Report errors from ChromiumEnv::GetChildren in Posix.
[chromium-blink-merge.git] / base / tracked_objects.cc
blob0847d5f9163622cd65449707775fe7594de9a2b1
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/tracked_objects.h"
7 #include <limits.h>
8 #include <stdlib.h>
10 #include "base/compiler_specific.h"
11 #include "base/debug/leak_annotations.h"
12 #include "base/logging.h"
13 #include "base/process/process_handle.h"
14 #include "base/profiler/alternate_timer.h"
15 #include "base/strings/stringprintf.h"
16 #include "base/third_party/valgrind/memcheck.h"
17 #include "base/tracking_info.h"
19 using base::TimeDelta;
21 namespace base {
22 class TimeDelta;
25 namespace tracked_objects {
27 namespace {
28 // Flag to compile out almost all of the task tracking code.
29 const bool kTrackAllTaskObjects = true;
31 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
32 // negligible, enable by default.
33 // Flag to compile out parent-child link recording.
34 const bool kTrackParentChildLinks = false;
36 // When ThreadData is first initialized, should we start in an ACTIVE state to
37 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
38 // that we only record after parsing the command line flag --enable-tracking.
39 // Note that the flag may force either state, so this really controls only the
40 // period of time up until that flag is parsed. If there is no flag seen, then
41 // this state may prevail for much or all of the process lifetime.
42 const ThreadData::Status kInitialStartupState =
43 ThreadData::PROFILING_CHILDREN_ACTIVE;
45 // Control whether an alternate time source (Now() function) is supported by
46 // the ThreadData class. This compile time flag should be set to true if we
47 // want other modules (such as a memory allocator, or a thread-specific CPU time
48 // clock) to be able to provide a thread-specific Now() function. Without this
49 // compile-time flag, the code will only support the wall-clock time. This flag
50 // can be flipped to efficiently disable this path (if there is a performance
51 // problem with its presence).
52 static const bool kAllowAlternateTimeSourceHandling = true;
54 } // namespace
56 //------------------------------------------------------------------------------
57 // DeathData tallies durations when a death takes place.
59 DeathData::DeathData() {
60 Clear();
63 DeathData::DeathData(int count) {
64 Clear();
65 count_ = count;
68 // TODO(jar): I need to see if this macro to optimize branching is worth using.
70 // This macro has no branching, so it is surely fast, and is equivalent to:
71 // if (assign_it)
72 // target = source;
73 // We use a macro rather than a template to force this to inline.
74 // Related code for calculating max is discussed on the web.
75 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
76 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
78 void DeathData::RecordDeath(const int32 queue_duration,
79 const int32 run_duration,
80 int32 random_number) {
81 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
82 if (count_ < INT_MAX)
83 ++count_;
84 queue_duration_sum_ += queue_duration;
85 run_duration_sum_ += run_duration;
87 if (queue_duration_max_ < queue_duration)
88 queue_duration_max_ = queue_duration;
89 if (run_duration_max_ < run_duration)
90 run_duration_max_ = run_duration;
92 // Take a uniformly distributed sample over all durations ever supplied.
93 // The probability that we (instead) use this new sample is 1/count_. This
94 // results in a completely uniform selection of the sample (at least when we
95 // don't clamp count_... but that should be inconsequentially likely).
96 // We ignore the fact that we correlated our selection of a sample to the run
97 // and queue times (i.e., we used them to generate random_number).
98 CHECK_GT(count_, 0);
99 if (0 == (random_number % count_)) {
100 queue_duration_sample_ = queue_duration;
101 run_duration_sample_ = run_duration;
105 int DeathData::count() const { return count_; }
107 int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
109 int32 DeathData::run_duration_max() const { return run_duration_max_; }
111 int32 DeathData::run_duration_sample() const {
112 return run_duration_sample_;
115 int32 DeathData::queue_duration_sum() const {
116 return queue_duration_sum_;
119 int32 DeathData::queue_duration_max() const {
120 return queue_duration_max_;
123 int32 DeathData::queue_duration_sample() const {
124 return queue_duration_sample_;
127 void DeathData::ResetMax() {
128 run_duration_max_ = 0;
129 queue_duration_max_ = 0;
132 void DeathData::Clear() {
133 count_ = 0;
134 run_duration_sum_ = 0;
135 run_duration_max_ = 0;
136 run_duration_sample_ = 0;
137 queue_duration_sum_ = 0;
138 queue_duration_max_ = 0;
139 queue_duration_sample_ = 0;
142 //------------------------------------------------------------------------------
143 DeathDataSnapshot::DeathDataSnapshot()
144 : count(-1),
145 run_duration_sum(-1),
146 run_duration_max(-1),
147 run_duration_sample(-1),
148 queue_duration_sum(-1),
149 queue_duration_max(-1),
150 queue_duration_sample(-1) {
153 DeathDataSnapshot::DeathDataSnapshot(
154 const tracked_objects::DeathData& death_data)
155 : count(death_data.count()),
156 run_duration_sum(death_data.run_duration_sum()),
157 run_duration_max(death_data.run_duration_max()),
158 run_duration_sample(death_data.run_duration_sample()),
159 queue_duration_sum(death_data.queue_duration_sum()),
160 queue_duration_max(death_data.queue_duration_max()),
161 queue_duration_sample(death_data.queue_duration_sample()) {
164 DeathDataSnapshot::~DeathDataSnapshot() {
167 //------------------------------------------------------------------------------
168 BirthOnThread::BirthOnThread(const Location& location,
169 const ThreadData& current)
170 : location_(location),
171 birth_thread_(&current) {
174 //------------------------------------------------------------------------------
175 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
178 BirthOnThreadSnapshot::BirthOnThreadSnapshot(
179 const tracked_objects::BirthOnThread& birth)
180 : location(birth.location()),
181 thread_name(birth.birth_thread()->thread_name()) {
184 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
187 //------------------------------------------------------------------------------
188 Births::Births(const Location& location, const ThreadData& current)
189 : BirthOnThread(location, current),
190 birth_count_(1) { }
192 int Births::birth_count() const { return birth_count_; }
194 void Births::RecordBirth() { ++birth_count_; }
196 void Births::ForgetBirth() { --birth_count_; }
198 void Births::Clear() { birth_count_ = 0; }
200 //------------------------------------------------------------------------------
201 // ThreadData maintains the central data for all births and deaths on a single
202 // thread.
204 // TODO(jar): We should pull all these static vars together, into a struct, and
205 // optimize layout so that we benefit from locality of reference during accesses
206 // to them.
208 // static
209 NowFunction* ThreadData::now_function_ = NULL;
211 // A TLS slot which points to the ThreadData instance for the current thread. We
212 // do a fake initialization here (zeroing out data), and then the real in-place
213 // construction happens when we call tls_index_.Initialize().
214 // static
215 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
217 // static
218 int ThreadData::worker_thread_data_creation_count_ = 0;
220 // static
221 int ThreadData::cleanup_count_ = 0;
223 // static
224 int ThreadData::incarnation_counter_ = 0;
226 // static
227 ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
229 // static
230 ThreadData* ThreadData::first_retired_worker_ = NULL;
232 // static
233 base::LazyInstance<base::Lock>::Leaky
234 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
236 // static
237 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
239 ThreadData::ThreadData(const std::string& suggested_name)
240 : next_(NULL),
241 next_retired_worker_(NULL),
242 worker_thread_number_(0),
243 incarnation_count_for_pool_(-1) {
244 DCHECK_GE(suggested_name.size(), 0u);
245 thread_name_ = suggested_name;
246 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
249 ThreadData::ThreadData(int thread_number)
250 : next_(NULL),
251 next_retired_worker_(NULL),
252 worker_thread_number_(thread_number),
253 incarnation_count_for_pool_(-1) {
254 CHECK_GT(thread_number, 0);
255 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
256 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
259 ThreadData::~ThreadData() {}
261 void ThreadData::PushToHeadOfList() {
262 // Toss in a hint of randomness (atop the uniniitalized value).
263 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
264 sizeof(random_number_));
265 MSAN_UNPOISON(&random_number_, sizeof(random_number_));
266 random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0));
267 random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
269 DCHECK(!next_);
270 base::AutoLock lock(*list_lock_.Pointer());
271 incarnation_count_for_pool_ = incarnation_counter_;
272 next_ = all_thread_data_list_head_;
273 all_thread_data_list_head_ = this;
276 // static
277 ThreadData* ThreadData::first() {
278 base::AutoLock lock(*list_lock_.Pointer());
279 return all_thread_data_list_head_;
282 ThreadData* ThreadData::next() const { return next_; }
284 // static
285 void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
286 if (!Initialize()) // Always initialize if needed.
287 return;
288 ThreadData* current_thread_data =
289 reinterpret_cast<ThreadData*>(tls_index_.Get());
290 if (current_thread_data)
291 return; // Browser tests instigate this.
292 current_thread_data = new ThreadData(suggested_name);
293 tls_index_.Set(current_thread_data);
296 // static
297 ThreadData* ThreadData::Get() {
298 if (!tls_index_.initialized())
299 return NULL; // For unittests only.
300 ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
301 if (registered)
302 return registered;
304 // We must be a worker thread, since we didn't pre-register.
305 ThreadData* worker_thread_data = NULL;
306 int worker_thread_number = 0;
308 base::AutoLock lock(*list_lock_.Pointer());
309 if (first_retired_worker_) {
310 worker_thread_data = first_retired_worker_;
311 first_retired_worker_ = first_retired_worker_->next_retired_worker_;
312 worker_thread_data->next_retired_worker_ = NULL;
313 } else {
314 worker_thread_number = ++worker_thread_data_creation_count_;
318 // If we can't find a previously used instance, then we have to create one.
319 if (!worker_thread_data) {
320 DCHECK_GT(worker_thread_number, 0);
321 worker_thread_data = new ThreadData(worker_thread_number);
323 DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
325 tls_index_.Set(worker_thread_data);
326 return worker_thread_data;
329 // static
330 void ThreadData::OnThreadTermination(void* thread_data) {
331 DCHECK(thread_data); // TLS should *never* call us with a NULL.
332 // We must NOT do any allocations during this callback. There is a chance
333 // that the allocator is no longer active on this thread.
334 if (!kTrackAllTaskObjects)
335 return; // Not compiled in.
336 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
339 void ThreadData::OnThreadTerminationCleanup() {
340 // The list_lock_ was created when we registered the callback, so it won't be
341 // allocated here despite the lazy reference.
342 base::AutoLock lock(*list_lock_.Pointer());
343 if (incarnation_counter_ != incarnation_count_for_pool_)
344 return; // ThreadData was constructed in an earlier unit test.
345 ++cleanup_count_;
346 // Only worker threads need to be retired and reused.
347 if (!worker_thread_number_) {
348 return;
350 // We must NOT do any allocations during this callback.
351 // Using the simple linked lists avoids all allocations.
352 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
353 this->next_retired_worker_ = first_retired_worker_;
354 first_retired_worker_ = this;
357 // static
358 void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) {
359 // Add births that have run to completion to |collected_data|.
360 // |birth_counts| tracks the total number of births recorded at each location
361 // for which we have not seen a death count.
362 BirthCountMap birth_counts;
363 ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts);
365 // Add births that are still active -- i.e. objects that have tallied a birth,
366 // but have not yet tallied a matching death, and hence must be either
367 // running, queued up, or being held in limbo for future posting.
368 for (BirthCountMap::const_iterator it = birth_counts.begin();
369 it != birth_counts.end(); ++it) {
370 if (it->second > 0) {
371 process_data->tasks.push_back(
372 TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive"));
377 Births* ThreadData::TallyABirth(const Location& location) {
378 BirthMap::iterator it = birth_map_.find(location);
379 Births* child;
380 if (it != birth_map_.end()) {
381 child = it->second;
382 child->RecordBirth();
383 } else {
384 child = new Births(location, *this); // Leak this.
385 // Lock since the map may get relocated now, and other threads sometimes
386 // snapshot it (but they lock before copying it).
387 base::AutoLock lock(map_lock_);
388 birth_map_[location] = child;
391 if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
392 !parent_stack_.empty()) {
393 const Births* parent = parent_stack_.top();
394 ParentChildPair pair(parent, child);
395 if (parent_child_set_.find(pair) == parent_child_set_.end()) {
396 // Lock since the map may get relocated now, and other threads sometimes
397 // snapshot it (but they lock before copying it).
398 base::AutoLock lock(map_lock_);
399 parent_child_set_.insert(pair);
403 return child;
406 void ThreadData::TallyADeath(const Births& birth,
407 int32 queue_duration,
408 int32 run_duration) {
409 // Stir in some randomness, plus add constant in case durations are zero.
410 const int32 kSomePrimeNumber = 2147483647;
411 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
412 // An address is going to have some randomness to it as well ;-).
413 random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0));
415 // We don't have queue durations without OS timer. OS timer is automatically
416 // used for task-post-timing, so the use of an alternate timer implies all
417 // queue times are invalid.
418 if (kAllowAlternateTimeSourceHandling && now_function_)
419 queue_duration = 0;
421 DeathMap::iterator it = death_map_.find(&birth);
422 DeathData* death_data;
423 if (it != death_map_.end()) {
424 death_data = &it->second;
425 } else {
426 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
427 death_data = &death_map_[&birth];
428 } // Release lock ASAP.
429 death_data->RecordDeath(queue_duration, run_duration, random_number_);
431 if (!kTrackParentChildLinks)
432 return;
433 if (!parent_stack_.empty()) { // We might get turned off.
434 DCHECK_EQ(parent_stack_.top(), &birth);
435 parent_stack_.pop();
439 // static
440 Births* ThreadData::TallyABirthIfActive(const Location& location) {
441 if (!kTrackAllTaskObjects)
442 return NULL; // Not compiled in.
444 if (!TrackingStatus())
445 return NULL;
446 ThreadData* current_thread_data = Get();
447 if (!current_thread_data)
448 return NULL;
449 return current_thread_data->TallyABirth(location);
452 // static
453 void ThreadData::TallyRunOnNamedThreadIfTracking(
454 const base::TrackingInfo& completed_task,
455 const TrackedTime& start_of_run,
456 const TrackedTime& end_of_run) {
457 if (!kTrackAllTaskObjects)
458 return; // Not compiled in.
460 // Even if we have been DEACTIVATED, we will process any pending births so
461 // that our data structures (which counted the outstanding births) remain
462 // consistent.
463 const Births* birth = completed_task.birth_tally;
464 if (!birth)
465 return;
466 ThreadData* current_thread_data = Get();
467 if (!current_thread_data)
468 return;
470 // Watch out for a race where status_ is changing, and hence one or both
471 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
472 // get a time value since we "weren't tracking" and we were trying to be
473 // efficient by not calling for a genuine time value. For simplicity, we'll
474 // use a default zero duration when we can't calculate a true value.
475 int32 queue_duration = 0;
476 int32 run_duration = 0;
477 if (!start_of_run.is_null()) {
478 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
479 .InMilliseconds();
480 if (!end_of_run.is_null())
481 run_duration = (end_of_run - start_of_run).InMilliseconds();
483 current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
486 // static
487 void ThreadData::TallyRunOnWorkerThreadIfTracking(
488 const Births* birth,
489 const TrackedTime& time_posted,
490 const TrackedTime& start_of_run,
491 const TrackedTime& end_of_run) {
492 if (!kTrackAllTaskObjects)
493 return; // Not compiled in.
495 // Even if we have been DEACTIVATED, we will process any pending births so
496 // that our data structures (which counted the outstanding births) remain
497 // consistent.
498 if (!birth)
499 return;
501 // TODO(jar): Support the option to coalesce all worker-thread activity under
502 // one ThreadData instance that uses locks to protect *all* access. This will
503 // reduce memory (making it provably bounded), but run incrementally slower
504 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
505 // that the locks on TallyADeath will be *after* the worker thread has run,
506 // and hence nothing will be waiting for the completion (... besides some
507 // other thread that might like to run). Also, the worker threads tasks are
508 // generally longer, and hence the cost of the lock may perchance be amortized
509 // over the long task's lifetime.
510 ThreadData* current_thread_data = Get();
511 if (!current_thread_data)
512 return;
514 int32 queue_duration = 0;
515 int32 run_duration = 0;
516 if (!start_of_run.is_null()) {
517 queue_duration = (start_of_run - time_posted).InMilliseconds();
518 if (!end_of_run.is_null())
519 run_duration = (end_of_run - start_of_run).InMilliseconds();
521 current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
524 // static
525 void ThreadData::TallyRunInAScopedRegionIfTracking(
526 const Births* birth,
527 const TrackedTime& start_of_run,
528 const TrackedTime& end_of_run) {
529 if (!kTrackAllTaskObjects)
530 return; // Not compiled in.
532 // Even if we have been DEACTIVATED, we will process any pending births so
533 // that our data structures (which counted the outstanding births) remain
534 // consistent.
535 if (!birth)
536 return;
538 ThreadData* current_thread_data = Get();
539 if (!current_thread_data)
540 return;
542 int32 queue_duration = 0;
543 int32 run_duration = 0;
544 if (!start_of_run.is_null() && !end_of_run.is_null())
545 run_duration = (end_of_run - start_of_run).InMilliseconds();
546 current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
549 // static
550 void ThreadData::SnapshotAllExecutedTasks(bool reset_max,
551 ProcessDataSnapshot* process_data,
552 BirthCountMap* birth_counts) {
553 if (!kTrackAllTaskObjects)
554 return; // Not compiled in.
556 // Get an unchanging copy of a ThreadData list.
557 ThreadData* my_list = ThreadData::first();
559 // Gather data serially.
560 // This hackish approach *can* get some slighly corrupt tallies, as we are
561 // grabbing values without the protection of a lock, but it has the advantage
562 // of working even with threads that don't have message loops. If a user
563 // sees any strangeness, they can always just run their stats gathering a
564 // second time.
565 for (ThreadData* thread_data = my_list;
566 thread_data;
567 thread_data = thread_data->next()) {
568 thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts);
572 void ThreadData::SnapshotExecutedTasks(bool reset_max,
573 ProcessDataSnapshot* process_data,
574 BirthCountMap* birth_counts) {
575 // Get copy of data, so that the data will not change during the iterations
576 // and processing.
577 ThreadData::BirthMap birth_map;
578 ThreadData::DeathMap death_map;
579 ThreadData::ParentChildSet parent_child_set;
580 SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set);
582 for (ThreadData::DeathMap::const_iterator it = death_map.begin();
583 it != death_map.end(); ++it) {
584 process_data->tasks.push_back(
585 TaskSnapshot(*it->first, it->second, thread_name()));
586 (*birth_counts)[it->first] -= it->first->birth_count();
589 for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
590 it != birth_map.end(); ++it) {
591 (*birth_counts)[it->second] += it->second->birth_count();
594 if (!kTrackParentChildLinks)
595 return;
597 for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin();
598 it != parent_child_set.end(); ++it) {
599 process_data->descendants.push_back(ParentChildPairSnapshot(*it));
603 // This may be called from another thread.
604 void ThreadData::SnapshotMaps(bool reset_max,
605 BirthMap* birth_map,
606 DeathMap* death_map,
607 ParentChildSet* parent_child_set) {
608 base::AutoLock lock(map_lock_);
609 for (BirthMap::const_iterator it = birth_map_.begin();
610 it != birth_map_.end(); ++it)
611 (*birth_map)[it->first] = it->second;
612 for (DeathMap::iterator it = death_map_.begin();
613 it != death_map_.end(); ++it) {
614 (*death_map)[it->first] = it->second;
615 if (reset_max)
616 it->second.ResetMax();
619 if (!kTrackParentChildLinks)
620 return;
622 for (ParentChildSet::iterator it = parent_child_set_.begin();
623 it != parent_child_set_.end(); ++it)
624 parent_child_set->insert(*it);
627 // static
628 void ThreadData::ResetAllThreadData() {
629 ThreadData* my_list = first();
631 for (ThreadData* thread_data = my_list;
632 thread_data;
633 thread_data = thread_data->next())
634 thread_data->Reset();
637 void ThreadData::Reset() {
638 base::AutoLock lock(map_lock_);
639 for (DeathMap::iterator it = death_map_.begin();
640 it != death_map_.end(); ++it)
641 it->second.Clear();
642 for (BirthMap::iterator it = birth_map_.begin();
643 it != birth_map_.end(); ++it)
644 it->second->Clear();
647 static void OptionallyInitializeAlternateTimer() {
648 NowFunction* alternate_time_source = GetAlternateTimeSource();
649 if (alternate_time_source)
650 ThreadData::SetAlternateTimeSource(alternate_time_source);
653 bool ThreadData::Initialize() {
654 if (!kTrackAllTaskObjects)
655 return false; // Not compiled in.
656 if (status_ >= DEACTIVATED)
657 return true; // Someone else did the initialization.
658 // Due to racy lazy initialization in tests, we'll need to recheck status_
659 // after we acquire the lock.
661 // Ensure that we don't double initialize tls. We are called when single
662 // threaded in the product, but some tests may be racy and lazy about our
663 // initialization.
664 base::AutoLock lock(*list_lock_.Pointer());
665 if (status_ >= DEACTIVATED)
666 return true; // Someone raced in here and beat us.
668 // Put an alternate timer in place if the environment calls for it, such as
669 // for tracking TCMalloc allocations. This insertion is idempotent, so we
670 // don't mind if there is a race, and we'd prefer not to be in a lock while
671 // doing this work.
672 if (kAllowAlternateTimeSourceHandling)
673 OptionallyInitializeAlternateTimer();
675 // Perform the "real" TLS initialization now, and leave it intact through
676 // process termination.
677 if (!tls_index_.initialized()) { // Testing may have initialized this.
678 DCHECK_EQ(status_, UNINITIALIZED);
679 tls_index_.Initialize(&ThreadData::OnThreadTermination);
680 if (!tls_index_.initialized())
681 return false;
682 } else {
683 // TLS was initialzed for us earlier.
684 DCHECK_EQ(status_, DORMANT_DURING_TESTS);
687 // Incarnation counter is only significant to testing, as it otherwise will
688 // never again change in this process.
689 ++incarnation_counter_;
691 // The lock is not critical for setting status_, but it doesn't hurt. It also
692 // ensures that if we have a racy initialization, that we'll bail as soon as
693 // we get the lock earlier in this method.
694 status_ = kInitialStartupState;
695 if (!kTrackParentChildLinks &&
696 kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
697 status_ = PROFILING_ACTIVE;
698 DCHECK(status_ != UNINITIALIZED);
699 return true;
702 // static
703 bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
704 DCHECK_GE(status, DEACTIVATED);
705 DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE);
707 if (!Initialize()) // No-op if already initialized.
708 return false; // Not compiled in.
710 if (!kTrackParentChildLinks && status > DEACTIVATED)
711 status = PROFILING_ACTIVE;
712 status_ = status;
713 return true;
716 // static
717 ThreadData::Status ThreadData::status() {
718 return status_;
721 // static
722 bool ThreadData::TrackingStatus() {
723 return status_ > DEACTIVATED;
726 // static
727 bool ThreadData::TrackingParentChildStatus() {
728 return status_ >= PROFILING_CHILDREN_ACTIVE;
731 // static
732 TrackedTime ThreadData::NowForStartOfRun(const Births* parent) {
733 if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
734 ThreadData* current_thread_data = Get();
735 if (current_thread_data)
736 current_thread_data->parent_stack_.push(parent);
738 return Now();
741 // static
742 TrackedTime ThreadData::NowForEndOfRun() {
743 return Now();
746 // static
747 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
748 DCHECK(now_function);
749 if (kAllowAlternateTimeSourceHandling)
750 now_function_ = now_function;
753 // static
754 TrackedTime ThreadData::Now() {
755 if (kAllowAlternateTimeSourceHandling && now_function_)
756 return TrackedTime::FromMilliseconds((*now_function_)());
757 if (kTrackAllTaskObjects && TrackingStatus())
758 return TrackedTime::Now();
759 return TrackedTime(); // Super fast when disabled, or not compiled.
762 // static
763 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
764 base::AutoLock lock(*list_lock_.Pointer());
765 if (worker_thread_data_creation_count_ == 0)
766 return; // We haven't really run much, and couldn't have leaked.
767 // Verify that we've at least shutdown/cleanup the major namesd threads. The
768 // caller should tell us how many thread shutdowns should have taken place by
769 // now.
770 return; // TODO(jar): until this is working on XP, don't run the real test.
771 CHECK_GT(cleanup_count_, major_threads_shutdown_count);
774 // static
775 void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
776 // This is only called from test code, where we need to cleanup so that
777 // additional tests can be run.
778 // We must be single threaded... but be careful anyway.
779 if (!InitializeAndSetTrackingStatus(DEACTIVATED))
780 return;
781 ThreadData* thread_data_list;
783 base::AutoLock lock(*list_lock_.Pointer());
784 thread_data_list = all_thread_data_list_head_;
785 all_thread_data_list_head_ = NULL;
786 ++incarnation_counter_;
787 // To be clean, break apart the retired worker list (though we leak them).
788 while (first_retired_worker_) {
789 ThreadData* worker = first_retired_worker_;
790 CHECK_GT(worker->worker_thread_number_, 0);
791 first_retired_worker_ = worker->next_retired_worker_;
792 worker->next_retired_worker_ = NULL;
796 // Put most global static back in pristine shape.
797 worker_thread_data_creation_count_ = 0;
798 cleanup_count_ = 0;
799 tls_index_.Set(NULL);
800 status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED.
802 // To avoid any chance of racing in unit tests, which is the only place we
803 // call this function, we may sometimes leak all the data structures we
804 // recovered, as they may still be in use on threads from prior tests!
805 if (leak) {
806 ThreadData* thread_data = thread_data_list;
807 while (thread_data) {
808 ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
809 thread_data = thread_data->next();
811 return;
814 // When we want to cleanup (on a single thread), here is what we do.
816 // Do actual recursive delete in all ThreadData instances.
817 while (thread_data_list) {
818 ThreadData* next_thread_data = thread_data_list;
819 thread_data_list = thread_data_list->next();
821 for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
822 next_thread_data->birth_map_.end() != it; ++it)
823 delete it->second; // Delete the Birth Records.
824 delete next_thread_data; // Includes all Death Records.
828 //------------------------------------------------------------------------------
829 TaskSnapshot::TaskSnapshot() {
832 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth,
833 const DeathData& death_data,
834 const std::string& death_thread_name)
835 : birth(birth),
836 death_data(death_data),
837 death_thread_name(death_thread_name) {
840 TaskSnapshot::~TaskSnapshot() {
843 //------------------------------------------------------------------------------
844 // ParentChildPairSnapshot
846 ParentChildPairSnapshot::ParentChildPairSnapshot() {
849 ParentChildPairSnapshot::ParentChildPairSnapshot(
850 const ThreadData::ParentChildPair& parent_child)
851 : parent(*parent_child.first),
852 child(*parent_child.second) {
855 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
858 //------------------------------------------------------------------------------
859 // ProcessDataSnapshot
861 ProcessDataSnapshot::ProcessDataSnapshot()
862 #if !defined(OS_NACL)
863 : process_id(base::GetCurrentProcId()) {
864 #else
865 : process_id(0) {
866 #endif
869 ProcessDataSnapshot::~ProcessDataSnapshot() {
872 } // namespace tracked_objects