::RESIZE_GOOD
:
322 // Users of RESIZE_BETTER are willing to trade some quality in order
323 // to improve performance, but are guaranteed not to devolve to a linear
324 // resampling. In visual tests we see that Hamming-1 is not as good as
325 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
326 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
327 // an acceptable trade-off between quality and speed.
328 case ImageOperations::RESIZE_BETTER
:
329 return ImageOperations::RESIZE_HAMMING1
;
331 return ImageOperations::RESIZE_LANCZOS3
;
337 // Resize ----------------------------------------------------------------------
340 SkBitmap
ImageOperations::Resize(const SkBitmap
& source
,
342 int dest_width
, int dest_height
,
343 const SkIRect
& dest_subset
,
344 SkBitmap::Allocator
* allocator
) {
345 if (method
== ImageOperations::RESIZE_SUBPIXEL
) {
346 return ResizeSubpixel(source
, dest_width
, dest_height
,
347 dest_subset
, allocator
);
349 return ResizeBasic(source
, method
, dest_width
, dest_height
, dest_subset
,
355 SkBitmap
ImageOperations::ResizeSubpixel(const SkBitmap
& source
,
356 int dest_width
, int dest_height
,
357 const SkIRect
& dest_subset
,
358 SkBitmap::Allocator
* allocator
) {
359 TRACE_EVENT2("skia", "ImageOperations::ResizeSubpixel",
360 "src_pixels", source
.width()*source
.height(),
361 "dst_pixels", dest_width
*dest_height
);
362 // Currently only works on Linux/BSD because these are the only platforms
363 // where SkFontHost::GetSubpixelOrder is defined.
364 #if defined(OS_LINUX) && !defined(GTV)
365 // Understand the display.
366 const SkFontHost::LCDOrder order
= SkFontHost::GetSubpixelOrder();
367 const SkFontHost::LCDOrientation orientation
=
368 SkFontHost::GetSubpixelOrientation();
370 // Decide on which dimension, if any, to deploy subpixel rendering.
373 switch (orientation
) {
374 case SkFontHost::kHorizontal_LCDOrientation
:
375 w
= dest_width
< source
.width() ? 3 : 1;
377 case SkFontHost::kVertical_LCDOrientation
:
378 h
= dest_height
< source
.height() ? 3 : 1;
383 const int width
= dest_width
* w
;
384 const int height
= dest_height
* h
;
385 SkIRect subset
= { dest_subset
.fLeft
, dest_subset
.fTop
,
386 dest_subset
.fLeft
+ dest_subset
.width() * w
,
387 dest_subset
.fTop
+ dest_subset
.height() * h
};
388 SkBitmap img
= ResizeBasic(source
, ImageOperations::RESIZE_LANCZOS3
, width
,
389 height
, subset
, allocator
);
390 const int row_words
= img
.rowBytes() / 4;
391 if (w
== 1 && h
== 1)
394 // Render into subpixels.
396 result
.setInfo(SkImageInfo::MakeN32(dest_subset
.width(), dest_subset
.height(),
398 result
.allocPixels(allocator
, NULL
);
399 if (!result
.readyToDraw())
402 SkAutoLockPixels
locker(img
);
403 if (!img
.readyToDraw())
406 uint32
* src_row
= img
.getAddr32(0, 0);
407 uint32
* dst_row
= result
.getAddr32(0, 0);
408 for (int y
= 0; y
< dest_subset
.height(); y
++) {
409 uint32
* src
= src_row
;
410 uint32
* dst
= dst_row
;
411 for (int x
= 0; x
< dest_subset
.width(); x
++, src
+= w
, dst
++) {
412 uint8 r
= 0, g
= 0, b
= 0, a
= 0;
414 case SkFontHost::kRGB_LCDOrder
:
415 switch (orientation
) {
416 case SkFontHost::kHorizontal_LCDOrientation
:
417 r
= SkGetPackedR32(src
[0]);
418 g
= SkGetPackedG32(src
[1]);
419 b
= SkGetPackedB32(src
[2]);
420 a
= SkGetPackedA32(src
[1]);
422 case SkFontHost::kVertical_LCDOrientation
:
423 r
= SkGetPackedR32(src
[0 * row_words
]);
424 g
= SkGetPackedG32(src
[1 * row_words
]);
425 b
= SkGetPackedB32(src
[2 * row_words
]);
426 a
= SkGetPackedA32(src
[1 * row_words
]);
430 case SkFontHost::kBGR_LCDOrder
:
431 switch (orientation
) {
432 case SkFontHost::kHorizontal_LCDOrientation
:
433 b
= SkGetPackedB32(src
[0]);
434 g
= SkGetPackedG32(src
[1]);
435 r
= SkGetPackedR32(src
[2]);
436 a
= SkGetPackedA32(src
[1]);
438 case SkFontHost::kVertical_LCDOrientation
:
439 b
= SkGetPackedB32(src
[0 * row_words
]);
440 g
= SkGetPackedG32(src
[1 * row_words
]);
441 r
= SkGetPackedR32(src
[2 * row_words
]);
442 a
= SkGetPackedA32(src
[1 * row_words
]);
446 case SkFontHost::kNONE_LCDOrder
:
449 // Premultiplied alpha is very fragile.
453 *dst
= SkPackARGB32(a
, r
, g
, b
);
455 src_row
+= h
* row_words
;
456 dst_row
+= result
.rowBytes() / 4;
461 #endif // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID)
465 SkBitmap
ImageOperations::ResizeBasic(const SkBitmap
& source
,
467 int dest_width
, int dest_height
,
468 const SkIRect
& dest_subset
,
469 SkBitmap::Allocator
* allocator
) {
470 TRACE_EVENT2("skia", "ImageOperations::ResizeBasic",
471 "src_pixels", source
.width()*source
.height(),
472 "dst_pixels", dest_width
*dest_height
);
473 // Ensure that the ResizeMethod enumeration is sound.
474 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD
<= method
) &&
475 (method
<= RESIZE_LAST_QUALITY_METHOD
)) ||
476 ((RESIZE_FIRST_ALGORITHM_METHOD
<= method
) &&
477 (method
<= RESIZE_LAST_ALGORITHM_METHOD
)));
479 // Time how long this takes to see if it's a problem for users.
480 base::TimeTicks resize_start
= base::TimeTicks::Now();
482 SkIRect dest
= { 0, 0, dest_width
, dest_height
};
483 DCHECK(dest
.contains(dest_subset
)) <<
484 "The supplied subset does not fall within the destination image.";
486 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
488 if (source
.width() < 1 || source
.height() < 1 ||
489 dest_width
< 1 || dest_height
< 1)
492 method
= ResizeMethodToAlgorithmMethod(method
);
493 // Check that we deal with an "algorithm methods" from this point onward.
494 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD
<= method
) &&
495 (method
<= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD
));
497 SkAutoLockPixels
locker(source
);
498 if (!source
.readyToDraw() || source
.colorType() != kN32_SkColorType
)
501 ResizeFilter
filter(method
, source
.width(), source
.height(),
502 dest_width
, dest_height
, dest_subset
);
504 // Get a source bitmap encompassing this touched area. We construct the
505 // offsets and row strides such that it looks like a new bitmap, while
506 // referring to the old data.
507 const uint8
* source_subset
=
508 reinterpret_cast<const uint8
*>(source
.getPixels());
510 // Convolve into the result.
512 result
.setInfo(SkImageInfo::MakeN32(dest_subset
.width(), dest_subset
.height(), source
.alphaType()));
513 result
.allocPixels(allocator
, NULL
);
514 if (!result
.readyToDraw())
517 BGRAConvolve2D(source_subset
, static_cast<int>(source
.rowBytes()),
518 !source
.isOpaque(), filter
.x_filter(), filter
.y_filter(),
519 static_cast<int>(result
.rowBytes()),
520 static_cast<unsigned char*>(result
.getPixels()),
523 base::TimeDelta delta
= base::TimeTicks::Now() - resize_start
;
524 UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta
);
530 SkBitmap
ImageOperations::Resize(const SkBitmap
& source
,
532 int dest_width
, int dest_height
,
533 SkBitmap::Allocator
* allocator
) {
534 SkIRect dest_subset
= { 0, 0, dest_width
, dest_height
};
535 return Resize(source
, method
, dest_width
, dest_height
, dest_subset
,