1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "chrome/browser/autocomplete/scored_history_match.h"
12 #include "base/logging.h"
13 #include "base/numerics/safe_conversions.h"
14 #include "base/strings/string_number_conversions.h"
15 #include "base/strings/string_split.h"
16 #include "base/strings/string_util.h"
17 #include "base/strings/utf_offset_string_conversions.h"
18 #include "base/strings/utf_string_conversions.h"
19 #include "chrome/browser/autocomplete/history_url_provider.h"
20 #include "components/bookmarks/browser/bookmark_utils.h"
21 #include "components/omnibox/omnibox_field_trial.h"
22 #include "components/omnibox/url_prefix.h"
23 #include "content/public/browser/browser_thread.h"
27 // The number of days of recency scores to precompute.
28 const int kDaysToPrecomputeRecencyScoresFor
= 366;
30 // The number of raw term score buckets use; raw term scores greater this are
31 // capped at the score of the largest bucket.
32 const int kMaxRawTermScore
= 30;
34 // If true, assign raw scores to be max(whatever it normally would be, a score
35 // that's similar to the score HistoryURL provider would assign). This variable
36 // is set in the constructor by examining the field trial state.
37 const bool kAlsoDoHupLikeScoring
= false;
39 // Pre-computed information to speed up calculating recency scores.
40 // |days_ago_to_recency_score| is a simple array mapping how long ago a page was
41 // visited (in days) to the recency score we should assign it. This allows easy
42 // lookups of scores without requiring math. This is initialized by
43 // InitDaysAgoToRecencyScoreArray called by
44 // ScoredHistoryMatch::Init().
45 float days_ago_to_recency_score
[kDaysToPrecomputeRecencyScoresFor
];
47 // Pre-computed information to speed up calculating topicality scores.
48 // |raw_term_score_to_topicality_score| is a simple array mapping how raw terms
49 // scores (a weighted sum of the number of hits for the term, weighted by how
50 // important the hit is: hostname, path, etc.) to the topicality score we should
51 // assign it. This allows easy lookups of scores without requiring math. This
52 // is initialized by InitRawTermScoreToTopicalityScoreArray() called from
53 // ScoredHistoryMatch::Init().
54 float raw_term_score_to_topicality_score
[kMaxRawTermScore
];
56 // The maximum score that can be assigned to non-inlineable matches. This is
57 // useful because often we want inlineable matches to come first (even if they
58 // don't sometimes score as well as non-inlineable matches) because if a
59 // non-inlineable match comes first than all matches will get demoted later in
60 // HistoryQuickProvider to non-inlineable scores. Set to -1 to indicate no
62 int max_assigned_score_for_non_inlineable_matches
= -1;
64 // Whether ScoredHistoryMatch::Init() has been called.
65 bool initialized
= false;
67 // Precalculates raw_term_score_to_topicality_score, used in
68 // GetTopicalityScore().
69 void InitRawTermScoreToTopicalityScoreArray() {
70 for (int term_score
= 0; term_score
< kMaxRawTermScore
; ++term_score
) {
71 float topicality_score
;
72 if (term_score
< 10) {
73 // If the term scores less than 10 points (no full-credit hit, or
74 // no combination of hits that score that well), then the topicality
75 // score is linear in the term score.
76 topicality_score
= 0.1 * term_score
;
78 // For term scores of at least ten points, pass them through a log
79 // function so a score of 10 points gets a 1.0 (to meet up exactly
80 // with the linear component) and increases logarithmically until
81 // maxing out at 30 points, with computes to a score around 2.1.
82 topicality_score
= (1.0 + 2.25 * log10(0.1 * term_score
));
84 raw_term_score_to_topicality_score
[term_score
] = topicality_score
;
88 // Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
89 void InitDaysAgoToRecencyScoreArray() {
90 for (int days_ago
= 0; days_ago
< kDaysToPrecomputeRecencyScoresFor
;
92 int unnormalized_recency_score
;
94 unnormalized_recency_score
= 100;
95 } else if (days_ago
<= 14) {
96 // Linearly extrapolate between 4 and 14 days so 14 days has a score
98 unnormalized_recency_score
= 70 + (14 - days_ago
) * (100 - 70) / (14 - 4);
99 } else if (days_ago
<= 31) {
100 // Linearly extrapolate between 14 and 31 days so 31 days has a score
102 unnormalized_recency_score
= 50 + (31 - days_ago
) * (70 - 50) / (31 - 14);
103 } else if (days_ago
<= 90) {
104 // Linearly extrapolate between 30 and 90 days so 90 days has a score
106 unnormalized_recency_score
= 30 + (90 - days_ago
) * (50 - 30) / (90 - 30);
108 // Linearly extrapolate between 90 and 365 days so 365 days has a score
110 unnormalized_recency_score
=
111 10 + (365 - days_ago
) * (20 - 10) / (365 - 90);
113 days_ago_to_recency_score
[days_ago
] = unnormalized_recency_score
/ 100.0;
115 DCHECK_LE(days_ago_to_recency_score
[days_ago
],
116 days_ago_to_recency_score
[days_ago
- 1]);
124 const size_t ScoredHistoryMatch::kMaxVisitsToScore
= 10;
125 int ScoredHistoryMatch::bookmark_value_
= 1;
126 bool ScoredHistoryMatch::fix_frequency_bugs_
= false;
127 bool ScoredHistoryMatch::allow_tld_matches_
= false;
128 bool ScoredHistoryMatch::allow_scheme_matches_
= false;
129 size_t ScoredHistoryMatch::num_title_words_to_allow_
= 10u;
130 bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_
= false;
131 float ScoredHistoryMatch::topicality_threshold_
= -1;
132 std::vector
<ScoredHistoryMatch::ScoreMaxRelevance
>*
133 ScoredHistoryMatch::hqp_relevance_buckets_
= nullptr;
135 ScoredHistoryMatch::ScoredHistoryMatch() : raw_score(0), can_inline(false) {
138 ScoredHistoryMatch::ScoredHistoryMatch(
139 const history::URLRow
& row
,
140 const VisitInfoVector
& visits
,
141 const std::string
& languages
,
142 const base::string16
& lower_string
,
143 const String16Vector
& terms_vector
,
144 const WordStarts
& terms_to_word_starts_offsets
,
145 const RowWordStarts
& word_starts
,
146 bool is_url_bookmarked
,
148 : HistoryMatch(row
, 0, false, false), raw_score(0), can_inline(false) {
149 GURL gurl
= row
.url();
150 if (!gurl
.is_valid())
153 ScoredHistoryMatch::Init();
155 // Figure out where each search term appears in the URL and/or page title
156 // so that we can score as well as provide autocomplete highlighting.
157 base::OffsetAdjuster::Adjustments adjustments
;
159 bookmarks::CleanUpUrlForMatching(gurl
, languages
, &adjustments
);
160 base::string16 title
= bookmarks::CleanUpTitleForMatching(row
.title());
162 for (const auto& term
: terms_vector
) {
163 TermMatches url_term_matches
= MatchTermInString(term
, url
, term_num
);
164 TermMatches title_term_matches
= MatchTermInString(term
, title
, term_num
);
165 if (url_term_matches
.empty() && title_term_matches
.empty()) {
166 // A term was not found in either URL or title - reject.
169 url_matches
.insert(url_matches
.end(), url_term_matches
.begin(),
170 url_term_matches
.end());
171 title_matches
.insert(title_matches
.end(), title_term_matches
.begin(),
172 title_term_matches
.end());
176 // Sort matches by offset and eliminate any which overlap.
177 // TODO(mpearson): Investigate whether this has any meaningful
178 // effect on scoring. (It's necessary at some point: removing
179 // overlaps and sorting is needed to decide what to highlight in the
180 // suggestion string. But this sort and de-overlap doesn't have to
181 // be done before scoring.)
182 url_matches
= SortAndDeoverlapMatches(url_matches
);
183 title_matches
= SortAndDeoverlapMatches(title_matches
);
185 // We can inline autocomplete a match if:
186 // 1) there is only one search term
187 // 2) AND the match begins immediately after one of the prefixes in
188 // URLPrefix such as http://www and https:// (note that one of these
189 // is the empty prefix, for cases where the user has typed the scheme)
190 // 3) AND the search string does not end in whitespace (making it look to
191 // the IMUI as though there is a single search term when actually there
192 // is a second, empty term).
193 // |best_inlineable_prefix| stores the inlineable prefix computed in
194 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
195 // Note that using the best prefix here means that when multiple
196 // prefixes match, we'll choose to inline following the longest one.
197 // For a URL like "http://www.washingtonmutual.com", this means
198 // typing "w" will inline "ashington..." instead of "ww.washington...".
199 if (!url_matches
.empty() && (terms_vector
.size() == 1) &&
200 !IsWhitespace(*lower_string
.rbegin())) {
201 const base::string16 gurl_spec
= base::UTF8ToUTF16(gurl
.spec());
202 const URLPrefix
* best_inlineable_prefix
=
203 URLPrefix::BestURLPrefix(gurl_spec
, terms_vector
[0]);
204 if (best_inlineable_prefix
) {
205 // Initialize innermost_match.
206 // The idea here is that matches that occur in the scheme or
207 // "www." are worse than matches which don't. For the URLs
208 // "http://www.google.com" and "http://wellsfargo.com", we want
209 // the omnibox input "w" to cause the latter URL to rank higher
210 // than the former. Note that this is not the same as checking
211 // whether one match's inlinable prefix has more components than
212 // the other match's, since in this example, both matches would
213 // have an inlinable prefix of "http://", which is one component.
215 // Instead, we look for the overall best (i.e., most components)
216 // prefix of the current URL, and then check whether the inlinable
217 // prefix has that many components. If it does, this is an
218 // "innermost" match, and should be boosted. In the example
219 // above, the best prefixes for the two URLs have two and one
220 // components respectively, while the inlinable prefixes each
221 // have one component; this means the first match is not innermost
222 // and the second match is innermost, resulting in us boosting the
225 // Now, the code that implements this.
226 // The deepest prefix for this URL regardless of where the match is.
227 const URLPrefix
* best_prefix
=
228 URLPrefix::BestURLPrefix(gurl_spec
, base::string16());
230 // If the URL is inlineable, we must have a match. Note the prefix that
231 // makes it inlineable may be empty.
234 best_inlineable_prefix
->num_components
== best_prefix
->num_components
;
238 const float topicality_score
= GetTopicalityScore(
239 terms_vector
.size(), url
, terms_to_word_starts_offsets
, word_starts
);
240 const float frequency_score
= GetFrequency(now
, is_url_bookmarked
, visits
);
241 raw_score
= base::saturated_cast
<int>(GetFinalRelevancyScore(
242 topicality_score
, frequency_score
, *hqp_relevance_buckets_
));
244 if (kAlsoDoHupLikeScoring
&& can_inline
) {
245 // HistoryURL-provider-like scoring gives any match that is
246 // capable of being inlined a certain minimum score. Some of these
247 // are given a higher score that lets them be shown in inline.
248 // This test here derives from the test in
249 // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
250 const bool promote_to_inline
=
251 (row
.typed_count() > 1) || (IsHostOnly() && (row
.typed_count() == 1));
254 ? HistoryURLProvider::kScoreForBestInlineableResult
255 : HistoryURLProvider::kBaseScoreForNonInlineableResult
;
257 // Also, if the user types the hostname of a host with a typed
258 // visit, then everything from that host get given inlineable scores
259 // (because the URL-that-you-typed will go first and everything
260 // else will be assigned one minus the previous score, as coded
261 // at the end of HistoryURLProvider::DoAutocomplete().
262 if (base::UTF8ToUTF16(gurl
.host()) == terms_vector
[0])
263 hup_like_score
= HistoryURLProvider::kScoreForBestInlineableResult
;
265 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
266 // that's meant to promote prefixes of the best match (if they've
267 // been visited enough related to the best match) or
268 // create/promote host-only suggestions (even if they've never
269 // been typed). The code is complicated and we don't try to
270 // duplicate the logic here. Instead, we handle a simple case: in
271 // low-typed-count ranges, give host-only matches (i.e.,
272 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
273 // that the host-only match outscores all the other matches that
274 // would normally have the same base score. This behavior is not
275 // identical to what happens in HistoryURLProvider even in these
276 // low typed count ranges--sometimes it will create/promote when
277 // this test does not (indeed, we cannot create matches like HUP
278 // can) and vice versa--but the underlying philosophy is similar.
279 if (!promote_to_inline
&& IsHostOnly())
282 // All the other logic to goes into hup-like-scoring happens in
283 // the tie-breaker case of MatchScoreGreater().
285 // Incorporate hup_like_score into raw_score.
286 raw_score
= std::max(raw_score
, hup_like_score
);
289 // If this match is not inlineable and there's a cap on the maximum
290 // score that can be given to non-inlineable matches, apply the cap.
291 if (!can_inline
&& (max_assigned_score_for_non_inlineable_matches
!= -1)) {
293 std::min(raw_score
, max_assigned_score_for_non_inlineable_matches
);
296 // Now that we're done processing this entry, correct the offsets of the
297 // matches in |url_matches| so they point to offsets in the original URL
298 // spec, not the cleaned-up URL string that we used for matching.
299 std::vector
<size_t> offsets
= OffsetsFromTermMatches(url_matches
);
300 base::OffsetAdjuster::UnadjustOffsets(adjustments
, &offsets
);
301 url_matches
= ReplaceOffsetsInTermMatches(url_matches
, offsets
);
304 ScoredHistoryMatch::~ScoredHistoryMatch() {
307 // Comparison function for sorting ScoredMatches by their scores with
308 // intelligent tie-breaking.
309 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch
& m1
,
310 const ScoredHistoryMatch
& m2
) {
311 if (m1
.raw_score
!= m2
.raw_score
)
312 return m1
.raw_score
> m2
.raw_score
;
314 // This tie-breaking logic is inspired by / largely copied from the
315 // ordering logic in history_url_provider.cc CompareHistoryMatch().
317 // A URL that has been typed at all is better than one that has never been
318 // typed. (Note "!"s on each side.)
319 if (!m1
.url_info
.typed_count() != !m2
.url_info
.typed_count())
320 return m1
.url_info
.typed_count() > m2
.url_info
.typed_count();
322 // Innermost matches (matches after any scheme or "www.") are better than
323 // non-innermost matches.
324 if (m1
.innermost_match
!= m2
.innermost_match
)
325 return m1
.innermost_match
;
327 // URLs that have been typed more often are better.
328 if (m1
.url_info
.typed_count() != m2
.url_info
.typed_count())
329 return m1
.url_info
.typed_count() > m2
.url_info
.typed_count();
331 // For URLs that have each been typed once, a host (alone) is better
332 // than a page inside.
333 if (m1
.url_info
.typed_count() == 1) {
334 if (m1
.IsHostOnly() != m2
.IsHostOnly())
335 return m1
.IsHostOnly();
338 // URLs that have been visited more often are better.
339 if (m1
.url_info
.visit_count() != m2
.url_info
.visit_count())
340 return m1
.url_info
.visit_count() > m2
.url_info
.visit_count();
342 // URLs that have been visited more recently are better.
343 return m1
.url_info
.last_visit() > m2
.url_info
.last_visit();
347 TermMatches
ScoredHistoryMatch::FilterTermMatchesByWordStarts(
348 const TermMatches
& term_matches
,
349 const WordStarts
& terms_to_word_starts_offsets
,
350 const WordStarts
& word_starts
,
353 // Return early if no filtering is needed.
354 if (start_pos
== std::string::npos
)
356 TermMatches filtered_matches
;
357 WordStarts::const_iterator next_word_starts
= word_starts
.begin();
358 WordStarts::const_iterator end_word_starts
= word_starts
.end();
359 for (const auto& term_match
: term_matches
) {
360 const size_t term_offset
=
361 terms_to_word_starts_offsets
[term_match
.term_num
];
362 // Advance next_word_starts until it's >= the position of the term we're
363 // considering (adjusted for where the word begins within the term).
364 while ((next_word_starts
!= end_word_starts
) &&
365 (*next_word_starts
< (term_match
.offset
+ term_offset
)))
367 // Add the match if it's before the position we start filtering at or
368 // after the position we stop filtering at (assuming we have a position
369 // to stop filtering at) or if it's at a word boundary.
370 if ((term_match
.offset
< start_pos
) ||
371 ((end_pos
!= std::string::npos
) && (term_match
.offset
>= end_pos
)) ||
372 ((next_word_starts
!= end_word_starts
) &&
373 (*next_word_starts
== term_match
.offset
+ term_offset
)))
374 filtered_matches
.push_back(term_match
);
376 return filtered_matches
;
380 void ScoredHistoryMatch::Init() {
381 // Because the code below is not thread safe, we check that we're only calling
382 // it from one thread: the UI thread. Specifically, we check "if we've heard
383 // of the UI thread then we'd better be on it." The first part is necessary
384 // so unit tests pass. (Many unit tests don't set up the threading naming
385 // system; hence CurrentlyOn(UI thread) will fail.)
386 using content::BrowserThread
;
387 DCHECK(!BrowserThread::IsThreadInitialized(BrowserThread::UI
) ||
388 BrowserThread::CurrentlyOn(BrowserThread::UI
));
395 // When doing HUP-like scoring, don't allow a non-inlineable match
396 // to beat the score of good inlineable matches. This is a problem
397 // because if a non-inlineable match ends up with the highest score
398 // from HistoryQuick provider, all HistoryQuick matches get demoted
399 // to non-inlineable scores (scores less than 1200). Without
400 // HUP-like-scoring, these results would actually come from the HUP
401 // and not be demoted, thus outscoring the demoted HQP results.
402 // When the HQP provides these, we need to clamp the non-inlineable
403 // results to preserve this behavior.
404 if (kAlsoDoHupLikeScoring
) {
405 max_assigned_score_for_non_inlineable_matches
=
406 HistoryURLProvider::kScoreForBestInlineableResult
- 1;
408 bookmark_value_
= OmniboxFieldTrial::HQPBookmarkValue();
409 fix_frequency_bugs_
= OmniboxFieldTrial::HQPFixFrequencyScoringBugs();
410 allow_tld_matches_
= OmniboxFieldTrial::HQPAllowMatchInTLDValue();
411 allow_scheme_matches_
= OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
412 num_title_words_to_allow_
= OmniboxFieldTrial::HQPNumTitleWordsToAllow();
414 InitRawTermScoreToTopicalityScoreArray();
415 InitDaysAgoToRecencyScoreArray();
416 InitHQPExperimentalParams();
419 float ScoredHistoryMatch::GetTopicalityScore(
421 const base::string16
& url
,
422 const WordStarts
& terms_to_word_starts_offsets
,
423 const RowWordStarts
& word_starts
) {
424 ScoredHistoryMatch::Init();
425 // A vector that accumulates per-term scores. The strongest match--a
426 // match in the hostname at a word boundary--is worth 10 points.
427 // Everything else is less. In general, a match that's not at a word
428 // boundary is worth about 1/4th or 1/5th of a match at the word boundary
429 // in the same part of the URL/title.
430 DCHECK_GT(num_terms
, 0);
431 std::vector
<int> term_scores(num_terms
, 0);
432 WordStarts::const_iterator next_word_starts
=
433 word_starts
.url_word_starts_
.begin();
434 WordStarts::const_iterator end_word_starts
=
435 word_starts
.url_word_starts_
.end();
436 const size_t question_mark_pos
= url
.find('?');
437 const size_t colon_pos
= url
.find(':');
438 // The + 3 skips the // that probably appears in the protocol
439 // after the colon. If the protocol doesn't have two slashes after
440 // the colon, that's okay--all this ends up doing is starting our
441 // search for the next / a few characters into the hostname. The
442 // only times this can cause problems is if we have a protocol without
443 // a // after the colon and the hostname is only one or two characters.
444 // This isn't worth worrying about.
445 const size_t end_of_hostname_pos
= (colon_pos
!= std::string::npos
)
446 ? url
.find('/', colon_pos
+ 3)
448 size_t last_part_of_hostname_pos
= (end_of_hostname_pos
!= std::string::npos
)
449 ? url
.rfind('.', end_of_hostname_pos
)
451 // Loop through all URL matches and score them appropriately.
452 // First, filter all matches not at a word boundary and in the path (or
454 url_matches
= FilterTermMatchesByWordStarts(
455 url_matches
, terms_to_word_starts_offsets
, word_starts
.url_word_starts_
,
456 end_of_hostname_pos
, std::string::npos
);
457 if (colon_pos
!= std::string::npos
) {
458 // Also filter matches not at a word boundary and in the scheme.
459 url_matches
= FilterTermMatchesByWordStarts(
460 url_matches
, terms_to_word_starts_offsets
, word_starts
.url_word_starts_
,
463 for (const auto& url_match
: url_matches
) {
464 const size_t term_offset
= terms_to_word_starts_offsets
[url_match
.term_num
];
465 // Advance next_word_starts until it's >= the position of the term we're
466 // considering (adjusted for where the word begins within the term).
467 while ((next_word_starts
!= end_word_starts
) &&
468 (*next_word_starts
< (url_match
.offset
+ term_offset
))) {
471 const bool at_word_boundary
=
472 (next_word_starts
!= end_word_starts
) &&
473 (*next_word_starts
== url_match
.offset
+ term_offset
);
474 if ((question_mark_pos
!= std::string::npos
) &&
475 (url_match
.offset
> question_mark_pos
)) {
476 // The match is in a CGI ?... fragment.
477 DCHECK(at_word_boundary
);
478 term_scores
[url_match
.term_num
] += 5;
479 } else if ((end_of_hostname_pos
!= std::string::npos
) &&
480 (url_match
.offset
> end_of_hostname_pos
)) {
481 // The match is in the path.
482 DCHECK(at_word_boundary
);
483 term_scores
[url_match
.term_num
] += 8;
484 } else if ((colon_pos
== std::string::npos
) ||
485 (url_match
.offset
> colon_pos
)) {
486 // The match is in the hostname.
487 if ((last_part_of_hostname_pos
== std::string::npos
) ||
488 (url_match
.offset
< last_part_of_hostname_pos
)) {
489 // Either there are no dots in the hostname or this match isn't
490 // the last dotted component.
491 term_scores
[url_match
.term_num
] += at_word_boundary
? 10 : 2;
493 // The match is in the last part of a dotted hostname (usually this
494 // is the top-level domain .com, .net, etc.).
495 if (allow_tld_matches_
)
496 term_scores
[url_match
.term_num
] += at_word_boundary
? 10 : 0;
499 // The match is in the protocol (a.k.a. scheme).
500 // Matches not at a word boundary should have been filtered already.
501 DCHECK(at_word_boundary
);
502 match_in_scheme
= true;
503 if (allow_scheme_matches_
)
504 term_scores
[url_match
.term_num
] += 10;
507 // Now do the analogous loop over all matches in the title.
508 next_word_starts
= word_starts
.title_word_starts_
.begin();
509 end_word_starts
= word_starts
.title_word_starts_
.end();
511 title_matches
= FilterTermMatchesByWordStarts(
512 title_matches
, terms_to_word_starts_offsets
,
513 word_starts
.title_word_starts_
, 0, std::string::npos
);
514 for (const auto& title_match
: title_matches
) {
515 const size_t term_offset
=
516 terms_to_word_starts_offsets
[title_match
.term_num
];
517 // Advance next_word_starts until it's >= the position of the term we're
518 // considering (adjusted for where the word begins within the term).
519 while ((next_word_starts
!= end_word_starts
) &&
520 (*next_word_starts
< (title_match
.offset
+ term_offset
))) {
524 if (word_num
>= num_title_words_to_allow_
)
525 break; // only count the first ten words
526 DCHECK(next_word_starts
!= end_word_starts
);
527 DCHECK_EQ(*next_word_starts
, title_match
.offset
+ term_offset
)
528 << "not at word boundary";
529 term_scores
[title_match
.term_num
] += 8;
531 // TODO(mpearson): Restore logic for penalizing out-of-order matches.
532 // (Perhaps discount them by 0.8?)
533 // TODO(mpearson): Consider: if the earliest match occurs late in the string,
534 // should we discount it?
535 // TODO(mpearson): Consider: do we want to score based on how much of the
536 // input string the input covers? (I'm leaning toward no.)
538 // Compute the topicality_score as the sum of transformed term_scores.
539 float topicality_score
= 0;
540 for (int term_score
: term_scores
) {
541 // Drop this URL if it seems like a term didn't appear or, more precisely,
542 // didn't appear in a part of the URL or title that we trust enough
543 // to give it credit for. For instance, terms that appear in the middle
544 // of a CGI parameter get no credit. Almost all the matches dropped
545 // due to this test would look stupid if shown to the user.
548 topicality_score
+= raw_term_score_to_topicality_score
[std::min(
549 term_score
, kMaxRawTermScore
- 1)];
551 // TODO(mpearson): If there are multiple terms, consider taking the
552 // geometric mean of per-term scores rather than the arithmetic mean.
554 const float final_topicality_score
= topicality_score
/ num_terms
;
556 // Demote the URL if the topicality score is less than threshold.
557 if (hqp_experimental_scoring_enabled_
&&
558 (final_topicality_score
< topicality_threshold_
)) {
562 return final_topicality_score
;
566 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago
) {
567 ScoredHistoryMatch::Init();
568 // Lookup the score in days_ago_to_recency_score, treating
569 // everything older than what we've precomputed as the oldest thing
570 // we've precomputed. The std::max is to protect against corruption
571 // in the database (in case last_visit_days_ago is negative).
572 return days_ago_to_recency_score
[std::max(
573 std::min(last_visit_days_ago
, kDaysToPrecomputeRecencyScoresFor
- 1), 0)];
577 float ScoredHistoryMatch::GetFrequency(const base::Time
& now
,
578 const bool bookmarked
,
579 const VisitInfoVector
& visits
) {
580 // Compute the weighted average |value_of_transition| over the last at
581 // most kMaxVisitsToScore visits, where each visit is weighted using
582 // GetRecencyScore() based on how many days ago it happened. Use
583 // kMaxVisitsToScore as the denominator for the average regardless of
584 // how many visits there were in order to penalize a match that has
585 // fewer visits than kMaxVisitsToScore.
586 float summed_visit_points
= 0;
587 const size_t max_visit_to_score
=
588 std::min(visits
.size(), ScoredHistoryMatch::kMaxVisitsToScore
);
589 for (size_t i
= 0; i
< max_visit_to_score
; ++i
) {
590 const ui::PageTransition page_transition
= fix_frequency_bugs_
?
591 ui::PageTransitionStripQualifier(visits
[i
].second
) : visits
[i
].second
;
592 int value_of_transition
=
593 (page_transition
== ui::PAGE_TRANSITION_TYPED
) ? 20 : 1;
595 value_of_transition
= std::max(value_of_transition
, bookmark_value_
);
596 const float bucket_weight
=
597 GetRecencyScore((now
- visits
[i
].first
).InDays());
598 summed_visit_points
+= (value_of_transition
* bucket_weight
);
600 if (fix_frequency_bugs_
)
601 return summed_visit_points
/ ScoredHistoryMatch::kMaxVisitsToScore
;
602 return visits
.size() * summed_visit_points
/
603 ScoredHistoryMatch::kMaxVisitsToScore
;
607 float ScoredHistoryMatch::GetFinalRelevancyScore(
608 float topicality_score
,
609 float frequency_score
,
610 const std::vector
<ScoreMaxRelevance
>& hqp_relevance_buckets
) {
611 DCHECK(hqp_relevance_buckets
.size() > 0);
612 DCHECK_EQ(hqp_relevance_buckets
[0].first
, 0.0);
614 if (topicality_score
== 0)
616 // Here's how to interpret intermediate_score: Suppose the omnibox
617 // has one input term. Suppose we have a URL for which the omnibox
618 // input term has a single URL hostname hit at a word boundary. (This
619 // implies topicality_score = 1.0.). Then the intermediate_score for
620 // this URL will depend entirely on the frequency_score with
621 // this interpretation:
622 // - a single typed visit more than three months ago, no other visits -> 0.2
623 // - a visit every three days, no typed visits -> 0.706
624 // - a visit every day, no typed visits -> 0.916
625 // - a single typed visit yesterday, no other visits -> 2.0
626 // - a typed visit once a week -> 11.77
627 // - a typed visit every three days -> 14.12
628 // - at least ten typed visits today -> 20.0 (maximum score)
630 // The below code maps intermediate_score to the range [0, 1399].
632 // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399"
633 // We will linearly interpolate the scores between:
634 // 0 to 1.5 --> 400 to 600
635 // 1.5 to 12.0 --> 600 to 1300
636 // 12.0 to 20.0 --> 1300 to 1399
639 // The score maxes out at 1399 (i.e., cannot beat a good inlineable result
640 // from HistoryURL provider).
641 const float intermediate_score
= topicality_score
* frequency_score
;
643 // Find the threshold where intermediate score is greater than bucket.
645 for (; i
< hqp_relevance_buckets
.size(); ++i
) {
646 const ScoreMaxRelevance
& hqp_bucket
= hqp_relevance_buckets
[i
];
647 if (intermediate_score
>= hqp_bucket
.first
) {
650 const ScoreMaxRelevance
& previous_bucket
= hqp_relevance_buckets
[i
- 1];
651 const float slope
= ((hqp_bucket
.second
- previous_bucket
.second
) /
652 (hqp_bucket
.first
- previous_bucket
.first
));
653 return (previous_bucket
.second
+
654 (slope
* (intermediate_score
- previous_bucket
.first
)));
656 // It will reach this stage when the score is > highest bucket score.
657 // Return the highest bucket score.
658 return hqp_relevance_buckets
[i
- 1].second
;
662 void ScoredHistoryMatch::InitHQPExperimentalParams() {
663 // These are default HQP relevance scoring buckets.
664 // See GetFinalRelevancyScore() for details.
665 std::string hqp_relevance_buckets_str
= "0.0:400,1.5:600,12.0:1300,20.0:1399";
667 // Fetch the experiment params if they are any.
668 hqp_experimental_scoring_enabled_
=
669 OmniboxFieldTrial::HQPExperimentalScoringEnabled();
671 if (hqp_experimental_scoring_enabled_
) {
672 // Add the topicality threshold from experiment params.
673 float hqp_experimental_topicality_threhold
=
674 OmniboxFieldTrial::HQPExperimentalTopicalityThreshold();
675 topicality_threshold_
= hqp_experimental_topicality_threhold
;
677 // Add the HQP experimental scoring buckets.
678 std::string hqp_experimental_scoring_buckets
=
679 OmniboxFieldTrial::HQPExperimentalScoringBuckets();
680 if (!hqp_experimental_scoring_buckets
.empty())
681 hqp_relevance_buckets_str
= hqp_experimental_scoring_buckets
;
684 // Parse the hqp_relevance_buckets_str string once and store them in vector
685 // which is easy to access.
686 hqp_relevance_buckets_
=
687 new std::vector
<ScoredHistoryMatch::ScoreMaxRelevance
>();
689 bool is_valid_bucket_str
= GetHQPBucketsFromString(hqp_relevance_buckets_str
,
690 hqp_relevance_buckets_
);
691 DCHECK(is_valid_bucket_str
);
695 bool ScoredHistoryMatch::GetHQPBucketsFromString(
696 const std::string
& buckets_str
,
697 std::vector
<ScoreMaxRelevance
>* hqp_buckets
) {
698 DCHECK(hqp_buckets
!= NULL
);
699 DCHECK(!buckets_str
.empty());
701 base::StringPairs kv_pairs
;
702 if (base::SplitStringIntoKeyValuePairs(buckets_str
, ':', ',', &kv_pairs
)) {
703 for (base::StringPairs::const_iterator it
= kv_pairs
.begin();
704 it
!= kv_pairs
.end(); ++it
) {
705 ScoreMaxRelevance bucket
;
706 bool is_valid_intermediate_score
=
707 base::StringToDouble(it
->first
, &bucket
.first
);
708 DCHECK(is_valid_intermediate_score
);
709 bool is_valid_hqp_score
= base::StringToInt(it
->second
, &bucket
.second
);
710 DCHECK(is_valid_hqp_score
);
711 hqp_buckets
->push_back(bucket
);