4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file is part of the SQLite FTS3 extension module. Specifically,
14 ** this file contains code to insert, update and delete rows from FTS3
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some
16 ** of the sub-routines used to merge segments are also used by the query
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
28 #define FTS_MAX_APPENDABLE_HEIGHT 16
31 ** When full-text index nodes are loaded from disk, the buffer that they
32 ** are loaded into has the following number of bytes of padding at the end
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
34 ** of 920 bytes is allocated for it.
36 ** This means that if we have a pointer into a buffer containing node data,
37 ** it is always safe to read up to two varints from it without risking an
38 ** overread, even if the node data is corrupted.
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
44 ** memory incrementally instead of all at once. This can be a big performance
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
46 ** method before retrieving all query results (as may happen, for example,
47 ** if a query has a LIMIT clause).
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
51 ** The code is written so that the hard lower-limit for each of these values
52 ** is 1. Clearly such small values would be inefficient, but can be useful
53 ** for testing purposes.
55 ** If this module is built with SQLITE_TEST defined, these constants may
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains
57 ** a Tcl interface to read and write the values.
60 int test_fts3_node_chunksize
= (4*1024);
61 int test_fts3_node_chunk_threshold
= (4*1024)*4;
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
65 # define FTS3_NODE_CHUNKSIZE (4*1024)
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
70 ** The two values that may be meaningfully bound to the :1 parameter in
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
73 #define FTS_STAT_DOCTOTAL 0
74 #define FTS_STAT_INCRMERGEHINT 1
75 #define FTS_STAT_AUTOINCRMERGE 2
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
79 ** and incremental merge operation that takes place. This is used for
80 ** debugging FTS only, it should not usually be turned on in production
83 #ifdef FTS3_LOG_MERGES
84 static void fts3LogMerge(int nMerge
, sqlite3_int64 iAbsLevel
){
85 sqlite3_log(SQLITE_OK
, "%d-way merge from level %d", nMerge
, (int)iAbsLevel
);
88 #define fts3LogMerge(x, y)
92 typedef struct PendingList PendingList
;
93 typedef struct SegmentNode SegmentNode
;
94 typedef struct SegmentWriter SegmentWriter
;
97 ** An instance of the following data structure is used to build doclists
98 ** incrementally. See function fts3PendingListAppend() for details.
104 sqlite3_int64 iLastDocid
;
105 sqlite3_int64 iLastCol
;
106 sqlite3_int64 iLastPos
;
111 ** Each cursor has a (possibly empty) linked list of the following objects.
113 struct Fts3DeferredToken
{
114 Fts3PhraseToken
*pToken
; /* Pointer to corresponding expr token */
115 int iCol
; /* Column token must occur in */
116 Fts3DeferredToken
*pNext
; /* Next in list of deferred tokens */
117 PendingList
*pList
; /* Doclist is assembled here */
121 ** An instance of this structure is used to iterate through the terms on
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of
123 ** this structure are only manipulated by code in this file, opaque handles
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
125 ** terms when querying the full-text index. See functions:
127 ** sqlite3Fts3SegReaderNew()
128 ** sqlite3Fts3SegReaderFree()
129 ** sqlite3Fts3SegReaderIterate()
131 ** Methods used to manipulate Fts3SegReader structures:
133 ** fts3SegReaderNext()
134 ** fts3SegReaderFirstDocid()
135 ** fts3SegReaderNextDocid()
137 struct Fts3SegReader
{
138 int iIdx
; /* Index within level, or 0x7FFFFFFF for PT */
139 u8 bLookup
; /* True for a lookup only */
140 u8 rootOnly
; /* True for a root-only reader */
142 sqlite3_int64 iStartBlock
; /* Rowid of first leaf block to traverse */
143 sqlite3_int64 iLeafEndBlock
; /* Rowid of final leaf block to traverse */
144 sqlite3_int64 iEndBlock
; /* Rowid of final block in segment (or 0) */
145 sqlite3_int64 iCurrentBlock
; /* Current leaf block (or 0) */
147 char *aNode
; /* Pointer to node data (or NULL) */
148 int nNode
; /* Size of buffer at aNode (or 0) */
149 int nPopulate
; /* If >0, bytes of buffer aNode[] loaded */
150 sqlite3_blob
*pBlob
; /* If not NULL, blob handle to read node */
152 Fts3HashElem
**ppNextElem
;
154 /* Variables set by fts3SegReaderNext(). These may be read directly
155 ** by the caller. They are valid from the time SegmentReaderNew() returns
156 ** until SegmentReaderNext() returns something other than SQLITE_OK
157 ** (i.e. SQLITE_DONE).
159 int nTerm
; /* Number of bytes in current term */
160 char *zTerm
; /* Pointer to current term */
161 int nTermAlloc
; /* Allocated size of zTerm buffer */
162 char *aDoclist
; /* Pointer to doclist of current entry */
163 int nDoclist
; /* Size of doclist in current entry */
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate
166 ** through the current doclist (aDoclist/nDoclist).
169 int nOffsetList
; /* For descending pending seg-readers only */
170 sqlite3_int64 iDocid
;
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
177 ** An instance of this structure is used to create a segment b-tree in the
178 ** database. The internal details of this type are only accessed by the
179 ** following functions:
181 ** fts3SegWriterAdd()
182 ** fts3SegWriterFlush()
183 ** fts3SegWriterFree()
185 struct SegmentWriter
{
186 SegmentNode
*pTree
; /* Pointer to interior tree structure */
187 sqlite3_int64 iFirst
; /* First slot in %_segments written */
188 sqlite3_int64 iFree
; /* Next free slot in %_segments */
189 char *zTerm
; /* Pointer to previous term buffer */
190 int nTerm
; /* Number of bytes in zTerm */
191 int nMalloc
; /* Size of malloc'd buffer at zMalloc */
192 char *zMalloc
; /* Malloc'd space (possibly) used for zTerm */
193 int nSize
; /* Size of allocation at aData */
194 int nData
; /* Bytes of data in aData */
195 char *aData
; /* Pointer to block from malloc() */
196 i64 nLeafData
; /* Number of bytes of leaf data written */
200 ** Type SegmentNode is used by the following three functions to create
201 ** the interior part of the segment b+-tree structures (everything except
202 ** the leaf nodes). These functions and type are only ever used by code
203 ** within the fts3SegWriterXXX() family of functions described above.
209 ** When a b+tree is written to the database (either as a result of a merge
210 ** or the pending-terms table being flushed), leaves are written into the
211 ** database file as soon as they are completely populated. The interior of
212 ** the tree is assembled in memory and written out only once all leaves have
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
214 ** very large, meaning that the interior of the tree consumes relatively
218 SegmentNode
*pParent
; /* Parent node (or NULL for root node) */
219 SegmentNode
*pRight
; /* Pointer to right-sibling */
220 SegmentNode
*pLeftmost
; /* Pointer to left-most node of this depth */
221 int nEntry
; /* Number of terms written to node so far */
222 char *zTerm
; /* Pointer to previous term buffer */
223 int nTerm
; /* Number of bytes in zTerm */
224 int nMalloc
; /* Size of malloc'd buffer at zMalloc */
225 char *zMalloc
; /* Malloc'd space (possibly) used for zTerm */
226 int nData
; /* Bytes of valid data so far */
227 char *aData
; /* Node data */
231 ** Valid values for the second argument to fts3SqlStmt().
233 #define SQL_DELETE_CONTENT 0
234 #define SQL_IS_EMPTY 1
235 #define SQL_DELETE_ALL_CONTENT 2
236 #define SQL_DELETE_ALL_SEGMENTS 3
237 #define SQL_DELETE_ALL_SEGDIR 4
238 #define SQL_DELETE_ALL_DOCSIZE 5
239 #define SQL_DELETE_ALL_STAT 6
240 #define SQL_SELECT_CONTENT_BY_ROWID 7
241 #define SQL_NEXT_SEGMENT_INDEX 8
242 #define SQL_INSERT_SEGMENTS 9
243 #define SQL_NEXT_SEGMENTS_ID 10
244 #define SQL_INSERT_SEGDIR 11
245 #define SQL_SELECT_LEVEL 12
246 #define SQL_SELECT_LEVEL_RANGE 13
247 #define SQL_SELECT_LEVEL_COUNT 14
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15
249 #define SQL_DELETE_SEGDIR_LEVEL 16
250 #define SQL_DELETE_SEGMENTS_RANGE 17
251 #define SQL_CONTENT_INSERT 18
252 #define SQL_DELETE_DOCSIZE 19
253 #define SQL_REPLACE_DOCSIZE 20
254 #define SQL_SELECT_DOCSIZE 21
255 #define SQL_SELECT_STAT 22
256 #define SQL_REPLACE_STAT 23
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25
260 #define SQL_DELETE_SEGDIR_RANGE 26
261 #define SQL_SELECT_ALL_LANGID 27
262 #define SQL_FIND_MERGE_LEVEL 28
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29
264 #define SQL_DELETE_SEGDIR_ENTRY 30
265 #define SQL_SHIFT_SEGDIR_ENTRY 31
266 #define SQL_SELECT_SEGDIR 32
267 #define SQL_CHOMP_SEGDIR 33
268 #define SQL_SEGMENT_IS_APPENDABLE 34
269 #define SQL_SELECT_INDEXES 35
270 #define SQL_SELECT_MXLEVEL 36
272 #define SQL_SELECT_LEVEL_RANGE2 37
273 #define SQL_UPDATE_LEVEL_IDX 38
274 #define SQL_UPDATE_LEVEL 39
277 ** This function is used to obtain an SQLite prepared statement handle
278 ** for the statement identified by the second argument. If successful,
279 ** *pp is set to the requested statement handle and SQLITE_OK returned.
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
282 ** If argument apVal is not NULL, then it must point to an array with
283 ** at least as many entries as the requested statement has bound
284 ** parameters. The values are bound to the statements parameters before
287 static int fts3SqlStmt(
288 Fts3Table
*p
, /* Virtual table handle */
289 int eStmt
, /* One of the SQL_XXX constants above */
290 sqlite3_stmt
**pp
, /* OUT: Statement handle */
291 sqlite3_value
**apVal
/* Values to bind to statement */
293 const char *azSql
[] = {
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
296 /* 2 */ "DELETE FROM %Q.'%q_content'",
297 /* 3 */ "DELETE FROM %Q.'%q_segments'",
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
300 /* 6 */ "DELETE FROM %Q.'%q_stat'",
301 /* 7 */ "SELECT %s WHERE rowid=?",
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
307 /* Return segments in order from oldest to newest.*/
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
312 "ORDER BY level DESC, idx ASC",
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
329 /* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'",
331 /* This statement is used to determine which level to read the input from
332 ** when performing an incremental merge. It returns the absolute level number
333 ** of the oldest level in the db that contains at least ? segments. Or,
334 ** if no level in the FTS index contains more than ? segments, the statement
335 ** returns zero rows. */
336 /* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?"
337 " ORDER BY (level %% 1024) ASC LIMIT 1",
339 /* Estimate the upper limit on the number of leaf nodes in a new segment
340 ** created by merging the oldest :2 segments from absolute level :1. See
341 ** function sqlite3Fts3Incrmerge() for details. */
342 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
343 " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",
345 /* SQL_DELETE_SEGDIR_ENTRY
346 ** Delete the %_segdir entry on absolute level :1 with index :2. */
347 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
349 /* SQL_SHIFT_SEGDIR_ENTRY
350 ** Modify the idx value for the segment with idx=:3 on absolute level :2
352 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
355 ** Read a single entry from the %_segdir table. The entry from absolute
356 ** level :1 with index value :2. */
357 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
358 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
361 ** Update the start_block (:1) and root (:2) fields of the %_segdir
362 ** entry located on absolute level :3 with index :4. */
363 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
364 "WHERE level = ? AND idx = ?",
366 /* SQL_SEGMENT_IS_APPENDABLE
367 ** Return a single row if the segment with end_block=? is appendable. Or
368 ** no rows otherwise. */
369 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
371 /* SQL_SELECT_INDEXES
372 ** Return the list of valid segment indexes for absolute level ? */
373 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
375 /* SQL_SELECT_MXLEVEL
376 ** Return the largest relative level in the FTS index or indexes. */
377 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
379 /* Return segments in order from oldest to newest.*/
380 /* 37 */ "SELECT level, idx, end_block "
381 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
382 "ORDER BY level DESC, idx ASC",
384 /* Update statements used while promoting segments */
385 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
386 "WHERE level=? AND idx=?",
387 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
393 assert( SizeofArray(azSql
)==SizeofArray(p
->aStmt
) );
394 assert( eStmt
<SizeofArray(azSql
) && eStmt
>=0 );
396 pStmt
= p
->aStmt
[eStmt
];
399 if( eStmt
==SQL_CONTENT_INSERT
){
400 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zDb
, p
->zName
, p
->zWriteExprlist
);
401 }else if( eStmt
==SQL_SELECT_CONTENT_BY_ROWID
){
402 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zReadExprlist
);
404 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zDb
, p
->zName
);
409 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, NULL
);
411 assert( rc
==SQLITE_OK
|| pStmt
==0 );
412 p
->aStmt
[eStmt
] = pStmt
;
417 int nParam
= sqlite3_bind_parameter_count(pStmt
);
418 for(i
=0; rc
==SQLITE_OK
&& i
<nParam
; i
++){
419 rc
= sqlite3_bind_value(pStmt
, i
+1, apVal
[i
]);
427 static int fts3SelectDocsize(
428 Fts3Table
*pTab
, /* FTS3 table handle */
429 sqlite3_int64 iDocid
, /* Docid to bind for SQL_SELECT_DOCSIZE */
430 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
432 sqlite3_stmt
*pStmt
= 0; /* Statement requested from fts3SqlStmt() */
433 int rc
; /* Return code */
435 rc
= fts3SqlStmt(pTab
, SQL_SELECT_DOCSIZE
, &pStmt
, 0);
437 sqlite3_bind_int64(pStmt
, 1, iDocid
);
438 rc
= sqlite3_step(pStmt
);
439 if( rc
!=SQLITE_ROW
|| sqlite3_column_type(pStmt
, 0)!=SQLITE_BLOB
){
440 rc
= sqlite3_reset(pStmt
);
441 if( rc
==SQLITE_OK
) rc
= FTS_CORRUPT_VTAB
;
452 int sqlite3Fts3SelectDoctotal(
453 Fts3Table
*pTab
, /* Fts3 table handle */
454 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
456 sqlite3_stmt
*pStmt
= 0;
458 rc
= fts3SqlStmt(pTab
, SQL_SELECT_STAT
, &pStmt
, 0);
460 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
461 if( sqlite3_step(pStmt
)!=SQLITE_ROW
462 || sqlite3_column_type(pStmt
, 0)!=SQLITE_BLOB
464 rc
= sqlite3_reset(pStmt
);
465 if( rc
==SQLITE_OK
) rc
= FTS_CORRUPT_VTAB
;
473 int sqlite3Fts3SelectDocsize(
474 Fts3Table
*pTab
, /* Fts3 table handle */
475 sqlite3_int64 iDocid
, /* Docid to read size data for */
476 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
478 return fts3SelectDocsize(pTab
, iDocid
, ppStmt
);
482 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
483 ** array apVal[] to the SQL statement identified by eStmt, the statement
486 ** Returns SQLITE_OK if the statement is successfully executed, or an
487 ** SQLite error code otherwise.
489 static void fts3SqlExec(
490 int *pRC
, /* Result code */
491 Fts3Table
*p
, /* The FTS3 table */
492 int eStmt
, /* Index of statement to evaluate */
493 sqlite3_value
**apVal
/* Parameters to bind */
498 rc
= fts3SqlStmt(p
, eStmt
, &pStmt
, apVal
);
501 rc
= sqlite3_reset(pStmt
);
508 ** This function ensures that the caller has obtained an exclusive
509 ** shared-cache table-lock on the %_segdir table. This is required before
510 ** writing data to the fts3 table. If this lock is not acquired first, then
511 ** the caller may end up attempting to take this lock as part of committing
512 ** a transaction, causing SQLite to return SQLITE_LOCKED or
513 ** LOCKED_SHAREDCACHEto a COMMIT command.
515 ** It is best to avoid this because if FTS3 returns any error when
516 ** committing a transaction, the whole transaction will be rolled back.
517 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
518 ** It can still happen if the user locks the underlying tables directly
519 ** instead of accessing them via FTS.
521 static int fts3Writelock(Fts3Table
*p
){
524 if( p
->nPendingData
==0 ){
526 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_LEVEL
, &pStmt
, 0);
528 sqlite3_bind_null(pStmt
, 1);
530 rc
= sqlite3_reset(pStmt
);
538 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
539 ** Within each language id, a separate index is maintained to store the
540 ** document terms, and each configured prefix size (configured the FTS
541 ** "prefix=" option). And each index consists of multiple levels ("relative
544 ** All three of these values (the language id, the specific index and the
545 ** level within the index) are encoded in 64-bit integer values stored
546 ** in the %_segdir table on disk. This function is used to convert three
547 ** separate component values into the single 64-bit integer value that
548 ** can be used to query the %_segdir table.
550 ** Specifically, each language-id/index combination is allocated 1024
551 ** 64-bit integer level values ("absolute levels"). The main terms index
552 ** for language-id 0 is allocate values 0-1023. The first prefix index
553 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
554 ** Language 1 indexes are allocated immediately following language 0.
556 ** So, for a system with nPrefix prefix indexes configured, the block of
557 ** absolute levels that corresponds to language-id iLangid and index
558 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
560 static sqlite3_int64
getAbsoluteLevel(
561 Fts3Table
*p
, /* FTS3 table handle */
562 int iLangid
, /* Language id */
563 int iIndex
, /* Index in p->aIndex[] */
564 int iLevel
/* Level of segments */
566 sqlite3_int64 iBase
; /* First absolute level for iLangid/iIndex */
567 assert( iLangid
>=0 );
568 assert( p
->nIndex
>0 );
569 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
571 iBase
= ((sqlite3_int64
)iLangid
* p
->nIndex
+ iIndex
) * FTS3_SEGDIR_MAXLEVEL
;
572 return iBase
+ iLevel
;
576 ** Set *ppStmt to a statement handle that may be used to iterate through
577 ** all rows in the %_segdir table, from oldest to newest. If successful,
578 ** return SQLITE_OK. If an error occurs while preparing the statement,
579 ** return an SQLite error code.
581 ** There is only ever one instance of this SQL statement compiled for
584 ** The statement returns the following columns from the %_segdir table:
588 ** 2: leaves_end_block
592 int sqlite3Fts3AllSegdirs(
593 Fts3Table
*p
, /* FTS3 table */
594 int iLangid
, /* Language being queried */
595 int iIndex
, /* Index for p->aIndex[] */
596 int iLevel
, /* Level to select (relative level) */
597 sqlite3_stmt
**ppStmt
/* OUT: Compiled statement */
600 sqlite3_stmt
*pStmt
= 0;
602 assert( iLevel
==FTS3_SEGCURSOR_ALL
|| iLevel
>=0 );
603 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
604 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
607 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
608 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL_RANGE
, &pStmt
, 0);
610 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
611 sqlite3_bind_int64(pStmt
, 2,
612 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
616 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
617 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL
, &pStmt
, 0);
619 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
,iLevel
));
628 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
629 ** if successful, or an SQLite error code otherwise.
631 ** This function also serves to allocate the PendingList structure itself.
632 ** For example, to create a new PendingList structure containing two
635 ** PendingList *p = 0;
636 ** fts3PendingListAppendVarint(&p, 1);
637 ** fts3PendingListAppendVarint(&p, 2);
639 static int fts3PendingListAppendVarint(
640 PendingList
**pp
, /* IN/OUT: Pointer to PendingList struct */
641 sqlite3_int64 i
/* Value to append to data */
643 PendingList
*p
= *pp
;
645 /* Allocate or grow the PendingList as required. */
647 p
= sqlite3_malloc(sizeof(*p
) + 100);
652 p
->aData
= (char *)&p
[1];
655 else if( p
->nData
+FTS3_VARINT_MAX
+1>p
->nSpace
){
656 int nNew
= p
->nSpace
* 2;
657 p
= sqlite3_realloc(p
, sizeof(*p
) + nNew
);
664 p
->aData
= (char *)&p
[1];
667 /* Append the new serialized varint to the end of the list. */
668 p
->nData
+= sqlite3Fts3PutVarint(&p
->aData
[p
->nData
], i
);
669 p
->aData
[p
->nData
] = '\0';
675 ** Add a docid/column/position entry to a PendingList structure. Non-zero
676 ** is returned if the structure is sqlite3_realloced as part of adding
677 ** the entry. Otherwise, zero.
679 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
680 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
681 ** it is set to SQLITE_OK.
683 static int fts3PendingListAppend(
684 PendingList
**pp
, /* IN/OUT: PendingList structure */
685 sqlite3_int64 iDocid
, /* Docid for entry to add */
686 sqlite3_int64 iCol
, /* Column for entry to add */
687 sqlite3_int64 iPos
, /* Position of term for entry to add */
688 int *pRc
/* OUT: Return code */
690 PendingList
*p
= *pp
;
693 assert( !p
|| p
->iLastDocid
<=iDocid
);
695 if( !p
|| p
->iLastDocid
!=iDocid
){
696 sqlite3_int64 iDelta
= iDocid
- (p
? p
->iLastDocid
: 0);
698 assert( p
->nData
<p
->nSpace
);
699 assert( p
->aData
[p
->nData
]==0 );
702 if( SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, iDelta
)) ){
703 goto pendinglistappend_out
;
707 p
->iLastDocid
= iDocid
;
709 if( iCol
>0 && p
->iLastCol
!=iCol
){
710 if( SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, 1))
711 || SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, iCol
))
713 goto pendinglistappend_out
;
719 assert( iPos
>p
->iLastPos
|| (iPos
==0 && p
->iLastPos
==0) );
720 rc
= fts3PendingListAppendVarint(&p
, 2+iPos
-p
->iLastPos
);
726 pendinglistappend_out
:
736 ** Free a PendingList object allocated by fts3PendingListAppend().
738 static void fts3PendingListDelete(PendingList
*pList
){
743 ** Add an entry to one of the pending-terms hash tables.
745 static int fts3PendingTermsAddOne(
749 Fts3Hash
*pHash
, /* Pending terms hash table to add entry to */
756 pList
= (PendingList
*)fts3HashFind(pHash
, zToken
, nToken
);
758 p
->nPendingData
-= (pList
->nData
+ nToken
+ sizeof(Fts3HashElem
));
760 if( fts3PendingListAppend(&pList
, p
->iPrevDocid
, iCol
, iPos
, &rc
) ){
761 if( pList
==fts3HashInsert(pHash
, zToken
, nToken
, pList
) ){
762 /* Malloc failed while inserting the new entry. This can only
763 ** happen if there was no previous entry for this token.
765 assert( 0==fts3HashFind(pHash
, zToken
, nToken
) );
771 p
->nPendingData
+= (pList
->nData
+ nToken
+ sizeof(Fts3HashElem
));
777 ** Tokenize the nul-terminated string zText and add all tokens to the
778 ** pending-terms hash-table. The docid used is that currently stored in
779 ** p->iPrevDocid, and the column is specified by argument iCol.
781 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
783 static int fts3PendingTermsAdd(
784 Fts3Table
*p
, /* Table into which text will be inserted */
785 int iLangid
, /* Language id to use */
786 const char *zText
, /* Text of document to be inserted */
787 int iCol
, /* Column into which text is being inserted */
788 u32
*pnWord
/* IN/OUT: Incr. by number tokens inserted */
799 sqlite3_tokenizer
*pTokenizer
= p
->pTokenizer
;
800 sqlite3_tokenizer_module
const *pModule
= pTokenizer
->pModule
;
801 sqlite3_tokenizer_cursor
*pCsr
;
802 int (*xNext
)(sqlite3_tokenizer_cursor
*pCursor
,
803 const char**,int*,int*,int*,int*);
805 assert( pTokenizer
&& pModule
);
807 /* If the user has inserted a NULL value, this function may be called with
808 ** zText==0. In this case, add zero token entries to the hash table and
815 rc
= sqlite3Fts3OpenTokenizer(pTokenizer
, iLangid
, zText
, -1, &pCsr
);
820 xNext
= pModule
->xNext
;
822 && SQLITE_OK
==(rc
= xNext(pCsr
, &zToken
, &nToken
, &iStart
, &iEnd
, &iPos
))
825 if( iPos
>=nWord
) nWord
= iPos
+1;
827 /* Positions cannot be negative; we use -1 as a terminator internally.
828 ** Tokens must have a non-zero length.
830 if( iPos
<0 || !zToken
|| nToken
<=0 ){
835 /* Add the term to the terms index */
836 rc
= fts3PendingTermsAddOne(
837 p
, iCol
, iPos
, &p
->aIndex
[0].hPending
, zToken
, nToken
840 /* Add the term to each of the prefix indexes that it is not too
842 for(i
=1; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
843 struct Fts3Index
*pIndex
= &p
->aIndex
[i
];
844 if( nToken
<pIndex
->nPrefix
) continue;
845 rc
= fts3PendingTermsAddOne(
846 p
, iCol
, iPos
, &pIndex
->hPending
, zToken
, pIndex
->nPrefix
851 pModule
->xClose(pCsr
);
853 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
857 ** Calling this function indicates that subsequent calls to
858 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
859 ** contents of the document with docid iDocid.
861 static int fts3PendingTermsDocid(
862 Fts3Table
*p
, /* Full-text table handle */
863 int iLangid
, /* Language id of row being written */
864 sqlite_int64 iDocid
/* Docid of row being written */
866 assert( iLangid
>=0 );
868 /* TODO(shess) Explore whether partially flushing the buffer on
869 ** forced-flush would provide better performance. I suspect that if
870 ** we ordered the doclists by size and flushed the largest until the
871 ** buffer was half empty, that would let the less frequent terms
872 ** generate longer doclists.
874 if( iDocid
<=p
->iPrevDocid
875 || p
->iPrevLangid
!=iLangid
876 || p
->nPendingData
>p
->nMaxPendingData
878 int rc
= sqlite3Fts3PendingTermsFlush(p
);
879 if( rc
!=SQLITE_OK
) return rc
;
881 p
->iPrevDocid
= iDocid
;
882 p
->iPrevLangid
= iLangid
;
887 ** Discard the contents of the pending-terms hash tables.
889 void sqlite3Fts3PendingTermsClear(Fts3Table
*p
){
891 for(i
=0; i
<p
->nIndex
; i
++){
893 Fts3Hash
*pHash
= &p
->aIndex
[i
].hPending
;
894 for(pElem
=fts3HashFirst(pHash
); pElem
; pElem
=fts3HashNext(pElem
)){
895 PendingList
*pList
= (PendingList
*)fts3HashData(pElem
);
896 fts3PendingListDelete(pList
);
898 fts3HashClear(pHash
);
904 ** This function is called by the xUpdate() method as part of an INSERT
905 ** operation. It adds entries for each term in the new record to the
906 ** pendingTerms hash table.
908 ** Argument apVal is the same as the similarly named argument passed to
909 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
911 static int fts3InsertTerms(
914 sqlite3_value
**apVal
,
917 int i
; /* Iterator variable */
918 for(i
=2; i
<p
->nColumn
+2; i
++){
920 if( p
->abNotindexed
[iCol
]==0 ){
921 const char *zText
= (const char *)sqlite3_value_text(apVal
[i
]);
922 int rc
= fts3PendingTermsAdd(p
, iLangid
, zText
, iCol
, &aSz
[iCol
]);
926 aSz
[p
->nColumn
] += sqlite3_value_bytes(apVal
[i
]);
933 ** This function is called by the xUpdate() method for an INSERT operation.
934 ** The apVal parameter is passed a copy of the apVal argument passed by
935 ** SQLite to the xUpdate() method. i.e:
937 ** apVal[0] Not used for INSERT.
939 ** apVal[2] Left-most user-defined column
941 ** apVal[p->nColumn+1] Right-most user-defined column
942 ** apVal[p->nColumn+2] Hidden column with same name as table
943 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
944 ** apVal[p->nColumn+4] Hidden languageid column
946 static int fts3InsertData(
947 Fts3Table
*p
, /* Full-text table */
948 sqlite3_value
**apVal
, /* Array of values to insert */
949 sqlite3_int64
*piDocid
/* OUT: Docid for row just inserted */
951 int rc
; /* Return code */
952 sqlite3_stmt
*pContentInsert
; /* INSERT INTO %_content VALUES(...) */
954 if( p
->zContentTbl
){
955 sqlite3_value
*pRowid
= apVal
[p
->nColumn
+3];
956 if( sqlite3_value_type(pRowid
)==SQLITE_NULL
){
959 if( sqlite3_value_type(pRowid
)!=SQLITE_INTEGER
){
960 return SQLITE_CONSTRAINT
;
962 *piDocid
= sqlite3_value_int64(pRowid
);
966 /* Locate the statement handle used to insert data into the %_content
967 ** table. The SQL for this statement is:
969 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
971 ** The statement features N '?' variables, where N is the number of user
972 ** defined columns in the FTS3 table, plus one for the docid field.
974 rc
= fts3SqlStmt(p
, SQL_CONTENT_INSERT
, &pContentInsert
, &apVal
[1]);
975 if( rc
==SQLITE_OK
&& p
->zLanguageid
){
976 rc
= sqlite3_bind_int(
977 pContentInsert
, p
->nColumn
+2,
978 sqlite3_value_int(apVal
[p
->nColumn
+4])
981 if( rc
!=SQLITE_OK
) return rc
;
983 /* There is a quirk here. The users INSERT statement may have specified
984 ** a value for the "rowid" field, for the "docid" field, or for both.
985 ** Which is a problem, since "rowid" and "docid" are aliases for the
986 ** same value. For example:
988 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
990 ** In FTS3, this is an error. It is an error to specify non-NULL values
991 ** for both docid and some other rowid alias.
993 if( SQLITE_NULL
!=sqlite3_value_type(apVal
[3+p
->nColumn
]) ){
994 if( SQLITE_NULL
==sqlite3_value_type(apVal
[0])
995 && SQLITE_NULL
!=sqlite3_value_type(apVal
[1])
997 /* A rowid/docid conflict. */
1000 rc
= sqlite3_bind_value(pContentInsert
, 1, apVal
[3+p
->nColumn
]);
1001 if( rc
!=SQLITE_OK
) return rc
;
1004 /* Execute the statement to insert the record. Set *piDocid to the
1007 sqlite3_step(pContentInsert
);
1008 rc
= sqlite3_reset(pContentInsert
);
1010 *piDocid
= sqlite3_last_insert_rowid(p
->db
);
1017 ** Remove all data from the FTS3 table. Clear the hash table containing
1020 static int fts3DeleteAll(Fts3Table
*p
, int bContent
){
1021 int rc
= SQLITE_OK
; /* Return code */
1023 /* Discard the contents of the pending-terms hash table. */
1024 sqlite3Fts3PendingTermsClear(p
);
1026 /* Delete everything from the shadow tables. Except, leave %_content as
1027 ** is if bContent is false. */
1028 assert( p
->zContentTbl
==0 || bContent
==0 );
1029 if( bContent
) fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_CONTENT
, 0);
1030 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_SEGMENTS
, 0);
1031 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_SEGDIR
, 0);
1032 if( p
->bHasDocsize
){
1033 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_DOCSIZE
, 0);
1036 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_STAT
, 0);
1044 static int langidFromSelect(Fts3Table
*p
, sqlite3_stmt
*pSelect
){
1046 if( p
->zLanguageid
) iLangid
= sqlite3_column_int(pSelect
, p
->nColumn
+1);
1051 ** The first element in the apVal[] array is assumed to contain the docid
1052 ** (an integer) of a row about to be deleted. Remove all terms from the
1055 static void fts3DeleteTerms(
1056 int *pRC
, /* Result code */
1057 Fts3Table
*p
, /* The FTS table to delete from */
1058 sqlite3_value
*pRowid
, /* The docid to be deleted */
1059 u32
*aSz
, /* Sizes of deleted document written here */
1060 int *pbFound
/* OUT: Set to true if row really does exist */
1063 sqlite3_stmt
*pSelect
;
1065 assert( *pbFound
==0 );
1067 rc
= fts3SqlStmt(p
, SQL_SELECT_CONTENT_BY_ROWID
, &pSelect
, &pRowid
);
1068 if( rc
==SQLITE_OK
){
1069 if( SQLITE_ROW
==sqlite3_step(pSelect
) ){
1071 int iLangid
= langidFromSelect(p
, pSelect
);
1072 rc
= fts3PendingTermsDocid(p
, iLangid
, sqlite3_column_int64(pSelect
, 0));
1073 for(i
=1; rc
==SQLITE_OK
&& i
<=p
->nColumn
; i
++){
1075 if( p
->abNotindexed
[iCol
]==0 ){
1076 const char *zText
= (const char *)sqlite3_column_text(pSelect
, i
);
1077 rc
= fts3PendingTermsAdd(p
, iLangid
, zText
, -1, &aSz
[iCol
]);
1078 aSz
[p
->nColumn
] += sqlite3_column_bytes(pSelect
, i
);
1081 if( rc
!=SQLITE_OK
){
1082 sqlite3_reset(pSelect
);
1088 rc
= sqlite3_reset(pSelect
);
1090 sqlite3_reset(pSelect
);
1096 ** Forward declaration to account for the circular dependency between
1097 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
1099 static int fts3SegmentMerge(Fts3Table
*, int, int, int);
1102 ** This function allocates a new level iLevel index in the segdir table.
1103 ** Usually, indexes are allocated within a level sequentially starting
1104 ** with 0, so the allocated index is one greater than the value returned
1107 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
1109 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
1110 ** level, they are merged into a single level (iLevel+1) segment and the
1111 ** allocated index is 0.
1113 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
1114 ** returned. Otherwise, an SQLite error code is returned.
1116 static int fts3AllocateSegdirIdx(
1118 int iLangid
, /* Language id */
1119 int iIndex
, /* Index for p->aIndex */
1123 int rc
; /* Return Code */
1124 sqlite3_stmt
*pNextIdx
; /* Query for next idx at level iLevel */
1125 int iNext
= 0; /* Result of query pNextIdx */
1127 assert( iLangid
>=0 );
1128 assert( p
->nIndex
>=1 );
1130 /* Set variable iNext to the next available segdir index at level iLevel. */
1131 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENT_INDEX
, &pNextIdx
, 0);
1132 if( rc
==SQLITE_OK
){
1134 pNextIdx
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
)
1136 if( SQLITE_ROW
==sqlite3_step(pNextIdx
) ){
1137 iNext
= sqlite3_column_int(pNextIdx
, 0);
1139 rc
= sqlite3_reset(pNextIdx
);
1142 if( rc
==SQLITE_OK
){
1143 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
1144 ** full, merge all segments in level iLevel into a single iLevel+1
1145 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
1146 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
1148 if( iNext
>=FTS3_MERGE_COUNT
){
1149 fts3LogMerge(16, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
));
1150 rc
= fts3SegmentMerge(p
, iLangid
, iIndex
, iLevel
);
1161 ** The %_segments table is declared as follows:
1163 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
1165 ** This function reads data from a single row of the %_segments table. The
1166 ** specific row is identified by the iBlockid parameter. If paBlob is not
1167 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
1168 ** with the contents of the blob stored in the "block" column of the
1169 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
1170 ** to the size of the blob in bytes before returning.
1172 ** If an error occurs, or the table does not contain the specified row,
1173 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
1174 ** paBlob is non-NULL, then it is the responsibility of the caller to
1175 ** eventually free the returned buffer.
1177 ** This function may leave an open sqlite3_blob* handle in the
1178 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
1179 ** to this function. The handle may be closed by calling the
1180 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
1181 ** performance improvement, but the blob handle should always be closed
1182 ** before control is returned to the user (to prevent a lock being held
1183 ** on the database file for longer than necessary). Thus, any virtual table
1184 ** method (xFilter etc.) that may directly or indirectly call this function
1185 ** must call sqlite3Fts3SegmentsClose() before returning.
1187 int sqlite3Fts3ReadBlock(
1188 Fts3Table
*p
, /* FTS3 table handle */
1189 sqlite3_int64 iBlockid
, /* Access the row with blockid=$iBlockid */
1190 char **paBlob
, /* OUT: Blob data in malloc'd buffer */
1191 int *pnBlob
, /* OUT: Size of blob data */
1192 int *pnLoad
/* OUT: Bytes actually loaded */
1194 int rc
; /* Return code */
1196 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
1200 rc
= sqlite3_blob_reopen(p
->pSegments
, iBlockid
);
1202 if( 0==p
->zSegmentsTbl
){
1203 p
->zSegmentsTbl
= sqlite3_mprintf("%s_segments", p
->zName
);
1204 if( 0==p
->zSegmentsTbl
) return SQLITE_NOMEM
;
1206 rc
= sqlite3_blob_open(
1207 p
->db
, p
->zDb
, p
->zSegmentsTbl
, "block", iBlockid
, 0, &p
->pSegments
1211 if( rc
==SQLITE_OK
){
1212 int nByte
= sqlite3_blob_bytes(p
->pSegments
);
1215 char *aByte
= sqlite3_malloc(nByte
+ FTS3_NODE_PADDING
);
1219 if( pnLoad
&& nByte
>(FTS3_NODE_CHUNK_THRESHOLD
) ){
1220 nByte
= FTS3_NODE_CHUNKSIZE
;
1223 rc
= sqlite3_blob_read(p
->pSegments
, aByte
, nByte
, 0);
1224 memset(&aByte
[nByte
], 0, FTS3_NODE_PADDING
);
1225 if( rc
!=SQLITE_OK
){
1226 sqlite3_free(aByte
);
1238 ** Close the blob handle at p->pSegments, if it is open. See comments above
1239 ** the sqlite3Fts3ReadBlock() function for details.
1241 void sqlite3Fts3SegmentsClose(Fts3Table
*p
){
1242 sqlite3_blob_close(p
->pSegments
);
1246 static int fts3SegReaderIncrRead(Fts3SegReader
*pReader
){
1247 int nRead
; /* Number of bytes to read */
1248 int rc
; /* Return code */
1250 nRead
= MIN(pReader
->nNode
- pReader
->nPopulate
, FTS3_NODE_CHUNKSIZE
);
1251 rc
= sqlite3_blob_read(
1253 &pReader
->aNode
[pReader
->nPopulate
],
1258 if( rc
==SQLITE_OK
){
1259 pReader
->nPopulate
+= nRead
;
1260 memset(&pReader
->aNode
[pReader
->nPopulate
], 0, FTS3_NODE_PADDING
);
1261 if( pReader
->nPopulate
==pReader
->nNode
){
1262 sqlite3_blob_close(pReader
->pBlob
);
1264 pReader
->nPopulate
= 0;
1270 static int fts3SegReaderRequire(Fts3SegReader
*pReader
, char *pFrom
, int nByte
){
1272 assert( !pReader
->pBlob
1273 || (pFrom
>=pReader
->aNode
&& pFrom
<&pReader
->aNode
[pReader
->nNode
])
1275 while( pReader
->pBlob
&& rc
==SQLITE_OK
1276 && (pFrom
- pReader
->aNode
+ nByte
)>pReader
->nPopulate
1278 rc
= fts3SegReaderIncrRead(pReader
);
1284 ** Set an Fts3SegReader cursor to point at EOF.
1286 static void fts3SegReaderSetEof(Fts3SegReader
*pSeg
){
1287 if( !fts3SegReaderIsRootOnly(pSeg
) ){
1288 sqlite3_free(pSeg
->aNode
);
1289 sqlite3_blob_close(pSeg
->pBlob
);
1296 ** Move the iterator passed as the first argument to the next term in the
1297 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
1298 ** SQLITE_DONE. Otherwise, an SQLite error code.
1300 static int fts3SegReaderNext(
1302 Fts3SegReader
*pReader
,
1305 int rc
; /* Return code of various sub-routines */
1306 char *pNext
; /* Cursor variable */
1307 int nPrefix
; /* Number of bytes in term prefix */
1308 int nSuffix
; /* Number of bytes in term suffix */
1310 if( !pReader
->aDoclist
){
1311 pNext
= pReader
->aNode
;
1313 pNext
= &pReader
->aDoclist
[pReader
->nDoclist
];
1316 if( !pNext
|| pNext
>=&pReader
->aNode
[pReader
->nNode
] ){
1318 if( fts3SegReaderIsPending(pReader
) ){
1319 Fts3HashElem
*pElem
= *(pReader
->ppNextElem
);
1323 PendingList
*pList
= (PendingList
*)fts3HashData(pElem
);
1324 pReader
->zTerm
= (char *)fts3HashKey(pElem
);
1325 pReader
->nTerm
= fts3HashKeysize(pElem
);
1326 pReader
->nNode
= pReader
->nDoclist
= pList
->nData
+ 1;
1327 pReader
->aNode
= pReader
->aDoclist
= pList
->aData
;
1328 pReader
->ppNextElem
++;
1329 assert( pReader
->aNode
);
1334 fts3SegReaderSetEof(pReader
);
1336 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
1337 ** blocks have already been traversed. */
1338 assert( pReader
->iCurrentBlock
<=pReader
->iLeafEndBlock
);
1339 if( pReader
->iCurrentBlock
>=pReader
->iLeafEndBlock
){
1343 rc
= sqlite3Fts3ReadBlock(
1344 p
, ++pReader
->iCurrentBlock
, &pReader
->aNode
, &pReader
->nNode
,
1345 (bIncr
? &pReader
->nPopulate
: 0)
1347 if( rc
!=SQLITE_OK
) return rc
;
1348 assert( pReader
->pBlob
==0 );
1349 if( bIncr
&& pReader
->nPopulate
<pReader
->nNode
){
1350 pReader
->pBlob
= p
->pSegments
;
1353 pNext
= pReader
->aNode
;
1356 assert( !fts3SegReaderIsPending(pReader
) );
1358 rc
= fts3SegReaderRequire(pReader
, pNext
, FTS3_VARINT_MAX
*2);
1359 if( rc
!=SQLITE_OK
) return rc
;
1361 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
1362 ** safe (no risk of overread) even if the node data is corrupted. */
1363 pNext
+= fts3GetVarint32(pNext
, &nPrefix
);
1364 pNext
+= fts3GetVarint32(pNext
, &nSuffix
);
1365 if( nPrefix
<0 || nSuffix
<=0
1366 || &pNext
[nSuffix
]>&pReader
->aNode
[pReader
->nNode
]
1368 return FTS_CORRUPT_VTAB
;
1371 if( nPrefix
+nSuffix
>pReader
->nTermAlloc
){
1372 int nNew
= (nPrefix
+nSuffix
)*2;
1373 char *zNew
= sqlite3_realloc(pReader
->zTerm
, nNew
);
1375 return SQLITE_NOMEM
;
1377 pReader
->zTerm
= zNew
;
1378 pReader
->nTermAlloc
= nNew
;
1381 rc
= fts3SegReaderRequire(pReader
, pNext
, nSuffix
+FTS3_VARINT_MAX
);
1382 if( rc
!=SQLITE_OK
) return rc
;
1384 memcpy(&pReader
->zTerm
[nPrefix
], pNext
, nSuffix
);
1385 pReader
->nTerm
= nPrefix
+nSuffix
;
1387 pNext
+= fts3GetVarint32(pNext
, &pReader
->nDoclist
);
1388 pReader
->aDoclist
= pNext
;
1389 pReader
->pOffsetList
= 0;
1391 /* Check that the doclist does not appear to extend past the end of the
1392 ** b-tree node. And that the final byte of the doclist is 0x00. If either
1393 ** of these statements is untrue, then the data structure is corrupt.
1395 if( &pReader
->aDoclist
[pReader
->nDoclist
]>&pReader
->aNode
[pReader
->nNode
]
1396 || (pReader
->nPopulate
==0 && pReader
->aDoclist
[pReader
->nDoclist
-1])
1398 return FTS_CORRUPT_VTAB
;
1404 ** Set the SegReader to point to the first docid in the doclist associated
1405 ** with the current term.
1407 static int fts3SegReaderFirstDocid(Fts3Table
*pTab
, Fts3SegReader
*pReader
){
1409 assert( pReader
->aDoclist
);
1410 assert( !pReader
->pOffsetList
);
1411 if( pTab
->bDescIdx
&& fts3SegReaderIsPending(pReader
) ){
1413 pReader
->iDocid
= 0;
1414 pReader
->nOffsetList
= 0;
1415 sqlite3Fts3DoclistPrev(0,
1416 pReader
->aDoclist
, pReader
->nDoclist
, &pReader
->pOffsetList
,
1417 &pReader
->iDocid
, &pReader
->nOffsetList
, &bEof
1420 rc
= fts3SegReaderRequire(pReader
, pReader
->aDoclist
, FTS3_VARINT_MAX
);
1421 if( rc
==SQLITE_OK
){
1422 int n
= sqlite3Fts3GetVarint(pReader
->aDoclist
, &pReader
->iDocid
);
1423 pReader
->pOffsetList
= &pReader
->aDoclist
[n
];
1430 ** Advance the SegReader to point to the next docid in the doclist
1431 ** associated with the current term.
1433 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
1434 ** *ppOffsetList is set to point to the first column-offset list
1435 ** in the doclist entry (i.e. immediately past the docid varint).
1436 ** *pnOffsetList is set to the length of the set of column-offset
1437 ** lists, not including the nul-terminator byte. For example:
1439 static int fts3SegReaderNextDocid(
1441 Fts3SegReader
*pReader
, /* Reader to advance to next docid */
1442 char **ppOffsetList
, /* OUT: Pointer to current position-list */
1443 int *pnOffsetList
/* OUT: Length of *ppOffsetList in bytes */
1446 char *p
= pReader
->pOffsetList
;
1451 if( pTab
->bDescIdx
&& fts3SegReaderIsPending(pReader
) ){
1452 /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
1453 ** Pending-terms doclists are always built up in ascending order, so
1454 ** we have to iterate through them backwards here. */
1457 *ppOffsetList
= pReader
->pOffsetList
;
1458 *pnOffsetList
= pReader
->nOffsetList
- 1;
1460 sqlite3Fts3DoclistPrev(0,
1461 pReader
->aDoclist
, pReader
->nDoclist
, &p
, &pReader
->iDocid
,
1462 &pReader
->nOffsetList
, &bEof
1465 pReader
->pOffsetList
= 0;
1467 pReader
->pOffsetList
= p
;
1470 char *pEnd
= &pReader
->aDoclist
[pReader
->nDoclist
];
1472 /* Pointer p currently points at the first byte of an offset list. The
1473 ** following block advances it to point one byte past the end of
1474 ** the same offset list. */
1477 /* The following line of code (and the "p++" below the while() loop) is
1478 ** normally all that is required to move pointer p to the desired
1479 ** position. The exception is if this node is being loaded from disk
1480 ** incrementally and pointer "p" now points to the first byte past
1481 ** the populated part of pReader->aNode[].
1483 while( *p
| c
) c
= *p
++ & 0x80;
1486 if( pReader
->pBlob
==0 || p
<&pReader
->aNode
[pReader
->nPopulate
] ) break;
1487 rc
= fts3SegReaderIncrRead(pReader
);
1488 if( rc
!=SQLITE_OK
) return rc
;
1492 /* If required, populate the output variables with a pointer to and the
1493 ** size of the previous offset-list.
1496 *ppOffsetList
= pReader
->pOffsetList
;
1497 *pnOffsetList
= (int)(p
- pReader
->pOffsetList
- 1);
1500 /* List may have been edited in place by fts3EvalNearTrim() */
1501 while( p
<pEnd
&& *p
==0 ) p
++;
1503 /* If there are no more entries in the doclist, set pOffsetList to
1504 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
1505 ** Fts3SegReader.pOffsetList to point to the next offset list before
1509 pReader
->pOffsetList
= 0;
1511 rc
= fts3SegReaderRequire(pReader
, p
, FTS3_VARINT_MAX
);
1512 if( rc
==SQLITE_OK
){
1513 sqlite3_int64 iDelta
;
1514 pReader
->pOffsetList
= p
+ sqlite3Fts3GetVarint(p
, &iDelta
);
1515 if( pTab
->bDescIdx
){
1516 pReader
->iDocid
-= iDelta
;
1518 pReader
->iDocid
+= iDelta
;
1528 int sqlite3Fts3MsrOvfl(
1530 Fts3MultiSegReader
*pMsr
,
1533 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1537 int pgsz
= p
->nPgsz
;
1542 for(ii
=0; rc
==SQLITE_OK
&& ii
<pMsr
->nSegment
; ii
++){
1543 Fts3SegReader
*pReader
= pMsr
->apSegment
[ii
];
1544 if( !fts3SegReaderIsPending(pReader
)
1545 && !fts3SegReaderIsRootOnly(pReader
)
1548 for(jj
=pReader
->iStartBlock
; jj
<=pReader
->iLeafEndBlock
; jj
++){
1550 rc
= sqlite3Fts3ReadBlock(p
, jj
, 0, &nBlob
, 0);
1551 if( rc
!=SQLITE_OK
) break;
1552 if( (nBlob
+35)>pgsz
){
1553 nOvfl
+= (nBlob
+ 34)/pgsz
;
1563 ** Free all allocations associated with the iterator passed as the
1566 void sqlite3Fts3SegReaderFree(Fts3SegReader
*pReader
){
1567 if( pReader
&& !fts3SegReaderIsPending(pReader
) ){
1568 sqlite3_free(pReader
->zTerm
);
1569 if( !fts3SegReaderIsRootOnly(pReader
) ){
1570 sqlite3_free(pReader
->aNode
);
1571 sqlite3_blob_close(pReader
->pBlob
);
1574 sqlite3_free(pReader
);
1578 ** Allocate a new SegReader object.
1580 int sqlite3Fts3SegReaderNew(
1581 int iAge
, /* Segment "age". */
1582 int bLookup
, /* True for a lookup only */
1583 sqlite3_int64 iStartLeaf
, /* First leaf to traverse */
1584 sqlite3_int64 iEndLeaf
, /* Final leaf to traverse */
1585 sqlite3_int64 iEndBlock
, /* Final block of segment */
1586 const char *zRoot
, /* Buffer containing root node */
1587 int nRoot
, /* Size of buffer containing root node */
1588 Fts3SegReader
**ppReader
/* OUT: Allocated Fts3SegReader */
1590 Fts3SegReader
*pReader
; /* Newly allocated SegReader object */
1591 int nExtra
= 0; /* Bytes to allocate segment root node */
1593 assert( iStartLeaf
<=iEndLeaf
);
1594 if( iStartLeaf
==0 ){
1595 nExtra
= nRoot
+ FTS3_NODE_PADDING
;
1598 pReader
= (Fts3SegReader
*)sqlite3_malloc(sizeof(Fts3SegReader
) + nExtra
);
1600 return SQLITE_NOMEM
;
1602 memset(pReader
, 0, sizeof(Fts3SegReader
));
1603 pReader
->iIdx
= iAge
;
1604 pReader
->bLookup
= bLookup
!=0;
1605 pReader
->iStartBlock
= iStartLeaf
;
1606 pReader
->iLeafEndBlock
= iEndLeaf
;
1607 pReader
->iEndBlock
= iEndBlock
;
1610 /* The entire segment is stored in the root node. */
1611 pReader
->aNode
= (char *)&pReader
[1];
1612 pReader
->rootOnly
= 1;
1613 pReader
->nNode
= nRoot
;
1614 memcpy(pReader
->aNode
, zRoot
, nRoot
);
1615 memset(&pReader
->aNode
[nRoot
], 0, FTS3_NODE_PADDING
);
1617 pReader
->iCurrentBlock
= iStartLeaf
-1;
1619 *ppReader
= pReader
;
1624 ** This is a comparison function used as a qsort() callback when sorting
1625 ** an array of pending terms by term. This occurs as part of flushing
1626 ** the contents of the pending-terms hash table to the database.
1628 static int fts3CompareElemByTerm(const void *lhs
, const void *rhs
){
1629 char *z1
= fts3HashKey(*(Fts3HashElem
**)lhs
);
1630 char *z2
= fts3HashKey(*(Fts3HashElem
**)rhs
);
1631 int n1
= fts3HashKeysize(*(Fts3HashElem
**)lhs
);
1632 int n2
= fts3HashKeysize(*(Fts3HashElem
**)rhs
);
1634 int n
= (n1
<n2
? n1
: n2
);
1635 int c
= memcmp(z1
, z2
, n
);
1643 ** This function is used to allocate an Fts3SegReader that iterates through
1644 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
1646 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
1647 ** through each term in the pending-terms table. Or, if isPrefixIter is
1648 ** non-zero, it iterates through each term and its prefixes. For example, if
1649 ** the pending terms hash table contains the terms "sqlite", "mysql" and
1650 ** "firebird", then the iterator visits the following 'terms' (in the order
1653 ** f fi fir fire fireb firebi firebir firebird
1654 ** m my mys mysq mysql
1655 ** s sq sql sqli sqlit sqlite
1657 ** Whereas if isPrefixIter is zero, the terms visited are:
1659 ** firebird mysql sqlite
1661 int sqlite3Fts3SegReaderPending(
1662 Fts3Table
*p
, /* Virtual table handle */
1663 int iIndex
, /* Index for p->aIndex */
1664 const char *zTerm
, /* Term to search for */
1665 int nTerm
, /* Size of buffer zTerm */
1666 int bPrefix
, /* True for a prefix iterator */
1667 Fts3SegReader
**ppReader
/* OUT: SegReader for pending-terms */
1669 Fts3SegReader
*pReader
= 0; /* Fts3SegReader object to return */
1670 Fts3HashElem
*pE
; /* Iterator variable */
1671 Fts3HashElem
**aElem
= 0; /* Array of term hash entries to scan */
1672 int nElem
= 0; /* Size of array at aElem */
1673 int rc
= SQLITE_OK
; /* Return Code */
1676 pHash
= &p
->aIndex
[iIndex
].hPending
;
1678 int nAlloc
= 0; /* Size of allocated array at aElem */
1680 for(pE
=fts3HashFirst(pHash
); pE
; pE
=fts3HashNext(pE
)){
1681 char *zKey
= (char *)fts3HashKey(pE
);
1682 int nKey
= fts3HashKeysize(pE
);
1683 if( nTerm
==0 || (nKey
>=nTerm
&& 0==memcmp(zKey
, zTerm
, nTerm
)) ){
1684 if( nElem
==nAlloc
){
1685 Fts3HashElem
**aElem2
;
1687 aElem2
= (Fts3HashElem
**)sqlite3_realloc(
1688 aElem
, nAlloc
*sizeof(Fts3HashElem
*)
1698 aElem
[nElem
++] = pE
;
1702 /* If more than one term matches the prefix, sort the Fts3HashElem
1703 ** objects in term order using qsort(). This uses the same comparison
1704 ** callback as is used when flushing terms to disk.
1707 qsort(aElem
, nElem
, sizeof(Fts3HashElem
*), fts3CompareElemByTerm
);
1711 /* The query is a simple term lookup that matches at most one term in
1712 ** the index. All that is required is a straight hash-lookup.
1714 ** Because the stack address of pE may be accessed via the aElem pointer
1715 ** below, the "Fts3HashElem *pE" must be declared so that it is valid
1716 ** within this entire function, not just this "else{...}" block.
1718 pE
= fts3HashFindElem(pHash
, zTerm
, nTerm
);
1726 int nByte
= sizeof(Fts3SegReader
) + (nElem
+1)*sizeof(Fts3HashElem
*);
1727 pReader
= (Fts3SegReader
*)sqlite3_malloc(nByte
);
1731 memset(pReader
, 0, nByte
);
1732 pReader
->iIdx
= 0x7FFFFFFF;
1733 pReader
->ppNextElem
= (Fts3HashElem
**)&pReader
[1];
1734 memcpy(pReader
->ppNextElem
, aElem
, nElem
*sizeof(Fts3HashElem
*));
1739 sqlite3_free(aElem
);
1741 *ppReader
= pReader
;
1746 ** Compare the entries pointed to by two Fts3SegReader structures.
1747 ** Comparison is as follows:
1749 ** 1) EOF is greater than not EOF.
1751 ** 2) The current terms (if any) are compared using memcmp(). If one
1752 ** term is a prefix of another, the longer term is considered the
1755 ** 3) By segment age. An older segment is considered larger.
1757 static int fts3SegReaderCmp(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1759 if( pLhs
->aNode
&& pRhs
->aNode
){
1760 int rc2
= pLhs
->nTerm
- pRhs
->nTerm
;
1762 rc
= memcmp(pLhs
->zTerm
, pRhs
->zTerm
, pLhs
->nTerm
);
1764 rc
= memcmp(pLhs
->zTerm
, pRhs
->zTerm
, pRhs
->nTerm
);
1770 rc
= (pLhs
->aNode
==0) - (pRhs
->aNode
==0);
1773 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1780 ** A different comparison function for SegReader structures. In this
1781 ** version, it is assumed that each SegReader points to an entry in
1782 ** a doclist for identical terms. Comparison is made as follows:
1784 ** 1) EOF (end of doclist in this case) is greater than not EOF.
1786 ** 2) By current docid.
1788 ** 3) By segment age. An older segment is considered larger.
1790 static int fts3SegReaderDoclistCmp(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1791 int rc
= (pLhs
->pOffsetList
==0)-(pRhs
->pOffsetList
==0);
1793 if( pLhs
->iDocid
==pRhs
->iDocid
){
1794 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1796 rc
= (pLhs
->iDocid
> pRhs
->iDocid
) ? 1 : -1;
1799 assert( pLhs
->aNode
&& pRhs
->aNode
);
1802 static int fts3SegReaderDoclistCmpRev(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1803 int rc
= (pLhs
->pOffsetList
==0)-(pRhs
->pOffsetList
==0);
1805 if( pLhs
->iDocid
==pRhs
->iDocid
){
1806 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1808 rc
= (pLhs
->iDocid
< pRhs
->iDocid
) ? 1 : -1;
1811 assert( pLhs
->aNode
&& pRhs
->aNode
);
1816 ** Compare the term that the Fts3SegReader object passed as the first argument
1817 ** points to with the term specified by arguments zTerm and nTerm.
1819 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
1820 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
1821 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
1823 static int fts3SegReaderTermCmp(
1824 Fts3SegReader
*pSeg
, /* Segment reader object */
1825 const char *zTerm
, /* Term to compare to */
1826 int nTerm
/* Size of term zTerm in bytes */
1830 if( pSeg
->nTerm
>nTerm
){
1831 res
= memcmp(pSeg
->zTerm
, zTerm
, nTerm
);
1833 res
= memcmp(pSeg
->zTerm
, zTerm
, pSeg
->nTerm
);
1836 res
= pSeg
->nTerm
-nTerm
;
1843 ** Argument apSegment is an array of nSegment elements. It is known that
1844 ** the final (nSegment-nSuspect) members are already in sorted order
1845 ** (according to the comparison function provided). This function shuffles
1846 ** the array around until all entries are in sorted order.
1848 static void fts3SegReaderSort(
1849 Fts3SegReader
**apSegment
, /* Array to sort entries of */
1850 int nSegment
, /* Size of apSegment array */
1851 int nSuspect
, /* Unsorted entry count */
1852 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) /* Comparison function */
1854 int i
; /* Iterator variable */
1856 assert( nSuspect
<=nSegment
);
1858 if( nSuspect
==nSegment
) nSuspect
--;
1859 for(i
=nSuspect
-1; i
>=0; i
--){
1861 for(j
=i
; j
<(nSegment
-1); j
++){
1862 Fts3SegReader
*pTmp
;
1863 if( xCmp(apSegment
[j
], apSegment
[j
+1])<0 ) break;
1864 pTmp
= apSegment
[j
+1];
1865 apSegment
[j
+1] = apSegment
[j
];
1866 apSegment
[j
] = pTmp
;
1871 /* Check that the list really is sorted now. */
1872 for(i
=0; i
<(nSuspect
-1); i
++){
1873 assert( xCmp(apSegment
[i
], apSegment
[i
+1])<0 );
1879 ** Insert a record into the %_segments table.
1881 static int fts3WriteSegment(
1882 Fts3Table
*p
, /* Virtual table handle */
1883 sqlite3_int64 iBlock
, /* Block id for new block */
1884 char *z
, /* Pointer to buffer containing block data */
1885 int n
/* Size of buffer z in bytes */
1887 sqlite3_stmt
*pStmt
;
1888 int rc
= fts3SqlStmt(p
, SQL_INSERT_SEGMENTS
, &pStmt
, 0);
1889 if( rc
==SQLITE_OK
){
1890 sqlite3_bind_int64(pStmt
, 1, iBlock
);
1891 sqlite3_bind_blob(pStmt
, 2, z
, n
, SQLITE_STATIC
);
1892 sqlite3_step(pStmt
);
1893 rc
= sqlite3_reset(pStmt
);
1899 ** Find the largest relative level number in the table. If successful, set
1900 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1901 ** set *pnMax to zero and return an SQLite error code.
1903 int sqlite3Fts3MaxLevel(Fts3Table
*p
, int *pnMax
){
1906 sqlite3_stmt
*pStmt
= 0;
1908 rc
= fts3SqlStmt(p
, SQL_SELECT_MXLEVEL
, &pStmt
, 0);
1909 if( rc
==SQLITE_OK
){
1910 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
1911 mxLevel
= sqlite3_column_int(pStmt
, 0);
1913 rc
= sqlite3_reset(pStmt
);
1920 ** Insert a record into the %_segdir table.
1922 static int fts3WriteSegdir(
1923 Fts3Table
*p
, /* Virtual table handle */
1924 sqlite3_int64 iLevel
, /* Value for "level" field (absolute level) */
1925 int iIdx
, /* Value for "idx" field */
1926 sqlite3_int64 iStartBlock
, /* Value for "start_block" field */
1927 sqlite3_int64 iLeafEndBlock
, /* Value for "leaves_end_block" field */
1928 sqlite3_int64 iEndBlock
, /* Value for "end_block" field */
1929 sqlite3_int64 nLeafData
, /* Bytes of leaf data in segment */
1930 char *zRoot
, /* Blob value for "root" field */
1931 int nRoot
/* Number of bytes in buffer zRoot */
1933 sqlite3_stmt
*pStmt
;
1934 int rc
= fts3SqlStmt(p
, SQL_INSERT_SEGDIR
, &pStmt
, 0);
1935 if( rc
==SQLITE_OK
){
1936 sqlite3_bind_int64(pStmt
, 1, iLevel
);
1937 sqlite3_bind_int(pStmt
, 2, iIdx
);
1938 sqlite3_bind_int64(pStmt
, 3, iStartBlock
);
1939 sqlite3_bind_int64(pStmt
, 4, iLeafEndBlock
);
1941 sqlite3_bind_int64(pStmt
, 5, iEndBlock
);
1943 char *zEnd
= sqlite3_mprintf("%lld %lld", iEndBlock
, nLeafData
);
1944 if( !zEnd
) return SQLITE_NOMEM
;
1945 sqlite3_bind_text(pStmt
, 5, zEnd
, -1, sqlite3_free
);
1947 sqlite3_bind_blob(pStmt
, 6, zRoot
, nRoot
, SQLITE_STATIC
);
1948 sqlite3_step(pStmt
);
1949 rc
= sqlite3_reset(pStmt
);
1955 ** Return the size of the common prefix (if any) shared by zPrev and
1956 ** zNext, in bytes. For example,
1958 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
1959 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
1960 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
1962 static int fts3PrefixCompress(
1963 const char *zPrev
, /* Buffer containing previous term */
1964 int nPrev
, /* Size of buffer zPrev in bytes */
1965 const char *zNext
, /* Buffer containing next term */
1966 int nNext
/* Size of buffer zNext in bytes */
1969 UNUSED_PARAMETER(nNext
);
1970 for(n
=0; n
<nPrev
&& zPrev
[n
]==zNext
[n
]; n
++);
1975 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
1976 ** (according to memcmp) than the previous term.
1978 static int fts3NodeAddTerm(
1979 Fts3Table
*p
, /* Virtual table handle */
1980 SegmentNode
**ppTree
, /* IN/OUT: SegmentNode handle */
1981 int isCopyTerm
, /* True if zTerm/nTerm is transient */
1982 const char *zTerm
, /* Pointer to buffer containing term */
1983 int nTerm
/* Size of term in bytes */
1985 SegmentNode
*pTree
= *ppTree
;
1989 /* First try to append the term to the current node. Return early if
1990 ** this is possible.
1993 int nData
= pTree
->nData
; /* Current size of node in bytes */
1994 int nReq
= nData
; /* Required space after adding zTerm */
1995 int nPrefix
; /* Number of bytes of prefix compression */
1996 int nSuffix
; /* Suffix length */
1998 nPrefix
= fts3PrefixCompress(pTree
->zTerm
, pTree
->nTerm
, zTerm
, nTerm
);
1999 nSuffix
= nTerm
-nPrefix
;
2001 nReq
+= sqlite3Fts3VarintLen(nPrefix
)+sqlite3Fts3VarintLen(nSuffix
)+nSuffix
;
2002 if( nReq
<=p
->nNodeSize
|| !pTree
->zTerm
){
2004 if( nReq
>p
->nNodeSize
){
2005 /* An unusual case: this is the first term to be added to the node
2006 ** and the static node buffer (p->nNodeSize bytes) is not large
2007 ** enough. Use a separately malloced buffer instead This wastes
2008 ** p->nNodeSize bytes, but since this scenario only comes about when
2009 ** the database contain two terms that share a prefix of almost 2KB,
2010 ** this is not expected to be a serious problem.
2012 assert( pTree
->aData
==(char *)&pTree
[1] );
2013 pTree
->aData
= (char *)sqlite3_malloc(nReq
);
2014 if( !pTree
->aData
){
2015 return SQLITE_NOMEM
;
2020 /* There is no prefix-length field for first term in a node */
2021 nData
+= sqlite3Fts3PutVarint(&pTree
->aData
[nData
], nPrefix
);
2024 nData
+= sqlite3Fts3PutVarint(&pTree
->aData
[nData
], nSuffix
);
2025 memcpy(&pTree
->aData
[nData
], &zTerm
[nPrefix
], nSuffix
);
2026 pTree
->nData
= nData
+ nSuffix
;
2030 if( pTree
->nMalloc
<nTerm
){
2031 char *zNew
= sqlite3_realloc(pTree
->zMalloc
, nTerm
*2);
2033 return SQLITE_NOMEM
;
2035 pTree
->nMalloc
= nTerm
*2;
2036 pTree
->zMalloc
= zNew
;
2038 pTree
->zTerm
= pTree
->zMalloc
;
2039 memcpy(pTree
->zTerm
, zTerm
, nTerm
);
2040 pTree
->nTerm
= nTerm
;
2042 pTree
->zTerm
= (char *)zTerm
;
2043 pTree
->nTerm
= nTerm
;
2049 /* If control flows to here, it was not possible to append zTerm to the
2050 ** current node. Create a new node (a right-sibling of the current node).
2051 ** If this is the first node in the tree, the term is added to it.
2053 ** Otherwise, the term is not added to the new node, it is left empty for
2054 ** now. Instead, the term is inserted into the parent of pTree. If pTree
2055 ** has no parent, one is created here.
2057 pNew
= (SegmentNode
*)sqlite3_malloc(sizeof(SegmentNode
) + p
->nNodeSize
);
2059 return SQLITE_NOMEM
;
2061 memset(pNew
, 0, sizeof(SegmentNode
));
2062 pNew
->nData
= 1 + FTS3_VARINT_MAX
;
2063 pNew
->aData
= (char *)&pNew
[1];
2066 SegmentNode
*pParent
= pTree
->pParent
;
2067 rc
= fts3NodeAddTerm(p
, &pParent
, isCopyTerm
, zTerm
, nTerm
);
2068 if( pTree
->pParent
==0 ){
2069 pTree
->pParent
= pParent
;
2071 pTree
->pRight
= pNew
;
2072 pNew
->pLeftmost
= pTree
->pLeftmost
;
2073 pNew
->pParent
= pParent
;
2074 pNew
->zMalloc
= pTree
->zMalloc
;
2075 pNew
->nMalloc
= pTree
->nMalloc
;
2078 pNew
->pLeftmost
= pNew
;
2079 rc
= fts3NodeAddTerm(p
, &pNew
, isCopyTerm
, zTerm
, nTerm
);
2087 ** Helper function for fts3NodeWrite().
2089 static int fts3TreeFinishNode(
2092 sqlite3_int64 iLeftChild
2095 assert( iHeight
>=1 && iHeight
<128 );
2096 nStart
= FTS3_VARINT_MAX
- sqlite3Fts3VarintLen(iLeftChild
);
2097 pTree
->aData
[nStart
] = (char)iHeight
;
2098 sqlite3Fts3PutVarint(&pTree
->aData
[nStart
+1], iLeftChild
);
2103 ** Write the buffer for the segment node pTree and all of its peers to the
2104 ** database. Then call this function recursively to write the parent of
2105 ** pTree and its peers to the database.
2107 ** Except, if pTree is a root node, do not write it to the database. Instead,
2108 ** set output variables *paRoot and *pnRoot to contain the root node.
2110 ** If successful, SQLITE_OK is returned and output variable *piLast is
2111 ** set to the largest blockid written to the database (or zero if no
2112 ** blocks were written to the db). Otherwise, an SQLite error code is
2115 static int fts3NodeWrite(
2116 Fts3Table
*p
, /* Virtual table handle */
2117 SegmentNode
*pTree
, /* SegmentNode handle */
2118 int iHeight
, /* Height of this node in tree */
2119 sqlite3_int64 iLeaf
, /* Block id of first leaf node */
2120 sqlite3_int64 iFree
, /* Block id of next free slot in %_segments */
2121 sqlite3_int64
*piLast
, /* OUT: Block id of last entry written */
2122 char **paRoot
, /* OUT: Data for root node */
2123 int *pnRoot
/* OUT: Size of root node in bytes */
2127 if( !pTree
->pParent
){
2128 /* Root node of the tree. */
2129 int nStart
= fts3TreeFinishNode(pTree
, iHeight
, iLeaf
);
2131 *pnRoot
= pTree
->nData
- nStart
;
2132 *paRoot
= &pTree
->aData
[nStart
];
2135 sqlite3_int64 iNextFree
= iFree
;
2136 sqlite3_int64 iNextLeaf
= iLeaf
;
2137 for(pIter
=pTree
->pLeftmost
; pIter
&& rc
==SQLITE_OK
; pIter
=pIter
->pRight
){
2138 int nStart
= fts3TreeFinishNode(pIter
, iHeight
, iNextLeaf
);
2139 int nWrite
= pIter
->nData
- nStart
;
2141 rc
= fts3WriteSegment(p
, iNextFree
, &pIter
->aData
[nStart
], nWrite
);
2143 iNextLeaf
+= (pIter
->nEntry
+1);
2145 if( rc
==SQLITE_OK
){
2146 assert( iNextLeaf
==iFree
);
2148 p
, pTree
->pParent
, iHeight
+1, iFree
, iNextFree
, piLast
, paRoot
, pnRoot
2157 ** Free all memory allocations associated with the tree pTree.
2159 static void fts3NodeFree(SegmentNode
*pTree
){
2161 SegmentNode
*p
= pTree
->pLeftmost
;
2162 fts3NodeFree(p
->pParent
);
2164 SegmentNode
*pRight
= p
->pRight
;
2165 if( p
->aData
!=(char *)&p
[1] ){
2166 sqlite3_free(p
->aData
);
2168 assert( pRight
==0 || p
->zMalloc
==0 );
2169 sqlite3_free(p
->zMalloc
);
2177 ** Add a term to the segment being constructed by the SegmentWriter object
2178 ** *ppWriter. When adding the first term to a segment, *ppWriter should
2179 ** be passed NULL. This function will allocate a new SegmentWriter object
2180 ** and return it via the input/output variable *ppWriter in this case.
2182 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
2184 static int fts3SegWriterAdd(
2185 Fts3Table
*p
, /* Virtual table handle */
2186 SegmentWriter
**ppWriter
, /* IN/OUT: SegmentWriter handle */
2187 int isCopyTerm
, /* True if buffer zTerm must be copied */
2188 const char *zTerm
, /* Pointer to buffer containing term */
2189 int nTerm
, /* Size of term in bytes */
2190 const char *aDoclist
, /* Pointer to buffer containing doclist */
2191 int nDoclist
/* Size of doclist in bytes */
2193 int nPrefix
; /* Size of term prefix in bytes */
2194 int nSuffix
; /* Size of term suffix in bytes */
2195 int nReq
; /* Number of bytes required on leaf page */
2197 SegmentWriter
*pWriter
= *ppWriter
;
2201 sqlite3_stmt
*pStmt
;
2203 /* Allocate the SegmentWriter structure */
2204 pWriter
= (SegmentWriter
*)sqlite3_malloc(sizeof(SegmentWriter
));
2205 if( !pWriter
) return SQLITE_NOMEM
;
2206 memset(pWriter
, 0, sizeof(SegmentWriter
));
2207 *ppWriter
= pWriter
;
2209 /* Allocate a buffer in which to accumulate data */
2210 pWriter
->aData
= (char *)sqlite3_malloc(p
->nNodeSize
);
2211 if( !pWriter
->aData
) return SQLITE_NOMEM
;
2212 pWriter
->nSize
= p
->nNodeSize
;
2214 /* Find the next free blockid in the %_segments table */
2215 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENTS_ID
, &pStmt
, 0);
2216 if( rc
!=SQLITE_OK
) return rc
;
2217 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2218 pWriter
->iFree
= sqlite3_column_int64(pStmt
, 0);
2219 pWriter
->iFirst
= pWriter
->iFree
;
2221 rc
= sqlite3_reset(pStmt
);
2222 if( rc
!=SQLITE_OK
) return rc
;
2224 nData
= pWriter
->nData
;
2226 nPrefix
= fts3PrefixCompress(pWriter
->zTerm
, pWriter
->nTerm
, zTerm
, nTerm
);
2227 nSuffix
= nTerm
-nPrefix
;
2229 /* Figure out how many bytes are required by this new entry */
2230 nReq
= sqlite3Fts3VarintLen(nPrefix
) + /* varint containing prefix size */
2231 sqlite3Fts3VarintLen(nSuffix
) + /* varint containing suffix size */
2232 nSuffix
+ /* Term suffix */
2233 sqlite3Fts3VarintLen(nDoclist
) + /* Size of doclist */
2234 nDoclist
; /* Doclist data */
2236 if( nData
>0 && nData
+nReq
>p
->nNodeSize
){
2239 /* The current leaf node is full. Write it out to the database. */
2240 rc
= fts3WriteSegment(p
, pWriter
->iFree
++, pWriter
->aData
, nData
);
2241 if( rc
!=SQLITE_OK
) return rc
;
2244 /* Add the current term to the interior node tree. The term added to
2245 ** the interior tree must:
2247 ** a) be greater than the largest term on the leaf node just written
2248 ** to the database (still available in pWriter->zTerm), and
2250 ** b) be less than or equal to the term about to be added to the new
2251 ** leaf node (zTerm/nTerm).
2253 ** In other words, it must be the prefix of zTerm 1 byte longer than
2254 ** the common prefix (if any) of zTerm and pWriter->zTerm.
2256 assert( nPrefix
<nTerm
);
2257 rc
= fts3NodeAddTerm(p
, &pWriter
->pTree
, isCopyTerm
, zTerm
, nPrefix
+1);
2258 if( rc
!=SQLITE_OK
) return rc
;
2265 nReq
= 1 + /* varint containing prefix size */
2266 sqlite3Fts3VarintLen(nTerm
) + /* varint containing suffix size */
2267 nTerm
+ /* Term suffix */
2268 sqlite3Fts3VarintLen(nDoclist
) + /* Size of doclist */
2269 nDoclist
; /* Doclist data */
2272 /* Increase the total number of bytes written to account for the new entry. */
2273 pWriter
->nLeafData
+= nReq
;
2275 /* If the buffer currently allocated is too small for this entry, realloc
2276 ** the buffer to make it large enough.
2278 if( nReq
>pWriter
->nSize
){
2279 char *aNew
= sqlite3_realloc(pWriter
->aData
, nReq
);
2280 if( !aNew
) return SQLITE_NOMEM
;
2281 pWriter
->aData
= aNew
;
2282 pWriter
->nSize
= nReq
;
2284 assert( nData
+nReq
<=pWriter
->nSize
);
2286 /* Append the prefix-compressed term and doclist to the buffer. */
2287 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nPrefix
);
2288 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nSuffix
);
2289 memcpy(&pWriter
->aData
[nData
], &zTerm
[nPrefix
], nSuffix
);
2291 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nDoclist
);
2292 memcpy(&pWriter
->aData
[nData
], aDoclist
, nDoclist
);
2293 pWriter
->nData
= nData
+ nDoclist
;
2295 /* Save the current term so that it can be used to prefix-compress the next.
2296 ** If the isCopyTerm parameter is true, then the buffer pointed to by
2297 ** zTerm is transient, so take a copy of the term data. Otherwise, just
2298 ** store a copy of the pointer.
2301 if( nTerm
>pWriter
->nMalloc
){
2302 char *zNew
= sqlite3_realloc(pWriter
->zMalloc
, nTerm
*2);
2304 return SQLITE_NOMEM
;
2306 pWriter
->nMalloc
= nTerm
*2;
2307 pWriter
->zMalloc
= zNew
;
2308 pWriter
->zTerm
= zNew
;
2310 assert( pWriter
->zTerm
==pWriter
->zMalloc
);
2311 memcpy(pWriter
->zTerm
, zTerm
, nTerm
);
2313 pWriter
->zTerm
= (char *)zTerm
;
2315 pWriter
->nTerm
= nTerm
;
2321 ** Flush all data associated with the SegmentWriter object pWriter to the
2322 ** database. This function must be called after all terms have been added
2323 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
2324 ** returned. Otherwise, an SQLite error code.
2326 static int fts3SegWriterFlush(
2327 Fts3Table
*p
, /* Virtual table handle */
2328 SegmentWriter
*pWriter
, /* SegmentWriter to flush to the db */
2329 sqlite3_int64 iLevel
, /* Value for 'level' column of %_segdir */
2330 int iIdx
/* Value for 'idx' column of %_segdir */
2332 int rc
; /* Return code */
2333 if( pWriter
->pTree
){
2334 sqlite3_int64 iLast
= 0; /* Largest block id written to database */
2335 sqlite3_int64 iLastLeaf
; /* Largest leaf block id written to db */
2336 char *zRoot
= NULL
; /* Pointer to buffer containing root node */
2337 int nRoot
= 0; /* Size of buffer zRoot */
2339 iLastLeaf
= pWriter
->iFree
;
2340 rc
= fts3WriteSegment(p
, pWriter
->iFree
++, pWriter
->aData
, pWriter
->nData
);
2341 if( rc
==SQLITE_OK
){
2342 rc
= fts3NodeWrite(p
, pWriter
->pTree
, 1,
2343 pWriter
->iFirst
, pWriter
->iFree
, &iLast
, &zRoot
, &nRoot
);
2345 if( rc
==SQLITE_OK
){
2346 rc
= fts3WriteSegdir(p
, iLevel
, iIdx
,
2347 pWriter
->iFirst
, iLastLeaf
, iLast
, pWriter
->nLeafData
, zRoot
, nRoot
);
2350 /* The entire tree fits on the root node. Write it to the segdir table. */
2351 rc
= fts3WriteSegdir(p
, iLevel
, iIdx
,
2352 0, 0, 0, pWriter
->nLeafData
, pWriter
->aData
, pWriter
->nData
);
2359 ** Release all memory held by the SegmentWriter object passed as the
2362 static void fts3SegWriterFree(SegmentWriter
*pWriter
){
2364 sqlite3_free(pWriter
->aData
);
2365 sqlite3_free(pWriter
->zMalloc
);
2366 fts3NodeFree(pWriter
->pTree
);
2367 sqlite3_free(pWriter
);
2372 ** The first value in the apVal[] array is assumed to contain an integer.
2373 ** This function tests if there exist any documents with docid values that
2374 ** are different from that integer. i.e. if deleting the document with docid
2375 ** pRowid would mean the FTS3 table were empty.
2377 ** If successful, *pisEmpty is set to true if the table is empty except for
2378 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
2379 ** error occurs, an SQLite error code is returned.
2381 static int fts3IsEmpty(Fts3Table
*p
, sqlite3_value
*pRowid
, int *pisEmpty
){
2382 sqlite3_stmt
*pStmt
;
2384 if( p
->zContentTbl
){
2385 /* If using the content=xxx option, assume the table is never empty */
2389 rc
= fts3SqlStmt(p
, SQL_IS_EMPTY
, &pStmt
, &pRowid
);
2390 if( rc
==SQLITE_OK
){
2391 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2392 *pisEmpty
= sqlite3_column_int(pStmt
, 0);
2394 rc
= sqlite3_reset(pStmt
);
2401 ** Set *pnMax to the largest segment level in the database for the index
2404 ** Segment levels are stored in the 'level' column of the %_segdir table.
2406 ** Return SQLITE_OK if successful, or an SQLite error code if not.
2408 static int fts3SegmentMaxLevel(
2412 sqlite3_int64
*pnMax
2414 sqlite3_stmt
*pStmt
;
2416 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
2418 /* Set pStmt to the compiled version of:
2420 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2422 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2424 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR_MAX_LEVEL
, &pStmt
, 0);
2425 if( rc
!=SQLITE_OK
) return rc
;
2426 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
2427 sqlite3_bind_int64(pStmt
, 2,
2428 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
2430 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2431 *pnMax
= sqlite3_column_int64(pStmt
, 0);
2433 return sqlite3_reset(pStmt
);
2437 ** iAbsLevel is an absolute level that may be assumed to exist within
2438 ** the database. This function checks if it is the largest level number
2439 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
2440 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
2441 ** is returned. If an error occurs, an error code is returned and the
2442 ** final value of *pbMax is undefined.
2444 static int fts3SegmentIsMaxLevel(Fts3Table
*p
, i64 iAbsLevel
, int *pbMax
){
2446 /* Set pStmt to the compiled version of:
2448 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2450 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2452 sqlite3_stmt
*pStmt
;
2453 int rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR_MAX_LEVEL
, &pStmt
, 0);
2454 if( rc
!=SQLITE_OK
) return rc
;
2455 sqlite3_bind_int64(pStmt
, 1, iAbsLevel
+1);
2456 sqlite3_bind_int64(pStmt
, 2,
2457 ((iAbsLevel
/FTS3_SEGDIR_MAXLEVEL
)+1) * FTS3_SEGDIR_MAXLEVEL
2461 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2462 *pbMax
= sqlite3_column_type(pStmt
, 0)==SQLITE_NULL
;
2464 return sqlite3_reset(pStmt
);
2468 ** Delete all entries in the %_segments table associated with the segment
2469 ** opened with seg-reader pSeg. This function does not affect the contents
2470 ** of the %_segdir table.
2472 static int fts3DeleteSegment(
2473 Fts3Table
*p
, /* FTS table handle */
2474 Fts3SegReader
*pSeg
/* Segment to delete */
2476 int rc
= SQLITE_OK
; /* Return code */
2477 if( pSeg
->iStartBlock
){
2478 sqlite3_stmt
*pDelete
; /* SQL statement to delete rows */
2479 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGMENTS_RANGE
, &pDelete
, 0);
2480 if( rc
==SQLITE_OK
){
2481 sqlite3_bind_int64(pDelete
, 1, pSeg
->iStartBlock
);
2482 sqlite3_bind_int64(pDelete
, 2, pSeg
->iEndBlock
);
2483 sqlite3_step(pDelete
);
2484 rc
= sqlite3_reset(pDelete
);
2491 ** This function is used after merging multiple segments into a single large
2492 ** segment to delete the old, now redundant, segment b-trees. Specifically,
2495 ** 1) Deletes all %_segments entries for the segments associated with
2496 ** each of the SegReader objects in the array passed as the third
2499 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
2500 ** entries regardless of level if (iLevel<0).
2502 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
2504 static int fts3DeleteSegdir(
2505 Fts3Table
*p
, /* Virtual table handle */
2506 int iLangid
, /* Language id */
2507 int iIndex
, /* Index for p->aIndex */
2508 int iLevel
, /* Level of %_segdir entries to delete */
2509 Fts3SegReader
**apSegment
, /* Array of SegReader objects */
2510 int nReader
/* Size of array apSegment */
2512 int rc
= SQLITE_OK
; /* Return Code */
2513 int i
; /* Iterator variable */
2514 sqlite3_stmt
*pDelete
= 0; /* SQL statement to delete rows */
2516 for(i
=0; rc
==SQLITE_OK
&& i
<nReader
; i
++){
2517 rc
= fts3DeleteSegment(p
, apSegment
[i
]);
2519 if( rc
!=SQLITE_OK
){
2523 assert( iLevel
>=0 || iLevel
==FTS3_SEGCURSOR_ALL
);
2524 if( iLevel
==FTS3_SEGCURSOR_ALL
){
2525 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_RANGE
, &pDelete
, 0);
2526 if( rc
==SQLITE_OK
){
2527 sqlite3_bind_int64(pDelete
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
2528 sqlite3_bind_int64(pDelete
, 2,
2529 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
2533 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_LEVEL
, &pDelete
, 0);
2534 if( rc
==SQLITE_OK
){
2536 pDelete
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
)
2541 if( rc
==SQLITE_OK
){
2542 sqlite3_step(pDelete
);
2543 rc
= sqlite3_reset(pDelete
);
2550 ** When this function is called, buffer *ppList (size *pnList bytes) contains
2551 ** a position list that may (or may not) feature multiple columns. This
2552 ** function adjusts the pointer *ppList and the length *pnList so that they
2553 ** identify the subset of the position list that corresponds to column iCol.
2555 ** If there are no entries in the input position list for column iCol, then
2556 ** *pnList is set to zero before returning.
2558 ** If parameter bZero is non-zero, then any part of the input list following
2559 ** the end of the output list is zeroed before returning.
2561 static void fts3ColumnFilter(
2562 int iCol
, /* Column to filter on */
2563 int bZero
, /* Zero out anything following *ppList */
2564 char **ppList
, /* IN/OUT: Pointer to position list */
2565 int *pnList
/* IN/OUT: Size of buffer *ppList in bytes */
2567 char *pList
= *ppList
;
2568 int nList
= *pnList
;
2569 char *pEnd
= &pList
[nList
];
2576 while( p
<pEnd
&& (c
| *p
)&0xFE ) c
= *p
++ & 0x80;
2578 if( iCol
==iCurrent
){
2579 nList
= (int)(p
- pList
);
2583 nList
-= (int)(p
- pList
);
2589 p
+= fts3GetVarint32(p
, &iCurrent
);
2592 if( bZero
&& &pList
[nList
]!=pEnd
){
2593 memset(&pList
[nList
], 0, pEnd
- &pList
[nList
]);
2600 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
2601 ** existing data). Grow the buffer if required.
2603 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
2604 ** trying to resize the buffer, return SQLITE_NOMEM.
2606 static int fts3MsrBufferData(
2607 Fts3MultiSegReader
*pMsr
, /* Multi-segment-reader handle */
2611 if( nList
>pMsr
->nBuffer
){
2613 pMsr
->nBuffer
= nList
*2;
2614 pNew
= (char *)sqlite3_realloc(pMsr
->aBuffer
, pMsr
->nBuffer
);
2615 if( !pNew
) return SQLITE_NOMEM
;
2616 pMsr
->aBuffer
= pNew
;
2619 memcpy(pMsr
->aBuffer
, pList
, nList
);
2623 int sqlite3Fts3MsrIncrNext(
2624 Fts3Table
*p
, /* Virtual table handle */
2625 Fts3MultiSegReader
*pMsr
, /* Multi-segment-reader handle */
2626 sqlite3_int64
*piDocid
, /* OUT: Docid value */
2627 char **paPoslist
, /* OUT: Pointer to position list */
2628 int *pnPoslist
/* OUT: Size of position list in bytes */
2630 int nMerge
= pMsr
->nAdvance
;
2631 Fts3SegReader
**apSegment
= pMsr
->apSegment
;
2632 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2633 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2642 Fts3SegReader
*pSeg
;
2643 pSeg
= pMsr
->apSegment
[0];
2645 if( pSeg
->pOffsetList
==0 ){
2653 sqlite3_int64 iDocid
= apSegment
[0]->iDocid
;
2655 rc
= fts3SegReaderNextDocid(p
, apSegment
[0], &pList
, &nList
);
2657 while( rc
==SQLITE_OK
2659 && apSegment
[j
]->pOffsetList
2660 && apSegment
[j
]->iDocid
==iDocid
2662 rc
= fts3SegReaderNextDocid(p
, apSegment
[j
], 0, 0);
2665 if( rc
!=SQLITE_OK
) return rc
;
2666 fts3SegReaderSort(pMsr
->apSegment
, nMerge
, j
, xCmp
);
2668 if( nList
>0 && fts3SegReaderIsPending(apSegment
[0]) ){
2669 rc
= fts3MsrBufferData(pMsr
, pList
, nList
+1);
2670 if( rc
!=SQLITE_OK
) return rc
;
2671 assert( (pMsr
->aBuffer
[nList
] & 0xFE)==0x00 );
2672 pList
= pMsr
->aBuffer
;
2675 if( pMsr
->iColFilter
>=0 ){
2676 fts3ColumnFilter(pMsr
->iColFilter
, 1, &pList
, &nList
);
2691 static int fts3SegReaderStart(
2692 Fts3Table
*p
, /* Virtual table handle */
2693 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2694 const char *zTerm
, /* Term searched for (or NULL) */
2695 int nTerm
/* Length of zTerm in bytes */
2698 int nSeg
= pCsr
->nSegment
;
2700 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
2701 ** for, then advance each segment iterator until it points to a term of
2702 ** equal or greater value than the specified term. This prevents many
2703 ** unnecessary merge/sort operations for the case where single segment
2704 ** b-tree leaf nodes contain more than one term.
2706 for(i
=0; pCsr
->bRestart
==0 && i
<pCsr
->nSegment
; i
++){
2708 Fts3SegReader
*pSeg
= pCsr
->apSegment
[i
];
2710 int rc
= fts3SegReaderNext(p
, pSeg
, 0);
2711 if( rc
!=SQLITE_OK
) return rc
;
2712 }while( zTerm
&& (res
= fts3SegReaderTermCmp(pSeg
, zTerm
, nTerm
))<0 );
2714 if( pSeg
->bLookup
&& res
!=0 ){
2715 fts3SegReaderSetEof(pSeg
);
2718 fts3SegReaderSort(pCsr
->apSegment
, nSeg
, nSeg
, fts3SegReaderCmp
);
2723 int sqlite3Fts3SegReaderStart(
2724 Fts3Table
*p
, /* Virtual table handle */
2725 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2726 Fts3SegFilter
*pFilter
/* Restrictions on range of iteration */
2728 pCsr
->pFilter
= pFilter
;
2729 return fts3SegReaderStart(p
, pCsr
, pFilter
->zTerm
, pFilter
->nTerm
);
2732 int sqlite3Fts3MsrIncrStart(
2733 Fts3Table
*p
, /* Virtual table handle */
2734 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2735 int iCol
, /* Column to match on. */
2736 const char *zTerm
, /* Term to iterate through a doclist for */
2737 int nTerm
/* Number of bytes in zTerm */
2741 int nSegment
= pCsr
->nSegment
;
2742 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2743 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2746 assert( pCsr
->pFilter
==0 );
2747 assert( zTerm
&& nTerm
>0 );
2749 /* Advance each segment iterator until it points to the term zTerm/nTerm. */
2750 rc
= fts3SegReaderStart(p
, pCsr
, zTerm
, nTerm
);
2751 if( rc
!=SQLITE_OK
) return rc
;
2753 /* Determine how many of the segments actually point to zTerm/nTerm. */
2754 for(i
=0; i
<nSegment
; i
++){
2755 Fts3SegReader
*pSeg
= pCsr
->apSegment
[i
];
2756 if( !pSeg
->aNode
|| fts3SegReaderTermCmp(pSeg
, zTerm
, nTerm
) ){
2762 /* Advance each of the segments to point to the first docid. */
2763 for(i
=0; i
<pCsr
->nAdvance
; i
++){
2764 rc
= fts3SegReaderFirstDocid(p
, pCsr
->apSegment
[i
]);
2765 if( rc
!=SQLITE_OK
) return rc
;
2767 fts3SegReaderSort(pCsr
->apSegment
, i
, i
, xCmp
);
2769 assert( iCol
<0 || iCol
<p
->nColumn
);
2770 pCsr
->iColFilter
= iCol
;
2776 ** This function is called on a MultiSegReader that has been started using
2777 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
2778 ** have been made. Calling this function puts the MultiSegReader in such
2779 ** a state that if the next two calls are:
2781 ** sqlite3Fts3SegReaderStart()
2782 ** sqlite3Fts3SegReaderStep()
2784 ** then the entire doclist for the term is available in
2785 ** MultiSegReader.aDoclist/nDoclist.
2787 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader
*pCsr
){
2788 int i
; /* Used to iterate through segment-readers */
2790 assert( pCsr
->zTerm
==0 );
2791 assert( pCsr
->nTerm
==0 );
2792 assert( pCsr
->aDoclist
==0 );
2793 assert( pCsr
->nDoclist
==0 );
2797 for(i
=0; i
<pCsr
->nSegment
; i
++){
2798 pCsr
->apSegment
[i
]->pOffsetList
= 0;
2799 pCsr
->apSegment
[i
]->nOffsetList
= 0;
2800 pCsr
->apSegment
[i
]->iDocid
= 0;
2807 int sqlite3Fts3SegReaderStep(
2808 Fts3Table
*p
, /* Virtual table handle */
2809 Fts3MultiSegReader
*pCsr
/* Cursor object */
2813 int isIgnoreEmpty
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_IGNORE_EMPTY
);
2814 int isRequirePos
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_REQUIRE_POS
);
2815 int isColFilter
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_COLUMN_FILTER
);
2816 int isPrefix
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_PREFIX
);
2817 int isScan
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_SCAN
);
2818 int isFirst
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_FIRST
);
2820 Fts3SegReader
**apSegment
= pCsr
->apSegment
;
2821 int nSegment
= pCsr
->nSegment
;
2822 Fts3SegFilter
*pFilter
= pCsr
->pFilter
;
2823 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2824 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2827 if( pCsr
->nSegment
==0 ) return SQLITE_OK
;
2833 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
2834 ** forward. Then sort the list in order of current term again.
2836 for(i
=0; i
<pCsr
->nAdvance
; i
++){
2837 Fts3SegReader
*pSeg
= apSegment
[i
];
2838 if( pSeg
->bLookup
){
2839 fts3SegReaderSetEof(pSeg
);
2841 rc
= fts3SegReaderNext(p
, pSeg
, 0);
2843 if( rc
!=SQLITE_OK
) return rc
;
2845 fts3SegReaderSort(apSegment
, nSegment
, pCsr
->nAdvance
, fts3SegReaderCmp
);
2848 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
2849 assert( rc
==SQLITE_OK
);
2850 if( apSegment
[0]->aNode
==0 ) break;
2852 pCsr
->nTerm
= apSegment
[0]->nTerm
;
2853 pCsr
->zTerm
= apSegment
[0]->zTerm
;
2855 /* If this is a prefix-search, and if the term that apSegment[0] points
2856 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
2857 ** required callbacks have been made. In this case exit early.
2859 ** Similarly, if this is a search for an exact match, and the first term
2860 ** of segment apSegment[0] is not a match, exit early.
2862 if( pFilter
->zTerm
&& !isScan
){
2863 if( pCsr
->nTerm
<pFilter
->nTerm
2864 || (!isPrefix
&& pCsr
->nTerm
>pFilter
->nTerm
)
2865 || memcmp(pCsr
->zTerm
, pFilter
->zTerm
, pFilter
->nTerm
)
2872 while( nMerge
<nSegment
2873 && apSegment
[nMerge
]->aNode
2874 && apSegment
[nMerge
]->nTerm
==pCsr
->nTerm
2875 && 0==memcmp(pCsr
->zTerm
, apSegment
[nMerge
]->zTerm
, pCsr
->nTerm
)
2880 assert( isIgnoreEmpty
|| (isRequirePos
&& !isColFilter
) );
2884 && (p
->bDescIdx
==0 || fts3SegReaderIsPending(apSegment
[0])==0)
2886 pCsr
->nDoclist
= apSegment
[0]->nDoclist
;
2887 if( fts3SegReaderIsPending(apSegment
[0]) ){
2888 rc
= fts3MsrBufferData(pCsr
, apSegment
[0]->aDoclist
, pCsr
->nDoclist
);
2889 pCsr
->aDoclist
= pCsr
->aBuffer
;
2891 pCsr
->aDoclist
= apSegment
[0]->aDoclist
;
2893 if( rc
==SQLITE_OK
) rc
= SQLITE_ROW
;
2895 int nDoclist
= 0; /* Size of doclist */
2896 sqlite3_int64 iPrev
= 0; /* Previous docid stored in doclist */
2898 /* The current term of the first nMerge entries in the array
2899 ** of Fts3SegReader objects is the same. The doclists must be merged
2900 ** and a single term returned with the merged doclist.
2902 for(i
=0; i
<nMerge
; i
++){
2903 fts3SegReaderFirstDocid(p
, apSegment
[i
]);
2905 fts3SegReaderSort(apSegment
, nMerge
, nMerge
, xCmp
);
2906 while( apSegment
[0]->pOffsetList
){
2907 int j
; /* Number of segments that share a docid */
2911 sqlite3_int64 iDocid
= apSegment
[0]->iDocid
;
2912 fts3SegReaderNextDocid(p
, apSegment
[0], &pList
, &nList
);
2915 && apSegment
[j
]->pOffsetList
2916 && apSegment
[j
]->iDocid
==iDocid
2918 fts3SegReaderNextDocid(p
, apSegment
[j
], 0, 0);
2923 fts3ColumnFilter(pFilter
->iCol
, 0, &pList
, &nList
);
2926 if( !isIgnoreEmpty
|| nList
>0 ){
2928 /* Calculate the 'docid' delta value to write into the merged
2930 sqlite3_int64 iDelta
;
2931 if( p
->bDescIdx
&& nDoclist
>0 ){
2932 iDelta
= iPrev
- iDocid
;
2934 iDelta
= iDocid
- iPrev
;
2936 assert( iDelta
>0 || (nDoclist
==0 && iDelta
==iDocid
) );
2937 assert( nDoclist
>0 || iDelta
==iDocid
);
2939 nByte
= sqlite3Fts3VarintLen(iDelta
) + (isRequirePos
?nList
+1:0);
2940 if( nDoclist
+nByte
>pCsr
->nBuffer
){
2942 pCsr
->nBuffer
= (nDoclist
+nByte
)*2;
2943 aNew
= sqlite3_realloc(pCsr
->aBuffer
, pCsr
->nBuffer
);
2945 return SQLITE_NOMEM
;
2947 pCsr
->aBuffer
= aNew
;
2951 char *a
= &pCsr
->aBuffer
[nDoclist
];
2954 nWrite
= sqlite3Fts3FirstFilter(iDelta
, pList
, nList
, a
);
2960 nDoclist
+= sqlite3Fts3PutVarint(&pCsr
->aBuffer
[nDoclist
], iDelta
);
2963 memcpy(&pCsr
->aBuffer
[nDoclist
], pList
, nList
);
2965 pCsr
->aBuffer
[nDoclist
++] = '\0';
2970 fts3SegReaderSort(apSegment
, nMerge
, j
, xCmp
);
2973 pCsr
->aDoclist
= pCsr
->aBuffer
;
2974 pCsr
->nDoclist
= nDoclist
;
2978 pCsr
->nAdvance
= nMerge
;
2979 }while( rc
==SQLITE_OK
);
2985 void sqlite3Fts3SegReaderFinish(
2986 Fts3MultiSegReader
*pCsr
/* Cursor object */
2990 for(i
=0; i
<pCsr
->nSegment
; i
++){
2991 sqlite3Fts3SegReaderFree(pCsr
->apSegment
[i
]);
2993 sqlite3_free(pCsr
->apSegment
);
2994 sqlite3_free(pCsr
->aBuffer
);
2997 pCsr
->apSegment
= 0;
3003 ** Decode the "end_block" field, selected by column iCol of the SELECT
3004 ** statement passed as the first argument.
3006 ** The "end_block" field may contain either an integer, or a text field
3007 ** containing the text representation of two non-negative integers separated
3008 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
3009 ** to the integer value and *pnByte to zero before returning. In the second,
3010 ** set *piEndBlock to the first value and *pnByte to the second.
3012 static void fts3ReadEndBlockField(
3013 sqlite3_stmt
*pStmt
,
3018 const unsigned char *zText
= sqlite3_column_text(pStmt
, iCol
);
3023 for(i
=0; zText
[i
]>='0' && zText
[i
]<='9'; i
++){
3024 iVal
= iVal
*10 + (zText
[i
] - '0');
3027 while( zText
[i
]==' ' ) i
++;
3029 if( zText
[i
]=='-' ){
3033 for(/* no-op */; zText
[i
]>='0' && zText
[i
]<='9'; i
++){
3034 iVal
= iVal
*10 + (zText
[i
] - '0');
3036 *pnByte
= (iVal
* (i64
)iMul
);
3042 ** A segment of size nByte bytes has just been written to absolute level
3043 ** iAbsLevel. Promote any segments that should be promoted as a result.
3045 static int fts3PromoteSegments(
3046 Fts3Table
*p
, /* FTS table handle */
3047 sqlite3_int64 iAbsLevel
, /* Absolute level just updated */
3048 sqlite3_int64 nByte
/* Size of new segment at iAbsLevel */
3051 sqlite3_stmt
*pRange
;
3053 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL_RANGE2
, &pRange
, 0);
3055 if( rc
==SQLITE_OK
){
3057 i64 iLast
= (iAbsLevel
/FTS3_SEGDIR_MAXLEVEL
+ 1) * FTS3_SEGDIR_MAXLEVEL
- 1;
3058 i64 nLimit
= (nByte
*3)/2;
3060 /* Loop through all entries in the %_segdir table corresponding to
3061 ** segments in this index on levels greater than iAbsLevel. If there is
3062 ** at least one such segment, and it is possible to determine that all
3063 ** such segments are smaller than nLimit bytes in size, they will be
3064 ** promoted to level iAbsLevel. */
3065 sqlite3_bind_int64(pRange
, 1, iAbsLevel
+1);
3066 sqlite3_bind_int64(pRange
, 2, iLast
);
3067 while( SQLITE_ROW
==sqlite3_step(pRange
) ){
3068 i64 nSize
= 0, dummy
;
3069 fts3ReadEndBlockField(pRange
, 2, &dummy
, &nSize
);
3070 if( nSize
<=0 || nSize
>nLimit
){
3071 /* If nSize==0, then the %_segdir.end_block field does not not
3072 ** contain a size value. This happens if it was written by an
3073 ** old version of FTS. In this case it is not possible to determine
3074 ** the size of the segment, and so segment promotion does not
3081 rc
= sqlite3_reset(pRange
);
3085 sqlite3_stmt
*pUpdate1
;
3086 sqlite3_stmt
*pUpdate2
;
3088 if( rc
==SQLITE_OK
){
3089 rc
= fts3SqlStmt(p
, SQL_UPDATE_LEVEL_IDX
, &pUpdate1
, 0);
3091 if( rc
==SQLITE_OK
){
3092 rc
= fts3SqlStmt(p
, SQL_UPDATE_LEVEL
, &pUpdate2
, 0);
3095 if( rc
==SQLITE_OK
){
3097 /* Loop through all %_segdir entries for segments in this index with
3098 ** levels equal to or greater than iAbsLevel. As each entry is visited,
3099 ** updated it to set (level = -1) and (idx = N), where N is 0 for the
3100 ** oldest segment in the range, 1 for the next oldest, and so on.
3102 ** In other words, move all segments being promoted to level -1,
3103 ** setting the "idx" fields as appropriate to keep them in the same
3104 ** order. The contents of level -1 (which is never used, except
3105 ** transiently here), will be moved back to level iAbsLevel below. */
3106 sqlite3_bind_int64(pRange
, 1, iAbsLevel
);
3107 while( SQLITE_ROW
==sqlite3_step(pRange
) ){
3108 sqlite3_bind_int(pUpdate1
, 1, iIdx
++);
3109 sqlite3_bind_int(pUpdate1
, 2, sqlite3_column_int(pRange
, 0));
3110 sqlite3_bind_int(pUpdate1
, 3, sqlite3_column_int(pRange
, 1));
3111 sqlite3_step(pUpdate1
);
3112 rc
= sqlite3_reset(pUpdate1
);
3113 if( rc
!=SQLITE_OK
){
3114 sqlite3_reset(pRange
);
3119 if( rc
==SQLITE_OK
){
3120 rc
= sqlite3_reset(pRange
);
3123 /* Move level -1 to level iAbsLevel */
3124 if( rc
==SQLITE_OK
){
3125 sqlite3_bind_int64(pUpdate2
, 1, iAbsLevel
);
3126 sqlite3_step(pUpdate2
);
3127 rc
= sqlite3_reset(pUpdate2
);
3137 ** Merge all level iLevel segments in the database into a single
3138 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
3139 ** single segment with a level equal to the numerically largest level
3140 ** currently present in the database.
3142 ** If this function is called with iLevel<0, but there is only one
3143 ** segment in the database, SQLITE_DONE is returned immediately.
3144 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
3145 ** an SQLite error code is returned.
3147 static int fts3SegmentMerge(
3149 int iLangid
, /* Language id to merge */
3150 int iIndex
, /* Index in p->aIndex[] to merge */
3151 int iLevel
/* Level to merge */
3153 int rc
; /* Return code */
3154 int iIdx
= 0; /* Index of new segment */
3155 sqlite3_int64 iNewLevel
= 0; /* Level/index to create new segment at */
3156 SegmentWriter
*pWriter
= 0; /* Used to write the new, merged, segment */
3157 Fts3SegFilter filter
; /* Segment term filter condition */
3158 Fts3MultiSegReader csr
; /* Cursor to iterate through level(s) */
3159 int bIgnoreEmpty
= 0; /* True to ignore empty segments */
3160 i64 iMaxLevel
= 0; /* Max level number for this index/langid */
3162 assert( iLevel
==FTS3_SEGCURSOR_ALL
3163 || iLevel
==FTS3_SEGCURSOR_PENDING
3166 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
3167 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
3169 rc
= sqlite3Fts3SegReaderCursor(p
, iLangid
, iIndex
, iLevel
, 0, 0, 1, 0, &csr
);
3170 if( rc
!=SQLITE_OK
|| csr
.nSegment
==0 ) goto finished
;
3172 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
3173 rc
= fts3SegmentMaxLevel(p
, iLangid
, iIndex
, &iMaxLevel
);
3174 if( rc
!=SQLITE_OK
) goto finished
;
3177 if( iLevel
==FTS3_SEGCURSOR_ALL
){
3178 /* This call is to merge all segments in the database to a single
3179 ** segment. The level of the new segment is equal to the numerically
3180 ** greatest segment level currently present in the database for this
3181 ** index. The idx of the new segment is always 0. */
3182 if( csr
.nSegment
==1 ){
3186 iNewLevel
= iMaxLevel
;
3190 /* This call is to merge all segments at level iLevel. find the next
3191 ** available segment index at level iLevel+1. The call to
3192 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
3193 ** a single iLevel+2 segment if necessary. */
3194 assert( FTS3_SEGCURSOR_PENDING
==-1 );
3195 iNewLevel
= getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
+1);
3196 rc
= fts3AllocateSegdirIdx(p
, iLangid
, iIndex
, iLevel
+1, &iIdx
);
3197 bIgnoreEmpty
= (iLevel
!=FTS3_SEGCURSOR_PENDING
) && (iNewLevel
>iMaxLevel
);
3199 if( rc
!=SQLITE_OK
) goto finished
;
3201 assert( csr
.nSegment
>0 );
3202 assert( iNewLevel
>=getAbsoluteLevel(p
, iLangid
, iIndex
, 0) );
3203 assert( iNewLevel
<getAbsoluteLevel(p
, iLangid
, iIndex
,FTS3_SEGDIR_MAXLEVEL
) );
3205 memset(&filter
, 0, sizeof(Fts3SegFilter
));
3206 filter
.flags
= FTS3_SEGMENT_REQUIRE_POS
;
3207 filter
.flags
|= (bIgnoreEmpty
? FTS3_SEGMENT_IGNORE_EMPTY
: 0);
3209 rc
= sqlite3Fts3SegReaderStart(p
, &csr
, &filter
);
3210 while( SQLITE_OK
==rc
){
3211 rc
= sqlite3Fts3SegReaderStep(p
, &csr
);
3212 if( rc
!=SQLITE_ROW
) break;
3213 rc
= fts3SegWriterAdd(p
, &pWriter
, 1,
3214 csr
.zTerm
, csr
.nTerm
, csr
.aDoclist
, csr
.nDoclist
);
3216 if( rc
!=SQLITE_OK
) goto finished
;
3217 assert( pWriter
|| bIgnoreEmpty
);
3219 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
3220 rc
= fts3DeleteSegdir(
3221 p
, iLangid
, iIndex
, iLevel
, csr
.apSegment
, csr
.nSegment
3223 if( rc
!=SQLITE_OK
) goto finished
;
3226 rc
= fts3SegWriterFlush(p
, pWriter
, iNewLevel
, iIdx
);
3227 if( rc
==SQLITE_OK
){
3228 if( iLevel
==FTS3_SEGCURSOR_PENDING
|| iNewLevel
<iMaxLevel
){
3229 rc
= fts3PromoteSegments(p
, iNewLevel
, pWriter
->nLeafData
);
3235 fts3SegWriterFree(pWriter
);
3236 sqlite3Fts3SegReaderFinish(&csr
);
3242 ** Flush the contents of pendingTerms to level 0 segments.
3244 int sqlite3Fts3PendingTermsFlush(Fts3Table
*p
){
3248 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
3249 rc
= fts3SegmentMerge(p
, p
->iPrevLangid
, i
, FTS3_SEGCURSOR_PENDING
);
3250 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
3252 sqlite3Fts3PendingTermsClear(p
);
3254 /* Determine the auto-incr-merge setting if unknown. If enabled,
3255 ** estimate the number of leaf blocks of content to be written
3257 if( rc
==SQLITE_OK
&& p
->bHasStat
3258 && p
->nAutoincrmerge
==0xff && p
->nLeafAdd
>0
3260 sqlite3_stmt
*pStmt
= 0;
3261 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pStmt
, 0);
3262 if( rc
==SQLITE_OK
){
3263 sqlite3_bind_int(pStmt
, 1, FTS_STAT_AUTOINCRMERGE
);
3264 rc
= sqlite3_step(pStmt
);
3265 if( rc
==SQLITE_ROW
){
3266 p
->nAutoincrmerge
= sqlite3_column_int(pStmt
, 0);
3267 if( p
->nAutoincrmerge
==1 ) p
->nAutoincrmerge
= 8;
3268 }else if( rc
==SQLITE_DONE
){
3269 p
->nAutoincrmerge
= 0;
3271 rc
= sqlite3_reset(pStmt
);
3278 ** Encode N integers as varints into a blob.
3280 static void fts3EncodeIntArray(
3281 int N
, /* The number of integers to encode */
3282 u32
*a
, /* The integer values */
3283 char *zBuf
, /* Write the BLOB here */
3284 int *pNBuf
/* Write number of bytes if zBuf[] used here */
3287 for(i
=j
=0; i
<N
; i
++){
3288 j
+= sqlite3Fts3PutVarint(&zBuf
[j
], (sqlite3_int64
)a
[i
]);
3294 ** Decode a blob of varints into N integers
3296 static void fts3DecodeIntArray(
3297 int N
, /* The number of integers to decode */
3298 u32
*a
, /* Write the integer values */
3299 const char *zBuf
, /* The BLOB containing the varints */
3300 int nBuf
/* size of the BLOB */
3303 UNUSED_PARAMETER(nBuf
);
3304 for(i
=j
=0; i
<N
; i
++){
3306 j
+= sqlite3Fts3GetVarint(&zBuf
[j
], &x
);
3308 a
[i
] = (u32
)(x
& 0xffffffff);
3313 ** Insert the sizes (in tokens) for each column of the document
3314 ** with docid equal to p->iPrevDocid. The sizes are encoded as
3315 ** a blob of varints.
3317 static void fts3InsertDocsize(
3318 int *pRC
, /* Result code */
3319 Fts3Table
*p
, /* Table into which to insert */
3320 u32
*aSz
/* Sizes of each column, in tokens */
3322 char *pBlob
; /* The BLOB encoding of the document size */
3323 int nBlob
; /* Number of bytes in the BLOB */
3324 sqlite3_stmt
*pStmt
; /* Statement used to insert the encoding */
3325 int rc
; /* Result code from subfunctions */
3328 pBlob
= sqlite3_malloc( 10*p
->nColumn
);
3330 *pRC
= SQLITE_NOMEM
;
3333 fts3EncodeIntArray(p
->nColumn
, aSz
, pBlob
, &nBlob
);
3334 rc
= fts3SqlStmt(p
, SQL_REPLACE_DOCSIZE
, &pStmt
, 0);
3336 sqlite3_free(pBlob
);
3340 sqlite3_bind_int64(pStmt
, 1, p
->iPrevDocid
);
3341 sqlite3_bind_blob(pStmt
, 2, pBlob
, nBlob
, sqlite3_free
);
3342 sqlite3_step(pStmt
);
3343 *pRC
= sqlite3_reset(pStmt
);
3347 ** Record 0 of the %_stat table contains a blob consisting of N varints,
3348 ** where N is the number of user defined columns in the fts3 table plus
3349 ** two. If nCol is the number of user defined columns, then values of the
3350 ** varints are set as follows:
3352 ** Varint 0: Total number of rows in the table.
3354 ** Varint 1..nCol: For each column, the total number of tokens stored in
3355 ** the column for all rows of the table.
3357 ** Varint 1+nCol: The total size, in bytes, of all text values in all
3358 ** columns of all rows of the table.
3361 static void fts3UpdateDocTotals(
3362 int *pRC
, /* The result code */
3363 Fts3Table
*p
, /* Table being updated */
3364 u32
*aSzIns
, /* Size increases */
3365 u32
*aSzDel
, /* Size decreases */
3366 int nChng
/* Change in the number of documents */
3368 char *pBlob
; /* Storage for BLOB written into %_stat */
3369 int nBlob
; /* Size of BLOB written into %_stat */
3370 u32
*a
; /* Array of integers that becomes the BLOB */
3371 sqlite3_stmt
*pStmt
; /* Statement for reading and writing */
3372 int i
; /* Loop counter */
3373 int rc
; /* Result code from subfunctions */
3375 const int nStat
= p
->nColumn
+2;
3378 a
= sqlite3_malloc( (sizeof(u32
)+10)*nStat
);
3380 *pRC
= SQLITE_NOMEM
;
3383 pBlob
= (char*)&a
[nStat
];
3384 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pStmt
, 0);
3390 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
3391 if( sqlite3_step(pStmt
)==SQLITE_ROW
){
3392 fts3DecodeIntArray(nStat
, a
,
3393 sqlite3_column_blob(pStmt
, 0),
3394 sqlite3_column_bytes(pStmt
, 0));
3396 memset(a
, 0, sizeof(u32
)*(nStat
) );
3398 rc
= sqlite3_reset(pStmt
);
3399 if( rc
!=SQLITE_OK
){
3404 if( nChng
<0 && a
[0]<(u32
)(-nChng
) ){
3409 for(i
=0; i
<p
->nColumn
+1; i
++){
3411 if( x
+aSzIns
[i
] < aSzDel
[i
] ){
3414 x
= x
+ aSzIns
[i
] - aSzDel
[i
];
3418 fts3EncodeIntArray(nStat
, a
, pBlob
, &nBlob
);
3419 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pStmt
, 0);
3425 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
3426 sqlite3_bind_blob(pStmt
, 2, pBlob
, nBlob
, SQLITE_STATIC
);
3427 sqlite3_step(pStmt
);
3428 *pRC
= sqlite3_reset(pStmt
);
3433 ** Merge the entire database so that there is one segment for each
3434 ** iIndex/iLangid combination.
3436 static int fts3DoOptimize(Fts3Table
*p
, int bReturnDone
){
3439 sqlite3_stmt
*pAllLangid
= 0;
3441 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
3442 if( rc
==SQLITE_OK
){
3444 sqlite3_bind_int(pAllLangid
, 1, p
->nIndex
);
3445 while( sqlite3_step(pAllLangid
)==SQLITE_ROW
){
3447 int iLangid
= sqlite3_column_int(pAllLangid
, 0);
3448 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
3449 rc
= fts3SegmentMerge(p
, iLangid
, i
, FTS3_SEGCURSOR_ALL
);
3450 if( rc
==SQLITE_DONE
){
3456 rc2
= sqlite3_reset(pAllLangid
);
3457 if( rc
==SQLITE_OK
) rc
= rc2
;
3460 sqlite3Fts3SegmentsClose(p
);
3461 sqlite3Fts3PendingTermsClear(p
);
3463 return (rc
==SQLITE_OK
&& bReturnDone
&& bSeenDone
) ? SQLITE_DONE
: rc
;
3467 ** This function is called when the user executes the following statement:
3469 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
3471 ** The entire FTS index is discarded and rebuilt. If the table is one
3472 ** created using the content=xxx option, then the new index is based on
3473 ** the current contents of the xxx table. Otherwise, it is rebuilt based
3474 ** on the contents of the %_content table.
3476 static int fts3DoRebuild(Fts3Table
*p
){
3477 int rc
; /* Return Code */
3479 rc
= fts3DeleteAll(p
, 0);
3480 if( rc
==SQLITE_OK
){
3484 sqlite3_stmt
*pStmt
= 0;
3487 /* Compose and prepare an SQL statement to loop through the content table */
3488 char *zSql
= sqlite3_mprintf("SELECT %s" , p
->zReadExprlist
);
3492 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, 0);
3496 if( rc
==SQLITE_OK
){
3497 int nByte
= sizeof(u32
) * (p
->nColumn
+1)*3;
3498 aSz
= (u32
*)sqlite3_malloc(nByte
);
3502 memset(aSz
, 0, nByte
);
3503 aSzIns
= &aSz
[p
->nColumn
+1];
3504 aSzDel
= &aSzIns
[p
->nColumn
+1];
3508 while( rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
3510 int iLangid
= langidFromSelect(p
, pStmt
);
3511 rc
= fts3PendingTermsDocid(p
, iLangid
, sqlite3_column_int64(pStmt
, 0));
3512 memset(aSz
, 0, sizeof(aSz
[0]) * (p
->nColumn
+1));
3513 for(iCol
=0; rc
==SQLITE_OK
&& iCol
<p
->nColumn
; iCol
++){
3514 if( p
->abNotindexed
[iCol
]==0 ){
3515 const char *z
= (const char *) sqlite3_column_text(pStmt
, iCol
+1);
3516 rc
= fts3PendingTermsAdd(p
, iLangid
, z
, iCol
, &aSz
[iCol
]);
3517 aSz
[p
->nColumn
] += sqlite3_column_bytes(pStmt
, iCol
+1);
3520 if( p
->bHasDocsize
){
3521 fts3InsertDocsize(&rc
, p
, aSz
);
3523 if( rc
!=SQLITE_OK
){
3524 sqlite3_finalize(pStmt
);
3528 for(iCol
=0; iCol
<=p
->nColumn
; iCol
++){
3529 aSzIns
[iCol
] += aSz
[iCol
];
3534 fts3UpdateDocTotals(&rc
, p
, aSzIns
, aSzDel
, nEntry
);
3539 int rc2
= sqlite3_finalize(pStmt
);
3540 if( rc
==SQLITE_OK
){
3551 ** This function opens a cursor used to read the input data for an
3552 ** incremental merge operation. Specifically, it opens a cursor to scan
3553 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
3556 static int fts3IncrmergeCsr(
3557 Fts3Table
*p
, /* FTS3 table handle */
3558 sqlite3_int64 iAbsLevel
, /* Absolute level to open */
3559 int nSeg
, /* Number of segments to merge */
3560 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
3562 int rc
; /* Return Code */
3563 sqlite3_stmt
*pStmt
= 0; /* Statement used to read %_segdir entry */
3564 int nByte
; /* Bytes allocated at pCsr->apSegment[] */
3566 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
3567 memset(pCsr
, 0, sizeof(*pCsr
));
3568 nByte
= sizeof(Fts3SegReader
*) * nSeg
;
3569 pCsr
->apSegment
= (Fts3SegReader
**)sqlite3_malloc(nByte
);
3571 if( pCsr
->apSegment
==0 ){
3574 memset(pCsr
->apSegment
, 0, nByte
);
3575 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL
, &pStmt
, 0);
3577 if( rc
==SQLITE_OK
){
3580 sqlite3_bind_int64(pStmt
, 1, iAbsLevel
);
3581 assert( pCsr
->nSegment
==0 );
3582 for(i
=0; rc
==SQLITE_OK
&& sqlite3_step(pStmt
)==SQLITE_ROW
&& i
<nSeg
; i
++){
3583 rc
= sqlite3Fts3SegReaderNew(i
, 0,
3584 sqlite3_column_int64(pStmt
, 1), /* segdir.start_block */
3585 sqlite3_column_int64(pStmt
, 2), /* segdir.leaves_end_block */
3586 sqlite3_column_int64(pStmt
, 3), /* segdir.end_block */
3587 sqlite3_column_blob(pStmt
, 4), /* segdir.root */
3588 sqlite3_column_bytes(pStmt
, 4), /* segdir.root */
3593 rc2
= sqlite3_reset(pStmt
);
3594 if( rc
==SQLITE_OK
) rc
= rc2
;
3600 typedef struct IncrmergeWriter IncrmergeWriter
;
3601 typedef struct NodeWriter NodeWriter
;
3602 typedef struct Blob Blob
;
3603 typedef struct NodeReader NodeReader
;
3606 ** An instance of the following structure is used as a dynamic buffer
3607 ** to build up nodes or other blobs of data in.
3609 ** The function blobGrowBuffer() is used to extend the allocation.
3612 char *a
; /* Pointer to allocation */
3613 int n
; /* Number of valid bytes of data in a[] */
3614 int nAlloc
; /* Allocated size of a[] (nAlloc>=n) */
3618 ** This structure is used to build up buffers containing segment b-tree
3622 sqlite3_int64 iBlock
; /* Current block id */
3623 Blob key
; /* Last key written to the current block */
3624 Blob block
; /* Current block image */
3628 ** An object of this type contains the state required to create or append
3629 ** to an appendable b-tree segment.
3631 struct IncrmergeWriter
{
3632 int nLeafEst
; /* Space allocated for leaf blocks */
3633 int nWork
; /* Number of leaf pages flushed */
3634 sqlite3_int64 iAbsLevel
; /* Absolute level of input segments */
3635 int iIdx
; /* Index of *output* segment in iAbsLevel+1 */
3636 sqlite3_int64 iStart
; /* Block number of first allocated block */
3637 sqlite3_int64 iEnd
; /* Block number of last allocated block */
3638 sqlite3_int64 nLeafData
; /* Bytes of leaf page data so far */
3639 u8 bNoLeafData
; /* If true, store 0 for segment size */
3640 NodeWriter aNodeWriter
[FTS_MAX_APPENDABLE_HEIGHT
];
3644 ** An object of the following type is used to read data from a single
3645 ** FTS segment node. See the following functions:
3649 ** nodeReaderRelease()
3654 int iOff
; /* Current offset within aNode[] */
3656 /* Output variables. Containing the current node entry. */
3657 sqlite3_int64 iChild
; /* Pointer to child node */
3658 Blob term
; /* Current term */
3659 const char *aDoclist
; /* Pointer to doclist */
3660 int nDoclist
; /* Size of doclist in bytes */
3664 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
3665 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
3666 ** bytes in size, extend (realloc) it to be so.
3668 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
3669 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
3670 ** to reflect the new size of the pBlob->a[] buffer.
3672 static void blobGrowBuffer(Blob
*pBlob
, int nMin
, int *pRc
){
3673 if( *pRc
==SQLITE_OK
&& nMin
>pBlob
->nAlloc
){
3675 char *a
= (char *)sqlite3_realloc(pBlob
->a
, nAlloc
);
3677 pBlob
->nAlloc
= nAlloc
;
3680 *pRc
= SQLITE_NOMEM
;
3686 ** Attempt to advance the node-reader object passed as the first argument to
3687 ** the next entry on the node.
3689 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
3690 ** Otherwise return SQLITE_OK. If there is no next entry on the node
3691 ** (e.g. because the current entry is the last) set NodeReader->aNode to
3692 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
3693 ** variables for the new entry.
3695 static int nodeReaderNext(NodeReader
*p
){
3696 int bFirst
= (p
->term
.n
==0); /* True for first term on the node */
3697 int nPrefix
= 0; /* Bytes to copy from previous term */
3698 int nSuffix
= 0; /* Bytes to append to the prefix */
3699 int rc
= SQLITE_OK
; /* Return code */
3702 if( p
->iChild
&& bFirst
==0 ) p
->iChild
++;
3703 if( p
->iOff
>=p
->nNode
){
3708 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &nPrefix
);
3710 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &nSuffix
);
3712 blobGrowBuffer(&p
->term
, nPrefix
+nSuffix
, &rc
);
3713 if( rc
==SQLITE_OK
){
3714 memcpy(&p
->term
.a
[nPrefix
], &p
->aNode
[p
->iOff
], nSuffix
);
3715 p
->term
.n
= nPrefix
+nSuffix
;
3718 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &p
->nDoclist
);
3719 p
->aDoclist
= &p
->aNode
[p
->iOff
];
3720 p
->iOff
+= p
->nDoclist
;
3725 assert( p
->iOff
<=p
->nNode
);
3731 ** Release all dynamic resources held by node-reader object *p.
3733 static void nodeReaderRelease(NodeReader
*p
){
3734 sqlite3_free(p
->term
.a
);
3738 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
3740 ** If successful, SQLITE_OK is returned and the NodeReader object set to
3741 ** point to the first entry on the node (if any). Otherwise, an SQLite
3742 ** error code is returned.
3744 static int nodeReaderInit(NodeReader
*p
, const char *aNode
, int nNode
){
3745 memset(p
, 0, sizeof(NodeReader
));
3749 /* Figure out if this is a leaf or an internal node. */
3751 /* An internal node. */
3752 p
->iOff
= 1 + sqlite3Fts3GetVarint(&p
->aNode
[1], &p
->iChild
);
3757 return nodeReaderNext(p
);
3761 ** This function is called while writing an FTS segment each time a leaf o
3762 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
3763 ** to be greater than the largest key on the node just written, but smaller
3764 ** than or equal to the first key that will be written to the next leaf
3767 ** The block id of the leaf node just written to disk may be found in
3768 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
3770 static int fts3IncrmergePush(
3771 Fts3Table
*p
, /* Fts3 table handle */
3772 IncrmergeWriter
*pWriter
, /* Writer object */
3773 const char *zTerm
, /* Term to write to internal node */
3774 int nTerm
/* Bytes at zTerm */
3776 sqlite3_int64 iPtr
= pWriter
->aNodeWriter
[0].iBlock
;
3780 for(iLayer
=1; ALWAYS(iLayer
<FTS_MAX_APPENDABLE_HEIGHT
); iLayer
++){
3781 sqlite3_int64 iNextPtr
= 0;
3782 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[iLayer
];
3788 /* Figure out how much space the key will consume if it is written to
3789 ** the current node of layer iLayer. Due to the prefix compression,
3790 ** the space required changes depending on which node the key is to
3792 nPrefix
= fts3PrefixCompress(pNode
->key
.a
, pNode
->key
.n
, zTerm
, nTerm
);
3793 nSuffix
= nTerm
- nPrefix
;
3794 nSpace
= sqlite3Fts3VarintLen(nPrefix
);
3795 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3797 if( pNode
->key
.n
==0 || (pNode
->block
.n
+ nSpace
)<=p
->nNodeSize
){
3798 /* If the current node of layer iLayer contains zero keys, or if adding
3799 ** the key to it will not cause it to grow to larger than nNodeSize
3800 ** bytes in size, write the key here. */
3802 Blob
*pBlk
= &pNode
->block
;
3804 blobGrowBuffer(pBlk
, p
->nNodeSize
, &rc
);
3805 if( rc
==SQLITE_OK
){
3806 pBlk
->a
[0] = (char)iLayer
;
3807 pBlk
->n
= 1 + sqlite3Fts3PutVarint(&pBlk
->a
[1], iPtr
);
3810 blobGrowBuffer(pBlk
, pBlk
->n
+ nSpace
, &rc
);
3811 blobGrowBuffer(&pNode
->key
, nTerm
, &rc
);
3813 if( rc
==SQLITE_OK
){
3815 pBlk
->n
+= sqlite3Fts3PutVarint(&pBlk
->a
[pBlk
->n
], nPrefix
);
3817 pBlk
->n
+= sqlite3Fts3PutVarint(&pBlk
->a
[pBlk
->n
], nSuffix
);
3818 memcpy(&pBlk
->a
[pBlk
->n
], &zTerm
[nPrefix
], nSuffix
);
3821 memcpy(pNode
->key
.a
, zTerm
, nTerm
);
3822 pNode
->key
.n
= nTerm
;
3825 /* Otherwise, flush the current node of layer iLayer to disk.
3826 ** Then allocate a new, empty sibling node. The key will be written
3827 ** into the parent of this node. */
3828 rc
= fts3WriteSegment(p
, pNode
->iBlock
, pNode
->block
.a
, pNode
->block
.n
);
3830 assert( pNode
->block
.nAlloc
>=p
->nNodeSize
);
3831 pNode
->block
.a
[0] = (char)iLayer
;
3832 pNode
->block
.n
= 1 + sqlite3Fts3PutVarint(&pNode
->block
.a
[1], iPtr
+1);
3834 iNextPtr
= pNode
->iBlock
;
3839 if( rc
!=SQLITE_OK
|| iNextPtr
==0 ) return rc
;
3848 ** Append a term and (optionally) doclist to the FTS segment node currently
3849 ** stored in blob *pNode. The node need not contain any terms, but the
3850 ** header must be written before this function is called.
3852 ** A node header is a single 0x00 byte for a leaf node, or a height varint
3853 ** followed by the left-hand-child varint for an internal node.
3855 ** The term to be appended is passed via arguments zTerm/nTerm. For a
3856 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
3857 ** node, both aDoclist and nDoclist must be passed 0.
3859 ** If the size of the value in blob pPrev is zero, then this is the first
3860 ** term written to the node. Otherwise, pPrev contains a copy of the
3861 ** previous term. Before this function returns, it is updated to contain a
3862 ** copy of zTerm/nTerm.
3864 ** It is assumed that the buffer associated with pNode is already large
3865 ** enough to accommodate the new entry. The buffer associated with pPrev
3866 ** is extended by this function if requrired.
3868 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
3869 ** returned. Otherwise, SQLITE_OK.
3871 static int fts3AppendToNode(
3872 Blob
*pNode
, /* Current node image to append to */
3873 Blob
*pPrev
, /* Buffer containing previous term written */
3874 const char *zTerm
, /* New term to write */
3875 int nTerm
, /* Size of zTerm in bytes */
3876 const char *aDoclist
, /* Doclist (or NULL) to write */
3877 int nDoclist
/* Size of aDoclist in bytes */
3879 int rc
= SQLITE_OK
; /* Return code */
3880 int bFirst
= (pPrev
->n
==0); /* True if this is the first term written */
3881 int nPrefix
; /* Size of term prefix in bytes */
3882 int nSuffix
; /* Size of term suffix in bytes */
3884 /* Node must have already been started. There must be a doclist for a
3885 ** leaf node, and there must not be a doclist for an internal node. */
3886 assert( pNode
->n
>0 );
3887 assert( (pNode
->a
[0]=='\0')==(aDoclist
!=0) );
3889 blobGrowBuffer(pPrev
, nTerm
, &rc
);
3890 if( rc
!=SQLITE_OK
) return rc
;
3892 nPrefix
= fts3PrefixCompress(pPrev
->a
, pPrev
->n
, zTerm
, nTerm
);
3893 nSuffix
= nTerm
- nPrefix
;
3894 memcpy(pPrev
->a
, zTerm
, nTerm
);
3898 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nPrefix
);
3900 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nSuffix
);
3901 memcpy(&pNode
->a
[pNode
->n
], &zTerm
[nPrefix
], nSuffix
);
3902 pNode
->n
+= nSuffix
;
3905 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nDoclist
);
3906 memcpy(&pNode
->a
[pNode
->n
], aDoclist
, nDoclist
);
3907 pNode
->n
+= nDoclist
;
3910 assert( pNode
->n
<=pNode
->nAlloc
);
3916 ** Append the current term and doclist pointed to by cursor pCsr to the
3917 ** appendable b-tree segment opened for writing by pWriter.
3919 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
3921 static int fts3IncrmergeAppend(
3922 Fts3Table
*p
, /* Fts3 table handle */
3923 IncrmergeWriter
*pWriter
, /* Writer object */
3924 Fts3MultiSegReader
*pCsr
/* Cursor containing term and doclist */
3926 const char *zTerm
= pCsr
->zTerm
;
3927 int nTerm
= pCsr
->nTerm
;
3928 const char *aDoclist
= pCsr
->aDoclist
;
3929 int nDoclist
= pCsr
->nDoclist
;
3930 int rc
= SQLITE_OK
; /* Return code */
3931 int nSpace
; /* Total space in bytes required on leaf */
3932 int nPrefix
; /* Size of prefix shared with previous term */
3933 int nSuffix
; /* Size of suffix (nTerm - nPrefix) */
3934 NodeWriter
*pLeaf
; /* Object used to write leaf nodes */
3936 pLeaf
= &pWriter
->aNodeWriter
[0];
3937 nPrefix
= fts3PrefixCompress(pLeaf
->key
.a
, pLeaf
->key
.n
, zTerm
, nTerm
);
3938 nSuffix
= nTerm
- nPrefix
;
3940 nSpace
= sqlite3Fts3VarintLen(nPrefix
);
3941 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3942 nSpace
+= sqlite3Fts3VarintLen(nDoclist
) + nDoclist
;
3944 /* If the current block is not empty, and if adding this term/doclist
3945 ** to the current block would make it larger than Fts3Table.nNodeSize
3946 ** bytes, write this block out to the database. */
3947 if( pLeaf
->block
.n
>0 && (pLeaf
->block
.n
+ nSpace
)>p
->nNodeSize
){
3948 rc
= fts3WriteSegment(p
, pLeaf
->iBlock
, pLeaf
->block
.a
, pLeaf
->block
.n
);
3951 /* Add the current term to the parent node. The term added to the
3954 ** a) be greater than the largest term on the leaf node just written
3955 ** to the database (still available in pLeaf->key), and
3957 ** b) be less than or equal to the term about to be added to the new
3958 ** leaf node (zTerm/nTerm).
3960 ** In other words, it must be the prefix of zTerm 1 byte longer than
3961 ** the common prefix (if any) of zTerm and pWriter->zTerm.
3963 if( rc
==SQLITE_OK
){
3964 rc
= fts3IncrmergePush(p
, pWriter
, zTerm
, nPrefix
+1);
3967 /* Advance to the next output block */
3974 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3975 nSpace
+= sqlite3Fts3VarintLen(nDoclist
) + nDoclist
;
3978 pWriter
->nLeafData
+= nSpace
;
3979 blobGrowBuffer(&pLeaf
->block
, pLeaf
->block
.n
+ nSpace
, &rc
);
3980 if( rc
==SQLITE_OK
){
3981 if( pLeaf
->block
.n
==0 ){
3983 pLeaf
->block
.a
[0] = '\0';
3985 rc
= fts3AppendToNode(
3986 &pLeaf
->block
, &pLeaf
->key
, zTerm
, nTerm
, aDoclist
, nDoclist
3994 ** This function is called to release all dynamic resources held by the
3995 ** merge-writer object pWriter, and if no error has occurred, to flush
3996 ** all outstanding node buffers held by pWriter to disk.
3998 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
3999 ** is made to write any data to disk. Instead, this function serves only
4000 ** to release outstanding resources.
4002 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
4003 ** flushing buffers to disk, *pRc is set to an SQLite error code before
4006 static void fts3IncrmergeRelease(
4007 Fts3Table
*p
, /* FTS3 table handle */
4008 IncrmergeWriter
*pWriter
, /* Merge-writer object */
4009 int *pRc
/* IN/OUT: Error code */
4011 int i
; /* Used to iterate through non-root layers */
4012 int iRoot
; /* Index of root in pWriter->aNodeWriter */
4013 NodeWriter
*pRoot
; /* NodeWriter for root node */
4014 int rc
= *pRc
; /* Error code */
4016 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
4017 ** root node. If the segment fits entirely on a single leaf node, iRoot
4018 ** will be set to 0. If the root node is the parent of the leaves, iRoot
4019 ** will be 1. And so on. */
4020 for(iRoot
=FTS_MAX_APPENDABLE_HEIGHT
-1; iRoot
>=0; iRoot
--){
4021 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[iRoot
];
4022 if( pNode
->block
.n
>0 ) break;
4023 assert( *pRc
|| pNode
->block
.nAlloc
==0 );
4024 assert( *pRc
|| pNode
->key
.nAlloc
==0 );
4025 sqlite3_free(pNode
->block
.a
);
4026 sqlite3_free(pNode
->key
.a
);
4029 /* Empty output segment. This is a no-op. */
4030 if( iRoot
<0 ) return;
4032 /* The entire output segment fits on a single node. Normally, this means
4033 ** the node would be stored as a blob in the "root" column of the %_segdir
4034 ** table. However, this is not permitted in this case. The problem is that
4035 ** space has already been reserved in the %_segments table, and so the
4036 ** start_block and end_block fields of the %_segdir table must be populated.
4037 ** And, by design or by accident, released versions of FTS cannot handle
4038 ** segments that fit entirely on the root node with start_block!=0.
4040 ** Instead, create a synthetic root node that contains nothing but a
4041 ** pointer to the single content node. So that the segment consists of a
4042 ** single leaf and a single interior (root) node.
4044 ** Todo: Better might be to defer allocating space in the %_segments
4045 ** table until we are sure it is needed.
4048 Blob
*pBlock
= &pWriter
->aNodeWriter
[1].block
;
4049 blobGrowBuffer(pBlock
, 1 + FTS3_VARINT_MAX
, &rc
);
4050 if( rc
==SQLITE_OK
){
4051 pBlock
->a
[0] = 0x01;
4052 pBlock
->n
= 1 + sqlite3Fts3PutVarint(
4053 &pBlock
->a
[1], pWriter
->aNodeWriter
[0].iBlock
4058 pRoot
= &pWriter
->aNodeWriter
[iRoot
];
4060 /* Flush all currently outstanding nodes to disk. */
4061 for(i
=0; i
<iRoot
; i
++){
4062 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[i
];
4063 if( pNode
->block
.n
>0 && rc
==SQLITE_OK
){
4064 rc
= fts3WriteSegment(p
, pNode
->iBlock
, pNode
->block
.a
, pNode
->block
.n
);
4066 sqlite3_free(pNode
->block
.a
);
4067 sqlite3_free(pNode
->key
.a
);
4070 /* Write the %_segdir record. */
4071 if( rc
==SQLITE_OK
){
4072 rc
= fts3WriteSegdir(p
,
4073 pWriter
->iAbsLevel
+1, /* level */
4074 pWriter
->iIdx
, /* idx */
4075 pWriter
->iStart
, /* start_block */
4076 pWriter
->aNodeWriter
[0].iBlock
, /* leaves_end_block */
4077 pWriter
->iEnd
, /* end_block */
4078 (pWriter
->bNoLeafData
==0 ? pWriter
->nLeafData
: 0), /* end_block */
4079 pRoot
->block
.a
, pRoot
->block
.n
/* root */
4082 sqlite3_free(pRoot
->block
.a
);
4083 sqlite3_free(pRoot
->key
.a
);
4089 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
4090 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
4091 ** the other, it is considered to be smaller than the other.
4093 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
4094 ** if it is greater.
4096 static int fts3TermCmp(
4097 const char *zLhs
, int nLhs
, /* LHS of comparison */
4098 const char *zRhs
, int nRhs
/* RHS of comparison */
4100 int nCmp
= MIN(nLhs
, nRhs
);
4103 res
= memcmp(zLhs
, zRhs
, nCmp
);
4104 if( res
==0 ) res
= nLhs
- nRhs
;
4111 ** Query to see if the entry in the %_segments table with blockid iEnd is
4112 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
4113 ** returning. Otherwise, set *pbRes to 0.
4115 ** Or, if an error occurs while querying the database, return an SQLite
4116 ** error code. The final value of *pbRes is undefined in this case.
4118 ** This is used to test if a segment is an "appendable" segment. If it
4119 ** is, then a NULL entry has been inserted into the %_segments table
4120 ** with blockid %_segdir.end_block.
4122 static int fts3IsAppendable(Fts3Table
*p
, sqlite3_int64 iEnd
, int *pbRes
){
4123 int bRes
= 0; /* Result to set *pbRes to */
4124 sqlite3_stmt
*pCheck
= 0; /* Statement to query database with */
4125 int rc
; /* Return code */
4127 rc
= fts3SqlStmt(p
, SQL_SEGMENT_IS_APPENDABLE
, &pCheck
, 0);
4128 if( rc
==SQLITE_OK
){
4129 sqlite3_bind_int64(pCheck
, 1, iEnd
);
4130 if( SQLITE_ROW
==sqlite3_step(pCheck
) ) bRes
= 1;
4131 rc
= sqlite3_reset(pCheck
);
4139 ** This function is called when initializing an incremental-merge operation.
4140 ** It checks if the existing segment with index value iIdx at absolute level
4141 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
4142 ** merge-writer object *pWriter is initialized to write to it.
4144 ** An existing segment can be appended to by an incremental merge if:
4146 ** * It was initially created as an appendable segment (with all required
4147 ** space pre-allocated), and
4149 ** * The first key read from the input (arguments zKey and nKey) is
4150 ** greater than the largest key currently stored in the potential
4153 static int fts3IncrmergeLoad(
4154 Fts3Table
*p
, /* Fts3 table handle */
4155 sqlite3_int64 iAbsLevel
, /* Absolute level of input segments */
4156 int iIdx
, /* Index of candidate output segment */
4157 const char *zKey
, /* First key to write */
4158 int nKey
, /* Number of bytes in nKey */
4159 IncrmergeWriter
*pWriter
/* Populate this object */
4161 int rc
; /* Return code */
4162 sqlite3_stmt
*pSelect
= 0; /* SELECT to read %_segdir entry */
4164 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR
, &pSelect
, 0);
4165 if( rc
==SQLITE_OK
){
4166 sqlite3_int64 iStart
= 0; /* Value of %_segdir.start_block */
4167 sqlite3_int64 iLeafEnd
= 0; /* Value of %_segdir.leaves_end_block */
4168 sqlite3_int64 iEnd
= 0; /* Value of %_segdir.end_block */
4169 const char *aRoot
= 0; /* Pointer to %_segdir.root buffer */
4170 int nRoot
= 0; /* Size of aRoot[] in bytes */
4171 int rc2
; /* Return code from sqlite3_reset() */
4172 int bAppendable
= 0; /* Set to true if segment is appendable */
4174 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
4175 sqlite3_bind_int64(pSelect
, 1, iAbsLevel
+1);
4176 sqlite3_bind_int(pSelect
, 2, iIdx
);
4177 if( sqlite3_step(pSelect
)==SQLITE_ROW
){
4178 iStart
= sqlite3_column_int64(pSelect
, 1);
4179 iLeafEnd
= sqlite3_column_int64(pSelect
, 2);
4180 fts3ReadEndBlockField(pSelect
, 3, &iEnd
, &pWriter
->nLeafData
);
4181 if( pWriter
->nLeafData
<0 ){
4182 pWriter
->nLeafData
= pWriter
->nLeafData
* -1;
4184 pWriter
->bNoLeafData
= (pWriter
->nLeafData
==0);
4185 nRoot
= sqlite3_column_bytes(pSelect
, 4);
4186 aRoot
= sqlite3_column_blob(pSelect
, 4);
4188 return sqlite3_reset(pSelect
);
4191 /* Check for the zero-length marker in the %_segments table */
4192 rc
= fts3IsAppendable(p
, iEnd
, &bAppendable
);
4194 /* Check that zKey/nKey is larger than the largest key the candidate */
4195 if( rc
==SQLITE_OK
&& bAppendable
){
4199 rc
= sqlite3Fts3ReadBlock(p
, iLeafEnd
, &aLeaf
, &nLeaf
, 0);
4200 if( rc
==SQLITE_OK
){
4202 for(rc
= nodeReaderInit(&reader
, aLeaf
, nLeaf
);
4203 rc
==SQLITE_OK
&& reader
.aNode
;
4204 rc
= nodeReaderNext(&reader
)
4206 assert( reader
.aNode
);
4208 if( fts3TermCmp(zKey
, nKey
, reader
.term
.a
, reader
.term
.n
)<=0 ){
4211 nodeReaderRelease(&reader
);
4213 sqlite3_free(aLeaf
);
4216 if( rc
==SQLITE_OK
&& bAppendable
){
4217 /* It is possible to append to this segment. Set up the IncrmergeWriter
4218 ** object to do so. */
4220 int nHeight
= (int)aRoot
[0];
4223 pWriter
->nLeafEst
= (int)((iEnd
- iStart
) + 1)/FTS_MAX_APPENDABLE_HEIGHT
;
4224 pWriter
->iStart
= iStart
;
4225 pWriter
->iEnd
= iEnd
;
4226 pWriter
->iAbsLevel
= iAbsLevel
;
4227 pWriter
->iIdx
= iIdx
;
4229 for(i
=nHeight
+1; i
<FTS_MAX_APPENDABLE_HEIGHT
; i
++){
4230 pWriter
->aNodeWriter
[i
].iBlock
= pWriter
->iStart
+ i
*pWriter
->nLeafEst
;
4233 pNode
= &pWriter
->aNodeWriter
[nHeight
];
4234 pNode
->iBlock
= pWriter
->iStart
+ pWriter
->nLeafEst
*nHeight
;
4235 blobGrowBuffer(&pNode
->block
, MAX(nRoot
, p
->nNodeSize
), &rc
);
4236 if( rc
==SQLITE_OK
){
4237 memcpy(pNode
->block
.a
, aRoot
, nRoot
);
4238 pNode
->block
.n
= nRoot
;
4241 for(i
=nHeight
; i
>=0 && rc
==SQLITE_OK
; i
--){
4243 pNode
= &pWriter
->aNodeWriter
[i
];
4245 rc
= nodeReaderInit(&reader
, pNode
->block
.a
, pNode
->block
.n
);
4246 while( reader
.aNode
&& rc
==SQLITE_OK
) rc
= nodeReaderNext(&reader
);
4247 blobGrowBuffer(&pNode
->key
, reader
.term
.n
, &rc
);
4248 if( rc
==SQLITE_OK
){
4249 memcpy(pNode
->key
.a
, reader
.term
.a
, reader
.term
.n
);
4250 pNode
->key
.n
= reader
.term
.n
;
4254 pNode
= &pWriter
->aNodeWriter
[i
-1];
4255 pNode
->iBlock
= reader
.iChild
;
4256 rc
= sqlite3Fts3ReadBlock(p
, reader
.iChild
, &aBlock
, &nBlock
, 0);
4257 blobGrowBuffer(&pNode
->block
, MAX(nBlock
, p
->nNodeSize
), &rc
);
4258 if( rc
==SQLITE_OK
){
4259 memcpy(pNode
->block
.a
, aBlock
, nBlock
);
4260 pNode
->block
.n
= nBlock
;
4262 sqlite3_free(aBlock
);
4265 nodeReaderRelease(&reader
);
4269 rc2
= sqlite3_reset(pSelect
);
4270 if( rc
==SQLITE_OK
) rc
= rc2
;
4277 ** Determine the largest segment index value that exists within absolute
4278 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
4279 ** one before returning SQLITE_OK. Or, if there are no segments at all
4280 ** within level iAbsLevel, set *piIdx to zero.
4282 ** If an error occurs, return an SQLite error code. The final value of
4283 ** *piIdx is undefined in this case.
4285 static int fts3IncrmergeOutputIdx(
4286 Fts3Table
*p
, /* FTS Table handle */
4287 sqlite3_int64 iAbsLevel
, /* Absolute index of input segments */
4288 int *piIdx
/* OUT: Next free index at iAbsLevel+1 */
4291 sqlite3_stmt
*pOutputIdx
= 0; /* SQL used to find output index */
4293 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENT_INDEX
, &pOutputIdx
, 0);
4294 if( rc
==SQLITE_OK
){
4295 sqlite3_bind_int64(pOutputIdx
, 1, iAbsLevel
+1);
4296 sqlite3_step(pOutputIdx
);
4297 *piIdx
= sqlite3_column_int(pOutputIdx
, 0);
4298 rc
= sqlite3_reset(pOutputIdx
);
4305 ** Allocate an appendable output segment on absolute level iAbsLevel+1
4306 ** with idx value iIdx.
4308 ** In the %_segdir table, a segment is defined by the values in three
4315 ** When an appendable segment is allocated, it is estimated that the
4316 ** maximum number of leaf blocks that may be required is the sum of the
4317 ** number of leaf blocks consumed by the input segments, plus the number
4318 ** of input segments, multiplied by two. This value is stored in stack
4319 ** variable nLeafEst.
4321 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
4322 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
4323 ** array of leaf nodes starts at the first block allocated. The array
4324 ** of interior nodes that are parents of the leaf nodes start at block
4325 ** (start_block + (1 + end_block - start_block) / 16). And so on.
4327 ** In the actual code below, the value "16" is replaced with the
4328 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
4330 static int fts3IncrmergeWriter(
4331 Fts3Table
*p
, /* Fts3 table handle */
4332 sqlite3_int64 iAbsLevel
, /* Absolute level of input segments */
4333 int iIdx
, /* Index of new output segment */
4334 Fts3MultiSegReader
*pCsr
, /* Cursor that data will be read from */
4335 IncrmergeWriter
*pWriter
/* Populate this object */
4337 int rc
; /* Return Code */
4338 int i
; /* Iterator variable */
4339 int nLeafEst
= 0; /* Blocks allocated for leaf nodes */
4340 sqlite3_stmt
*pLeafEst
= 0; /* SQL used to determine nLeafEst */
4341 sqlite3_stmt
*pFirstBlock
= 0; /* SQL used to determine first block */
4343 /* Calculate nLeafEst. */
4344 rc
= fts3SqlStmt(p
, SQL_MAX_LEAF_NODE_ESTIMATE
, &pLeafEst
, 0);
4345 if( rc
==SQLITE_OK
){
4346 sqlite3_bind_int64(pLeafEst
, 1, iAbsLevel
);
4347 sqlite3_bind_int64(pLeafEst
, 2, pCsr
->nSegment
);
4348 if( SQLITE_ROW
==sqlite3_step(pLeafEst
) ){
4349 nLeafEst
= sqlite3_column_int(pLeafEst
, 0);
4351 rc
= sqlite3_reset(pLeafEst
);
4353 if( rc
!=SQLITE_OK
) return rc
;
4355 /* Calculate the first block to use in the output segment */
4356 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENTS_ID
, &pFirstBlock
, 0);
4357 if( rc
==SQLITE_OK
){
4358 if( SQLITE_ROW
==sqlite3_step(pFirstBlock
) ){
4359 pWriter
->iStart
= sqlite3_column_int64(pFirstBlock
, 0);
4360 pWriter
->iEnd
= pWriter
->iStart
- 1;
4361 pWriter
->iEnd
+= nLeafEst
* FTS_MAX_APPENDABLE_HEIGHT
;
4363 rc
= sqlite3_reset(pFirstBlock
);
4365 if( rc
!=SQLITE_OK
) return rc
;
4367 /* Insert the marker in the %_segments table to make sure nobody tries
4368 ** to steal the space just allocated. This is also used to identify
4369 ** appendable segments. */
4370 rc
= fts3WriteSegment(p
, pWriter
->iEnd
, 0, 0);
4371 if( rc
!=SQLITE_OK
) return rc
;
4373 pWriter
->iAbsLevel
= iAbsLevel
;
4374 pWriter
->nLeafEst
= nLeafEst
;
4375 pWriter
->iIdx
= iIdx
;
4377 /* Set up the array of NodeWriter objects */
4378 for(i
=0; i
<FTS_MAX_APPENDABLE_HEIGHT
; i
++){
4379 pWriter
->aNodeWriter
[i
].iBlock
= pWriter
->iStart
+ i
*pWriter
->nLeafEst
;
4385 ** Remove an entry from the %_segdir table. This involves running the
4386 ** following two statements:
4388 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
4389 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
4391 ** The DELETE statement removes the specific %_segdir level. The UPDATE
4392 ** statement ensures that the remaining segments have contiguously allocated
4395 static int fts3RemoveSegdirEntry(
4396 Fts3Table
*p
, /* FTS3 table handle */
4397 sqlite3_int64 iAbsLevel
, /* Absolute level to delete from */
4398 int iIdx
/* Index of %_segdir entry to delete */
4400 int rc
; /* Return code */
4401 sqlite3_stmt
*pDelete
= 0; /* DELETE statement */
4403 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_ENTRY
, &pDelete
, 0);
4404 if( rc
==SQLITE_OK
){
4405 sqlite3_bind_int64(pDelete
, 1, iAbsLevel
);
4406 sqlite3_bind_int(pDelete
, 2, iIdx
);
4407 sqlite3_step(pDelete
);
4408 rc
= sqlite3_reset(pDelete
);
4415 ** One or more segments have just been removed from absolute level iAbsLevel.
4416 ** Update the 'idx' values of the remaining segments in the level so that
4417 ** the idx values are a contiguous sequence starting from 0.
4419 static int fts3RepackSegdirLevel(
4420 Fts3Table
*p
, /* FTS3 table handle */
4421 sqlite3_int64 iAbsLevel
/* Absolute level to repack */
4423 int rc
; /* Return code */
4424 int *aIdx
= 0; /* Array of remaining idx values */
4425 int nIdx
= 0; /* Valid entries in aIdx[] */
4426 int nAlloc
= 0; /* Allocated size of aIdx[] */
4427 int i
; /* Iterator variable */
4428 sqlite3_stmt
*pSelect
= 0; /* Select statement to read idx values */
4429 sqlite3_stmt
*pUpdate
= 0; /* Update statement to modify idx values */
4431 rc
= fts3SqlStmt(p
, SQL_SELECT_INDEXES
, &pSelect
, 0);
4432 if( rc
==SQLITE_OK
){
4434 sqlite3_bind_int64(pSelect
, 1, iAbsLevel
);
4435 while( SQLITE_ROW
==sqlite3_step(pSelect
) ){
4439 aNew
= sqlite3_realloc(aIdx
, nAlloc
*sizeof(int));
4446 aIdx
[nIdx
++] = sqlite3_column_int(pSelect
, 0);
4448 rc2
= sqlite3_reset(pSelect
);
4449 if( rc
==SQLITE_OK
) rc
= rc2
;
4452 if( rc
==SQLITE_OK
){
4453 rc
= fts3SqlStmt(p
, SQL_SHIFT_SEGDIR_ENTRY
, &pUpdate
, 0);
4455 if( rc
==SQLITE_OK
){
4456 sqlite3_bind_int64(pUpdate
, 2, iAbsLevel
);
4459 assert( p
->bIgnoreSavepoint
==0 );
4460 p
->bIgnoreSavepoint
= 1;
4461 for(i
=0; rc
==SQLITE_OK
&& i
<nIdx
; i
++){
4463 sqlite3_bind_int(pUpdate
, 3, aIdx
[i
]);
4464 sqlite3_bind_int(pUpdate
, 1, i
);
4465 sqlite3_step(pUpdate
);
4466 rc
= sqlite3_reset(pUpdate
);
4469 p
->bIgnoreSavepoint
= 0;
4475 static void fts3StartNode(Blob
*pNode
, int iHeight
, sqlite3_int64 iChild
){
4476 pNode
->a
[0] = (char)iHeight
;
4478 assert( pNode
->nAlloc
>=1+sqlite3Fts3VarintLen(iChild
) );
4479 pNode
->n
= 1 + sqlite3Fts3PutVarint(&pNode
->a
[1], iChild
);
4481 assert( pNode
->nAlloc
>=1 );
4487 ** The first two arguments are a pointer to and the size of a segment b-tree
4488 ** node. The node may be a leaf or an internal node.
4490 ** This function creates a new node image in blob object *pNew by copying
4491 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
4492 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
4494 static int fts3TruncateNode(
4495 const char *aNode
, /* Current node image */
4496 int nNode
, /* Size of aNode in bytes */
4497 Blob
*pNew
, /* OUT: Write new node image here */
4498 const char *zTerm
, /* Omit all terms smaller than this */
4499 int nTerm
, /* Size of zTerm in bytes */
4500 sqlite3_int64
*piBlock
/* OUT: Block number in next layer down */
4502 NodeReader reader
; /* Reader object */
4503 Blob prev
= {0, 0, 0}; /* Previous term written to new node */
4504 int rc
= SQLITE_OK
; /* Return code */
4505 int bLeaf
= aNode
[0]=='\0'; /* True for a leaf node */
4507 /* Allocate required output space */
4508 blobGrowBuffer(pNew
, nNode
, &rc
);
4509 if( rc
!=SQLITE_OK
) return rc
;
4512 /* Populate new node buffer */
4513 for(rc
= nodeReaderInit(&reader
, aNode
, nNode
);
4514 rc
==SQLITE_OK
&& reader
.aNode
;
4515 rc
= nodeReaderNext(&reader
)
4518 int res
= fts3TermCmp(reader
.term
.a
, reader
.term
.n
, zTerm
, nTerm
);
4519 if( res
<0 || (bLeaf
==0 && res
==0) ) continue;
4520 fts3StartNode(pNew
, (int)aNode
[0], reader
.iChild
);
4521 *piBlock
= reader
.iChild
;
4523 rc
= fts3AppendToNode(
4524 pNew
, &prev
, reader
.term
.a
, reader
.term
.n
,
4525 reader
.aDoclist
, reader
.nDoclist
4527 if( rc
!=SQLITE_OK
) break;
4530 fts3StartNode(pNew
, (int)aNode
[0], reader
.iChild
);
4531 *piBlock
= reader
.iChild
;
4533 assert( pNew
->n
<=pNew
->nAlloc
);
4535 nodeReaderRelease(&reader
);
4536 sqlite3_free(prev
.a
);
4541 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
4542 ** level iAbsLevel. This may involve deleting entries from the %_segments
4543 ** table, and modifying existing entries in both the %_segments and %_segdir
4546 ** SQLITE_OK is returned if the segment is updated successfully. Or an
4547 ** SQLite error code otherwise.
4549 static int fts3TruncateSegment(
4550 Fts3Table
*p
, /* FTS3 table handle */
4551 sqlite3_int64 iAbsLevel
, /* Absolute level of segment to modify */
4552 int iIdx
, /* Index within level of segment to modify */
4553 const char *zTerm
, /* Remove terms smaller than this */
4554 int nTerm
/* Number of bytes in buffer zTerm */
4556 int rc
= SQLITE_OK
; /* Return code */
4557 Blob root
= {0,0,0}; /* New root page image */
4558 Blob block
= {0,0,0}; /* Buffer used for any other block */
4559 sqlite3_int64 iBlock
= 0; /* Block id */
4560 sqlite3_int64 iNewStart
= 0; /* New value for iStartBlock */
4561 sqlite3_int64 iOldStart
= 0; /* Old value for iStartBlock */
4562 sqlite3_stmt
*pFetch
= 0; /* Statement used to fetch segdir */
4564 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR
, &pFetch
, 0);
4565 if( rc
==SQLITE_OK
){
4566 int rc2
; /* sqlite3_reset() return code */
4567 sqlite3_bind_int64(pFetch
, 1, iAbsLevel
);
4568 sqlite3_bind_int(pFetch
, 2, iIdx
);
4569 if( SQLITE_ROW
==sqlite3_step(pFetch
) ){
4570 const char *aRoot
= sqlite3_column_blob(pFetch
, 4);
4571 int nRoot
= sqlite3_column_bytes(pFetch
, 4);
4572 iOldStart
= sqlite3_column_int64(pFetch
, 1);
4573 rc
= fts3TruncateNode(aRoot
, nRoot
, &root
, zTerm
, nTerm
, &iBlock
);
4575 rc2
= sqlite3_reset(pFetch
);
4576 if( rc
==SQLITE_OK
) rc
= rc2
;
4579 while( rc
==SQLITE_OK
&& iBlock
){
4584 rc
= sqlite3Fts3ReadBlock(p
, iBlock
, &aBlock
, &nBlock
, 0);
4585 if( rc
==SQLITE_OK
){
4586 rc
= fts3TruncateNode(aBlock
, nBlock
, &block
, zTerm
, nTerm
, &iBlock
);
4588 if( rc
==SQLITE_OK
){
4589 rc
= fts3WriteSegment(p
, iNewStart
, block
.a
, block
.n
);
4591 sqlite3_free(aBlock
);
4594 /* Variable iNewStart now contains the first valid leaf node. */
4595 if( rc
==SQLITE_OK
&& iNewStart
){
4596 sqlite3_stmt
*pDel
= 0;
4597 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGMENTS_RANGE
, &pDel
, 0);
4598 if( rc
==SQLITE_OK
){
4599 sqlite3_bind_int64(pDel
, 1, iOldStart
);
4600 sqlite3_bind_int64(pDel
, 2, iNewStart
-1);
4602 rc
= sqlite3_reset(pDel
);
4606 if( rc
==SQLITE_OK
){
4607 sqlite3_stmt
*pChomp
= 0;
4608 rc
= fts3SqlStmt(p
, SQL_CHOMP_SEGDIR
, &pChomp
, 0);
4609 if( rc
==SQLITE_OK
){
4610 sqlite3_bind_int64(pChomp
, 1, iNewStart
);
4611 sqlite3_bind_blob(pChomp
, 2, root
.a
, root
.n
, SQLITE_STATIC
);
4612 sqlite3_bind_int64(pChomp
, 3, iAbsLevel
);
4613 sqlite3_bind_int(pChomp
, 4, iIdx
);
4614 sqlite3_step(pChomp
);
4615 rc
= sqlite3_reset(pChomp
);
4619 sqlite3_free(root
.a
);
4620 sqlite3_free(block
.a
);
4625 ** This function is called after an incrmental-merge operation has run to
4626 ** merge (or partially merge) two or more segments from absolute level
4629 ** Each input segment is either removed from the db completely (if all of
4630 ** its data was copied to the output segment by the incrmerge operation)
4631 ** or modified in place so that it no longer contains those entries that
4632 ** have been duplicated in the output segment.
4634 static int fts3IncrmergeChomp(
4635 Fts3Table
*p
, /* FTS table handle */
4636 sqlite3_int64 iAbsLevel
, /* Absolute level containing segments */
4637 Fts3MultiSegReader
*pCsr
, /* Chomp all segments opened by this cursor */
4638 int *pnRem
/* Number of segments not deleted */
4644 for(i
=pCsr
->nSegment
-1; i
>=0 && rc
==SQLITE_OK
; i
--){
4645 Fts3SegReader
*pSeg
= 0;
4648 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
4649 ** somewhere in the pCsr->apSegment[] array. */
4650 for(j
=0; ALWAYS(j
<pCsr
->nSegment
); j
++){
4651 pSeg
= pCsr
->apSegment
[j
];
4652 if( pSeg
->iIdx
==i
) break;
4654 assert( j
<pCsr
->nSegment
&& pSeg
->iIdx
==i
);
4656 if( pSeg
->aNode
==0 ){
4657 /* Seg-reader is at EOF. Remove the entire input segment. */
4658 rc
= fts3DeleteSegment(p
, pSeg
);
4659 if( rc
==SQLITE_OK
){
4660 rc
= fts3RemoveSegdirEntry(p
, iAbsLevel
, pSeg
->iIdx
);
4664 /* The incremental merge did not copy all the data from this
4665 ** segment to the upper level. The segment is modified in place
4666 ** so that it contains no keys smaller than zTerm/nTerm. */
4667 const char *zTerm
= pSeg
->zTerm
;
4668 int nTerm
= pSeg
->nTerm
;
4669 rc
= fts3TruncateSegment(p
, iAbsLevel
, pSeg
->iIdx
, zTerm
, nTerm
);
4674 if( rc
==SQLITE_OK
&& nRem
!=pCsr
->nSegment
){
4675 rc
= fts3RepackSegdirLevel(p
, iAbsLevel
);
4683 ** Store an incr-merge hint in the database.
4685 static int fts3IncrmergeHintStore(Fts3Table
*p
, Blob
*pHint
){
4686 sqlite3_stmt
*pReplace
= 0;
4687 int rc
; /* Return code */
4689 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pReplace
, 0);
4690 if( rc
==SQLITE_OK
){
4691 sqlite3_bind_int(pReplace
, 1, FTS_STAT_INCRMERGEHINT
);
4692 sqlite3_bind_blob(pReplace
, 2, pHint
->a
, pHint
->n
, SQLITE_STATIC
);
4693 sqlite3_step(pReplace
);
4694 rc
= sqlite3_reset(pReplace
);
4701 ** Load an incr-merge hint from the database. The incr-merge hint, if one
4702 ** exists, is stored in the rowid==1 row of the %_stat table.
4704 ** If successful, populate blob *pHint with the value read from the %_stat
4705 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
4706 ** SQLite error code.
4708 static int fts3IncrmergeHintLoad(Fts3Table
*p
, Blob
*pHint
){
4709 sqlite3_stmt
*pSelect
= 0;
4713 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pSelect
, 0);
4714 if( rc
==SQLITE_OK
){
4716 sqlite3_bind_int(pSelect
, 1, FTS_STAT_INCRMERGEHINT
);
4717 if( SQLITE_ROW
==sqlite3_step(pSelect
) ){
4718 const char *aHint
= sqlite3_column_blob(pSelect
, 0);
4719 int nHint
= sqlite3_column_bytes(pSelect
, 0);
4721 blobGrowBuffer(pHint
, nHint
, &rc
);
4722 if( rc
==SQLITE_OK
){
4723 memcpy(pHint
->a
, aHint
, nHint
);
4728 rc2
= sqlite3_reset(pSelect
);
4729 if( rc
==SQLITE_OK
) rc
= rc2
;
4736 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4737 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
4738 ** consists of two varints, the absolute level number of the input segments
4739 ** and the number of input segments.
4741 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
4742 ** set *pRc to an SQLite error code before returning.
4744 static void fts3IncrmergeHintPush(
4745 Blob
*pHint
, /* Hint blob to append to */
4746 i64 iAbsLevel
, /* First varint to store in hint */
4747 int nInput
, /* Second varint to store in hint */
4748 int *pRc
/* IN/OUT: Error code */
4750 blobGrowBuffer(pHint
, pHint
->n
+ 2*FTS3_VARINT_MAX
, pRc
);
4751 if( *pRc
==SQLITE_OK
){
4752 pHint
->n
+= sqlite3Fts3PutVarint(&pHint
->a
[pHint
->n
], iAbsLevel
);
4753 pHint
->n
+= sqlite3Fts3PutVarint(&pHint
->a
[pHint
->n
], (i64
)nInput
);
4758 ** Read the last entry (most recently pushed) from the hint blob *pHint
4759 ** and then remove the entry. Write the two values read to *piAbsLevel and
4760 ** *pnInput before returning.
4762 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
4763 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
4765 static int fts3IncrmergeHintPop(Blob
*pHint
, i64
*piAbsLevel
, int *pnInput
){
4766 const int nHint
= pHint
->n
;
4770 while( i
>0 && (pHint
->a
[i
-1] & 0x80) ) i
--;
4771 while( i
>0 && (pHint
->a
[i
-1] & 0x80) ) i
--;
4774 i
+= sqlite3Fts3GetVarint(&pHint
->a
[i
], piAbsLevel
);
4775 i
+= fts3GetVarint32(&pHint
->a
[i
], pnInput
);
4776 if( i
!=nHint
) return SQLITE_CORRUPT_VTAB
;
4783 ** Attempt an incremental merge that writes nMerge leaf blocks.
4785 ** Incremental merges happen nMin segments at a time. The segments
4786 ** to be merged are the nMin oldest segments (the ones with the smallest
4787 ** values for the _segdir.idx field) in the highest level that contains
4788 ** at least nMin segments. Multiple merges might occur in an attempt to
4789 ** write the quota of nMerge leaf blocks.
4791 int sqlite3Fts3Incrmerge(Fts3Table
*p
, int nMerge
, int nMin
){
4792 int rc
; /* Return code */
4793 int nRem
= nMerge
; /* Number of leaf pages yet to be written */
4794 Fts3MultiSegReader
*pCsr
; /* Cursor used to read input data */
4795 Fts3SegFilter
*pFilter
; /* Filter used with cursor pCsr */
4796 IncrmergeWriter
*pWriter
; /* Writer object */
4797 int nSeg
= 0; /* Number of input segments */
4798 sqlite3_int64 iAbsLevel
= 0; /* Absolute level number to work on */
4799 Blob hint
= {0, 0, 0}; /* Hint read from %_stat table */
4800 int bDirtyHint
= 0; /* True if blob 'hint' has been modified */
4802 /* Allocate space for the cursor, filter and writer objects */
4803 const int nAlloc
= sizeof(*pCsr
) + sizeof(*pFilter
) + sizeof(*pWriter
);
4804 pWriter
= (IncrmergeWriter
*)sqlite3_malloc(nAlloc
);
4805 if( !pWriter
) return SQLITE_NOMEM
;
4806 pFilter
= (Fts3SegFilter
*)&pWriter
[1];
4807 pCsr
= (Fts3MultiSegReader
*)&pFilter
[1];
4809 rc
= fts3IncrmergeHintLoad(p
, &hint
);
4810 while( rc
==SQLITE_OK
&& nRem
>0 ){
4811 const i64 nMod
= FTS3_SEGDIR_MAXLEVEL
* p
->nIndex
;
4812 sqlite3_stmt
*pFindLevel
= 0; /* SQL used to determine iAbsLevel */
4813 int bUseHint
= 0; /* True if attempting to append */
4814 int iIdx
= 0; /* Largest idx in level (iAbsLevel+1) */
4816 /* Search the %_segdir table for the absolute level with the smallest
4817 ** relative level number that contains at least nMin segments, if any.
4818 ** If one is found, set iAbsLevel to the absolute level number and
4819 ** nSeg to nMin. If no level with at least nMin segments can be found,
4822 rc
= fts3SqlStmt(p
, SQL_FIND_MERGE_LEVEL
, &pFindLevel
, 0);
4823 sqlite3_bind_int(pFindLevel
, 1, nMin
);
4824 if( sqlite3_step(pFindLevel
)==SQLITE_ROW
){
4825 iAbsLevel
= sqlite3_column_int64(pFindLevel
, 0);
4830 rc
= sqlite3_reset(pFindLevel
);
4832 /* If the hint read from the %_stat table is not empty, check if the
4833 ** last entry in it specifies a relative level smaller than or equal
4834 ** to the level identified by the block above (if any). If so, this
4835 ** iteration of the loop will work on merging at the hinted level.
4837 if( rc
==SQLITE_OK
&& hint
.n
){
4839 sqlite3_int64 iHintAbsLevel
= 0; /* Hint level */
4840 int nHintSeg
= 0; /* Hint number of segments */
4842 rc
= fts3IncrmergeHintPop(&hint
, &iHintAbsLevel
, &nHintSeg
);
4843 if( nSeg
<0 || (iAbsLevel
% nMod
) >= (iHintAbsLevel
% nMod
) ){
4844 iAbsLevel
= iHintAbsLevel
;
4849 /* This undoes the effect of the HintPop() above - so that no entry
4850 ** is removed from the hint blob. */
4855 /* If nSeg is less that zero, then there is no level with at least
4856 ** nMin segments and no hint in the %_stat table. No work to do.
4857 ** Exit early in this case. */
4860 /* Open a cursor to iterate through the contents of the oldest nSeg
4861 ** indexes of absolute level iAbsLevel. If this cursor is opened using
4862 ** the 'hint' parameters, it is possible that there are less than nSeg
4863 ** segments available in level iAbsLevel. In this case, no work is
4864 ** done on iAbsLevel - fall through to the next iteration of the loop
4865 ** to start work on some other level. */
4866 memset(pWriter
, 0, nAlloc
);
4867 pFilter
->flags
= FTS3_SEGMENT_REQUIRE_POS
;
4869 if( rc
==SQLITE_OK
){
4870 rc
= fts3IncrmergeOutputIdx(p
, iAbsLevel
, &iIdx
);
4871 assert( bUseHint
==1 || bUseHint
==0 );
4872 if( iIdx
==0 || (bUseHint
&& iIdx
==1) ){
4874 rc
= fts3SegmentIsMaxLevel(p
, iAbsLevel
+1, &bIgnore
);
4876 pFilter
->flags
|= FTS3_SEGMENT_IGNORE_EMPTY
;
4881 if( rc
==SQLITE_OK
){
4882 rc
= fts3IncrmergeCsr(p
, iAbsLevel
, nSeg
, pCsr
);
4884 if( SQLITE_OK
==rc
&& pCsr
->nSegment
==nSeg
4885 && SQLITE_OK
==(rc
= sqlite3Fts3SegReaderStart(p
, pCsr
, pFilter
))
4886 && SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, pCsr
))
4888 if( bUseHint
&& iIdx
>0 ){
4889 const char *zKey
= pCsr
->zTerm
;
4890 int nKey
= pCsr
->nTerm
;
4891 rc
= fts3IncrmergeLoad(p
, iAbsLevel
, iIdx
-1, zKey
, nKey
, pWriter
);
4893 rc
= fts3IncrmergeWriter(p
, iAbsLevel
, iIdx
, pCsr
, pWriter
);
4896 if( rc
==SQLITE_OK
&& pWriter
->nLeafEst
){
4897 fts3LogMerge(nSeg
, iAbsLevel
);
4899 rc
= fts3IncrmergeAppend(p
, pWriter
, pCsr
);
4900 if( rc
==SQLITE_OK
) rc
= sqlite3Fts3SegReaderStep(p
, pCsr
);
4901 if( pWriter
->nWork
>=nRem
&& rc
==SQLITE_ROW
) rc
= SQLITE_OK
;
4902 }while( rc
==SQLITE_ROW
);
4904 /* Update or delete the input segments */
4905 if( rc
==SQLITE_OK
){
4906 nRem
-= (1 + pWriter
->nWork
);
4907 rc
= fts3IncrmergeChomp(p
, iAbsLevel
, pCsr
, &nSeg
);
4910 fts3IncrmergeHintPush(&hint
, iAbsLevel
, nSeg
, &rc
);
4916 pWriter
->nLeafData
= pWriter
->nLeafData
* -1;
4918 fts3IncrmergeRelease(p
, pWriter
, &rc
);
4919 if( nSeg
==0 && pWriter
->bNoLeafData
==0 ){
4920 fts3PromoteSegments(p
, iAbsLevel
+1, pWriter
->nLeafData
);
4924 sqlite3Fts3SegReaderFinish(pCsr
);
4927 /* Write the hint values into the %_stat table for the next incr-merger */
4928 if( bDirtyHint
&& rc
==SQLITE_OK
){
4929 rc
= fts3IncrmergeHintStore(p
, &hint
);
4932 sqlite3_free(pWriter
);
4933 sqlite3_free(hint
.a
);
4938 ** Convert the text beginning at *pz into an integer and return
4939 ** its value. Advance *pz to point to the first character past
4942 static int fts3Getint(const char **pz
){
4943 const char *z
= *pz
;
4945 while( (*z
)>='0' && (*z
)<='9' ) i
= 10*i
+ *(z
++) - '0';
4951 ** Process statements of the form:
4953 ** INSERT INTO table(table) VALUES('merge=A,B');
4955 ** A and B are integers that decode to be the number of leaf pages
4956 ** written for the merge, and the minimum number of segments on a level
4957 ** before it will be selected for a merge, respectively.
4959 static int fts3DoIncrmerge(
4960 Fts3Table
*p
, /* FTS3 table handle */
4961 const char *zParam
/* Nul-terminated string containing "A,B" */
4964 int nMin
= (FTS3_MERGE_COUNT
/ 2);
4966 const char *z
= zParam
;
4968 /* Read the first integer value */
4969 nMerge
= fts3Getint(&z
);
4971 /* If the first integer value is followed by a ',', read the second
4972 ** integer value. */
4973 if( z
[0]==',' && z
[1]!='\0' ){
4975 nMin
= fts3Getint(&z
);
4978 if( z
[0]!='\0' || nMin
<2 ){
4983 assert( p
->bFts4
==0 );
4984 sqlite3Fts3CreateStatTable(&rc
, p
);
4986 if( rc
==SQLITE_OK
){
4987 rc
= sqlite3Fts3Incrmerge(p
, nMerge
, nMin
);
4989 sqlite3Fts3SegmentsClose(p
);
4995 ** Process statements of the form:
4997 ** INSERT INTO table(table) VALUES('automerge=X');
4999 ** where X is an integer. X==0 means to turn automerge off. X!=0 means
5000 ** turn it on. The setting is persistent.
5002 static int fts3DoAutoincrmerge(
5003 Fts3Table
*p
, /* FTS3 table handle */
5004 const char *zParam
/* Nul-terminated string containing boolean */
5007 sqlite3_stmt
*pStmt
= 0;
5008 p
->nAutoincrmerge
= fts3Getint(&zParam
);
5009 if( p
->nAutoincrmerge
==1 || p
->nAutoincrmerge
>FTS3_MERGE_COUNT
){
5010 p
->nAutoincrmerge
= 8;
5013 assert( p
->bFts4
==0 );
5014 sqlite3Fts3CreateStatTable(&rc
, p
);
5017 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pStmt
, 0);
5019 sqlite3_bind_int(pStmt
, 1, FTS_STAT_AUTOINCRMERGE
);
5020 sqlite3_bind_int(pStmt
, 2, p
->nAutoincrmerge
);
5021 sqlite3_step(pStmt
);
5022 rc
= sqlite3_reset(pStmt
);
5027 ** Return a 64-bit checksum for the FTS index entry specified by the
5028 ** arguments to this function.
5030 static u64
fts3ChecksumEntry(
5031 const char *zTerm
, /* Pointer to buffer containing term */
5032 int nTerm
, /* Size of zTerm in bytes */
5033 int iLangid
, /* Language id for current row */
5034 int iIndex
, /* Index (0..Fts3Table.nIndex-1) */
5035 i64 iDocid
, /* Docid for current row. */
5036 int iCol
, /* Column number */
5037 int iPos
/* Position */
5040 u64 ret
= (u64
)iDocid
;
5042 ret
+= (ret
<<3) + iLangid
;
5043 ret
+= (ret
<<3) + iIndex
;
5044 ret
+= (ret
<<3) + iCol
;
5045 ret
+= (ret
<<3) + iPos
;
5046 for(i
=0; i
<nTerm
; i
++) ret
+= (ret
<<3) + zTerm
[i
];
5052 ** Return a checksum of all entries in the FTS index that correspond to
5053 ** language id iLangid. The checksum is calculated by XORing the checksums
5054 ** of each individual entry (see fts3ChecksumEntry()) together.
5056 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
5057 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
5058 ** return value is undefined in this case.
5060 static u64
fts3ChecksumIndex(
5061 Fts3Table
*p
, /* FTS3 table handle */
5062 int iLangid
, /* Language id to return cksum for */
5063 int iIndex
, /* Index to cksum (0..p->nIndex-1) */
5064 int *pRc
/* OUT: Return code */
5066 Fts3SegFilter filter
;
5067 Fts3MultiSegReader csr
;
5071 assert( *pRc
==SQLITE_OK
);
5073 memset(&filter
, 0, sizeof(filter
));
5074 memset(&csr
, 0, sizeof(csr
));
5075 filter
.flags
= FTS3_SEGMENT_REQUIRE_POS
|FTS3_SEGMENT_IGNORE_EMPTY
;
5076 filter
.flags
|= FTS3_SEGMENT_SCAN
;
5078 rc
= sqlite3Fts3SegReaderCursor(
5079 p
, iLangid
, iIndex
, FTS3_SEGCURSOR_ALL
, 0, 0, 0, 1,&csr
5081 if( rc
==SQLITE_OK
){
5082 rc
= sqlite3Fts3SegReaderStart(p
, &csr
, &filter
);
5085 if( rc
==SQLITE_OK
){
5086 while( SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, &csr
)) ){
5087 char *pCsr
= csr
.aDoclist
;
5088 char *pEnd
= &pCsr
[csr
.nDoclist
];
5094 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iDocid
);
5097 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iVal
);
5099 if( iVal
==0 || iVal
==1 ){
5103 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iCol
);
5105 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iVal
);
5110 cksum
= cksum
^ fts3ChecksumEntry(
5111 csr
.zTerm
, csr
.nTerm
, iLangid
, iIndex
, iDocid
,
5112 (int)iCol
, (int)iPos
5119 sqlite3Fts3SegReaderFinish(&csr
);
5126 ** Check if the contents of the FTS index match the current contents of the
5127 ** content table. If no error occurs and the contents do match, set *pbOk
5128 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
5129 ** to false before returning.
5131 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
5132 ** code. The final value of *pbOk is undefined in this case.
5134 static int fts3IntegrityCheck(Fts3Table
*p
, int *pbOk
){
5135 int rc
= SQLITE_OK
; /* Return code */
5136 u64 cksum1
= 0; /* Checksum based on FTS index contents */
5137 u64 cksum2
= 0; /* Checksum based on %_content contents */
5138 sqlite3_stmt
*pAllLangid
= 0; /* Statement to return all language-ids */
5140 /* This block calculates the checksum according to the FTS index. */
5141 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
5142 if( rc
==SQLITE_OK
){
5144 sqlite3_bind_int(pAllLangid
, 1, p
->nIndex
);
5145 while( rc
==SQLITE_OK
&& sqlite3_step(pAllLangid
)==SQLITE_ROW
){
5146 int iLangid
= sqlite3_column_int(pAllLangid
, 0);
5148 for(i
=0; i
<p
->nIndex
; i
++){
5149 cksum1
= cksum1
^ fts3ChecksumIndex(p
, iLangid
, i
, &rc
);
5152 rc2
= sqlite3_reset(pAllLangid
);
5153 if( rc
==SQLITE_OK
) rc
= rc2
;
5156 /* This block calculates the checksum according to the %_content table */
5157 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
5158 if( rc
==SQLITE_OK
){
5159 sqlite3_tokenizer_module
const *pModule
= p
->pTokenizer
->pModule
;
5160 sqlite3_stmt
*pStmt
= 0;
5163 zSql
= sqlite3_mprintf("SELECT %s" , p
->zReadExprlist
);
5167 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, 0);
5171 while( rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
5172 i64 iDocid
= sqlite3_column_int64(pStmt
, 0);
5173 int iLang
= langidFromSelect(p
, pStmt
);
5176 for(iCol
=0; rc
==SQLITE_OK
&& iCol
<p
->nColumn
; iCol
++){
5177 if( p
->abNotindexed
[iCol
]==0 ){
5178 const char *zText
= (const char *)sqlite3_column_text(pStmt
, iCol
+1);
5179 int nText
= sqlite3_column_bytes(pStmt
, iCol
+1);
5180 sqlite3_tokenizer_cursor
*pT
= 0;
5182 rc
= sqlite3Fts3OpenTokenizer(p
->pTokenizer
, iLang
, zText
, nText
,&pT
);
5183 while( rc
==SQLITE_OK
){
5184 char const *zToken
; /* Buffer containing token */
5185 int nToken
= 0; /* Number of bytes in token */
5186 int iDum1
= 0, iDum2
= 0; /* Dummy variables */
5187 int iPos
= 0; /* Position of token in zText */
5189 rc
= pModule
->xNext(pT
, &zToken
, &nToken
, &iDum1
, &iDum2
, &iPos
);
5190 if( rc
==SQLITE_OK
){
5192 cksum2
= cksum2
^ fts3ChecksumEntry(
5193 zToken
, nToken
, iLang
, 0, iDocid
, iCol
, iPos
5195 for(i
=1; i
<p
->nIndex
; i
++){
5196 if( p
->aIndex
[i
].nPrefix
<=nToken
){
5197 cksum2
= cksum2
^ fts3ChecksumEntry(
5198 zToken
, p
->aIndex
[i
].nPrefix
, iLang
, i
, iDocid
, iCol
, iPos
5204 if( pT
) pModule
->xClose(pT
);
5205 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
5210 sqlite3_finalize(pStmt
);
5213 *pbOk
= (cksum1
==cksum2
);
5218 ** Run the integrity-check. If no error occurs and the current contents of
5219 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
5220 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
5222 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
5225 ** The integrity-check works as follows. For each token and indexed token
5226 ** prefix in the document set, a 64-bit checksum is calculated (by code
5227 ** in fts3ChecksumEntry()) based on the following:
5229 ** + The index number (0 for the main index, 1 for the first prefix
5231 ** + The token (or token prefix) text itself,
5232 ** + The language-id of the row it appears in,
5233 ** + The docid of the row it appears in,
5234 ** + The column it appears in, and
5235 ** + The tokens position within that column.
5237 ** The checksums for all entries in the index are XORed together to create
5238 ** a single checksum for the entire index.
5240 ** The integrity-check code calculates the same checksum in two ways:
5242 ** 1. By scanning the contents of the FTS index, and
5243 ** 2. By scanning and tokenizing the content table.
5245 ** If the two checksums are identical, the integrity-check is deemed to have
5248 static int fts3DoIntegrityCheck(
5249 Fts3Table
*p
/* FTS3 table handle */
5253 rc
= fts3IntegrityCheck(p
, &bOk
);
5254 if( rc
==SQLITE_OK
&& bOk
==0 ) rc
= SQLITE_CORRUPT_VTAB
;
5259 ** Handle a 'special' INSERT of the form:
5261 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
5263 ** Argument pVal contains the result of <expr>. Currently the only
5264 ** meaningful value to insert is the text 'optimize'.
5266 static int fts3SpecialInsert(Fts3Table
*p
, sqlite3_value
*pVal
){
5267 int rc
; /* Return Code */
5268 const char *zVal
= (const char *)sqlite3_value_text(pVal
);
5269 int nVal
= sqlite3_value_bytes(pVal
);
5272 return SQLITE_NOMEM
;
5273 }else if( nVal
==8 && 0==sqlite3_strnicmp(zVal
, "optimize", 8) ){
5274 rc
= fts3DoOptimize(p
, 0);
5275 }else if( nVal
==7 && 0==sqlite3_strnicmp(zVal
, "rebuild", 7) ){
5276 rc
= fts3DoRebuild(p
);
5277 }else if( nVal
==15 && 0==sqlite3_strnicmp(zVal
, "integrity-check", 15) ){
5278 rc
= fts3DoIntegrityCheck(p
);
5279 }else if( nVal
>6 && 0==sqlite3_strnicmp(zVal
, "merge=", 6) ){
5280 rc
= fts3DoIncrmerge(p
, &zVal
[6]);
5281 }else if( nVal
>10 && 0==sqlite3_strnicmp(zVal
, "automerge=", 10) ){
5282 rc
= fts3DoAutoincrmerge(p
, &zVal
[10]);
5284 }else if( nVal
>9 && 0==sqlite3_strnicmp(zVal
, "nodesize=", 9) ){
5285 p
->nNodeSize
= atoi(&zVal
[9]);
5287 }else if( nVal
>11 && 0==sqlite3_strnicmp(zVal
, "maxpending=", 9) ){
5288 p
->nMaxPendingData
= atoi(&zVal
[11]);
5290 }else if( nVal
>21 && 0==sqlite3_strnicmp(zVal
, "test-no-incr-doclist=", 21) ){
5291 p
->bNoIncrDoclist
= atoi(&zVal
[21]);
5301 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5303 ** Delete all cached deferred doclists. Deferred doclists are cached
5304 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5306 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor
*pCsr
){
5307 Fts3DeferredToken
*pDef
;
5308 for(pDef
=pCsr
->pDeferred
; pDef
; pDef
=pDef
->pNext
){
5309 fts3PendingListDelete(pDef
->pList
);
5315 ** Free all entries in the pCsr->pDeffered list. Entries are added to
5316 ** this list using sqlite3Fts3DeferToken().
5318 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor
*pCsr
){
5319 Fts3DeferredToken
*pDef
;
5320 Fts3DeferredToken
*pNext
;
5321 for(pDef
=pCsr
->pDeferred
; pDef
; pDef
=pNext
){
5322 pNext
= pDef
->pNext
;
5323 fts3PendingListDelete(pDef
->pList
);
5326 pCsr
->pDeferred
= 0;
5330 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
5331 ** based on the row that pCsr currently points to.
5333 ** A deferred-doclist is like any other doclist with position information
5334 ** included, except that it only contains entries for a single row of the
5335 ** table, not for all rows.
5337 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor
*pCsr
){
5338 int rc
= SQLITE_OK
; /* Return code */
5339 if( pCsr
->pDeferred
){
5340 int i
; /* Used to iterate through table columns */
5341 sqlite3_int64 iDocid
; /* Docid of the row pCsr points to */
5342 Fts3DeferredToken
*pDef
; /* Used to iterate through deferred tokens */
5344 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
5345 sqlite3_tokenizer
*pT
= p
->pTokenizer
;
5346 sqlite3_tokenizer_module
const *pModule
= pT
->pModule
;
5348 assert( pCsr
->isRequireSeek
==0 );
5349 iDocid
= sqlite3_column_int64(pCsr
->pStmt
, 0);
5351 for(i
=0; i
<p
->nColumn
&& rc
==SQLITE_OK
; i
++){
5352 if( p
->abNotindexed
[i
]==0 ){
5353 const char *zText
= (const char *)sqlite3_column_text(pCsr
->pStmt
, i
+1);
5354 sqlite3_tokenizer_cursor
*pTC
= 0;
5356 rc
= sqlite3Fts3OpenTokenizer(pT
, pCsr
->iLangid
, zText
, -1, &pTC
);
5357 while( rc
==SQLITE_OK
){
5358 char const *zToken
; /* Buffer containing token */
5359 int nToken
= 0; /* Number of bytes in token */
5360 int iDum1
= 0, iDum2
= 0; /* Dummy variables */
5361 int iPos
= 0; /* Position of token in zText */
5363 rc
= pModule
->xNext(pTC
, &zToken
, &nToken
, &iDum1
, &iDum2
, &iPos
);
5364 for(pDef
=pCsr
->pDeferred
; pDef
&& rc
==SQLITE_OK
; pDef
=pDef
->pNext
){
5365 Fts3PhraseToken
*pPT
= pDef
->pToken
;
5366 if( (pDef
->iCol
>=p
->nColumn
|| pDef
->iCol
==i
)
5367 && (pPT
->bFirst
==0 || iPos
==0)
5368 && (pPT
->n
==nToken
|| (pPT
->isPrefix
&& pPT
->n
<nToken
))
5369 && (0==memcmp(zToken
, pPT
->z
, pPT
->n
))
5371 fts3PendingListAppend(&pDef
->pList
, iDocid
, i
, iPos
, &rc
);
5375 if( pTC
) pModule
->xClose(pTC
);
5376 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
5380 for(pDef
=pCsr
->pDeferred
; pDef
&& rc
==SQLITE_OK
; pDef
=pDef
->pNext
){
5382 rc
= fts3PendingListAppendVarint(&pDef
->pList
, 0);
5390 int sqlite3Fts3DeferredTokenList(
5391 Fts3DeferredToken
*p
,
5397 sqlite3_int64 dummy
;
5406 pRet
= (char *)sqlite3_malloc(p
->pList
->nData
);
5407 if( !pRet
) return SQLITE_NOMEM
;
5409 nSkip
= sqlite3Fts3GetVarint(p
->pList
->aData
, &dummy
);
5410 *pnData
= p
->pList
->nData
- nSkip
;
5413 memcpy(pRet
, &p
->pList
->aData
[nSkip
], *pnData
);
5418 ** Add an entry for token pToken to the pCsr->pDeferred list.
5420 int sqlite3Fts3DeferToken(
5421 Fts3Cursor
*pCsr
, /* Fts3 table cursor */
5422 Fts3PhraseToken
*pToken
, /* Token to defer */
5423 int iCol
/* Column that token must appear in (or -1) */
5425 Fts3DeferredToken
*pDeferred
;
5426 pDeferred
= sqlite3_malloc(sizeof(*pDeferred
));
5428 return SQLITE_NOMEM
;
5430 memset(pDeferred
, 0, sizeof(*pDeferred
));
5431 pDeferred
->pToken
= pToken
;
5432 pDeferred
->pNext
= pCsr
->pDeferred
;
5433 pDeferred
->iCol
= iCol
;
5434 pCsr
->pDeferred
= pDeferred
;
5436 assert( pToken
->pDeferred
==0 );
5437 pToken
->pDeferred
= pDeferred
;
5444 ** SQLite value pRowid contains the rowid of a row that may or may not be
5445 ** present in the FTS3 table. If it is, delete it and adjust the contents
5446 ** of subsiduary data structures accordingly.
5448 static int fts3DeleteByRowid(
5450 sqlite3_value
*pRowid
,
5451 int *pnChng
, /* IN/OUT: Decrement if row is deleted */
5454 int rc
= SQLITE_OK
; /* Return code */
5455 int bFound
= 0; /* True if *pRowid really is in the table */
5457 fts3DeleteTerms(&rc
, p
, pRowid
, aSzDel
, &bFound
);
5458 if( bFound
&& rc
==SQLITE_OK
){
5459 int isEmpty
= 0; /* Deleting *pRowid leaves the table empty */
5460 rc
= fts3IsEmpty(p
, pRowid
, &isEmpty
);
5461 if( rc
==SQLITE_OK
){
5463 /* Deleting this row means the whole table is empty. In this case
5464 ** delete the contents of all three tables and throw away any
5465 ** data in the pendingTerms hash table. */
5466 rc
= fts3DeleteAll(p
, 1);
5468 memset(aSzDel
, 0, sizeof(u32
) * (p
->nColumn
+1) * 2);
5470 *pnChng
= *pnChng
- 1;
5471 if( p
->zContentTbl
==0 ){
5472 fts3SqlExec(&rc
, p
, SQL_DELETE_CONTENT
, &pRowid
);
5474 if( p
->bHasDocsize
){
5475 fts3SqlExec(&rc
, p
, SQL_DELETE_DOCSIZE
, &pRowid
);
5485 ** This function does the work for the xUpdate method of FTS3 virtual
5486 ** tables. The schema of the virtual table being:
5488 ** CREATE TABLE <table name>(
5490 ** <table name> HIDDEN,
5497 int sqlite3Fts3UpdateMethod(
5498 sqlite3_vtab
*pVtab
, /* FTS3 vtab object */
5499 int nArg
, /* Size of argument array */
5500 sqlite3_value
**apVal
, /* Array of arguments */
5501 sqlite_int64
*pRowid
/* OUT: The affected (or effected) rowid */
5503 Fts3Table
*p
= (Fts3Table
*)pVtab
;
5504 int rc
= SQLITE_OK
; /* Return Code */
5505 int isRemove
= 0; /* True for an UPDATE or DELETE */
5506 u32
*aSzIns
= 0; /* Sizes of inserted documents */
5507 u32
*aSzDel
= 0; /* Sizes of deleted documents */
5508 int nChng
= 0; /* Net change in number of documents */
5509 int bInsertDone
= 0;
5511 /* At this point it must be known if the %_stat table exists or not.
5512 ** So bHasStat may not be 2. */
5513 assert( p
->bHasStat
==0 || p
->bHasStat
==1 );
5515 assert( p
->pSegments
==0 );
5517 nArg
==1 /* DELETE operations */
5518 || nArg
==(2 + p
->nColumn
+ 3) /* INSERT or UPDATE operations */
5521 /* Check for a "special" INSERT operation. One of the form:
5523 ** INSERT INTO xyz(xyz) VALUES('command');
5526 && sqlite3_value_type(apVal
[0])==SQLITE_NULL
5527 && sqlite3_value_type(apVal
[p
->nColumn
+2])!=SQLITE_NULL
5529 rc
= fts3SpecialInsert(p
, apVal
[p
->nColumn
+2]);
5533 if( nArg
>1 && sqlite3_value_int(apVal
[2 + p
->nColumn
+ 2])<0 ){
5534 rc
= SQLITE_CONSTRAINT
;
5538 /* Allocate space to hold the change in document sizes */
5539 aSzDel
= sqlite3_malloc( sizeof(aSzDel
[0])*(p
->nColumn
+1)*2 );
5544 aSzIns
= &aSzDel
[p
->nColumn
+1];
5545 memset(aSzDel
, 0, sizeof(aSzDel
[0])*(p
->nColumn
+1)*2);
5547 rc
= fts3Writelock(p
);
5548 if( rc
!=SQLITE_OK
) goto update_out
;
5550 /* If this is an INSERT operation, or an UPDATE that modifies the rowid
5551 ** value, then this operation requires constraint handling.
5553 ** If the on-conflict mode is REPLACE, this means that the existing row
5554 ** should be deleted from the database before inserting the new row. Or,
5555 ** if the on-conflict mode is other than REPLACE, then this method must
5556 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
5557 ** modify the database file.
5559 if( nArg
>1 && p
->zContentTbl
==0 ){
5560 /* Find the value object that holds the new rowid value. */
5561 sqlite3_value
*pNewRowid
= apVal
[3+p
->nColumn
];
5562 if( sqlite3_value_type(pNewRowid
)==SQLITE_NULL
){
5563 pNewRowid
= apVal
[1];
5566 if( sqlite3_value_type(pNewRowid
)!=SQLITE_NULL
&& (
5567 sqlite3_value_type(apVal
[0])==SQLITE_NULL
5568 || sqlite3_value_int64(apVal
[0])!=sqlite3_value_int64(pNewRowid
)
5570 /* The new rowid is not NULL (in this case the rowid will be
5571 ** automatically assigned and there is no chance of a conflict), and
5572 ** the statement is either an INSERT or an UPDATE that modifies the
5573 ** rowid column. So if the conflict mode is REPLACE, then delete any
5574 ** existing row with rowid=pNewRowid.
5576 ** Or, if the conflict mode is not REPLACE, insert the new record into
5577 ** the %_content table. If we hit the duplicate rowid constraint (or any
5578 ** other error) while doing so, return immediately.
5580 ** This branch may also run if pNewRowid contains a value that cannot
5581 ** be losslessly converted to an integer. In this case, the eventual
5582 ** call to fts3InsertData() (either just below or further on in this
5583 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
5584 ** invoked, it will delete zero rows (since no row will have
5585 ** docid=$pNewRowid if $pNewRowid is not an integer value).
5587 if( sqlite3_vtab_on_conflict(p
->db
)==SQLITE_REPLACE
){
5588 rc
= fts3DeleteByRowid(p
, pNewRowid
, &nChng
, aSzDel
);
5590 rc
= fts3InsertData(p
, apVal
, pRowid
);
5595 if( rc
!=SQLITE_OK
){
5599 /* If this is a DELETE or UPDATE operation, remove the old record. */
5600 if( sqlite3_value_type(apVal
[0])!=SQLITE_NULL
){
5601 assert( sqlite3_value_type(apVal
[0])==SQLITE_INTEGER
);
5602 rc
= fts3DeleteByRowid(p
, apVal
[0], &nChng
, aSzDel
);
5606 /* If this is an INSERT or UPDATE operation, insert the new record. */
5607 if( nArg
>1 && rc
==SQLITE_OK
){
5608 int iLangid
= sqlite3_value_int(apVal
[2 + p
->nColumn
+ 2]);
5609 if( bInsertDone
==0 ){
5610 rc
= fts3InsertData(p
, apVal
, pRowid
);
5611 if( rc
==SQLITE_CONSTRAINT
&& p
->zContentTbl
==0 ){
5612 rc
= FTS_CORRUPT_VTAB
;
5615 if( rc
==SQLITE_OK
&& (!isRemove
|| *pRowid
!=p
->iPrevDocid
) ){
5616 rc
= fts3PendingTermsDocid(p
, iLangid
, *pRowid
);
5618 if( rc
==SQLITE_OK
){
5619 assert( p
->iPrevDocid
==*pRowid
);
5620 rc
= fts3InsertTerms(p
, iLangid
, apVal
, aSzIns
);
5622 if( p
->bHasDocsize
){
5623 fts3InsertDocsize(&rc
, p
, aSzIns
);
5629 fts3UpdateDocTotals(&rc
, p
, aSzIns
, aSzDel
, nChng
);
5633 sqlite3_free(aSzDel
);
5634 sqlite3Fts3SegmentsClose(p
);
5639 ** Flush any data in the pending-terms hash table to disk. If successful,
5640 ** merge all segments in the database (including the new segment, if
5641 ** there was any data to flush) into a single segment.
5643 int sqlite3Fts3Optimize(Fts3Table
*p
){
5645 rc
= sqlite3_exec(p
->db
, "SAVEPOINT fts3", 0, 0, 0);
5646 if( rc
==SQLITE_OK
){
5647 rc
= fts3DoOptimize(p
, 1);
5648 if( rc
==SQLITE_OK
|| rc
==SQLITE_DONE
){
5649 int rc2
= sqlite3_exec(p
->db
, "RELEASE fts3", 0, 0, 0);
5650 if( rc2
!=SQLITE_OK
) rc
= rc2
;
5652 sqlite3_exec(p
->db
, "ROLLBACK TO fts3", 0, 0, 0);
5653 sqlite3_exec(p
->db
, "RELEASE fts3", 0, 0, 0);
5656 sqlite3Fts3SegmentsClose(p
);