cygprofile: increase timeouts to allow showing web contents
[chromium-blink-merge.git] / third_party / tcmalloc / vendor / src / tcmalloc.cc
blob0a9cb9f68d2b637ac050c1722687a3c04bf785fe
1 // Copyright (c) 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // ---
31 // Author: Sanjay Ghemawat <opensource@google.com>
33 // A malloc that uses a per-thread cache to satisfy small malloc requests.
34 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36 // See doc/tcmalloc.html for a high-level
37 // description of how this malloc works.
39 // SYNCHRONIZATION
40 // 1. The thread-specific lists are accessed without acquiring any locks.
41 // This is safe because each such list is only accessed by one thread.
42 // 2. We have a lock per central free-list, and hold it while manipulating
43 // the central free list for a particular size.
44 // 3. The central page allocator is protected by "pageheap_lock".
45 // 4. The pagemap (which maps from page-number to descriptor),
46 // can be read without holding any locks, and written while holding
47 // the "pageheap_lock".
48 // 5. To improve performance, a subset of the information one can get
49 // from the pagemap is cached in a data structure, pagemap_cache_,
50 // that atomically reads and writes its entries. This cache can be
51 // read and written without locking.
53 // This multi-threaded access to the pagemap is safe for fairly
54 // subtle reasons. We basically assume that when an object X is
55 // allocated by thread A and deallocated by thread B, there must
56 // have been appropriate synchronization in the handoff of object
57 // X from thread A to thread B. The same logic applies to pagemap_cache_.
59 // THE PAGEID-TO-SIZECLASS CACHE
60 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
61 // returns 0 for a particular PageID then that means "no information," not that
62 // the sizeclass is 0. The cache may have stale information for pages that do
63 // not hold the beginning of any free()'able object. Staleness is eliminated
64 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
65 // do_memalign() for all other relevant pages.
67 // PAGEMAP
68 // -------
69 // Page map contains a mapping from page id to Span.
71 // If Span s occupies pages [p..q],
72 // pagemap[p] == s
73 // pagemap[q] == s
74 // pagemap[p+1..q-1] are undefined
75 // pagemap[p-1] and pagemap[q+1] are defined:
76 // NULL if the corresponding page is not yet in the address space.
77 // Otherwise it points to a Span. This span may be free
78 // or allocated. If free, it is in one of pageheap's freelist.
80 // TODO: Bias reclamation to larger addresses
81 // TODO: implement mallinfo/mallopt
82 // TODO: Better testing
84 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
85 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
86 // * allocation of a reasonably complicated struct
87 // goes from about 1100 ns to about 300 ns.
89 #include "config.h"
90 #include <gperftools/tcmalloc.h>
92 #include <errno.h> // for ENOMEM, EINVAL, errno
93 #ifdef HAVE_SYS_CDEFS_H
94 #include <sys/cdefs.h> // for __THROW
95 #endif
96 #if defined HAVE_STDINT_H
97 #include <stdint.h>
98 #elif defined HAVE_INTTYPES_H
99 #include <inttypes.h>
100 #else
101 #include <sys/types.h>
102 #endif
103 #include <stddef.h> // for size_t, NULL
104 #include <stdlib.h> // for getenv
105 #include <string.h> // for strcmp, memset, strlen, etc
106 #ifdef HAVE_UNISTD_H
107 #include <unistd.h> // for getpagesize, write, etc
108 #endif
109 #include <algorithm> // for max, min
110 #include <limits> // for numeric_limits
111 #include <new> // for nothrow_t (ptr only), etc
112 #include <vector> // for vector
114 #include <gperftools/malloc_extension.h>
115 #include <gperftools/malloc_hook.h> // for MallocHook
116 #include "base/basictypes.h" // for int64
117 #include "base/commandlineflags.h" // for RegisterFlagValidator, etc
118 #include "base/dynamic_annotations.h" // for RunningOnValgrind
119 #include "base/spinlock.h" // for SpinLockHolder
120 #include "central_freelist.h" // for CentralFreeListPadded
121 #include "common.h" // for StackTrace, kPageShift, etc
122 #include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc
123 #include "linked_list.h" // for SLL_SetNext
124 #include "malloc_hook-inl.h" // for MallocHook::InvokeNewHook, etc
125 #include "page_heap.h" // for PageHeap, PageHeap::Stats
126 #include "page_heap_allocator.h" // for PageHeapAllocator
127 #include "span.h" // for Span, DLL_Prepend, etc
128 #include "stack_trace_table.h" // for StackTraceTable
129 #include "static_vars.h" // for Static
130 #include "system-alloc.h" // for DumpSystemAllocatorStats, etc
131 #include "tcmalloc_guard.h" // for TCMallocGuard
132 #include "thread_cache.h" // for ThreadCache
134 // We only need malloc.h for struct mallinfo.
135 #ifdef HAVE_STRUCT_MALLINFO
136 // Malloc can be in several places on older versions of OS X.
137 # if defined(HAVE_MALLOC_H)
138 # include <malloc.h>
139 # elif defined(HAVE_SYS_MALLOC_H)
140 # include <sys/malloc.h>
141 # elif defined(HAVE_MALLOC_MALLOC_H)
142 # include <malloc/malloc.h>
143 # endif
144 #endif
146 #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
147 # define WIN32_DO_PATCHING 1
148 #endif
150 // Some windows file somewhere (at least on cygwin) #define's small (!)
151 #undef small
153 using STL_NAMESPACE::max;
154 using STL_NAMESPACE::numeric_limits;
155 using STL_NAMESPACE::vector;
157 #include "libc_override.h"
159 // __THROW is defined in glibc (via <sys/cdefs.h>). It means,
160 // counter-intuitively, "This function will never throw an exception."
161 // It's an optional optimization tool, but we may need to use it to
162 // match glibc prototypes.
163 #ifndef __THROW // I guess we're not on a glibc system
164 # define __THROW // __THROW is just an optimization, so ok to make it ""
165 #endif
167 using tcmalloc::AlignmentForSize;
168 using tcmalloc::kLog;
169 using tcmalloc::kCrash;
170 using tcmalloc::kCrashWithStats;
171 using tcmalloc::Log;
172 using tcmalloc::PageHeap;
173 using tcmalloc::PageHeapAllocator;
174 using tcmalloc::SizeMap;
175 using tcmalloc::Span;
176 using tcmalloc::StackTrace;
177 using tcmalloc::Static;
178 using tcmalloc::ThreadCache;
180 DECLARE_int64(tcmalloc_sample_parameter);
181 DECLARE_double(tcmalloc_release_rate);
183 // For windows, the printf we use to report large allocs is
184 // potentially dangerous: it could cause a malloc that would cause an
185 // infinite loop. So by default we set the threshold to a huge number
186 // on windows, so this bad situation will never trigger. You can
187 // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
188 // want this functionality.
189 #ifdef _WIN32
190 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
191 #else
192 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
193 #endif
194 DEFINE_int64(tcmalloc_large_alloc_report_threshold,
195 EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
196 kDefaultLargeAllocReportThreshold),
197 "Allocations larger than this value cause a stack "
198 "trace to be dumped to stderr. The threshold for "
199 "dumping stack traces is increased by a factor of 1.125 "
200 "every time we print a message so that the threshold "
201 "automatically goes up by a factor of ~1000 every 60 "
202 "messages. This bounds the amount of extra logging "
203 "generated by this flag. Default value of this flag "
204 "is very large and therefore you should see no extra "
205 "logging unless the flag is overridden. Set to 0 to "
206 "disable reporting entirely.");
209 // We already declared these functions in tcmalloc.h, but we have to
210 // declare them again to give them an ATTRIBUTE_SECTION: we want to
211 // put all callers of MallocHook::Invoke* in this module into
212 // ATTRIBUTE_SECTION(google_malloc) section, so that
213 // MallocHook::GetCallerStackTrace can function accurately.
214 #ifndef _WIN32 // windows doesn't have attribute_section, so don't bother
215 extern "C" {
216 void* tc_malloc(size_t size) __THROW
217 ATTRIBUTE_SECTION(google_malloc);
218 void tc_free(void* ptr) __THROW
219 ATTRIBUTE_SECTION(google_malloc);
220 void* tc_realloc(void* ptr, size_t size) __THROW
221 ATTRIBUTE_SECTION(google_malloc);
222 void* tc_calloc(size_t nmemb, size_t size) __THROW
223 ATTRIBUTE_SECTION(google_malloc);
224 void tc_cfree(void* ptr) __THROW
225 ATTRIBUTE_SECTION(google_malloc);
227 void* tc_memalign(size_t __alignment, size_t __size) __THROW
228 ATTRIBUTE_SECTION(google_malloc);
229 int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
230 ATTRIBUTE_SECTION(google_malloc);
231 void* tc_valloc(size_t __size) __THROW
232 ATTRIBUTE_SECTION(google_malloc);
233 void* tc_pvalloc(size_t __size) __THROW
234 ATTRIBUTE_SECTION(google_malloc);
236 void tc_malloc_stats(void) __THROW
237 ATTRIBUTE_SECTION(google_malloc);
238 int tc_mallopt(int cmd, int value) __THROW
239 ATTRIBUTE_SECTION(google_malloc);
240 #ifdef HAVE_STRUCT_MALLINFO
241 struct mallinfo tc_mallinfo(void) __THROW
242 ATTRIBUTE_SECTION(google_malloc);
243 #endif
245 void* tc_new(size_t size)
246 ATTRIBUTE_SECTION(google_malloc);
247 void tc_delete(void* p) __THROW
248 ATTRIBUTE_SECTION(google_malloc);
249 void* tc_newarray(size_t size)
250 ATTRIBUTE_SECTION(google_malloc);
251 void tc_deletearray(void* p) __THROW
252 ATTRIBUTE_SECTION(google_malloc);
254 // And the nothrow variants of these:
255 void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
256 ATTRIBUTE_SECTION(google_malloc);
257 void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
258 ATTRIBUTE_SECTION(google_malloc);
259 // Surprisingly, standard C++ library implementations use a
260 // nothrow-delete internally. See, eg:
261 // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
262 void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW
263 ATTRIBUTE_SECTION(google_malloc);
264 void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW
265 ATTRIBUTE_SECTION(google_malloc);
267 // Some non-standard extensions that we support.
269 // This is equivalent to
270 // OS X: malloc_size()
271 // glibc: malloc_usable_size()
272 // Windows: _msize()
273 size_t tc_malloc_size(void* p) __THROW
274 ATTRIBUTE_SECTION(google_malloc);
275 } // extern "C"
276 #endif // #ifndef _WIN32
278 // ----------------------- IMPLEMENTATION -------------------------------
280 static int tc_new_mode = 0; // See tc_set_new_mode().
282 // Routines such as free() and realloc() catch some erroneous pointers
283 // passed to them, and invoke the below when they do. (An erroneous pointer
284 // won't be caught if it's within a valid span or a stale span for which
285 // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
286 // required) kind of exception handling for these routines.
287 namespace {
288 void InvalidFree(void* ptr) {
289 Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
292 size_t InvalidGetSizeForRealloc(const void* old_ptr) {
293 Log(kCrash, __FILE__, __LINE__,
294 "Attempt to realloc invalid pointer", old_ptr);
295 return 0;
298 size_t InvalidGetAllocatedSize(const void* ptr) {
299 Log(kCrash, __FILE__, __LINE__,
300 "Attempt to get the size of an invalid pointer", ptr);
301 return 0;
303 } // unnamed namespace
305 // Extract interesting stats
306 struct TCMallocStats {
307 uint64_t thread_bytes; // Bytes in thread caches
308 uint64_t central_bytes; // Bytes in central cache
309 uint64_t transfer_bytes; // Bytes in central transfer cache
310 uint64_t metadata_bytes; // Bytes alloced for metadata
311 PageHeap::Stats pageheap; // Stats from page heap
314 // Get stats into "r". Also get per-size-class counts if class_count != NULL
315 static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
316 PageHeap::SmallSpanStats* small_spans,
317 PageHeap::LargeSpanStats* large_spans) {
318 r->central_bytes = 0;
319 r->transfer_bytes = 0;
320 for (int cl = 0; cl < kNumClasses; ++cl) {
321 const int length = Static::central_cache()[cl].length();
322 const int tc_length = Static::central_cache()[cl].tc_length();
323 const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
324 const size_t size = static_cast<uint64_t>(
325 Static::sizemap()->ByteSizeForClass(cl));
326 r->central_bytes += (size * length) + cache_overhead;
327 r->transfer_bytes += (size * tc_length);
328 if (class_count) class_count[cl] = length + tc_length;
331 // Add stats from per-thread heaps
332 r->thread_bytes = 0;
333 { // scope
334 SpinLockHolder h(Static::pageheap_lock());
335 ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
336 r->metadata_bytes = tcmalloc::metadata_system_bytes();
337 r->pageheap = Static::pageheap()->stats();
338 if (small_spans != NULL) {
339 Static::pageheap()->GetSmallSpanStats(small_spans);
341 if (large_spans != NULL) {
342 Static::pageheap()->GetLargeSpanStats(large_spans);
347 static double PagesToMiB(uint64_t pages) {
348 return (pages << kPageShift) / 1048576.0;
351 // WRITE stats to "out"
352 static void DumpStats(TCMalloc_Printer* out, int level) {
353 TCMallocStats stats;
354 uint64_t class_count[kNumClasses];
355 PageHeap::SmallSpanStats small;
356 PageHeap::LargeSpanStats large;
357 if (level >= 2) {
358 ExtractStats(&stats, class_count, &small, &large);
359 } else {
360 ExtractStats(&stats, NULL, NULL, NULL);
363 static const double MiB = 1048576.0;
365 const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
366 + stats.metadata_bytes);
367 const uint64_t physical_memory_used = (virtual_memory_used
368 - stats.pageheap.unmapped_bytes);
369 const uint64_t bytes_in_use_by_app = (physical_memory_used
370 - stats.metadata_bytes
371 - stats.pageheap.free_bytes
372 - stats.central_bytes
373 - stats.transfer_bytes
374 - stats.thread_bytes);
376 #ifdef TCMALLOC_SMALL_BUT_SLOW
377 out->printf(
378 "NOTE: SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
379 #endif
380 out->printf(
381 "------------------------------------------------\n"
382 "MALLOC: %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
383 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
384 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
385 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
386 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
387 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
388 "MALLOC: ------------\n"
389 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
390 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
391 "MALLOC: ------------\n"
392 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
393 "MALLOC:\n"
394 "MALLOC: %12" PRIu64 " Spans in use\n"
395 "MALLOC: %12" PRIu64 " Thread heaps in use\n"
396 "MALLOC: %12" PRIu64 " Tcmalloc page size\n"
397 "------------------------------------------------\n"
398 "Call ReleaseFreeMemory() to release freelist memory to the OS"
399 " (via madvise()).\n"
400 "Bytes released to the OS take up virtual address space"
401 " but no physical memory.\n",
402 bytes_in_use_by_app, bytes_in_use_by_app / MiB,
403 stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
404 stats.central_bytes, stats.central_bytes / MiB,
405 stats.transfer_bytes, stats.transfer_bytes / MiB,
406 stats.thread_bytes, stats.thread_bytes / MiB,
407 stats.metadata_bytes, stats.metadata_bytes / MiB,
408 physical_memory_used, physical_memory_used / MiB,
409 stats.pageheap.unmapped_bytes, stats.pageheap.unmapped_bytes / MiB,
410 virtual_memory_used, virtual_memory_used / MiB,
411 uint64_t(Static::span_allocator()->inuse()),
412 uint64_t(ThreadCache::HeapsInUse()),
413 uint64_t(kPageSize));
415 if (level >= 2) {
416 out->printf("------------------------------------------------\n");
417 out->printf("Size class breakdown\n");
418 out->printf("------------------------------------------------\n");
419 uint64_t cumulative = 0;
420 for (int cl = 0; cl < kNumClasses; ++cl) {
421 if (class_count[cl] > 0) {
422 uint64_t class_bytes =
423 class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
424 cumulative += class_bytes;
425 out->printf("class %3d [ %8" PRIuS " bytes ] : "
426 "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
427 cl, Static::sizemap()->ByteSizeForClass(cl),
428 class_count[cl],
429 class_bytes / MiB,
430 cumulative / MiB);
434 // append page heap info
435 int nonempty_sizes = 0;
436 for (int s = 0; s < kMaxPages; s++) {
437 if (small.normal_length[s] + small.returned_length[s] > 0) {
438 nonempty_sizes++;
441 out->printf("------------------------------------------------\n");
442 out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
443 nonempty_sizes, stats.pageheap.free_bytes / MiB,
444 stats.pageheap.unmapped_bytes / MiB);
445 out->printf("------------------------------------------------\n");
446 uint64_t total_normal = 0;
447 uint64_t total_returned = 0;
448 for (int s = 0; s < kMaxPages; s++) {
449 const int n_length = small.normal_length[s];
450 const int r_length = small.returned_length[s];
451 if (n_length + r_length > 0) {
452 uint64_t n_pages = s * n_length;
453 uint64_t r_pages = s * r_length;
454 total_normal += n_pages;
455 total_returned += r_pages;
456 out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
457 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
459 (n_length + r_length),
460 PagesToMiB(n_pages + r_pages),
461 PagesToMiB(total_normal + total_returned),
462 PagesToMiB(r_pages),
463 PagesToMiB(total_returned));
467 total_normal += large.normal_pages;
468 total_returned += large.returned_pages;
469 out->printf(">255 large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
470 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
471 static_cast<unsigned int>(large.spans),
472 PagesToMiB(large.normal_pages + large.returned_pages),
473 PagesToMiB(total_normal + total_returned),
474 PagesToMiB(large.returned_pages),
475 PagesToMiB(total_returned));
479 static void PrintStats(int level) {
480 const int kBufferSize = 16 << 10;
481 char* buffer = new char[kBufferSize];
482 TCMalloc_Printer printer(buffer, kBufferSize);
483 DumpStats(&printer, level);
484 write(STDERR_FILENO, buffer, strlen(buffer));
485 delete[] buffer;
488 static void** DumpHeapGrowthStackTraces() {
489 // Count how much space we need
490 int needed_slots = 0;
492 SpinLockHolder h(Static::pageheap_lock());
493 for (StackTrace* t = Static::growth_stacks();
494 t != NULL;
495 t = reinterpret_cast<StackTrace*>(
496 t->stack[tcmalloc::kMaxStackDepth-1])) {
497 needed_slots += 3 + t->depth;
499 needed_slots += 100; // Slop in case list grows
500 needed_slots += needed_slots/8; // An extra 12.5% slop
503 void** result = new void*[needed_slots];
504 if (result == NULL) {
505 Log(kLog, __FILE__, __LINE__,
506 "tcmalloc: allocation failed for stack trace slots",
507 needed_slots * sizeof(*result));
508 return NULL;
511 SpinLockHolder h(Static::pageheap_lock());
512 int used_slots = 0;
513 for (StackTrace* t = Static::growth_stacks();
514 t != NULL;
515 t = reinterpret_cast<StackTrace*>(
516 t->stack[tcmalloc::kMaxStackDepth-1])) {
517 ASSERT(used_slots < needed_slots); // Need to leave room for terminator
518 if (used_slots + 3 + t->depth >= needed_slots) {
519 // No more room
520 break;
523 result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
524 result[used_slots+1] = reinterpret_cast<void*>(t->size);
525 result[used_slots+2] = reinterpret_cast<void*>(t->depth);
526 for (int d = 0; d < t->depth; d++) {
527 result[used_slots+3+d] = t->stack[d];
529 used_slots += 3 + t->depth;
531 result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
532 return result;
535 static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
536 PageID page = 1; // Some code may assume that page==0 is never used
537 bool done = false;
538 while (!done) {
539 // Accumulate a small number of ranges in a local buffer
540 static const int kNumRanges = 16;
541 static base::MallocRange ranges[kNumRanges];
542 int n = 0;
544 SpinLockHolder h(Static::pageheap_lock());
545 while (n < kNumRanges) {
546 if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
547 done = true;
548 break;
549 } else {
550 uintptr_t limit = ranges[n].address + ranges[n].length;
551 page = (limit + kPageSize - 1) >> kPageShift;
552 n++;
557 for (int i = 0; i < n; i++) {
558 (*func)(arg, &ranges[i]);
563 // TCMalloc's support for extra malloc interfaces
564 class TCMallocImplementation : public MallocExtension {
565 private:
566 // ReleaseToSystem() might release more than the requested bytes because
567 // the page heap releases at the span granularity, and spans are of wildly
568 // different sizes. This member keeps track of the extra bytes bytes
569 // released so that the app can periodically call ReleaseToSystem() to
570 // release memory at a constant rate.
571 // NOTE: Protected by Static::pageheap_lock().
572 size_t extra_bytes_released_;
574 public:
575 TCMallocImplementation()
576 : extra_bytes_released_(0) {
579 virtual void GetStats(char* buffer, int buffer_length) {
580 ASSERT(buffer_length > 0);
581 TCMalloc_Printer printer(buffer, buffer_length);
583 // Print level one stats unless lots of space is available
584 if (buffer_length < 10000) {
585 DumpStats(&printer, 1);
586 } else {
587 DumpStats(&printer, 2);
591 // We may print an extra, tcmalloc-specific warning message here.
592 virtual void GetHeapSample(MallocExtensionWriter* writer) {
593 if (FLAGS_tcmalloc_sample_parameter == 0) {
594 const char* const kWarningMsg =
595 "%warn\n"
596 "%warn This heap profile does not have any data in it, because\n"
597 "%warn the application was run with heap sampling turned off.\n"
598 "%warn To get useful data from GetHeapSample(), you must\n"
599 "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
600 "%warn a positive sampling period, such as 524288.\n"
601 "%warn\n";
602 writer->append(kWarningMsg, strlen(kWarningMsg));
604 MallocExtension::GetHeapSample(writer);
607 virtual void** ReadStackTraces(int* sample_period) {
608 tcmalloc::StackTraceTable table;
610 SpinLockHolder h(Static::pageheap_lock());
611 Span* sampled = Static::sampled_objects();
612 for (Span* s = sampled->next; s != sampled; s = s->next) {
613 table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
616 *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
617 return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
620 virtual void** ReadHeapGrowthStackTraces() {
621 return DumpHeapGrowthStackTraces();
624 virtual void Ranges(void* arg, RangeFunction func) {
625 IterateOverRanges(arg, func);
628 virtual bool GetNumericProperty(const char* name, size_t* value) {
629 ASSERT(name != NULL);
631 if (strcmp(name, "generic.current_allocated_bytes") == 0) {
632 TCMallocStats stats;
633 ExtractStats(&stats, NULL, NULL, NULL);
634 *value = stats.pageheap.system_bytes
635 - stats.thread_bytes
636 - stats.central_bytes
637 - stats.transfer_bytes
638 - stats.pageheap.free_bytes
639 - stats.pageheap.unmapped_bytes;
640 return true;
643 if (strcmp(name, "generic.heap_size") == 0) {
644 TCMallocStats stats;
645 ExtractStats(&stats, NULL, NULL, NULL);
646 *value = stats.pageheap.system_bytes;
647 return true;
650 if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
651 // Kept for backwards compatibility. Now defined externally as:
652 // pageheap_free_bytes + pageheap_unmapped_bytes.
653 SpinLockHolder l(Static::pageheap_lock());
654 PageHeap::Stats stats = Static::pageheap()->stats();
655 *value = stats.free_bytes + stats.unmapped_bytes;
656 return true;
659 if (strcmp(name, "tcmalloc.central_cache_free_bytes") == 0) {
660 TCMallocStats stats;
661 ExtractStats(&stats, NULL, NULL, NULL);
662 *value = stats.central_bytes;
663 return true;
666 if (strcmp(name, "tcmalloc.transfer_cache_free_bytes") == 0) {
667 TCMallocStats stats;
668 ExtractStats(&stats, NULL, NULL, NULL);
669 *value = stats.transfer_bytes;
670 return true;
673 if (strcmp(name, "tcmalloc.thread_cache_free_bytes") == 0) {
674 TCMallocStats stats;
675 ExtractStats(&stats, NULL, NULL, NULL);
676 *value = stats.thread_bytes;
677 return true;
680 if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
681 SpinLockHolder l(Static::pageheap_lock());
682 *value = Static::pageheap()->stats().free_bytes;
683 return true;
686 if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
687 SpinLockHolder l(Static::pageheap_lock());
688 *value = Static::pageheap()->stats().unmapped_bytes;
689 return true;
692 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
693 SpinLockHolder l(Static::pageheap_lock());
694 *value = ThreadCache::overall_thread_cache_size();
695 return true;
698 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
699 TCMallocStats stats;
700 ExtractStats(&stats, NULL, NULL, NULL);
701 *value = stats.thread_bytes;
702 return true;
705 return false;
708 virtual bool SetNumericProperty(const char* name, size_t value) {
709 ASSERT(name != NULL);
711 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
712 SpinLockHolder l(Static::pageheap_lock());
713 ThreadCache::set_overall_thread_cache_size(value);
714 return true;
717 return false;
720 virtual void MarkThreadIdle() {
721 ThreadCache::BecomeIdle();
724 virtual void MarkThreadBusy(); // Implemented below
726 virtual SysAllocator* GetSystemAllocator() {
727 SpinLockHolder h(Static::pageheap_lock());
728 return sys_alloc;
731 virtual void SetSystemAllocator(SysAllocator* alloc) {
732 SpinLockHolder h(Static::pageheap_lock());
733 sys_alloc = alloc;
736 virtual void ReleaseToSystem(size_t num_bytes) {
737 SpinLockHolder h(Static::pageheap_lock());
738 if (num_bytes <= extra_bytes_released_) {
739 // We released too much on a prior call, so don't release any
740 // more this time.
741 extra_bytes_released_ = extra_bytes_released_ - num_bytes;
742 return;
744 num_bytes = num_bytes - extra_bytes_released_;
745 // num_bytes might be less than one page. If we pass zero to
746 // ReleaseAtLeastNPages, it won't do anything, so we release a whole
747 // page now and let extra_bytes_released_ smooth it out over time.
748 Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
749 size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
750 num_pages) << kPageShift;
751 if (bytes_released > num_bytes) {
752 extra_bytes_released_ = bytes_released - num_bytes;
753 } else {
754 // The PageHeap wasn't able to release num_bytes. Don't try to
755 // compensate with a big release next time. Specifically,
756 // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
757 extra_bytes_released_ = 0;
761 virtual void SetMemoryReleaseRate(double rate) {
762 FLAGS_tcmalloc_release_rate = rate;
765 virtual double GetMemoryReleaseRate() {
766 return FLAGS_tcmalloc_release_rate;
768 virtual size_t GetEstimatedAllocatedSize(size_t size) {
769 if (size <= kMaxSize) {
770 const size_t cl = Static::sizemap()->SizeClass(size);
771 const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
772 return alloc_size;
773 } else {
774 return tcmalloc::pages(size) << kPageShift;
778 // This just calls GetSizeWithCallback, but because that's in an
779 // unnamed namespace, we need to move the definition below it in the
780 // file.
781 virtual size_t GetAllocatedSize(const void* ptr);
783 // This duplicates some of the logic in GetSizeWithCallback, but is
784 // faster. This is important on OS X, where this function is called
785 // on every allocation operation.
786 virtual Ownership GetOwnership(const void* ptr) {
787 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
788 // The rest of tcmalloc assumes that all allocated pointers use at
789 // most kAddressBits bits. If ptr doesn't, then it definitely
790 // wasn't alloacted by tcmalloc.
791 if ((p >> (kAddressBits - kPageShift)) > 0) {
792 return kNotOwned;
794 size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
795 if (cl != 0) {
796 return kOwned;
798 const Span *span = Static::pageheap()->GetDescriptor(p);
799 return span ? kOwned : kNotOwned;
802 virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
803 static const char* kCentralCacheType = "tcmalloc.central";
804 static const char* kTransferCacheType = "tcmalloc.transfer";
805 static const char* kThreadCacheType = "tcmalloc.thread";
806 static const char* kPageHeapType = "tcmalloc.page";
807 static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
808 static const char* kLargeSpanType = "tcmalloc.large";
809 static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";
811 v->clear();
813 // central class information
814 int64 prev_class_size = 0;
815 for (int cl = 1; cl < kNumClasses; ++cl) {
816 size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
817 MallocExtension::FreeListInfo i;
818 i.min_object_size = prev_class_size + 1;
819 i.max_object_size = class_size;
820 i.total_bytes_free =
821 Static::central_cache()[cl].length() * class_size;
822 i.type = kCentralCacheType;
823 v->push_back(i);
825 // transfer cache
826 i.total_bytes_free =
827 Static::central_cache()[cl].tc_length() * class_size;
828 i.type = kTransferCacheType;
829 v->push_back(i);
831 prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
834 // Add stats from per-thread heaps
835 uint64_t class_count[kNumClasses];
836 memset(class_count, 0, sizeof(class_count));
838 SpinLockHolder h(Static::pageheap_lock());
839 uint64_t thread_bytes = 0;
840 ThreadCache::GetThreadStats(&thread_bytes, class_count);
843 prev_class_size = 0;
844 for (int cl = 1; cl < kNumClasses; ++cl) {
845 MallocExtension::FreeListInfo i;
846 i.min_object_size = prev_class_size + 1;
847 i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
848 i.total_bytes_free =
849 class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
850 i.type = kThreadCacheType;
851 v->push_back(i);
854 // append page heap info
855 PageHeap::SmallSpanStats small;
856 PageHeap::LargeSpanStats large;
858 SpinLockHolder h(Static::pageheap_lock());
859 Static::pageheap()->GetSmallSpanStats(&small);
860 Static::pageheap()->GetLargeSpanStats(&large);
863 // large spans: mapped
864 MallocExtension::FreeListInfo span_info;
865 span_info.type = kLargeSpanType;
866 span_info.max_object_size = (numeric_limits<size_t>::max)();
867 span_info.min_object_size = kMaxPages << kPageShift;
868 span_info.total_bytes_free = large.normal_pages << kPageShift;
869 v->push_back(span_info);
871 // large spans: unmapped
872 span_info.type = kLargeUnmappedSpanType;
873 span_info.total_bytes_free = large.returned_pages << kPageShift;
874 v->push_back(span_info);
876 // small spans
877 for (int s = 1; s < kMaxPages; s++) {
878 MallocExtension::FreeListInfo i;
879 i.max_object_size = (s << kPageShift);
880 i.min_object_size = ((s - 1) << kPageShift);
882 i.type = kPageHeapType;
883 i.total_bytes_free = (s << kPageShift) * small.normal_length[s];
884 v->push_back(i);
886 i.type = kPageHeapUnmappedType;
887 i.total_bytes_free = (s << kPageShift) * small.returned_length[s];
888 v->push_back(i);
893 // The constructor allocates an object to ensure that initialization
894 // runs before main(), and therefore we do not have a chance to become
895 // multi-threaded before initialization. We also create the TSD key
896 // here. Presumably by the time this constructor runs, glibc is in
897 // good enough shape to handle pthread_key_create().
899 // The constructor also takes the opportunity to tell STL to use
900 // tcmalloc. We want to do this early, before construct time, so
901 // all user STL allocations go through tcmalloc (which works really
902 // well for STL).
904 // The destructor prints stats when the program exits.
905 static int tcmallocguard_refcount = 0; // no lock needed: runs before main()
906 TCMallocGuard::TCMallocGuard() {
907 if (tcmallocguard_refcount++ == 0) {
908 #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
909 // Check whether the kernel also supports TLS (needs to happen at runtime)
910 tcmalloc::CheckIfKernelSupportsTLS();
911 #endif
912 ReplaceSystemAlloc(); // defined in libc_override_*.h
913 tc_free(tc_malloc(1));
914 ThreadCache::InitTSD();
915 tc_free(tc_malloc(1));
916 // Either we, or debugallocation.cc, or valgrind will control memory
917 // management. We register our extension if we're the winner.
918 #ifdef TCMALLOC_USING_DEBUGALLOCATION
919 // Let debugallocation register its extension.
920 #else
921 if (RunningOnValgrind()) {
922 // Let Valgrind uses its own malloc (so don't register our extension).
923 } else {
924 MallocExtension::Register(new TCMallocImplementation);
926 #endif
930 TCMallocGuard::~TCMallocGuard() {
931 if (--tcmallocguard_refcount == 0) {
932 const char* env = getenv("MALLOCSTATS");
933 if (env != NULL) {
934 int level = atoi(env);
935 if (level < 1) level = 1;
936 PrintStats(level);
940 #ifndef WIN32_OVERRIDE_ALLOCATORS
941 static TCMallocGuard module_enter_exit_hook;
942 #endif
944 //-------------------------------------------------------------------
945 // Helpers for the exported routines below
946 //-------------------------------------------------------------------
948 static inline bool CheckCachedSizeClass(void *ptr) {
949 PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
950 size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
951 return cached_value == 0 ||
952 cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
955 static inline void* CheckedMallocResult(void *result) {
956 ASSERT(result == NULL || CheckCachedSizeClass(result));
957 return result;
960 static inline void* SpanToMallocResult(Span *span) {
961 Static::pageheap()->CacheSizeClass(span->start, 0);
962 return
963 CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
966 static void* DoSampledAllocation(size_t size) {
967 // Grab the stack trace outside the heap lock
968 StackTrace tmp;
969 tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
970 tmp.size = size;
972 SpinLockHolder h(Static::pageheap_lock());
973 // Allocate span
974 Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
975 if (span == NULL) {
976 return NULL;
979 // Allocate stack trace
980 StackTrace *stack = Static::stacktrace_allocator()->New();
981 if (stack == NULL) {
982 // Sampling failed because of lack of memory
983 return span;
985 *stack = tmp;
986 span->sample = 1;
987 span->objects = stack;
988 tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
990 return SpanToMallocResult(span);
993 namespace {
995 // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
996 // automatic increases factored in.
997 static int64_t large_alloc_threshold =
998 (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
999 ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
1001 static void ReportLargeAlloc(Length num_pages, void* result) {
1002 StackTrace stack;
1003 stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
1005 static const int N = 1000;
1006 char buffer[N];
1007 TCMalloc_Printer printer(buffer, N);
1008 printer.printf("tcmalloc: large alloc %"PRIu64" bytes == %p @ ",
1009 static_cast<uint64>(num_pages) << kPageShift,
1010 result);
1011 for (int i = 0; i < stack.depth; i++) {
1012 printer.printf(" %p", stack.stack[i]);
1014 printer.printf("\n");
1015 write(STDERR_FILENO, buffer, strlen(buffer));
1018 inline void* cpp_alloc(size_t size, bool nothrow);
1019 inline void* do_malloc(size_t size);
1021 // TODO(willchan): Investigate whether or not lining this much is harmful to
1022 // performance.
1023 // This is equivalent to do_malloc() except when tc_new_mode is set to true.
1024 // Otherwise, it will run the std::new_handler if set.
1025 inline void* do_malloc_or_cpp_alloc(size_t size) {
1026 return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size);
1029 void* cpp_memalign(size_t align, size_t size);
1030 void* do_memalign(size_t align, size_t size);
1032 inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) {
1033 return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size);
1036 // Must be called with the page lock held.
1037 inline bool should_report_large(Length num_pages) {
1038 const int64 threshold = large_alloc_threshold;
1039 if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
1040 // Increase the threshold by 1/8 every time we generate a report.
1041 // We cap the threshold at 8GiB to avoid overflow problems.
1042 large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
1043 ? threshold + threshold/8 : 8ll<<30);
1044 return true;
1046 return false;
1049 // Helper for do_malloc().
1050 inline void* do_malloc_pages(ThreadCache* heap, size_t size) {
1051 void* result;
1052 bool report_large;
1054 Length num_pages = tcmalloc::pages(size);
1055 size = num_pages << kPageShift;
1057 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
1058 result = DoSampledAllocation(size);
1060 SpinLockHolder h(Static::pageheap_lock());
1061 report_large = should_report_large(num_pages);
1062 } else {
1063 SpinLockHolder h(Static::pageheap_lock());
1064 Span* span = Static::pageheap()->New(num_pages);
1065 result = (span == NULL ? NULL : SpanToMallocResult(span));
1066 report_large = should_report_large(num_pages);
1069 if (report_large) {
1070 ReportLargeAlloc(num_pages, result);
1072 return result;
1075 inline void* do_malloc(size_t size) {
1076 void* ret = NULL;
1078 // The following call forces module initialization
1079 ThreadCache* heap = ThreadCache::GetCache();
1080 if (size <= kMaxSize) {
1081 size_t cl = Static::sizemap()->SizeClass(size);
1082 size = Static::sizemap()->class_to_size(cl);
1084 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
1085 ret = DoSampledAllocation(size);
1086 } else {
1087 // The common case, and also the simplest. This just pops the
1088 // size-appropriate freelist, after replenishing it if it's empty.
1089 ret = CheckedMallocResult(heap->Allocate(size, cl));
1091 } else {
1092 ret = do_malloc_pages(heap, size);
1094 if (ret == NULL) errno = ENOMEM;
1095 return ret;
1098 inline void* do_calloc(size_t n, size_t elem_size) {
1099 // Overflow check
1100 const size_t size = n * elem_size;
1101 if (elem_size != 0 && size / elem_size != n) return NULL;
1103 void* result = do_malloc_or_cpp_alloc(size);
1104 if (result != NULL) {
1105 memset(result, 0, size);
1107 return result;
1110 static inline ThreadCache* GetCacheIfPresent() {
1111 void* const p = ThreadCache::GetCacheIfPresent();
1112 return reinterpret_cast<ThreadCache*>(p);
1115 // This lets you call back to a given function pointer if ptr is invalid.
1116 // It is used primarily by windows code which wants a specialized callback.
1117 inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
1118 if (ptr == NULL) return;
1119 if (Static::pageheap() == NULL) {
1120 // We called free() before malloc(). This can occur if the
1121 // (system) malloc() is called before tcmalloc is loaded, and then
1122 // free() is called after tcmalloc is loaded (and tc_free has
1123 // replaced free), but before the global constructor has run that
1124 // sets up the tcmalloc data structures.
1125 (*invalid_free_fn)(ptr); // Decide how to handle the bad free request
1126 return;
1128 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1129 Span* span = NULL;
1130 size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
1132 if (cl == 0) {
1133 span = Static::pageheap()->GetDescriptor(p);
1134 if (!span) {
1135 // span can be NULL because the pointer passed in is invalid
1136 // (not something returned by malloc or friends), or because the
1137 // pointer was allocated with some other allocator besides
1138 // tcmalloc. The latter can happen if tcmalloc is linked in via
1139 // a dynamic library, but is not listed last on the link line.
1140 // In that case, libraries after it on the link line will
1141 // allocate with libc malloc, but free with tcmalloc's free.
1142 (*invalid_free_fn)(ptr); // Decide how to handle the bad free request
1143 return;
1145 cl = span->sizeclass;
1146 Static::pageheap()->CacheSizeClass(p, cl);
1148 if (cl != 0) {
1149 ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
1150 ThreadCache* heap = GetCacheIfPresent();
1151 if (heap != NULL) {
1152 heap->Deallocate(ptr, cl);
1153 } else {
1154 // Delete directly into central cache
1155 tcmalloc::SLL_SetNext(ptr, NULL);
1156 Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
1158 } else {
1159 SpinLockHolder h(Static::pageheap_lock());
1160 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
1161 ASSERT(span != NULL && span->start == p);
1162 if (span->sample) {
1163 StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
1164 tcmalloc::DLL_Remove(span);
1165 Static::stacktrace_allocator()->Delete(st);
1166 span->objects = NULL;
1168 Static::pageheap()->Delete(span);
1172 // The default "do_free" that uses the default callback.
1173 inline void do_free(void* ptr) {
1174 return do_free_with_callback(ptr, &InvalidFree);
1177 // NOTE: some logic here is duplicated in GetOwnership (above), for
1178 // speed. If you change this function, look at that one too.
1179 inline size_t GetSizeWithCallback(const void* ptr,
1180 size_t (*invalid_getsize_fn)(const void*)) {
1181 if (ptr == NULL)
1182 return 0;
1183 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1184 size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
1185 if (cl != 0) {
1186 return Static::sizemap()->ByteSizeForClass(cl);
1187 } else {
1188 const Span *span = Static::pageheap()->GetDescriptor(p);
1189 if (span == NULL) { // means we do not own this memory
1190 return (*invalid_getsize_fn)(ptr);
1191 } else if (span->sizeclass != 0) {
1192 Static::pageheap()->CacheSizeClass(p, span->sizeclass);
1193 return Static::sizemap()->ByteSizeForClass(span->sizeclass);
1194 } else {
1195 return span->length << kPageShift;
1200 // This lets you call back to a given function pointer if ptr is invalid.
1201 // It is used primarily by windows code which wants a specialized callback.
1202 inline void* do_realloc_with_callback(
1203 void* old_ptr, size_t new_size,
1204 void (*invalid_free_fn)(void*),
1205 size_t (*invalid_get_size_fn)(const void*)) {
1206 // Get the size of the old entry
1207 const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
1209 // Reallocate if the new size is larger than the old size,
1210 // or if the new size is significantly smaller than the old size.
1211 // We do hysteresis to avoid resizing ping-pongs:
1212 // . If we need to grow, grow to max(new_size, old_size * 1.X)
1213 // . Don't shrink unless new_size < old_size * 0.Y
1214 // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5.
1215 const int lower_bound_to_grow = old_size + old_size / 4;
1216 const int upper_bound_to_shrink = old_size / 2;
1217 if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
1218 // Need to reallocate.
1219 void* new_ptr = NULL;
1221 if (new_size > old_size && new_size < lower_bound_to_grow) {
1222 new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
1224 if (new_ptr == NULL) {
1225 // Either new_size is not a tiny increment, or last do_malloc failed.
1226 new_ptr = do_malloc_or_cpp_alloc(new_size);
1228 if (new_ptr == NULL) {
1229 return NULL;
1231 MallocHook::InvokeNewHook(new_ptr, new_size);
1232 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
1233 MallocHook::InvokeDeleteHook(old_ptr);
1234 // We could use a variant of do_free() that leverages the fact
1235 // that we already know the sizeclass of old_ptr. The benefit
1236 // would be small, so don't bother.
1237 do_free_with_callback(old_ptr, invalid_free_fn);
1238 return new_ptr;
1239 } else {
1240 // We still need to call hooks to report the updated size:
1241 MallocHook::InvokeDeleteHook(old_ptr);
1242 MallocHook::InvokeNewHook(old_ptr, new_size);
1243 return old_ptr;
1247 inline void* do_realloc(void* old_ptr, size_t new_size) {
1248 return do_realloc_with_callback(old_ptr, new_size,
1249 &InvalidFree, &InvalidGetSizeForRealloc);
1252 // For use by exported routines below that want specific alignments
1254 // Note: this code can be slow for alignments > 16, and can
1255 // significantly fragment memory. The expectation is that
1256 // memalign/posix_memalign/valloc/pvalloc will not be invoked very
1257 // often. This requirement simplifies our implementation and allows
1258 // us to tune for expected allocation patterns.
1259 void* do_memalign(size_t align, size_t size) {
1260 ASSERT((align & (align - 1)) == 0);
1261 ASSERT(align > 0);
1262 if (size + align < size) return NULL; // Overflow
1264 // Fall back to malloc if we would already align this memory access properly.
1265 if (align <= AlignmentForSize(size)) {
1266 void* p = do_malloc(size);
1267 ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0);
1268 return p;
1271 if (Static::pageheap() == NULL) ThreadCache::InitModule();
1273 // Allocate at least one byte to avoid boundary conditions below
1274 if (size == 0) size = 1;
1276 if (size <= kMaxSize && align < kPageSize) {
1277 // Search through acceptable size classes looking for one with
1278 // enough alignment. This depends on the fact that
1279 // InitSizeClasses() currently produces several size classes that
1280 // are aligned at powers of two. We will waste time and space if
1281 // we miss in the size class array, but that is deemed acceptable
1282 // since memalign() should be used rarely.
1283 int cl = Static::sizemap()->SizeClass(size);
1284 while (cl < kNumClasses &&
1285 ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
1286 cl++;
1288 if (cl < kNumClasses) {
1289 ThreadCache* heap = ThreadCache::GetCache();
1290 size = Static::sizemap()->class_to_size(cl);
1291 return CheckedMallocResult(heap->Allocate(size, cl));
1295 // We will allocate directly from the page heap
1296 SpinLockHolder h(Static::pageheap_lock());
1298 if (align <= kPageSize) {
1299 // Any page-level allocation will be fine
1300 // TODO: We could put the rest of this page in the appropriate
1301 // TODO: cache but it does not seem worth it.
1302 Span* span = Static::pageheap()->New(tcmalloc::pages(size));
1303 return span == NULL ? NULL : SpanToMallocResult(span);
1306 // Allocate extra pages and carve off an aligned portion
1307 const Length alloc = tcmalloc::pages(size + align);
1308 Span* span = Static::pageheap()->New(alloc);
1309 if (span == NULL) return NULL;
1311 // Skip starting portion so that we end up aligned
1312 Length skip = 0;
1313 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
1314 skip++;
1316 ASSERT(skip < alloc);
1317 if (skip > 0) {
1318 Span* rest = Static::pageheap()->Split(span, skip);
1319 Static::pageheap()->Delete(span);
1320 span = rest;
1323 // Skip trailing portion that we do not need to return
1324 const Length needed = tcmalloc::pages(size);
1325 ASSERT(span->length >= needed);
1326 if (span->length > needed) {
1327 Span* trailer = Static::pageheap()->Split(span, needed);
1328 Static::pageheap()->Delete(trailer);
1330 return SpanToMallocResult(span);
1333 // Helpers for use by exported routines below:
1335 inline void do_malloc_stats() {
1336 PrintStats(1);
1339 inline int do_mallopt(int cmd, int value) {
1340 return 1; // Indicates error
1343 #ifdef HAVE_STRUCT_MALLINFO
1344 inline struct mallinfo do_mallinfo() {
1345 TCMallocStats stats;
1346 ExtractStats(&stats, NULL, NULL, NULL);
1348 // Just some of the fields are filled in.
1349 struct mallinfo info;
1350 memset(&info, 0, sizeof(info));
1352 // Unfortunately, the struct contains "int" field, so some of the
1353 // size values will be truncated.
1354 info.arena = static_cast<int>(stats.pageheap.system_bytes);
1355 info.fsmblks = static_cast<int>(stats.thread_bytes
1356 + stats.central_bytes
1357 + stats.transfer_bytes);
1358 info.fordblks = static_cast<int>(stats.pageheap.free_bytes +
1359 stats.pageheap.unmapped_bytes);
1360 info.uordblks = static_cast<int>(stats.pageheap.system_bytes
1361 - stats.thread_bytes
1362 - stats.central_bytes
1363 - stats.transfer_bytes
1364 - stats.pageheap.free_bytes
1365 - stats.pageheap.unmapped_bytes);
1367 return info;
1369 #endif // HAVE_STRUCT_MALLINFO
1371 static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
1373 inline void* cpp_alloc(size_t size, bool nothrow) {
1374 for (;;) {
1375 void* p = do_malloc(size);
1376 #ifdef PREANSINEW
1377 return p;
1378 #else
1379 if (p == NULL) { // allocation failed
1380 // Get the current new handler. NB: this function is not
1381 // thread-safe. We make a feeble stab at making it so here, but
1382 // this lock only protects against tcmalloc interfering with
1383 // itself, not with other libraries calling set_new_handler.
1384 std::new_handler nh;
1386 SpinLockHolder h(&set_new_handler_lock);
1387 nh = std::set_new_handler(0);
1388 (void) std::set_new_handler(nh);
1390 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1391 if (nh) {
1392 // Since exceptions are disabled, we don't really know if new_handler
1393 // failed. Assume it will abort if it fails.
1394 (*nh)();
1395 continue;
1397 return 0;
1398 #else
1399 // If no new_handler is established, the allocation failed.
1400 if (!nh) {
1401 if (nothrow) return 0;
1402 throw std::bad_alloc();
1404 // Otherwise, try the new_handler. If it returns, retry the
1405 // allocation. If it throws std::bad_alloc, fail the allocation.
1406 // if it throws something else, don't interfere.
1407 try {
1408 (*nh)();
1409 } catch (const std::bad_alloc&) {
1410 if (!nothrow) throw;
1411 return p;
1413 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1414 } else { // allocation success
1415 return p;
1417 #endif // PREANSINEW
1421 void* cpp_memalign(size_t align, size_t size) {
1422 for (;;) {
1423 void* p = do_memalign(align, size);
1424 #ifdef PREANSINEW
1425 return p;
1426 #else
1427 if (p == NULL) { // allocation failed
1428 // Get the current new handler. NB: this function is not
1429 // thread-safe. We make a feeble stab at making it so here, but
1430 // this lock only protects against tcmalloc interfering with
1431 // itself, not with other libraries calling set_new_handler.
1432 std::new_handler nh;
1434 SpinLockHolder h(&set_new_handler_lock);
1435 nh = std::set_new_handler(0);
1436 (void) std::set_new_handler(nh);
1438 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1439 if (nh) {
1440 // Since exceptions are disabled, we don't really know if new_handler
1441 // failed. Assume it will abort if it fails.
1442 (*nh)();
1443 continue;
1445 return 0;
1446 #else
1447 // If no new_handler is established, the allocation failed.
1448 if (!nh)
1449 return 0;
1451 // Otherwise, try the new_handler. If it returns, retry the
1452 // allocation. If it throws std::bad_alloc, fail the allocation.
1453 // if it throws something else, don't interfere.
1454 try {
1455 (*nh)();
1456 } catch (const std::bad_alloc&) {
1457 return p;
1459 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
1460 } else { // allocation success
1461 return p;
1463 #endif // PREANSINEW
1467 } // end unnamed namespace
1469 // As promised, the definition of this function, declared above.
1470 size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
1471 ASSERT(TCMallocImplementation::GetOwnership(ptr)
1472 != TCMallocImplementation::kNotOwned);
1473 return GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
1476 void TCMallocImplementation::MarkThreadBusy() {
1477 // Allocate to force the creation of a thread cache, but avoid
1478 // invoking any hooks.
1479 do_free(do_malloc(0));
1482 //-------------------------------------------------------------------
1483 // Exported routines
1484 //-------------------------------------------------------------------
1486 extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
1487 int* major, int* minor, const char** patch) __THROW {
1488 if (major) *major = TC_VERSION_MAJOR;
1489 if (minor) *minor = TC_VERSION_MINOR;
1490 if (patch) *patch = TC_VERSION_PATCH;
1491 return TC_VERSION_STRING;
1494 // This function behaves similarly to MSVC's _set_new_mode.
1495 // If flag is 0 (default), calls to malloc will behave normally.
1496 // If flag is 1, calls to malloc will behave like calls to new,
1497 // and the std_new_handler will be invoked on failure.
1498 // Returns the previous mode.
1499 extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW {
1500 int old_mode = tc_new_mode;
1501 tc_new_mode = flag;
1502 return old_mode;
1505 #ifndef TCMALLOC_USING_DEBUGALLOCATION // debugallocation.cc defines its own
1507 // CAVEAT: The code structure below ensures that MallocHook methods are always
1508 // called from the stack frame of the invoked allocation function.
1509 // heap-checker.cc depends on this to start a stack trace from
1510 // the call to the (de)allocation function.
1512 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
1513 void* result = do_malloc_or_cpp_alloc(size);
1514 MallocHook::InvokeNewHook(result, size);
1515 return result;
1518 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
1519 MallocHook::InvokeDeleteHook(ptr);
1520 do_free(ptr);
1523 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
1524 size_t elem_size) __THROW {
1525 void* result = do_calloc(n, elem_size);
1526 MallocHook::InvokeNewHook(result, n * elem_size);
1527 return result;
1530 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
1531 MallocHook::InvokeDeleteHook(ptr);
1532 do_free(ptr);
1535 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
1536 size_t new_size) __THROW {
1537 if (old_ptr == NULL) {
1538 void* result = do_malloc_or_cpp_alloc(new_size);
1539 MallocHook::InvokeNewHook(result, new_size);
1540 return result;
1542 if (new_size == 0) {
1543 MallocHook::InvokeDeleteHook(old_ptr);
1544 do_free(old_ptr);
1545 return NULL;
1547 return do_realloc(old_ptr, new_size);
1550 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
1551 void* p = cpp_alloc(size, false);
1552 // We keep this next instruction out of cpp_alloc for a reason: when
1553 // it's in, and new just calls cpp_alloc, the optimizer may fold the
1554 // new call into cpp_alloc, which messes up our whole section-based
1555 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
1556 // isn't the last thing this fn calls, and prevents the folding.
1557 MallocHook::InvokeNewHook(p, size);
1558 return p;
1561 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
1562 void* p = cpp_alloc(size, true);
1563 MallocHook::InvokeNewHook(p, size);
1564 return p;
1567 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
1568 MallocHook::InvokeDeleteHook(p);
1569 do_free(p);
1572 // Standard C++ library implementations define and use this
1573 // (via ::operator delete(ptr, nothrow)).
1574 // But it's really the same as normal delete, so we just do the same thing.
1575 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
1576 MallocHook::InvokeDeleteHook(p);
1577 do_free(p);
1580 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
1581 void* p = cpp_alloc(size, false);
1582 // We keep this next instruction out of cpp_alloc for a reason: when
1583 // it's in, and new just calls cpp_alloc, the optimizer may fold the
1584 // new call into cpp_alloc, which messes up our whole section-based
1585 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
1586 // isn't the last thing this fn calls, and prevents the folding.
1587 MallocHook::InvokeNewHook(p, size);
1588 return p;
1591 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
1592 __THROW {
1593 void* p = cpp_alloc(size, true);
1594 MallocHook::InvokeNewHook(p, size);
1595 return p;
1598 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
1599 MallocHook::InvokeDeleteHook(p);
1600 do_free(p);
1603 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
1604 MallocHook::InvokeDeleteHook(p);
1605 do_free(p);
1608 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align,
1609 size_t size) __THROW {
1610 void* result = do_memalign_or_cpp_memalign(align, size);
1611 MallocHook::InvokeNewHook(result, size);
1612 return result;
1615 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
1616 void** result_ptr, size_t align, size_t size) __THROW {
1617 if (((align % sizeof(void*)) != 0) ||
1618 ((align & (align - 1)) != 0) ||
1619 (align == 0)) {
1620 return EINVAL;
1623 void* result = do_memalign_or_cpp_memalign(align, size);
1624 MallocHook::InvokeNewHook(result, size);
1625 if (result == NULL) {
1626 return ENOMEM;
1627 } else {
1628 *result_ptr = result;
1629 return 0;
1633 static size_t pagesize = 0;
1635 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
1636 // Allocate page-aligned object of length >= size bytes
1637 if (pagesize == 0) pagesize = getpagesize();
1638 void* result = do_memalign_or_cpp_memalign(pagesize, size);
1639 MallocHook::InvokeNewHook(result, size);
1640 return result;
1643 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
1644 // Round up size to a multiple of pagesize
1645 if (pagesize == 0) pagesize = getpagesize();
1646 if (size == 0) { // pvalloc(0) should allocate one page, according to
1647 size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html
1649 size = (size + pagesize - 1) & ~(pagesize - 1);
1650 void* result = do_memalign_or_cpp_memalign(pagesize, size);
1651 MallocHook::InvokeNewHook(result, size);
1652 return result;
1655 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
1656 do_malloc_stats();
1659 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
1660 return do_mallopt(cmd, value);
1663 #ifdef HAVE_STRUCT_MALLINFO
1664 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
1665 return do_mallinfo();
1667 #endif
1669 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
1670 return MallocExtension::instance()->GetAllocatedSize(ptr);
1673 #endif // TCMALLOC_USING_DEBUGALLOCATION