cygprofile: increase timeouts to allow showing web contents
[chromium-blink-merge.git] / third_party / zlib / crc32.c
blob75f2290d83c23978afb645fe677871a8f4ba88db
1 /* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2006, 2010 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7 * tables for updating the shift register in one step with three exclusive-ors
8 * instead of four steps with four exclusive-ors. This results in about a
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
12 /* @(#) $Id$ */
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16 protection on the static variables used to control the first-use generation
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18 first call get_crc_table() to initialize the tables before allowing more than
19 one thread to use crc32().
22 #ifdef MAKECRCH
23 # include <stdio.h>
24 # ifndef DYNAMIC_CRC_TABLE
25 # define DYNAMIC_CRC_TABLE
26 # endif /* !DYNAMIC_CRC_TABLE */
27 #endif /* MAKECRCH */
29 #include "deflate.h"
30 #include "x86.h"
31 #include "zutil.h" /* for STDC and FAR definitions */
33 #define local static
35 /* Find a four-byte integer type for crc32_little() and crc32_big(). */
36 #ifndef NOBYFOUR
37 # ifdef STDC /* need ANSI C limits.h to determine sizes */
38 # include <limits.h>
39 # define BYFOUR
40 # if (UINT_MAX == 0xffffffffUL)
41 typedef unsigned int u4;
42 # else
43 # if (ULONG_MAX == 0xffffffffUL)
44 typedef unsigned long u4;
45 # else
46 # if (USHRT_MAX == 0xffffffffUL)
47 typedef unsigned short u4;
48 # else
49 # undef BYFOUR /* can't find a four-byte integer type! */
50 # endif
51 # endif
52 # endif
53 # endif /* STDC */
54 #endif /* !NOBYFOUR */
56 /* Definitions for doing the crc four data bytes at a time. */
57 #ifdef BYFOUR
58 # define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \
59 (((w)&0xff00)<<8)+(((w)&0xff)<<24))
60 local unsigned long crc32_little OF((unsigned long,
61 const unsigned char FAR *, unsigned));
62 local unsigned long crc32_big OF((unsigned long,
63 const unsigned char FAR *, unsigned));
64 # define TBLS 8
65 #else
66 # define TBLS 1
67 #endif /* BYFOUR */
69 /* Local functions for crc concatenation */
70 local unsigned long gf2_matrix_times OF((unsigned long *mat,
71 unsigned long vec));
72 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
73 local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2);
76 #ifdef DYNAMIC_CRC_TABLE
78 local volatile int crc_table_empty = 1;
79 local unsigned long FAR crc_table[TBLS][256];
80 local void make_crc_table OF((void));
81 #ifdef MAKECRCH
82 local void write_table OF((FILE *, const unsigned long FAR *));
83 #endif /* MAKECRCH */
85 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
86 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
88 Polynomials over GF(2) are represented in binary, one bit per coefficient,
89 with the lowest powers in the most significant bit. Then adding polynomials
90 is just exclusive-or, and multiplying a polynomial by x is a right shift by
91 one. If we call the above polynomial p, and represent a byte as the
92 polynomial q, also with the lowest power in the most significant bit (so the
93 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
94 where a mod b means the remainder after dividing a by b.
96 This calculation is done using the shift-register method of multiplying and
97 taking the remainder. The register is initialized to zero, and for each
98 incoming bit, x^32 is added mod p to the register if the bit is a one (where
99 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
100 x (which is shifting right by one and adding x^32 mod p if the bit shifted
101 out is a one). We start with the highest power (least significant bit) of
102 q and repeat for all eight bits of q.
104 The first table is simply the CRC of all possible eight bit values. This is
105 all the information needed to generate CRCs on data a byte at a time for all
106 combinations of CRC register values and incoming bytes. The remaining tables
107 allow for word-at-a-time CRC calculation for both big-endian and little-
108 endian machines, where a word is four bytes.
110 local void make_crc_table()
112 unsigned long c;
113 int n, k;
114 unsigned long poly; /* polynomial exclusive-or pattern */
115 /* terms of polynomial defining this crc (except x^32): */
116 static volatile int first = 1; /* flag to limit concurrent making */
117 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
119 /* See if another task is already doing this (not thread-safe, but better
120 than nothing -- significantly reduces duration of vulnerability in
121 case the advice about DYNAMIC_CRC_TABLE is ignored) */
122 if (first) {
123 first = 0;
125 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
126 poly = 0UL;
127 for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
128 poly |= 1UL << (31 - p[n]);
130 /* generate a crc for every 8-bit value */
131 for (n = 0; n < 256; n++) {
132 c = (unsigned long)n;
133 for (k = 0; k < 8; k++)
134 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
135 crc_table[0][n] = c;
138 #ifdef BYFOUR
139 /* generate crc for each value followed by one, two, and three zeros,
140 and then the byte reversal of those as well as the first table */
141 for (n = 0; n < 256; n++) {
142 c = crc_table[0][n];
143 crc_table[4][n] = REV(c);
144 for (k = 1; k < 4; k++) {
145 c = crc_table[0][c & 0xff] ^ (c >> 8);
146 crc_table[k][n] = c;
147 crc_table[k + 4][n] = REV(c);
150 #endif /* BYFOUR */
152 crc_table_empty = 0;
154 else { /* not first */
155 /* wait for the other guy to finish (not efficient, but rare) */
156 while (crc_table_empty)
160 #ifdef MAKECRCH
161 /* write out CRC tables to crc32.h */
163 FILE *out;
165 out = fopen("crc32.h", "w");
166 if (out == NULL) return;
167 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
168 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
169 fprintf(out, "local const unsigned long FAR ");
170 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
171 write_table(out, crc_table[0]);
172 # ifdef BYFOUR
173 fprintf(out, "#ifdef BYFOUR\n");
174 for (k = 1; k < 8; k++) {
175 fprintf(out, " },\n {\n");
176 write_table(out, crc_table[k]);
178 fprintf(out, "#endif\n");
179 # endif /* BYFOUR */
180 fprintf(out, " }\n};\n");
181 fclose(out);
183 #endif /* MAKECRCH */
186 #ifdef MAKECRCH
187 local void write_table(out, table)
188 FILE *out;
189 const unsigned long FAR *table;
191 int n;
193 for (n = 0; n < 256; n++)
194 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n],
195 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
197 #endif /* MAKECRCH */
199 #else /* !DYNAMIC_CRC_TABLE */
200 /* ========================================================================
201 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
203 #include "crc32.h"
204 #endif /* DYNAMIC_CRC_TABLE */
206 /* =========================================================================
207 * This function can be used by asm versions of crc32()
209 const unsigned long FAR * ZEXPORT get_crc_table()
211 #ifdef DYNAMIC_CRC_TABLE
212 if (crc_table_empty)
213 make_crc_table();
214 #endif /* DYNAMIC_CRC_TABLE */
215 return (const unsigned long FAR *)crc_table;
218 /* ========================================================================= */
219 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
220 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
222 /* ========================================================================= */
223 unsigned long ZEXPORT crc32(crc, buf, len)
224 unsigned long crc;
225 const unsigned char FAR *buf;
226 uInt len;
228 if (buf == Z_NULL) return 0UL;
230 #ifdef DYNAMIC_CRC_TABLE
231 if (crc_table_empty)
232 make_crc_table();
233 #endif /* DYNAMIC_CRC_TABLE */
235 #ifdef BYFOUR
236 if (sizeof(void *) == sizeof(ptrdiff_t)) {
237 u4 endian;
239 endian = 1;
240 if (*((unsigned char *)(&endian)))
241 return crc32_little(crc, buf, len);
242 else
243 return crc32_big(crc, buf, len);
245 #endif /* BYFOUR */
246 crc = crc ^ 0xffffffffUL;
247 while (len >= 8) {
248 DO8;
249 len -= 8;
251 if (len) do {
252 DO1;
253 } while (--len);
254 return crc ^ 0xffffffffUL;
257 #ifdef BYFOUR
259 /* ========================================================================= */
260 #define DOLIT4 c ^= *buf4++; \
261 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
262 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
263 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
265 /* ========================================================================= */
266 local unsigned long crc32_little(crc, buf, len)
267 unsigned long crc;
268 const unsigned char FAR *buf;
269 unsigned len;
271 register u4 c;
272 register const u4 FAR *buf4;
274 c = (u4)crc;
275 c = ~c;
276 while (len && ((ptrdiff_t)buf & 3)) {
277 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
278 len--;
281 buf4 = (const u4 FAR *)(const void FAR *)buf;
282 while (len >= 32) {
283 DOLIT32;
284 len -= 32;
286 while (len >= 4) {
287 DOLIT4;
288 len -= 4;
290 buf = (const unsigned char FAR *)buf4;
292 if (len) do {
293 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
294 } while (--len);
295 c = ~c;
296 return (unsigned long)c;
299 /* ========================================================================= */
300 #define DOBIG4 c ^= *++buf4; \
301 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
302 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
303 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
305 /* ========================================================================= */
306 local unsigned long crc32_big(crc, buf, len)
307 unsigned long crc;
308 const unsigned char FAR *buf;
309 unsigned len;
311 register u4 c;
312 register const u4 FAR *buf4;
314 c = REV((u4)crc);
315 c = ~c;
316 while (len && ((ptrdiff_t)buf & 3)) {
317 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
318 len--;
321 buf4 = (const u4 FAR *)(const void FAR *)buf;
322 buf4--;
323 while (len >= 32) {
324 DOBIG32;
325 len -= 32;
327 while (len >= 4) {
328 DOBIG4;
329 len -= 4;
331 buf4++;
332 buf = (const unsigned char FAR *)buf4;
334 if (len) do {
335 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
336 } while (--len);
337 c = ~c;
338 return (unsigned long)(REV(c));
341 #endif /* BYFOUR */
343 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
345 /* ========================================================================= */
346 local unsigned long gf2_matrix_times(mat, vec)
347 unsigned long *mat;
348 unsigned long vec;
350 unsigned long sum;
352 sum = 0;
353 while (vec) {
354 if (vec & 1)
355 sum ^= *mat;
356 vec >>= 1;
357 mat++;
359 return sum;
362 /* ========================================================================= */
363 local void gf2_matrix_square(square, mat)
364 unsigned long *square;
365 unsigned long *mat;
367 int n;
369 for (n = 0; n < GF2_DIM; n++)
370 square[n] = gf2_matrix_times(mat, mat[n]);
373 /* ========================================================================= */
374 local uLong crc32_combine_(crc1, crc2, len2)
375 uLong crc1;
376 uLong crc2;
377 z_off64_t len2;
379 int n;
380 unsigned long row;
381 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
382 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
384 /* degenerate case (also disallow negative lengths) */
385 if (len2 <= 0)
386 return crc1;
388 /* put operator for one zero bit in odd */
389 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
390 row = 1;
391 for (n = 1; n < GF2_DIM; n++) {
392 odd[n] = row;
393 row <<= 1;
396 /* put operator for two zero bits in even */
397 gf2_matrix_square(even, odd);
399 /* put operator for four zero bits in odd */
400 gf2_matrix_square(odd, even);
402 /* apply len2 zeros to crc1 (first square will put the operator for one
403 zero byte, eight zero bits, in even) */
404 do {
405 /* apply zeros operator for this bit of len2 */
406 gf2_matrix_square(even, odd);
407 if (len2 & 1)
408 crc1 = gf2_matrix_times(even, crc1);
409 len2 >>= 1;
411 /* if no more bits set, then done */
412 if (len2 == 0)
413 break;
415 /* another iteration of the loop with odd and even swapped */
416 gf2_matrix_square(odd, even);
417 if (len2 & 1)
418 crc1 = gf2_matrix_times(odd, crc1);
419 len2 >>= 1;
421 /* if no more bits set, then done */
422 } while (len2 != 0);
424 /* return combined crc */
425 crc1 ^= crc2;
426 return crc1;
429 /* ========================================================================= */
430 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
431 uLong crc1;
432 uLong crc2;
433 z_off_t len2;
435 return crc32_combine_(crc1, crc2, len2);
438 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
439 uLong crc1;
440 uLong crc2;
441 z_off64_t len2;
443 return crc32_combine_(crc1, crc2, len2);
446 ZLIB_INTERNAL void crc_reset(deflate_state *const s)
448 if (x86_cpu_enable_simd) {
449 crc_fold_init(s);
450 return;
452 s->strm->adler = crc32(0L, Z_NULL, 0);
455 ZLIB_INTERNAL void crc_finalize(deflate_state *const s)
457 if (x86_cpu_enable_simd)
458 s->strm->adler = crc_fold_512to32(s);
461 ZLIB_INTERNAL void copy_with_crc(z_streamp strm, Bytef *dst, long size)
463 if (x86_cpu_enable_simd) {
464 crc_fold_copy(strm->state, dst, strm->next_in, size);
465 return;
467 zmemcpy(dst, strm->next_in, size);
468 strm->adler = crc32(strm->adler, dst, size);