4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices. These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
18 ** The following system tables are or have been supported:
20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 and later and with
31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced
33 ** version of sqlite_stat3 and is only available when compiled with
34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is
35 ** not possible to enable both STAT3 and STAT4 at the same time. If they
36 ** are both enabled, then STAT4 takes precedence.
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
41 ** Format of sqlite_stat1:
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column. The tbl column is the name of the table to
45 ** which the index belongs. In each such row, the stat column will be
46 ** a string consisting of a list of integers. The first integer in this
47 ** list is the number of rows in the index. (This is the same as the
48 ** number of rows in the table, except for partial indices.) The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index. The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns. The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns. For
54 ** a K-column index, there will be K+1 integers in the stat column. If
55 ** the index is unique, then the last integer will be 1.
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered". The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space. If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
67 ** Format of sqlite_stat2:
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information
72 ** about the distribution of keys within an index. The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs. There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index. Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
83 ** rownumber = (i*C*2 + C)/(S*2)
85 ** For i between 0 and S-1. Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
88 ** The format for sqlite_stat2 is recorded here for legacy reference. This
89 ** version of SQLite does not support sqlite_stat2. It neither reads nor
90 ** writes the sqlite_stat2 table. This version of SQLite only supports
93 ** Format for sqlite_stat3:
95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
96 ** sqlite_stat4 format will be described first. Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
99 ** Format for sqlite_stat4:
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index. If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
110 ** binary encoding of a key from the index. The nEq column is a
111 ** list of integers. The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample. The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth. nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample. The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample. The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
132 ** Format for sqlite_stat3 redux:
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index. The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
145 #if defined(SQLITE_ENABLE_STAT4)
148 #elif defined(SQLITE_ENABLE_STAT3)
154 # undef SQLITE_STAT4_SAMPLES
155 # define SQLITE_STAT4_SAMPLES 1
157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */
160 ** This routine generates code that opens the sqlite_statN tables.
161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
163 ** appropriate compile-time options are provided.
165 ** If the sqlite_statN tables do not previously exist, it is created.
167 ** Argument zWhere may be a pointer to a buffer containing a table name,
168 ** or it may be a NULL pointer. If it is not NULL, then all entries in
169 ** the sqlite_statN tables associated with the named table are deleted.
170 ** If zWhere==0, then code is generated to delete all stat table entries.
172 static void openStatTable(
173 Parse
*pParse
, /* Parsing context */
174 int iDb
, /* The database we are looking in */
175 int iStatCur
, /* Open the sqlite_stat1 table on this cursor */
176 const char *zWhere
, /* Delete entries for this table or index */
177 const char *zWhereType
/* Either "tbl" or "idx" */
179 static const struct {
183 { "sqlite_stat1", "tbl,idx,stat" },
184 #if defined(SQLITE_ENABLE_STAT4)
185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
186 { "sqlite_stat3", 0 },
187 #elif defined(SQLITE_ENABLE_STAT3)
188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
189 { "sqlite_stat4", 0 },
191 { "sqlite_stat3", 0 },
192 { "sqlite_stat4", 0 },
196 sqlite3
*db
= pParse
->db
;
198 Vdbe
*v
= sqlite3GetVdbe(pParse
);
199 int aRoot
[ArraySize(aTable
)];
200 u8 aCreateTbl
[ArraySize(aTable
)];
203 assert( sqlite3BtreeHoldsAllMutexes(db
) );
204 assert( sqlite3VdbeDb(v
)==db
);
207 /* Create new statistic tables if they do not exist, or clear them
208 ** if they do already exist.
210 for(i
=0; i
<ArraySize(aTable
); i
++){
211 const char *zTab
= aTable
[i
].zName
;
213 if( (pStat
= sqlite3FindTable(db
, zTab
, pDb
->zName
))==0 ){
214 if( aTable
[i
].zCols
){
215 /* The sqlite_statN table does not exist. Create it. Note that a
216 ** side-effect of the CREATE TABLE statement is to leave the rootpage
217 ** of the new table in register pParse->regRoot. This is important
218 ** because the OpenWrite opcode below will be needing it. */
219 sqlite3NestedParse(pParse
,
220 "CREATE TABLE %Q.%s(%s)", pDb
->zName
, zTab
, aTable
[i
].zCols
222 aRoot
[i
] = pParse
->regRoot
;
223 aCreateTbl
[i
] = OPFLAG_P2ISREG
;
226 /* The table already exists. If zWhere is not NULL, delete all entries
227 ** associated with the table zWhere. If zWhere is NULL, delete the
228 ** entire contents of the table. */
229 aRoot
[i
] = pStat
->tnum
;
231 sqlite3TableLock(pParse
, iDb
, aRoot
[i
], 1, zTab
);
233 sqlite3NestedParse(pParse
,
234 "DELETE FROM %Q.%s WHERE %s=%Q",
235 pDb
->zName
, zTab
, zWhereType
, zWhere
238 /* The sqlite_stat[134] table already exists. Delete all rows. */
239 sqlite3VdbeAddOp2(v
, OP_Clear
, aRoot
[i
], iDb
);
244 /* Open the sqlite_stat[134] tables for writing. */
245 for(i
=0; aTable
[i
].zCols
; i
++){
246 assert( i
<ArraySize(aTable
) );
247 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, iStatCur
+i
, aRoot
[i
], iDb
, 3);
248 sqlite3VdbeChangeP5(v
, aCreateTbl
[i
]);
249 VdbeComment((v
, aTable
[i
].zName
));
254 ** Recommended number of samples for sqlite_stat4
256 #ifndef SQLITE_STAT4_SAMPLES
257 # define SQLITE_STAT4_SAMPLES 24
261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
262 ** share an instance of the following structure to hold their state
265 typedef struct Stat4Accum Stat4Accum
;
266 typedef struct Stat4Sample Stat4Sample
;
268 tRowcnt
*anEq
; /* sqlite_stat4.nEq */
269 tRowcnt
*anDLt
; /* sqlite_stat4.nDLt */
270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
271 tRowcnt
*anLt
; /* sqlite_stat4.nLt */
273 i64 iRowid
; /* Rowid in main table of the key */
274 u8
*aRowid
; /* Key for WITHOUT ROWID tables */
276 u32 nRowid
; /* Sizeof aRowid[] */
277 u8 isPSample
; /* True if a periodic sample */
278 int iCol
; /* If !isPSample, the reason for inclusion */
279 u32 iHash
; /* Tiebreaker hash */
283 tRowcnt nRow
; /* Number of rows in the entire table */
284 tRowcnt nPSample
; /* How often to do a periodic sample */
285 int nCol
; /* Number of columns in index + pk/rowid */
286 int nKeyCol
; /* Number of index columns w/o the pk/rowid */
287 int mxSample
; /* Maximum number of samples to accumulate */
288 Stat4Sample current
; /* Current row as a Stat4Sample */
289 u32 iPrn
; /* Pseudo-random number used for sampling */
290 Stat4Sample
*aBest
; /* Array of nCol best samples */
291 int iMin
; /* Index in a[] of entry with minimum score */
292 int nSample
; /* Current number of samples */
293 int iGet
; /* Index of current sample accessed by stat_get() */
294 Stat4Sample
*a
; /* Array of mxSample Stat4Sample objects */
295 sqlite3
*db
; /* Database connection, for malloc() */
298 /* Reclaim memory used by a Stat4Sample
300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
301 static void sampleClear(sqlite3
*db
, Stat4Sample
*p
){
304 sqlite3DbFree(db
, p
->u
.aRowid
);
310 /* Initialize the BLOB value of a ROWID
312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
313 static void sampleSetRowid(sqlite3
*db
, Stat4Sample
*p
, int n
, const u8
*pData
){
315 if( p
->nRowid
) sqlite3DbFree(db
, p
->u
.aRowid
);
316 p
->u
.aRowid
= sqlite3DbMallocRaw(db
, n
);
319 memcpy(p
->u
.aRowid
, pData
, n
);
326 /* Initialize the INTEGER value of a ROWID.
328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
329 static void sampleSetRowidInt64(sqlite3
*db
, Stat4Sample
*p
, i64 iRowid
){
331 if( p
->nRowid
) sqlite3DbFree(db
, p
->u
.aRowid
);
333 p
->u
.iRowid
= iRowid
;
339 ** Copy the contents of object (*pFrom) into (*pTo).
341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
342 static void sampleCopy(Stat4Accum
*p
, Stat4Sample
*pTo
, Stat4Sample
*pFrom
){
343 pTo
->isPSample
= pFrom
->isPSample
;
344 pTo
->iCol
= pFrom
->iCol
;
345 pTo
->iHash
= pFrom
->iHash
;
346 memcpy(pTo
->anEq
, pFrom
->anEq
, sizeof(tRowcnt
)*p
->nCol
);
347 memcpy(pTo
->anLt
, pFrom
->anLt
, sizeof(tRowcnt
)*p
->nCol
);
348 memcpy(pTo
->anDLt
, pFrom
->anDLt
, sizeof(tRowcnt
)*p
->nCol
);
350 sampleSetRowid(p
->db
, pTo
, pFrom
->nRowid
, pFrom
->u
.aRowid
);
352 sampleSetRowidInt64(p
->db
, pTo
, pFrom
->u
.iRowid
);
358 ** Reclaim all memory of a Stat4Accum structure.
360 static void stat4Destructor(void *pOld
){
361 Stat4Accum
*p
= (Stat4Accum
*)pOld
;
362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
364 for(i
=0; i
<p
->nCol
; i
++) sampleClear(p
->db
, p
->aBest
+i
);
365 for(i
=0; i
<p
->mxSample
; i
++) sampleClear(p
->db
, p
->a
+i
);
366 sampleClear(p
->db
, &p
->current
);
368 sqlite3DbFree(p
->db
, p
);
372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters
374 ** N: The number of columns in the index including the rowid/pk (note 1)
375 ** K: The number of columns in the index excluding the rowid/pk.
376 ** C: The number of rows in the index (note 2)
378 ** Note 1: In the special case of the covering index that implements a
379 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
380 ** total number of columns in the table.
382 ** Note 2: C is only used for STAT3 and STAT4.
384 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on
385 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
386 ** PRIMARY KEY of the table. The covering index that implements the
387 ** original WITHOUT ROWID table as N==K as a special case.
389 ** This routine allocates the Stat4Accum object in heap memory. The return
390 ** value is a pointer to the Stat4Accum object. The datatype of the
391 ** return value is BLOB, but it is really just a pointer to the Stat4Accum
394 static void statInit(
395 sqlite3_context
*context
,
400 int nCol
; /* Number of columns in index being sampled */
401 int nKeyCol
; /* Number of key columns */
402 int nColUp
; /* nCol rounded up for alignment */
403 int n
; /* Bytes of space to allocate */
404 sqlite3
*db
; /* Database connection */
405 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
406 int mxSample
= SQLITE_STAT4_SAMPLES
;
409 /* Decode the three function arguments */
410 UNUSED_PARAMETER(argc
);
411 nCol
= sqlite3_value_int(argv
[0]);
413 nColUp
= sizeof(tRowcnt
)<8 ? (nCol
+1)&~1 : nCol
;
414 nKeyCol
= sqlite3_value_int(argv
[1]);
415 assert( nKeyCol
<=nCol
);
418 /* Allocate the space required for the Stat4Accum object */
420 + sizeof(tRowcnt
)*nColUp
/* Stat4Accum.anEq */
421 + sizeof(tRowcnt
)*nColUp
/* Stat4Accum.anDLt */
422 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
423 + sizeof(tRowcnt
)*nColUp
/* Stat4Accum.anLt */
424 + sizeof(Stat4Sample
)*(nCol
+mxSample
) /* Stat4Accum.aBest[], a[] */
425 + sizeof(tRowcnt
)*3*nColUp
*(nCol
+mxSample
)
428 db
= sqlite3_context_db_handle(context
);
429 p
= sqlite3DbMallocZero(db
, n
);
431 sqlite3_result_error_nomem(context
);
438 p
->nKeyCol
= nKeyCol
;
439 p
->current
.anDLt
= (tRowcnt
*)&p
[1];
440 p
->current
.anEq
= &p
->current
.anDLt
[nColUp
];
442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
444 u8
*pSpace
; /* Allocated space not yet assigned */
445 int i
; /* Used to iterate through p->aSample[] */
448 p
->mxSample
= mxSample
;
449 p
->nPSample
= (tRowcnt
)(sqlite3_value_int64(argv
[2])/(mxSample
/3+1) + 1);
450 p
->current
.anLt
= &p
->current
.anEq
[nColUp
];
451 p
->iPrn
= nCol
*0x689e962d ^ sqlite3_value_int(argv
[2])*0xd0944565;
453 /* Set up the Stat4Accum.a[] and aBest[] arrays */
454 p
->a
= (struct Stat4Sample
*)&p
->current
.anLt
[nColUp
];
455 p
->aBest
= &p
->a
[mxSample
];
456 pSpace
= (u8
*)(&p
->a
[mxSample
+nCol
]);
457 for(i
=0; i
<(mxSample
+nCol
); i
++){
458 p
->a
[i
].anEq
= (tRowcnt
*)pSpace
; pSpace
+= (sizeof(tRowcnt
) * nColUp
);
459 p
->a
[i
].anLt
= (tRowcnt
*)pSpace
; pSpace
+= (sizeof(tRowcnt
) * nColUp
);
460 p
->a
[i
].anDLt
= (tRowcnt
*)pSpace
; pSpace
+= (sizeof(tRowcnt
) * nColUp
);
462 assert( (pSpace
- (u8
*)p
)==n
);
464 for(i
=0; i
<nCol
; i
++){
465 p
->aBest
[i
].iCol
= i
;
470 /* Return a pointer to the allocated object to the caller. Note that
471 ** only the pointer (the 2nd parameter) matters. The size of the object
472 ** (given by the 3rd parameter) is never used and can be any positive
474 sqlite3_result_blob(context
, p
, sizeof(*p
), stat4Destructor
);
476 static const FuncDef statInitFuncdef
= {
477 2+IsStat34
, /* nArg */
478 SQLITE_UTF8
, /* funcFlags */
481 statInit
, /* xFunc */
484 "stat_init", /* zName */
489 #ifdef SQLITE_ENABLE_STAT4
491 ** pNew and pOld are both candidate non-periodic samples selected for
492 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
493 ** considering only any trailing columns and the sample hash value, this
494 ** function returns true if sample pNew is to be preferred over pOld.
495 ** In other words, if we assume that the cardinalities of the selected
496 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
498 ** This function assumes that for each argument sample, the contents of
499 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
501 static int sampleIsBetterPost(
506 int nCol
= pAccum
->nCol
;
508 assert( pNew
->iCol
==pOld
->iCol
);
509 for(i
=pNew
->iCol
+1; i
<nCol
; i
++){
510 if( pNew
->anEq
[i
]>pOld
->anEq
[i
] ) return 1;
511 if( pNew
->anEq
[i
]<pOld
->anEq
[i
] ) return 0;
513 if( pNew
->iHash
>pOld
->iHash
) return 1;
518 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
520 ** Return true if pNew is to be preferred over pOld.
522 ** This function assumes that for each argument sample, the contents of
523 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
525 static int sampleIsBetter(
530 tRowcnt nEqNew
= pNew
->anEq
[pNew
->iCol
];
531 tRowcnt nEqOld
= pOld
->anEq
[pOld
->iCol
];
533 assert( pOld
->isPSample
==0 && pNew
->isPSample
==0 );
534 assert( IsStat4
|| (pNew
->iCol
==0 && pOld
->iCol
==0) );
536 if( (nEqNew
>nEqOld
) ) return 1;
537 #ifdef SQLITE_ENABLE_STAT4
538 if( nEqNew
==nEqOld
){
539 if( pNew
->iCol
<pOld
->iCol
) return 1;
540 return (pNew
->iCol
==pOld
->iCol
&& sampleIsBetterPost(pAccum
, pNew
, pOld
));
544 return (nEqNew
==nEqOld
&& pNew
->iHash
>pOld
->iHash
);
549 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
550 ** remove the least desirable sample from p->a[] to make room.
552 static void sampleInsert(Stat4Accum
*p
, Stat4Sample
*pNew
, int nEqZero
){
553 Stat4Sample
*pSample
= 0;
556 assert( IsStat4
|| nEqZero
==0 );
558 #ifdef SQLITE_ENABLE_STAT4
559 if( pNew
->isPSample
==0 ){
560 Stat4Sample
*pUpgrade
= 0;
561 assert( pNew
->anEq
[pNew
->iCol
]>0 );
563 /* This sample is being added because the prefix that ends in column
564 ** iCol occurs many times in the table. However, if we have already
565 ** added a sample that shares this prefix, there is no need to add
566 ** this one. Instead, upgrade the priority of the highest priority
567 ** existing sample that shares this prefix. */
568 for(i
=p
->nSample
-1; i
>=0; i
--){
569 Stat4Sample
*pOld
= &p
->a
[i
];
570 if( pOld
->anEq
[pNew
->iCol
]==0 ){
571 if( pOld
->isPSample
) return;
572 assert( pOld
->iCol
>pNew
->iCol
);
573 assert( sampleIsBetter(p
, pNew
, pOld
) );
574 if( pUpgrade
==0 || sampleIsBetter(p
, pOld
, pUpgrade
) ){
580 pUpgrade
->iCol
= pNew
->iCol
;
581 pUpgrade
->anEq
[pUpgrade
->iCol
] = pNew
->anEq
[pUpgrade
->iCol
];
587 /* If necessary, remove sample iMin to make room for the new sample. */
588 if( p
->nSample
>=p
->mxSample
){
589 Stat4Sample
*pMin
= &p
->a
[p
->iMin
];
590 tRowcnt
*anEq
= pMin
->anEq
;
591 tRowcnt
*anLt
= pMin
->anLt
;
592 tRowcnt
*anDLt
= pMin
->anDLt
;
593 sampleClear(p
->db
, pMin
);
594 memmove(pMin
, &pMin
[1], sizeof(p
->a
[0])*(p
->nSample
-p
->iMin
-1));
595 pSample
= &p
->a
[p
->nSample
-1];
597 pSample
->anEq
= anEq
;
598 pSample
->anDLt
= anDLt
;
599 pSample
->anLt
= anLt
;
600 p
->nSample
= p
->mxSample
-1;
603 /* The "rows less-than" for the rowid column must be greater than that
604 ** for the last sample in the p->a[] array. Otherwise, the samples would
605 ** be out of order. */
606 #ifdef SQLITE_ENABLE_STAT4
607 assert( p
->nSample
==0
608 || pNew
->anLt
[p
->nCol
-1] > p
->a
[p
->nSample
-1].anLt
[p
->nCol
-1] );
611 /* Insert the new sample */
612 pSample
= &p
->a
[p
->nSample
];
613 sampleCopy(p
, pSample
, pNew
);
616 /* Zero the first nEqZero entries in the anEq[] array. */
617 memset(pSample
->anEq
, 0, sizeof(tRowcnt
)*nEqZero
);
619 #ifdef SQLITE_ENABLE_STAT4
622 if( p
->nSample
>=p
->mxSample
){
624 for(i
=0; i
<p
->mxSample
; i
++){
625 if( p
->a
[i
].isPSample
) continue;
626 if( iMin
<0 || sampleIsBetter(p
, &p
->a
[iMin
], &p
->a
[i
]) ){
634 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
637 ** Field iChng of the index being scanned has changed. So at this point
638 ** p->current contains a sample that reflects the previous row of the
639 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
640 ** correct at this point.
642 static void samplePushPrevious(Stat4Accum
*p
, int iChng
){
643 #ifdef SQLITE_ENABLE_STAT4
646 /* Check if any samples from the aBest[] array should be pushed
647 ** into IndexSample.a[] at this point. */
648 for(i
=(p
->nCol
-2); i
>=iChng
; i
--){
649 Stat4Sample
*pBest
= &p
->aBest
[i
];
650 pBest
->anEq
[i
] = p
->current
.anEq
[i
];
651 if( p
->nSample
<p
->mxSample
|| sampleIsBetter(p
, pBest
, &p
->a
[p
->iMin
]) ){
652 sampleInsert(p
, pBest
, i
);
656 /* Update the anEq[] fields of any samples already collected. */
657 for(i
=p
->nSample
-1; i
>=0; i
--){
659 for(j
=iChng
; j
<p
->nCol
; j
++){
660 if( p
->a
[i
].anEq
[j
]==0 ) p
->a
[i
].anEq
[j
] = p
->current
.anEq
[j
];
665 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
667 tRowcnt nLt
= p
->current
.anLt
[0];
668 tRowcnt nEq
= p
->current
.anEq
[0];
670 /* Check if this is to be a periodic sample. If so, add it. */
671 if( (nLt
/p
->nPSample
)!=(nLt
+nEq
)/p
->nPSample
){
672 p
->current
.isPSample
= 1;
673 sampleInsert(p
, &p
->current
, 0);
674 p
->current
.isPSample
= 0;
677 /* Or if it is a non-periodic sample. Add it in this case too. */
678 if( p
->nSample
<p
->mxSample
679 || sampleIsBetter(p
, &p
->current
, &p
->a
[p
->iMin
])
681 sampleInsert(p
, &p
->current
, 0);
686 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
687 UNUSED_PARAMETER( p
);
688 UNUSED_PARAMETER( iChng
);
693 ** Implementation of the stat_push SQL function: stat_push(P,C,R)
696 ** P Pointer to the Stat4Accum object created by stat_init()
697 ** C Index of left-most column to differ from previous row
698 ** R Rowid for the current row. Might be a key record for
699 ** WITHOUT ROWID tables.
701 ** This SQL function always returns NULL. It's purpose it to accumulate
702 ** statistical data and/or samples in the Stat4Accum object about the
703 ** index being analyzed. The stat_get() SQL function will later be used to
704 ** extract relevant information for constructing the sqlite_statN tables.
706 ** The R parameter is only used for STAT3 and STAT4
708 static void statPush(
709 sqlite3_context
*context
,
715 /* The three function arguments */
716 Stat4Accum
*p
= (Stat4Accum
*)sqlite3_value_blob(argv
[0]);
717 int iChng
= sqlite3_value_int(argv
[1]);
719 UNUSED_PARAMETER( argc
);
720 UNUSED_PARAMETER( context
);
722 assert( iChng
<p
->nCol
);
725 /* This is the first call to this function. Do initialization. */
726 for(i
=0; i
<p
->nCol
; i
++) p
->current
.anEq
[i
] = 1;
728 /* Second and subsequent calls get processed here */
729 samplePushPrevious(p
, iChng
);
731 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
732 ** to the current row of the index. */
733 for(i
=0; i
<iChng
; i
++){
734 p
->current
.anEq
[i
]++;
736 for(i
=iChng
; i
<p
->nCol
; i
++){
737 p
->current
.anDLt
[i
]++;
738 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
739 p
->current
.anLt
[i
] += p
->current
.anEq
[i
];
741 p
->current
.anEq
[i
] = 1;
745 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
746 if( sqlite3_value_type(argv
[2])==SQLITE_INTEGER
){
747 sampleSetRowidInt64(p
->db
, &p
->current
, sqlite3_value_int64(argv
[2]));
749 sampleSetRowid(p
->db
, &p
->current
, sqlite3_value_bytes(argv
[2]),
750 sqlite3_value_blob(argv
[2]));
752 p
->current
.iHash
= p
->iPrn
= p
->iPrn
*1103515245 + 12345;
755 #ifdef SQLITE_ENABLE_STAT4
757 tRowcnt nLt
= p
->current
.anLt
[p
->nCol
-1];
759 /* Check if this is to be a periodic sample. If so, add it. */
760 if( (nLt
/p
->nPSample
)!=(nLt
+1)/p
->nPSample
){
761 p
->current
.isPSample
= 1;
763 sampleInsert(p
, &p
->current
, p
->nCol
-1);
764 p
->current
.isPSample
= 0;
767 /* Update the aBest[] array. */
768 for(i
=0; i
<(p
->nCol
-1); i
++){
770 if( i
>=iChng
|| sampleIsBetterPost(p
, &p
->current
, &p
->aBest
[i
]) ){
771 sampleCopy(p
, &p
->aBest
[i
], &p
->current
);
777 static const FuncDef statPushFuncdef
= {
778 2+IsStat34
, /* nArg */
779 SQLITE_UTF8
, /* funcFlags */
782 statPush
, /* xFunc */
785 "stat_push", /* zName */
790 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
791 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
792 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
793 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
794 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
797 ** Implementation of the stat_get(P,J) SQL function. This routine is
798 ** used to query statistical information that has been gathered into
799 ** the Stat4Accum object by prior calls to stat_push(). The P parameter
800 ** has type BLOB but it is really just a pointer to the Stat4Accum object.
801 ** The content to returned is determined by the parameter J
802 ** which is one of the STAT_GET_xxxx values defined above.
804 ** If neither STAT3 nor STAT4 are enabled, then J is always
805 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
806 ** a one-parameter function, stat_get(P), that always returns the
807 ** stat1 table entry information.
810 sqlite3_context
*context
,
814 Stat4Accum
*p
= (Stat4Accum
*)sqlite3_value_blob(argv
[0]);
815 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
816 /* STAT3 and STAT4 have a parameter on this routine. */
817 int eCall
= sqlite3_value_int(argv
[1]);
819 assert( eCall
==STAT_GET_STAT1
|| eCall
==STAT_GET_NEQ
820 || eCall
==STAT_GET_ROWID
|| eCall
==STAT_GET_NLT
821 || eCall
==STAT_GET_NDLT
823 if( eCall
==STAT_GET_STAT1
)
828 /* Return the value to store in the "stat" column of the sqlite_stat1
829 ** table for this index.
831 ** The value is a string composed of a list of integers describing
832 ** the index. The first integer in the list is the total number of
833 ** entries in the index. There is one additional integer in the list
834 ** for each indexed column. This additional integer is an estimate of
835 ** the number of rows matched by a stabbing query on the index using
836 ** a key with the corresponding number of fields. In other words,
837 ** if the index is on columns (a,b) and the sqlite_stat1 value is
838 ** "100 10 2", then SQLite estimates that:
840 ** * the index contains 100 rows,
841 ** * "WHERE a=?" matches 10 rows, and
842 ** * "WHERE a=? AND b=?" matches 2 rows.
844 ** If D is the count of distinct values and K is the total number of
845 ** rows, then each estimate is computed as:
852 char *zRet
= sqlite3MallocZero( (p
->nKeyCol
+1)*25 );
854 sqlite3_result_error_nomem(context
);
858 sqlite3_snprintf(24, zRet
, "%llu", (u64
)p
->nRow
);
859 z
= zRet
+ sqlite3Strlen30(zRet
);
860 for(i
=0; i
<p
->nKeyCol
; i
++){
861 u64 nDistinct
= p
->current
.anDLt
[i
] + 1;
862 u64 iVal
= (p
->nRow
+ nDistinct
- 1) / nDistinct
;
863 sqlite3_snprintf(24, z
, " %llu", iVal
);
864 z
+= sqlite3Strlen30(z
);
865 assert( p
->current
.anEq
[i
] );
867 assert( z
[0]=='\0' && z
>zRet
);
869 sqlite3_result_text(context
, zRet
, -1, sqlite3_free
);
871 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
872 else if( eCall
==STAT_GET_ROWID
){
874 samplePushPrevious(p
, 0);
877 if( p
->iGet
<p
->nSample
){
878 Stat4Sample
*pS
= p
->a
+ p
->iGet
;
880 sqlite3_result_int64(context
, pS
->u
.iRowid
);
882 sqlite3_result_blob(context
, pS
->u
.aRowid
, pS
->nRowid
,
889 assert( p
->iGet
<p
->nSample
);
891 case STAT_GET_NEQ
: aCnt
= p
->a
[p
->iGet
].anEq
; break;
892 case STAT_GET_NLT
: aCnt
= p
->a
[p
->iGet
].anLt
; break;
894 aCnt
= p
->a
[p
->iGet
].anDLt
;
901 sqlite3_result_int64(context
, (i64
)aCnt
[0]);
903 char *zRet
= sqlite3MallocZero(p
->nCol
* 25);
905 sqlite3_result_error_nomem(context
);
909 for(i
=0; i
<p
->nCol
; i
++){
910 sqlite3_snprintf(24, z
, "%llu ", (u64
)aCnt
[i
]);
911 z
+= sqlite3Strlen30(z
);
913 assert( z
[0]=='\0' && z
>zRet
);
915 sqlite3_result_text(context
, zRet
, -1, sqlite3_free
);
919 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
921 UNUSED_PARAMETER( argc
);
924 static const FuncDef statGetFuncdef
= {
925 1+IsStat34
, /* nArg */
926 SQLITE_UTF8
, /* funcFlags */
932 "stat_get", /* zName */
937 static void callStatGet(Vdbe
*v
, int regStat4
, int iParam
, int regOut
){
938 assert( regOut
!=regStat4
&& regOut
!=regStat4
+1 );
939 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
940 sqlite3VdbeAddOp2(v
, OP_Integer
, iParam
, regStat4
+1);
942 assert( iParam
==STAT_GET_STAT1
);
944 UNUSED_PARAMETER( iParam
);
946 sqlite3VdbeAddOp3(v
, OP_Function
, 0, regStat4
, regOut
);
947 sqlite3VdbeChangeP4(v
, -1, (char*)&statGetFuncdef
, P4_FUNCDEF
);
948 sqlite3VdbeChangeP5(v
, 1 + IsStat34
);
952 ** Generate code to do an analysis of all indices associated with
955 static void analyzeOneTable(
956 Parse
*pParse
, /* Parser context */
957 Table
*pTab
, /* Table whose indices are to be analyzed */
958 Index
*pOnlyIdx
, /* If not NULL, only analyze this one index */
959 int iStatCur
, /* Index of VdbeCursor that writes the sqlite_stat1 table */
960 int iMem
, /* Available memory locations begin here */
961 int iTab
/* Next available cursor */
963 sqlite3
*db
= pParse
->db
; /* Database handle */
964 Index
*pIdx
; /* An index to being analyzed */
965 int iIdxCur
; /* Cursor open on index being analyzed */
966 int iTabCur
; /* Table cursor */
967 Vdbe
*v
; /* The virtual machine being built up */
968 int i
; /* Loop counter */
969 int jZeroRows
= -1; /* Jump from here if number of rows is zero */
970 int iDb
; /* Index of database containing pTab */
971 u8 needTableCnt
= 1; /* True to count the table */
972 int regNewRowid
= iMem
++; /* Rowid for the inserted record */
973 int regStat4
= iMem
++; /* Register to hold Stat4Accum object */
974 int regChng
= iMem
++; /* Index of changed index field */
975 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
976 int regRowid
= iMem
++; /* Rowid argument passed to stat_push() */
978 int regTemp
= iMem
++; /* Temporary use register */
979 int regTabname
= iMem
++; /* Register containing table name */
980 int regIdxname
= iMem
++; /* Register containing index name */
981 int regStat1
= iMem
++; /* Value for the stat column of sqlite_stat1 */
982 int regPrev
= iMem
; /* MUST BE LAST (see below) */
984 pParse
->nMem
= MAX(pParse
->nMem
, iMem
);
985 v
= sqlite3GetVdbe(pParse
);
986 if( v
==0 || NEVER(pTab
==0) ){
990 /* Do not gather statistics on views or virtual tables */
993 if( sqlite3_strnicmp(pTab
->zName
, "sqlite_", 7)==0 ){
994 /* Do not gather statistics on system tables */
997 assert( sqlite3BtreeHoldsAllMutexes(db
) );
998 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
1000 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1001 #ifndef SQLITE_OMIT_AUTHORIZATION
1002 if( sqlite3AuthCheck(pParse
, SQLITE_ANALYZE
, pTab
->zName
, 0,
1003 db
->aDb
[iDb
].zName
) ){
1008 /* Establish a read-lock on the table at the shared-cache level.
1009 ** Open a read-only cursor on the table. Also allocate a cursor number
1010 ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1011 ** this time though. */
1012 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
1015 pParse
->nTab
= MAX(pParse
->nTab
, iTab
);
1016 sqlite3OpenTable(pParse
, iTabCur
, iDb
, pTab
, OP_OpenRead
);
1017 sqlite3VdbeAddOp4(v
, OP_String8
, 0, regTabname
, 0, pTab
->zName
, 0);
1019 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1020 int nCol
; /* Number of columns in pIdx. "N" */
1021 int addrRewind
; /* Address of "OP_Rewind iIdxCur" */
1022 int addrNextRow
; /* Address of "next_row:" */
1023 const char *zIdxName
; /* Name of the index */
1024 int nColTest
; /* Number of columns to test for changes */
1026 if( pOnlyIdx
&& pOnlyIdx
!=pIdx
) continue;
1027 if( pIdx
->pPartIdxWhere
==0 ) needTableCnt
= 0;
1028 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIdx
) ){
1029 nCol
= pIdx
->nKeyCol
;
1030 zIdxName
= pTab
->zName
;
1031 nColTest
= nCol
- 1;
1033 nCol
= pIdx
->nColumn
;
1034 zIdxName
= pIdx
->zName
;
1035 nColTest
= pIdx
->uniqNotNull
? pIdx
->nKeyCol
-1 : nCol
-1;
1038 /* Populate the register containing the index name. */
1039 sqlite3VdbeAddOp4(v
, OP_String8
, 0, regIdxname
, 0, zIdxName
, 0);
1040 VdbeComment((v
, "Analysis for %s.%s", pTab
->zName
, zIdxName
));
1043 ** Pseudo-code for loop that calls stat_push():
1046 ** if eof(csr) goto end_of_scan;
1048 ** goto chng_addr_0;
1052 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1054 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1060 ** regPrev(0) = idx(0)
1062 ** regPrev(1) = idx(1)
1066 ** regRowid = idx(rowid)
1067 ** stat_push(P, regChng, regRowid)
1069 ** if !eof(csr) goto next_row;
1074 /* Make sure there are enough memory cells allocated to accommodate
1075 ** the regPrev array and a trailing rowid (the rowid slot is required
1076 ** when building a record to insert into the sample column of
1077 ** the sqlite_stat4 table. */
1078 pParse
->nMem
= MAX(pParse
->nMem
, regPrev
+nColTest
);
1080 /* Open a read-only cursor on the index being analyzed. */
1081 assert( iDb
==sqlite3SchemaToIndex(db
, pIdx
->pSchema
) );
1082 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iIdxCur
, pIdx
->tnum
, iDb
);
1083 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1084 VdbeComment((v
, "%s", pIdx
->zName
));
1086 /* Invoke the stat_init() function. The arguments are:
1088 ** (1) the number of columns in the index including the rowid
1089 ** (or for a WITHOUT ROWID table, the number of PK columns),
1090 ** (2) the number of columns in the key without the rowid/pk
1091 ** (3) the number of rows in the index,
1094 ** The third argument is only used for STAT3 and STAT4
1096 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1097 sqlite3VdbeAddOp2(v
, OP_Count
, iIdxCur
, regStat4
+3);
1099 sqlite3VdbeAddOp2(v
, OP_Integer
, nCol
, regStat4
+1);
1100 sqlite3VdbeAddOp2(v
, OP_Integer
, pIdx
->nKeyCol
, regStat4
+2);
1101 sqlite3VdbeAddOp3(v
, OP_Function
, 0, regStat4
+1, regStat4
);
1102 sqlite3VdbeChangeP4(v
, -1, (char*)&statInitFuncdef
, P4_FUNCDEF
);
1103 sqlite3VdbeChangeP5(v
, 2+IsStat34
);
1105 /* Implementation of the following:
1108 ** if eof(csr) goto end_of_scan;
1110 ** goto next_push_0;
1113 addrRewind
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iIdxCur
);
1115 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regChng
);
1116 addrNextRow
= sqlite3VdbeCurrentAddr(v
);
1119 int endDistinctTest
= sqlite3VdbeMakeLabel(v
);
1120 int *aGotoChng
; /* Array of jump instruction addresses */
1121 aGotoChng
= sqlite3DbMallocRaw(db
, sizeof(int)*nColTest
);
1122 if( aGotoChng
==0 ) continue;
1127 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1129 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1132 ** goto endDistinctTest
1134 sqlite3VdbeAddOp0(v
, OP_Goto
);
1135 addrNextRow
= sqlite3VdbeCurrentAddr(v
);
1136 if( nColTest
==1 && pIdx
->nKeyCol
==1 && IsUniqueIndex(pIdx
) ){
1137 /* For a single-column UNIQUE index, once we have found a non-NULL
1138 ** row, we know that all the rest will be distinct, so skip
1139 ** subsequent distinctness tests. */
1140 sqlite3VdbeAddOp2(v
, OP_NotNull
, regPrev
, endDistinctTest
);
1143 for(i
=0; i
<nColTest
; i
++){
1144 char *pColl
= (char*)sqlite3LocateCollSeq(pParse
, pIdx
->azColl
[i
]);
1145 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, regChng
);
1146 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, i
, regTemp
);
1148 sqlite3VdbeAddOp4(v
, OP_Ne
, regTemp
, 0, regPrev
+i
, pColl
, P4_COLLSEQ
);
1149 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
1152 sqlite3VdbeAddOp2(v
, OP_Integer
, nColTest
, regChng
);
1153 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, endDistinctTest
);
1158 ** regPrev(0) = idx(0)
1160 ** regPrev(1) = idx(1)
1163 sqlite3VdbeJumpHere(v
, addrNextRow
-1);
1164 for(i
=0; i
<nColTest
; i
++){
1165 sqlite3VdbeJumpHere(v
, aGotoChng
[i
]);
1166 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, i
, regPrev
+i
);
1168 sqlite3VdbeResolveLabel(v
, endDistinctTest
);
1169 sqlite3DbFree(db
, aGotoChng
);
1174 ** regRowid = idx(rowid) // STAT34 only
1175 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only
1177 ** if !eof(csr) goto next_row;
1179 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1180 assert( regRowid
==(regStat4
+2) );
1181 if( HasRowid(pTab
) ){
1182 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iIdxCur
, regRowid
);
1184 Index
*pPk
= sqlite3PrimaryKeyIndex(pIdx
->pTable
);
1186 regKey
= sqlite3GetTempRange(pParse
, pPk
->nKeyCol
);
1187 for(j
=0; j
<pPk
->nKeyCol
; j
++){
1188 k
= sqlite3ColumnOfIndex(pIdx
, pPk
->aiColumn
[j
]);
1189 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, k
, regKey
+j
);
1190 VdbeComment((v
, "%s", pTab
->aCol
[pPk
->aiColumn
[j
]].zName
));
1192 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regKey
, pPk
->nKeyCol
, regRowid
);
1193 sqlite3ReleaseTempRange(pParse
, regKey
, pPk
->nKeyCol
);
1196 assert( regChng
==(regStat4
+1) );
1197 sqlite3VdbeAddOp3(v
, OP_Function
, 1, regStat4
, regTemp
);
1198 sqlite3VdbeChangeP4(v
, -1, (char*)&statPushFuncdef
, P4_FUNCDEF
);
1199 sqlite3VdbeChangeP5(v
, 2+IsStat34
);
1200 sqlite3VdbeAddOp2(v
, OP_Next
, iIdxCur
, addrNextRow
); VdbeCoverage(v
);
1202 /* Add the entry to the stat1 table. */
1203 callStatGet(v
, regStat4
, STAT_GET_STAT1
, regStat1
);
1204 assert( "BBB"[0]==SQLITE_AFF_TEXT
);
1205 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regTabname
, 3, regTemp
, "BBB", 0);
1206 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iStatCur
, regNewRowid
);
1207 sqlite3VdbeAddOp3(v
, OP_Insert
, iStatCur
, regTemp
, regNewRowid
);
1208 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1210 /* Add the entries to the stat3 or stat4 table. */
1211 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1213 int regEq
= regStat1
;
1214 int regLt
= regStat1
+1;
1215 int regDLt
= regStat1
+2;
1216 int regSample
= regStat1
+3;
1217 int regCol
= regStat1
+4;
1218 int regSampleRowid
= regCol
+ nCol
;
1221 u8 seekOp
= HasRowid(pTab
) ? OP_NotExists
: OP_NotFound
;
1223 pParse
->nMem
= MAX(pParse
->nMem
, regCol
+nCol
);
1225 addrNext
= sqlite3VdbeCurrentAddr(v
);
1226 callStatGet(v
, regStat4
, STAT_GET_ROWID
, regSampleRowid
);
1227 addrIsNull
= sqlite3VdbeAddOp1(v
, OP_IsNull
, regSampleRowid
);
1229 callStatGet(v
, regStat4
, STAT_GET_NEQ
, regEq
);
1230 callStatGet(v
, regStat4
, STAT_GET_NLT
, regLt
);
1231 callStatGet(v
, regStat4
, STAT_GET_NDLT
, regDLt
);
1232 sqlite3VdbeAddOp4Int(v
, seekOp
, iTabCur
, addrNext
, regSampleRowid
, 0);
1233 /* We know that the regSampleRowid row exists because it was read by
1234 ** the previous loop. Thus the not-found jump of seekOp will never
1236 VdbeCoverageNeverTaken(v
);
1237 #ifdef SQLITE_ENABLE_STAT3
1238 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iTabCur
,
1239 pIdx
->aiColumn
[0], regSample
);
1241 for(i
=0; i
<nCol
; i
++){
1242 i16 iCol
= pIdx
->aiColumn
[i
];
1243 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iTabCur
, iCol
, regCol
+i
);
1245 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regCol
, nCol
, regSample
);
1247 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regTabname
, 6, regTemp
);
1248 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iStatCur
+1, regNewRowid
);
1249 sqlite3VdbeAddOp3(v
, OP_Insert
, iStatCur
+1, regTemp
, regNewRowid
);
1250 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, addrNext
); /* P1==1 for end-of-loop */
1251 sqlite3VdbeJumpHere(v
, addrIsNull
);
1253 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1255 /* End of analysis */
1256 sqlite3VdbeJumpHere(v
, addrRewind
);
1260 /* Create a single sqlite_stat1 entry containing NULL as the index
1261 ** name and the row count as the content.
1263 if( pOnlyIdx
==0 && needTableCnt
){
1264 VdbeComment((v
, "%s", pTab
->zName
));
1265 sqlite3VdbeAddOp2(v
, OP_Count
, iTabCur
, regStat1
);
1266 jZeroRows
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regStat1
); VdbeCoverage(v
);
1267 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIdxname
);
1268 assert( "BBB"[0]==SQLITE_AFF_TEXT
);
1269 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regTabname
, 3, regTemp
, "BBB", 0);
1270 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iStatCur
, regNewRowid
);
1271 sqlite3VdbeAddOp3(v
, OP_Insert
, iStatCur
, regTemp
, regNewRowid
);
1272 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1273 sqlite3VdbeJumpHere(v
, jZeroRows
);
1279 ** Generate code that will cause the most recent index analysis to
1280 ** be loaded into internal hash tables where is can be used.
1282 static void loadAnalysis(Parse
*pParse
, int iDb
){
1283 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1285 sqlite3VdbeAddOp1(v
, OP_LoadAnalysis
, iDb
);
1290 ** Generate code that will do an analysis of an entire database
1292 static void analyzeDatabase(Parse
*pParse
, int iDb
){
1293 sqlite3
*db
= pParse
->db
;
1294 Schema
*pSchema
= db
->aDb
[iDb
].pSchema
; /* Schema of database iDb */
1300 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
1301 iStatCur
= pParse
->nTab
;
1303 openStatTable(pParse
, iDb
, iStatCur
, 0, 0);
1304 iMem
= pParse
->nMem
+1;
1305 iTab
= pParse
->nTab
;
1306 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1307 for(k
=sqliteHashFirst(&pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
1308 Table
*pTab
= (Table
*)sqliteHashData(k
);
1309 analyzeOneTable(pParse
, pTab
, 0, iStatCur
, iMem
, iTab
);
1311 loadAnalysis(pParse
, iDb
);
1315 ** Generate code that will do an analysis of a single table in
1316 ** a database. If pOnlyIdx is not NULL then it is a single index
1317 ** in pTab that should be analyzed.
1319 static void analyzeTable(Parse
*pParse
, Table
*pTab
, Index
*pOnlyIdx
){
1324 assert( sqlite3BtreeHoldsAllMutexes(pParse
->db
) );
1325 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1326 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
1327 iStatCur
= pParse
->nTab
;
1330 openStatTable(pParse
, iDb
, iStatCur
, pOnlyIdx
->zName
, "idx");
1332 openStatTable(pParse
, iDb
, iStatCur
, pTab
->zName
, "tbl");
1334 analyzeOneTable(pParse
, pTab
, pOnlyIdx
, iStatCur
,pParse
->nMem
+1,pParse
->nTab
);
1335 loadAnalysis(pParse
, iDb
);
1339 ** Generate code for the ANALYZE command. The parser calls this routine
1340 ** when it recognizes an ANALYZE command.
1343 ** ANALYZE <database> -- 2
1344 ** ANALYZE ?<database>.?<tablename> -- 3
1346 ** Form 1 causes all indices in all attached databases to be analyzed.
1347 ** Form 2 analyzes all indices the single database named.
1348 ** Form 3 analyzes all indices associated with the named table.
1350 void sqlite3Analyze(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
1351 sqlite3
*db
= pParse
->db
;
1360 /* Read the database schema. If an error occurs, leave an error message
1361 ** and code in pParse and return NULL. */
1362 assert( sqlite3BtreeHoldsAllMutexes(pParse
->db
) );
1363 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1367 assert( pName2
!=0 || pName1
==0 );
1369 /* Form 1: Analyze everything */
1370 for(i
=0; i
<db
->nDb
; i
++){
1371 if( i
==1 ) continue; /* Do not analyze the TEMP database */
1372 analyzeDatabase(pParse
, i
);
1374 }else if( pName2
->n
==0 ){
1375 /* Form 2: Analyze the database or table named */
1376 iDb
= sqlite3FindDb(db
, pName1
);
1378 analyzeDatabase(pParse
, iDb
);
1380 z
= sqlite3NameFromToken(db
, pName1
);
1382 if( (pIdx
= sqlite3FindIndex(db
, z
, 0))!=0 ){
1383 analyzeTable(pParse
, pIdx
->pTable
, pIdx
);
1384 }else if( (pTab
= sqlite3LocateTable(pParse
, 0, z
, 0))!=0 ){
1385 analyzeTable(pParse
, pTab
, 0);
1387 sqlite3DbFree(db
, z
);
1391 /* Form 3: Analyze the fully qualified table name */
1392 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pTableName
);
1394 zDb
= db
->aDb
[iDb
].zName
;
1395 z
= sqlite3NameFromToken(db
, pTableName
);
1397 if( (pIdx
= sqlite3FindIndex(db
, z
, zDb
))!=0 ){
1398 analyzeTable(pParse
, pIdx
->pTable
, pIdx
);
1399 }else if( (pTab
= sqlite3LocateTable(pParse
, 0, z
, zDb
))!=0 ){
1400 analyzeTable(pParse
, pTab
, 0);
1402 sqlite3DbFree(db
, z
);
1406 v
= sqlite3GetVdbe(pParse
);
1407 if( v
) sqlite3VdbeAddOp0(v
, OP_Expire
);
1411 ** Used to pass information from the analyzer reader through to the
1412 ** callback routine.
1414 typedef struct analysisInfo analysisInfo
;
1415 struct analysisInfo
{
1417 const char *zDatabase
;
1421 ** The first argument points to a nul-terminated string containing a
1422 ** list of space separated integers. Read the first nOut of these into
1423 ** the array aOut[].
1425 static void decodeIntArray(
1426 char *zIntArray
, /* String containing int array to decode */
1427 int nOut
, /* Number of slots in aOut[] */
1428 tRowcnt
*aOut
, /* Store integers here */
1429 LogEst
*aLog
, /* Or, if aOut==0, here */
1430 Index
*pIndex
/* Handle extra flags for this index, if not NULL */
1432 char *z
= zIntArray
;
1437 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1442 for(i
=0; *z
&& i
<nOut
; i
++){
1444 while( (c
=z
[0])>='0' && c
<='9' ){
1448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1449 if( aOut
) aOut
[i
] = v
;
1450 if( aLog
) aLog
[i
] = sqlite3LogEst(v
);
1453 UNUSED_PARAMETER(aOut
);
1455 aLog
[i
] = sqlite3LogEst(v
);
1459 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
1460 assert( pIndex
!=0 );
1465 if( sqlite3_strglob("unordered*", z
)==0 ){
1466 pIndex
->bUnordered
= 1;
1467 }else if( sqlite3_strglob("sz=[0-9]*", z
)==0 ){
1468 pIndex
->szIdxRow
= sqlite3LogEst(sqlite3Atoi(z
+3));
1470 #ifdef SQLITE_ENABLE_COSTMULT
1471 else if( sqlite3_strglob("costmult=[0-9]*",z
)==0 ){
1472 pIndex
->pTable
->costMult
= sqlite3LogEst(sqlite3Atoi(z
+9));
1475 while( z
[0]!=0 && z
[0]!=' ' ) z
++;
1476 while( z
[0]==' ' ) z
++;
1481 ** This callback is invoked once for each index when reading the
1482 ** sqlite_stat1 table.
1484 ** argv[0] = name of the table
1485 ** argv[1] = name of the index (might be NULL)
1486 ** argv[2] = results of analysis - on integer for each column
1488 ** Entries for which argv[1]==NULL simply record the number of rows in
1491 static int analysisLoader(void *pData
, int argc
, char **argv
, char **NotUsed
){
1492 analysisInfo
*pInfo
= (analysisInfo
*)pData
;
1498 UNUSED_PARAMETER2(NotUsed
, argc
);
1500 if( argv
==0 || argv
[0]==0 || argv
[2]==0 ){
1503 pTable
= sqlite3FindTable(pInfo
->db
, argv
[0], pInfo
->zDatabase
);
1509 }else if( sqlite3_stricmp(argv
[0],argv
[1])==0 ){
1510 pIndex
= sqlite3PrimaryKeyIndex(pTable
);
1512 pIndex
= sqlite3FindIndex(pInfo
->db
, argv
[1], pInfo
->zDatabase
);
1517 int nCol
= pIndex
->nKeyCol
+1;
1518 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1519 tRowcnt
* const aiRowEst
= pIndex
->aiRowEst
= (tRowcnt
*)sqlite3MallocZero(
1520 sizeof(tRowcnt
) * nCol
1522 if( aiRowEst
==0 ) pInfo
->db
->mallocFailed
= 1;
1524 tRowcnt
* const aiRowEst
= 0;
1526 pIndex
->bUnordered
= 0;
1527 decodeIntArray((char*)z
, nCol
, aiRowEst
, pIndex
->aiRowLogEst
, pIndex
);
1528 if( pIndex
->pPartIdxWhere
==0 ) pTable
->nRowLogEst
= pIndex
->aiRowLogEst
[0];
1531 fakeIdx
.szIdxRow
= pTable
->szTabRow
;
1532 #ifdef SQLITE_ENABLE_COSTMULT
1533 fakeIdx
.pTable
= pTable
;
1535 decodeIntArray((char*)z
, 1, 0, &pTable
->nRowLogEst
, &fakeIdx
);
1536 pTable
->szTabRow
= fakeIdx
.szIdxRow
;
1543 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1544 ** and its contents.
1546 void sqlite3DeleteIndexSamples(sqlite3
*db
, Index
*pIdx
){
1547 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1548 if( pIdx
->aSample
){
1550 for(j
=0; j
<pIdx
->nSample
; j
++){
1551 IndexSample
*p
= &pIdx
->aSample
[j
];
1552 sqlite3DbFree(db
, p
->p
);
1554 sqlite3DbFree(db
, pIdx
->aSample
);
1556 if( db
&& db
->pnBytesFreed
==0 ){
1561 UNUSED_PARAMETER(db
);
1562 UNUSED_PARAMETER(pIdx
);
1563 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1568 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1569 ** stored in pIdx->aSample[].
1571 static void initAvgEq(Index
*pIdx
){
1573 IndexSample
*aSample
= pIdx
->aSample
;
1574 IndexSample
*pFinal
= &aSample
[pIdx
->nSample
-1];
1577 if( pIdx
->nSampleCol
>1 ){
1578 /* If this is stat4 data, then calculate aAvgEq[] values for all
1579 ** sample columns except the last. The last is always set to 1, as
1580 ** once the trailing PK fields are considered all index keys are
1582 nCol
= pIdx
->nSampleCol
-1;
1583 pIdx
->aAvgEq
[nCol
] = 1;
1585 for(iCol
=0; iCol
<nCol
; iCol
++){
1586 int nSample
= pIdx
->nSample
;
1587 int i
; /* Used to iterate through samples */
1588 tRowcnt sumEq
= 0; /* Sum of the nEq values */
1590 tRowcnt nRow
; /* Number of rows in index */
1591 i64 nSum100
= 0; /* Number of terms contributing to sumEq */
1592 i64 nDist100
; /* Number of distinct values in index */
1594 if( !pIdx
->aiRowEst
|| iCol
>=pIdx
->nKeyCol
|| pIdx
->aiRowEst
[iCol
+1]==0 ){
1595 nRow
= pFinal
->anLt
[iCol
];
1596 nDist100
= (i64
)100 * pFinal
->anDLt
[iCol
];
1599 nRow
= pIdx
->aiRowEst
[0];
1600 nDist100
= ((i64
)100 * pIdx
->aiRowEst
[0]) / pIdx
->aiRowEst
[iCol
+1];
1603 /* Set nSum to the number of distinct (iCol+1) field prefixes that
1604 ** occur in the stat4 table for this index. Set sumEq to the sum of
1605 ** the nEq values for column iCol for the same set (adding the value
1606 ** only once where there exist duplicate prefixes). */
1607 for(i
=0; i
<nSample
; i
++){
1608 if( i
==(pIdx
->nSample
-1)
1609 || aSample
[i
].anDLt
[iCol
]!=aSample
[i
+1].anDLt
[iCol
]
1611 sumEq
+= aSample
[i
].anEq
[iCol
];
1616 if( nDist100
>nSum100
){
1617 avgEq
= ((i64
)100 * (nRow
- sumEq
))/(nDist100
- nSum100
);
1619 if( avgEq
==0 ) avgEq
= 1;
1620 pIdx
->aAvgEq
[iCol
] = avgEq
;
1626 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table
1627 ** is supplied instead, find the PRIMARY KEY index for that table.
1629 static Index
*findIndexOrPrimaryKey(
1634 Index
*pIdx
= sqlite3FindIndex(db
, zName
, zDb
);
1636 Table
*pTab
= sqlite3FindTable(db
, zName
, zDb
);
1637 if( pTab
&& !HasRowid(pTab
) ) pIdx
= sqlite3PrimaryKeyIndex(pTab
);
1643 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
1644 ** into the relevant Index.aSample[] arrays.
1646 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1647 ** data equivalent to the following (statements are different for stat3,
1648 ** see the caller of this function for details):
1650 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1651 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1653 ** where %Q is replaced with the database name before the SQL is executed.
1655 static int loadStatTbl(
1656 sqlite3
*db
, /* Database handle */
1657 int bStat3
, /* Assume single column records only */
1658 const char *zSql1
, /* SQL statement 1 (see above) */
1659 const char *zSql2
, /* SQL statement 2 (see above) */
1660 const char *zDb
/* Database name (e.g. "main") */
1662 int rc
; /* Result codes from subroutines */
1663 sqlite3_stmt
*pStmt
= 0; /* An SQL statement being run */
1664 char *zSql
; /* Text of the SQL statement */
1665 Index
*pPrevIdx
= 0; /* Previous index in the loop */
1666 IndexSample
*pSample
; /* A slot in pIdx->aSample[] */
1668 assert( db
->lookaside
.bEnabled
==0 );
1669 zSql
= sqlite3MPrintf(db
, zSql1
, zDb
);
1671 return SQLITE_NOMEM
;
1673 rc
= sqlite3_prepare(db
, zSql
, -1, &pStmt
, 0);
1674 sqlite3DbFree(db
, zSql
);
1677 while( sqlite3_step(pStmt
)==SQLITE_ROW
){
1678 int nIdxCol
= 1; /* Number of columns in stat4 records */
1680 char *zIndex
; /* Index name */
1681 Index
*pIdx
; /* Pointer to the index object */
1682 int nSample
; /* Number of samples */
1683 int nByte
; /* Bytes of space required */
1684 int i
; /* Bytes of space required */
1687 zIndex
= (char *)sqlite3_column_text(pStmt
, 0);
1688 if( zIndex
==0 ) continue;
1689 nSample
= sqlite3_column_int(pStmt
, 1);
1690 pIdx
= findIndexOrPrimaryKey(db
, zIndex
, zDb
);
1691 assert( pIdx
==0 || bStat3
|| pIdx
->nSample
==0 );
1692 /* Index.nSample is non-zero at this point if data has already been
1693 ** loaded from the stat4 table. In this case ignore stat3 data. */
1694 if( pIdx
==0 || pIdx
->nSample
) continue;
1696 assert( !HasRowid(pIdx
->pTable
) || pIdx
->nColumn
==pIdx
->nKeyCol
+1 );
1697 if( !HasRowid(pIdx
->pTable
) && IsPrimaryKeyIndex(pIdx
) ){
1698 nIdxCol
= pIdx
->nKeyCol
;
1700 nIdxCol
= pIdx
->nColumn
;
1703 pIdx
->nSampleCol
= nIdxCol
;
1704 nByte
= sizeof(IndexSample
) * nSample
;
1705 nByte
+= sizeof(tRowcnt
) * nIdxCol
* 3 * nSample
;
1706 nByte
+= nIdxCol
* sizeof(tRowcnt
); /* Space for Index.aAvgEq[] */
1708 pIdx
->aSample
= sqlite3DbMallocZero(db
, nByte
);
1709 if( pIdx
->aSample
==0 ){
1710 sqlite3_finalize(pStmt
);
1711 return SQLITE_NOMEM
;
1713 pSpace
= (tRowcnt
*)&pIdx
->aSample
[nSample
];
1714 pIdx
->aAvgEq
= pSpace
; pSpace
+= nIdxCol
;
1715 for(i
=0; i
<nSample
; i
++){
1716 pIdx
->aSample
[i
].anEq
= pSpace
; pSpace
+= nIdxCol
;
1717 pIdx
->aSample
[i
].anLt
= pSpace
; pSpace
+= nIdxCol
;
1718 pIdx
->aSample
[i
].anDLt
= pSpace
; pSpace
+= nIdxCol
;
1720 assert( ((u8
*)pSpace
)-nByte
==(u8
*)(pIdx
->aSample
) );
1722 rc
= sqlite3_finalize(pStmt
);
1725 zSql
= sqlite3MPrintf(db
, zSql2
, zDb
);
1727 return SQLITE_NOMEM
;
1729 rc
= sqlite3_prepare(db
, zSql
, -1, &pStmt
, 0);
1730 sqlite3DbFree(db
, zSql
);
1733 while( sqlite3_step(pStmt
)==SQLITE_ROW
){
1734 char *zIndex
; /* Index name */
1735 Index
*pIdx
; /* Pointer to the index object */
1736 int nCol
= 1; /* Number of columns in index */
1738 zIndex
= (char *)sqlite3_column_text(pStmt
, 0);
1739 if( zIndex
==0 ) continue;
1740 pIdx
= findIndexOrPrimaryKey(db
, zIndex
, zDb
);
1741 if( pIdx
==0 ) continue;
1742 /* This next condition is true if data has already been loaded from
1743 ** the sqlite_stat4 table. In this case ignore stat3 data. */
1744 nCol
= pIdx
->nSampleCol
;
1745 if( bStat3
&& nCol
>1 ) continue;
1746 if( pIdx
!=pPrevIdx
){
1747 initAvgEq(pPrevIdx
);
1750 pSample
= &pIdx
->aSample
[pIdx
->nSample
];
1751 decodeIntArray((char*)sqlite3_column_text(pStmt
,1),nCol
,pSample
->anEq
,0,0);
1752 decodeIntArray((char*)sqlite3_column_text(pStmt
,2),nCol
,pSample
->anLt
,0,0);
1753 decodeIntArray((char*)sqlite3_column_text(pStmt
,3),nCol
,pSample
->anDLt
,0,0);
1755 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1756 ** This is in case the sample record is corrupted. In that case, the
1757 ** sqlite3VdbeRecordCompare() may read up to two varints past the
1758 ** end of the allocated buffer before it realizes it is dealing with
1759 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1760 ** a buffer overread. */
1761 pSample
->n
= sqlite3_column_bytes(pStmt
, 4);
1762 pSample
->p
= sqlite3DbMallocZero(db
, pSample
->n
+ 2);
1763 if( pSample
->p
==0 ){
1764 sqlite3_finalize(pStmt
);
1765 return SQLITE_NOMEM
;
1767 memcpy(pSample
->p
, sqlite3_column_blob(pStmt
, 4), pSample
->n
);
1770 rc
= sqlite3_finalize(pStmt
);
1771 if( rc
==SQLITE_OK
) initAvgEq(pPrevIdx
);
1776 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
1777 ** the Index.aSample[] arrays of all indices.
1779 static int loadStat4(sqlite3
*db
, const char *zDb
){
1780 int rc
= SQLITE_OK
; /* Result codes from subroutines */
1782 assert( db
->lookaside
.bEnabled
==0 );
1783 if( sqlite3FindTable(db
, "sqlite_stat4", zDb
) ){
1784 rc
= loadStatTbl(db
, 0,
1785 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1786 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1791 if( rc
==SQLITE_OK
&& sqlite3FindTable(db
, "sqlite_stat3", zDb
) ){
1792 rc
= loadStatTbl(db
, 1,
1793 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
1794 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
1801 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1804 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
1805 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1806 ** arrays. The contents of sqlite_stat3/4 are used to populate the
1807 ** Index.aSample[] arrays.
1809 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1810 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
1811 ** during compilation and the sqlite_stat3/4 table is present, no data is
1814 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
1815 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1816 ** returned. However, in this case, data is read from the sqlite_stat1
1817 ** table (if it is present) before returning.
1819 ** If an OOM error occurs, this function always sets db->mallocFailed.
1820 ** This means if the caller does not care about other errors, the return
1821 ** code may be ignored.
1823 int sqlite3AnalysisLoad(sqlite3
*db
, int iDb
){
1829 assert( iDb
>=0 && iDb
<db
->nDb
);
1830 assert( db
->aDb
[iDb
].pBt
!=0 );
1832 /* Clear any prior statistics */
1833 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1834 for(i
=sqliteHashFirst(&db
->aDb
[iDb
].pSchema
->idxHash
);i
;i
=sqliteHashNext(i
)){
1835 Index
*pIdx
= sqliteHashData(i
);
1836 sqlite3DefaultRowEst(pIdx
);
1837 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1838 sqlite3DeleteIndexSamples(db
, pIdx
);
1843 /* Check to make sure the sqlite_stat1 table exists */
1845 sInfo
.zDatabase
= db
->aDb
[iDb
].zName
;
1846 if( sqlite3FindTable(db
, "sqlite_stat1", sInfo
.zDatabase
)==0 ){
1847 return SQLITE_ERROR
;
1850 /* Load new statistics out of the sqlite_stat1 table */
1851 zSql
= sqlite3MPrintf(db
,
1852 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo
.zDatabase
);
1856 rc
= sqlite3_exec(db
, zSql
, analysisLoader
, &sInfo
, 0);
1857 sqlite3DbFree(db
, zSql
);
1861 /* Load the statistics from the sqlite_stat4 table. */
1862 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1863 if( rc
==SQLITE_OK
){
1864 int lookasideEnabled
= db
->lookaside
.bEnabled
;
1865 db
->lookaside
.bEnabled
= 0;
1866 rc
= loadStat4(db
, sInfo
.zDatabase
);
1867 db
->lookaside
.bEnabled
= lookasideEnabled
;
1869 for(i
=sqliteHashFirst(&db
->aDb
[iDb
].pSchema
->idxHash
);i
;i
=sqliteHashNext(i
)){
1870 Index
*pIdx
= sqliteHashData(i
);
1871 sqlite3_free(pIdx
->aiRowEst
);
1876 if( rc
==SQLITE_NOMEM
){
1877 db
->mallocFailed
= 1;
1883 #endif /* SQLITE_OMIT_ANALYZE */