4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
115 #ifndef SQLITE_OMIT_SHARED_CACHE
119 **** This function is only used as part of an assert() statement. ***
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot. Return 1 if it does and 0 if not.
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
140 static int hasSharedCacheTableLock(
141 Btree
*pBtree
, /* Handle that must hold lock */
142 Pgno iRoot
, /* Root page of b-tree */
143 int isIndex
, /* True if iRoot is the root of an index b-tree */
144 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
146 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
150 /* If this database is not shareable, or if the client is reading
151 ** and has the read-uncommitted flag set, then no lock is required.
152 ** Return true immediately.
154 if( (pBtree
->sharable
==0)
155 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommitted
))
160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
165 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
175 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
176 Index
*pIdx
= (Index
*)sqliteHashData(p
);
177 if( pIdx
->tnum
==(int)iRoot
){
178 iTab
= pIdx
->pTable
->tnum
;
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
189 if( pLock
->pBtree
==pBtree
190 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
191 && pLock
->eLock
>=eLockType
197 /* Failed to find the required lock. */
200 #endif /* SQLITE_DEBUG */
204 **** This function may be used as part of assert() statements only. ****
206 ** Return true if it would be illegal for pBtree to write into the
207 ** table or index rooted at iRoot because other shared connections are
208 ** simultaneously reading that same table or index.
210 ** It is illegal for pBtree to write if some other Btree object that
211 ** shares the same BtShared object is currently reading or writing
212 ** the iRoot table. Except, if the other Btree object has the
213 ** read-uncommitted flag set, then it is OK for the other object to
214 ** have a read cursor.
216 ** For example, before writing to any part of the table or index
217 ** rooted at page iRoot, one should call:
219 ** assert( !hasReadConflicts(pBtree, iRoot) );
221 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
223 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
224 if( p
->pgnoRoot
==iRoot
226 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommitted
)
233 #endif /* #ifdef SQLITE_DEBUG */
236 ** Query to see if Btree handle p may obtain a lock of type eLock
237 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
238 ** SQLITE_OK if the lock may be obtained (by calling
239 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
241 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
242 BtShared
*pBt
= p
->pBt
;
245 assert( sqlite3BtreeHoldsMutex(p
) );
246 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
248 assert( !(p
->db
->flags
&SQLITE_ReadUncommitted
)||eLock
==WRITE_LOCK
||iTab
==1 );
250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
254 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
255 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
257 /* This routine is a no-op if the shared-cache is not enabled */
262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
265 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
266 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
267 return SQLITE_LOCKED_SHAREDCACHE
;
270 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
280 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
281 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
282 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
283 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
284 if( eLock
==WRITE_LOCK
){
285 assert( p
==pBt
->pWriter
);
286 pBt
->btsFlags
|= BTS_PENDING
;
288 return SQLITE_LOCKED_SHAREDCACHE
;
293 #endif /* !SQLITE_OMIT_SHARED_CACHE */
295 #ifndef SQLITE_OMIT_SHARED_CACHE
297 ** Add a lock on the table with root-page iTable to the shared-btree used
298 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
301 ** This function assumes the following:
303 ** (a) The specified Btree object p is connected to a sharable
304 ** database (one with the BtShared.sharable flag set), and
306 ** (b) No other Btree objects hold a lock that conflicts
307 ** with the requested lock (i.e. querySharedCacheTableLock() has
308 ** already been called and returned SQLITE_OK).
310 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311 ** is returned if a malloc attempt fails.
313 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
314 BtShared
*pBt
= p
->pBt
;
318 assert( sqlite3BtreeHoldsMutex(p
) );
319 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommitted
) || eLock
==WRITE_LOCK
);
328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p
->sharable
);
331 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
333 /* First search the list for an existing lock on this table. */
334 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
335 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
345 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
349 pLock
->iTable
= iTable
;
351 pLock
->pNext
= pBt
->pLock
;
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
359 assert( WRITE_LOCK
>READ_LOCK
);
360 if( eLock
>pLock
->eLock
){
361 pLock
->eLock
= eLock
;
366 #endif /* !SQLITE_OMIT_SHARED_CACHE */
368 #ifndef SQLITE_OMIT_SHARED_CACHE
370 ** Release all the table locks (locks obtained via calls to
371 ** the setSharedCacheTableLock() procedure) held by Btree object p.
373 ** This function assumes that Btree p has an open read or write
374 ** transaction. If it does not, then the BTS_PENDING flag
375 ** may be incorrectly cleared.
377 static void clearAllSharedCacheTableLocks(Btree
*p
){
378 BtShared
*pBt
= p
->pBt
;
379 BtLock
**ppIter
= &pBt
->pLock
;
381 assert( sqlite3BtreeHoldsMutex(p
) );
382 assert( p
->sharable
|| 0==*ppIter
);
383 assert( p
->inTrans
>0 );
386 BtLock
*pLock
= *ppIter
;
387 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
388 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
389 if( pLock
->pBtree
==p
){
390 *ppIter
= pLock
->pNext
;
391 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
392 if( pLock
->iTable
!=1 ){
396 ppIter
= &pLock
->pNext
;
400 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
401 if( pBt
->pWriter
==p
){
403 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
404 }else if( pBt
->nTransaction
==2 ){
405 /* This function is called when Btree p is concluding its
406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
409 ** set the BTS_PENDING flag to 0.
411 ** If there is not currently a writer, then BTS_PENDING must
412 ** be zero already. So this next line is harmless in that case.
414 pBt
->btsFlags
&= ~BTS_PENDING
;
419 ** This function changes all write-locks held by Btree p into read-locks.
421 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
422 BtShared
*pBt
= p
->pBt
;
423 if( pBt
->pWriter
==p
){
426 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
427 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
428 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
429 pLock
->eLock
= READ_LOCK
;
434 #endif /* SQLITE_OMIT_SHARED_CACHE */
436 static void releasePage(MemPage
*pPage
); /* Forward reference */
439 ***** This routine is used inside of assert() only ****
441 ** Verify that the cursor holds the mutex on its BtShared
444 static int cursorHoldsMutex(BtCursor
*p
){
445 return sqlite3_mutex_held(p
->pBt
->mutex
);
450 ** Invalidate the overflow cache of the cursor passed as the first argument.
451 ** on the shared btree structure pBt.
453 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
456 ** Invalidate the overflow page-list cache for all cursors opened
457 ** on the shared btree structure pBt.
459 static void invalidateAllOverflowCache(BtShared
*pBt
){
461 assert( sqlite3_mutex_held(pBt
->mutex
) );
462 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
463 invalidateOverflowCache(p
);
467 #ifndef SQLITE_OMIT_INCRBLOB
469 ** This function is called before modifying the contents of a table
470 ** to invalidate any incrblob cursors that are open on the
471 ** row or one of the rows being modified.
473 ** If argument isClearTable is true, then the entire contents of the
474 ** table is about to be deleted. In this case invalidate all incrblob
475 ** cursors open on any row within the table with root-page pgnoRoot.
477 ** Otherwise, if argument isClearTable is false, then the row with
478 ** rowid iRow is being replaced or deleted. In this case invalidate
479 ** only those incrblob cursors open on that specific row.
481 static void invalidateIncrblobCursors(
482 Btree
*pBtree
, /* The database file to check */
483 i64 iRow
, /* The rowid that might be changing */
484 int isClearTable
/* True if all rows are being deleted */
487 BtShared
*pBt
= pBtree
->pBt
;
488 assert( sqlite3BtreeHoldsMutex(pBtree
) );
489 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
490 if( (p
->curFlags
& BTCF_Incrblob
)!=0
491 && (isClearTable
|| p
->info
.nKey
==iRow
)
493 p
->eState
= CURSOR_INVALID
;
499 /* Stub function when INCRBLOB is omitted */
500 #define invalidateIncrblobCursors(x,y,z)
501 #endif /* SQLITE_OMIT_INCRBLOB */
504 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
505 ** when a page that previously contained data becomes a free-list leaf
508 ** The BtShared.pHasContent bitvec exists to work around an obscure
509 ** bug caused by the interaction of two useful IO optimizations surrounding
510 ** free-list leaf pages:
512 ** 1) When all data is deleted from a page and the page becomes
513 ** a free-list leaf page, the page is not written to the database
514 ** (as free-list leaf pages contain no meaningful data). Sometimes
515 ** such a page is not even journalled (as it will not be modified,
516 ** why bother journalling it?).
518 ** 2) When a free-list leaf page is reused, its content is not read
519 ** from the database or written to the journal file (why should it
520 ** be, if it is not at all meaningful?).
522 ** By themselves, these optimizations work fine and provide a handy
523 ** performance boost to bulk delete or insert operations. However, if
524 ** a page is moved to the free-list and then reused within the same
525 ** transaction, a problem comes up. If the page is not journalled when
526 ** it is moved to the free-list and it is also not journalled when it
527 ** is extracted from the free-list and reused, then the original data
528 ** may be lost. In the event of a rollback, it may not be possible
529 ** to restore the database to its original configuration.
531 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
532 ** moved to become a free-list leaf page, the corresponding bit is
533 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
534 ** optimization 2 above is omitted if the corresponding bit is already
535 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
536 ** at the end of every transaction.
538 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
540 if( !pBt
->pHasContent
){
541 assert( pgno
<=pBt
->nPage
);
542 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
543 if( !pBt
->pHasContent
){
547 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
548 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
554 ** Query the BtShared.pHasContent vector.
556 ** This function is called when a free-list leaf page is removed from the
557 ** free-list for reuse. It returns false if it is safe to retrieve the
558 ** page from the pager layer with the 'no-content' flag set. True otherwise.
560 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
561 Bitvec
*p
= pBt
->pHasContent
;
562 return (p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTest(p
, pgno
)));
566 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
567 ** invoked at the conclusion of each write-transaction.
569 static void btreeClearHasContent(BtShared
*pBt
){
570 sqlite3BitvecDestroy(pBt
->pHasContent
);
571 pBt
->pHasContent
= 0;
575 ** Release all of the apPage[] pages for a cursor.
577 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
579 for(i
=0; i
<=pCur
->iPage
; i
++){
580 releasePage(pCur
->apPage
[i
]);
588 ** Save the current cursor position in the variables BtCursor.nKey
589 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
591 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
592 ** prior to calling this routine.
594 static int saveCursorPosition(BtCursor
*pCur
){
597 assert( CURSOR_VALID
==pCur
->eState
);
598 assert( 0==pCur
->pKey
);
599 assert( cursorHoldsMutex(pCur
) );
601 rc
= sqlite3BtreeKeySize(pCur
, &pCur
->nKey
);
602 assert( rc
==SQLITE_OK
); /* KeySize() cannot fail */
604 /* If this is an intKey table, then the above call to BtreeKeySize()
605 ** stores the integer key in pCur->nKey. In this case this value is
606 ** all that is required. Otherwise, if pCur is not open on an intKey
607 ** table, then malloc space for and store the pCur->nKey bytes of key
610 if( 0==pCur
->apPage
[0]->intKey
){
611 void *pKey
= sqlite3Malloc( pCur
->nKey
);
613 rc
= sqlite3BtreeKey(pCur
, 0, (int)pCur
->nKey
, pKey
);
623 assert( !pCur
->apPage
[0]->intKey
|| !pCur
->pKey
);
626 btreeReleaseAllCursorPages(pCur
);
627 pCur
->eState
= CURSOR_REQUIRESEEK
;
630 invalidateOverflowCache(pCur
);
634 /* Forward reference */
635 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
638 ** Save the positions of all cursors (except pExcept) that are open on
639 ** the table with root-page iRoot. "Saving the cursor position" means that
640 ** the location in the btree is remembered in such a way that it can be
641 ** moved back to the same spot after the btree has been modified. This
642 ** routine is called just before cursor pExcept is used to modify the
643 ** table, for example in BtreeDelete() or BtreeInsert().
645 ** Implementation note: This routine merely checks to see if any cursors
646 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
647 ** event that cursors are in need to being saved.
649 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
651 assert( sqlite3_mutex_held(pBt
->mutex
) );
652 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
653 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
654 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
656 return p
? saveCursorsOnList(p
, iRoot
, pExcept
) : SQLITE_OK
;
659 /* This helper routine to saveAllCursors does the actual work of saving
660 ** the cursors if and when a cursor is found that actually requires saving.
661 ** The common case is that no cursors need to be saved, so this routine is
662 ** broken out from its caller to avoid unnecessary stack pointer movement.
664 static int SQLITE_NOINLINE
saveCursorsOnList(
665 BtCursor
*p
, /* The first cursor that needs saving */
666 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
667 BtCursor
*pExcept
/* Do not save this cursor */
670 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
671 if( p
->eState
==CURSOR_VALID
){
672 int rc
= saveCursorPosition(p
);
677 testcase( p
->iPage
>0 );
678 btreeReleaseAllCursorPages(p
);
687 ** Clear the current cursor position.
689 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
690 assert( cursorHoldsMutex(pCur
) );
691 sqlite3_free(pCur
->pKey
);
693 pCur
->eState
= CURSOR_INVALID
;
697 ** In this version of BtreeMoveto, pKey is a packed index record
698 ** such as is generated by the OP_MakeRecord opcode. Unpack the
699 ** record and then call BtreeMovetoUnpacked() to do the work.
701 static int btreeMoveto(
702 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
703 const void *pKey
, /* Packed key if the btree is an index */
704 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
705 int bias
, /* Bias search to the high end */
706 int *pRes
/* Write search results here */
708 int rc
; /* Status code */
709 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
710 char aSpace
[200]; /* Temp space for pIdxKey - to avoid a malloc */
714 assert( nKey
==(i64
)(int)nKey
);
715 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(
716 pCur
->pKeyInfo
, aSpace
, sizeof(aSpace
), &pFree
718 if( pIdxKey
==0 ) return SQLITE_NOMEM
;
719 sqlite3VdbeRecordUnpack(pCur
->pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
720 if( pIdxKey
->nField
==0 ){
721 sqlite3DbFree(pCur
->pKeyInfo
->db
, pFree
);
722 return SQLITE_CORRUPT_BKPT
;
727 rc
= sqlite3BtreeMovetoUnpacked(pCur
, pIdxKey
, nKey
, bias
, pRes
);
729 sqlite3DbFree(pCur
->pKeyInfo
->db
, pFree
);
735 ** Restore the cursor to the position it was in (or as close to as possible)
736 ** when saveCursorPosition() was called. Note that this call deletes the
737 ** saved position info stored by saveCursorPosition(), so there can be
738 ** at most one effective restoreCursorPosition() call after each
739 ** saveCursorPosition().
741 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
743 assert( cursorHoldsMutex(pCur
) );
744 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
745 if( pCur
->eState
==CURSOR_FAULT
){
746 return pCur
->skipNext
;
748 pCur
->eState
= CURSOR_INVALID
;
749 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &pCur
->skipNext
);
751 sqlite3_free(pCur
->pKey
);
753 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
754 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
755 pCur
->eState
= CURSOR_SKIPNEXT
;
761 #define restoreCursorPosition(p) \
762 (p->eState>=CURSOR_REQUIRESEEK ? \
763 btreeRestoreCursorPosition(p) : \
767 ** Determine whether or not a cursor has moved from the position where
768 ** it was last placed, or has been invalidated for any other reason.
769 ** Cursors can move when the row they are pointing at is deleted out
770 ** from under them, for example. Cursor might also move if a btree
773 ** Calling this routine with a NULL cursor pointer returns false.
775 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
776 ** back to where it ought to be if this routine returns true.
778 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
779 return pCur
->eState
!=CURSOR_VALID
;
783 ** This routine restores a cursor back to its original position after it
784 ** has been moved by some outside activity (such as a btree rebalance or
785 ** a row having been deleted out from under the cursor).
787 ** On success, the *pDifferentRow parameter is false if the cursor is left
788 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
789 ** was pointing to has been deleted, forcing the cursor to point to some
792 ** This routine should only be called for a cursor that just returned
793 ** TRUE from sqlite3BtreeCursorHasMoved().
795 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
799 assert( pCur
->eState
!=CURSOR_VALID
);
800 rc
= restoreCursorPosition(pCur
);
805 if( pCur
->eState
!=CURSOR_VALID
|| NEVER(pCur
->skipNext
!=0) ){
813 #ifndef SQLITE_OMIT_AUTOVACUUM
815 ** Given a page number of a regular database page, return the page
816 ** number for the pointer-map page that contains the entry for the
817 ** input page number.
819 ** Return 0 (not a valid page) for pgno==1 since there is
820 ** no pointer map associated with page 1. The integrity_check logic
821 ** requires that ptrmapPageno(*,1)!=1.
823 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
824 int nPagesPerMapPage
;
826 assert( sqlite3_mutex_held(pBt
->mutex
) );
827 if( pgno
<2 ) return 0;
828 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
829 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
830 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
831 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
838 ** Write an entry into the pointer map.
840 ** This routine updates the pointer map entry for page number 'key'
841 ** so that it maps to type 'eType' and parent page number 'pgno'.
843 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
844 ** a no-op. If an error occurs, the appropriate error code is written
847 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
848 DbPage
*pDbPage
; /* The pointer map page */
849 u8
*pPtrmap
; /* The pointer map data */
850 Pgno iPtrmap
; /* The pointer map page number */
851 int offset
; /* Offset in pointer map page */
852 int rc
; /* Return code from subfunctions */
856 assert( sqlite3_mutex_held(pBt
->mutex
) );
857 /* The master-journal page number must never be used as a pointer map page */
858 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
860 assert( pBt
->autoVacuum
);
862 *pRC
= SQLITE_CORRUPT_BKPT
;
865 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
866 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
);
871 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
873 *pRC
= SQLITE_CORRUPT_BKPT
;
876 assert( offset
<= (int)pBt
->usableSize
-5 );
877 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
879 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key
, eType
, parent
));
881 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
883 pPtrmap
[offset
] = eType
;
884 put4byte(&pPtrmap
[offset
+1], parent
);
889 sqlite3PagerUnref(pDbPage
);
893 ** Read an entry from the pointer map.
895 ** This routine retrieves the pointer map entry for page 'key', writing
896 ** the type and parent page number to *pEType and *pPgno respectively.
897 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
899 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
900 DbPage
*pDbPage
; /* The pointer map page */
901 int iPtrmap
; /* Pointer map page index */
902 u8
*pPtrmap
; /* Pointer map page data */
903 int offset
; /* Offset of entry in pointer map */
906 assert( sqlite3_mutex_held(pBt
->mutex
) );
908 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
909 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
);
913 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
915 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
917 sqlite3PagerUnref(pDbPage
);
918 return SQLITE_CORRUPT_BKPT
;
920 assert( offset
<= (int)pBt
->usableSize
-5 );
922 *pEType
= pPtrmap
[offset
];
923 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
925 sqlite3PagerUnref(pDbPage
);
926 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_BKPT
;
930 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
931 #define ptrmapPut(w,x,y,z,rc)
932 #define ptrmapGet(w,x,y,z) SQLITE_OK
933 #define ptrmapPutOvflPtr(x, y, rc)
937 ** Given a btree page and a cell index (0 means the first cell on
938 ** the page, 1 means the second cell, and so forth) return a pointer
939 ** to the cell content.
941 ** This routine works only for pages that do not contain overflow cells.
943 #define findCell(P,I) \
944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
945 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
949 ** This a more complex version of findCell() that works for
950 ** pages that do contain overflow cells.
952 static u8
*findOverflowCell(MemPage
*pPage
, int iCell
){
954 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
955 for(i
=pPage
->nOverflow
-1; i
>=0; i
--){
957 k
= pPage
->aiOvfl
[i
];
960 return pPage
->apOvfl
[i
];
965 return findCell(pPage
, iCell
);
969 ** Parse a cell content block and fill in the CellInfo structure. There
970 ** are two versions of this function. btreeParseCell() takes a
971 ** cell index as the second argument and btreeParseCellPtr()
972 ** takes a pointer to the body of the cell as its second argument.
974 static void btreeParseCellPtr(
975 MemPage
*pPage
, /* Page containing the cell */
976 u8
*pCell
, /* Pointer to the cell text. */
977 CellInfo
*pInfo
/* Fill in this structure */
979 u8
*pIter
; /* For scanning through pCell */
980 u32 nPayload
; /* Number of bytes of cell payload */
982 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
983 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
984 if( pPage
->intKeyLeaf
){
985 assert( pPage
->childPtrSize
==0 );
986 pIter
= pCell
+ getVarint32(pCell
, nPayload
);
987 pIter
+= getVarint(pIter
, (u64
*)&pInfo
->nKey
);
988 }else if( pPage
->noPayload
){
989 assert( pPage
->childPtrSize
==4 );
990 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
993 pInfo
->iOverflow
= 0;
997 pIter
= pCell
+ pPage
->childPtrSize
;
998 pIter
+= getVarint32(pIter
, nPayload
);
999 pInfo
->nKey
= nPayload
;
1001 pInfo
->nPayload
= nPayload
;
1002 pInfo
->pPayload
= pIter
;
1003 testcase( nPayload
==pPage
->maxLocal
);
1004 testcase( nPayload
==pPage
->maxLocal
+1 );
1005 if( nPayload
<=pPage
->maxLocal
){
1006 /* This is the (easy) common case where the entire payload fits
1007 ** on the local page. No overflow is required.
1009 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1010 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1011 pInfo
->nLocal
= (u16
)nPayload
;
1012 pInfo
->iOverflow
= 0;
1014 /* If the payload will not fit completely on the local page, we have
1015 ** to decide how much to store locally and how much to spill onto
1016 ** overflow pages. The strategy is to minimize the amount of unused
1017 ** space on overflow pages while keeping the amount of local storage
1018 ** in between minLocal and maxLocal.
1020 ** Warning: changing the way overflow payload is distributed in any
1021 ** way will result in an incompatible file format.
1023 int minLocal
; /* Minimum amount of payload held locally */
1024 int maxLocal
; /* Maximum amount of payload held locally */
1025 int surplus
; /* Overflow payload available for local storage */
1027 minLocal
= pPage
->minLocal
;
1028 maxLocal
= pPage
->maxLocal
;
1029 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
- 4);
1030 testcase( surplus
==maxLocal
);
1031 testcase( surplus
==maxLocal
+1 );
1032 if( surplus
<= maxLocal
){
1033 pInfo
->nLocal
= (u16
)surplus
;
1035 pInfo
->nLocal
= (u16
)minLocal
;
1037 pInfo
->iOverflow
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
);
1038 pInfo
->nSize
= pInfo
->iOverflow
+ 4;
1041 static void btreeParseCell(
1042 MemPage
*pPage
, /* Page containing the cell */
1043 int iCell
, /* The cell index. First cell is 0 */
1044 CellInfo
*pInfo
/* Fill in this structure */
1046 btreeParseCellPtr(pPage
, findCell(pPage
, iCell
), pInfo
);
1050 ** Compute the total number of bytes that a Cell needs in the cell
1051 ** data area of the btree-page. The return number includes the cell
1052 ** data header and the local payload, but not any overflow page or
1053 ** the space used by the cell pointer.
1055 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1056 u8
*pIter
= pCell
+ pPage
->childPtrSize
; /* For looping over bytes of pCell */
1057 u8
*pEnd
; /* End mark for a varint */
1058 u32 nSize
; /* Size value to return */
1061 /* The value returned by this function should always be the same as
1062 ** the (CellInfo.nSize) value found by doing a full parse of the
1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1064 ** this function verifies that this invariant is not violated. */
1066 btreeParseCellPtr(pPage
, pCell
, &debuginfo
);
1069 if( pPage
->noPayload
){
1071 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1072 assert( pPage
->childPtrSize
==4 );
1073 return (u16
)(pIter
- pCell
);
1080 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1081 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1084 if( pPage
->intKey
){
1085 /* pIter now points at the 64-bit integer key value, a variable length
1086 ** integer. The following block moves pIter to point at the first byte
1087 ** past the end of the key value. */
1089 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1091 testcase( nSize
==pPage
->maxLocal
);
1092 testcase( nSize
==pPage
->maxLocal
+1 );
1093 if( nSize
<=pPage
->maxLocal
){
1094 nSize
+= (u32
)(pIter
- pCell
);
1095 if( nSize
<4 ) nSize
= 4;
1097 int minLocal
= pPage
->minLocal
;
1098 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1099 testcase( nSize
==pPage
->maxLocal
);
1100 testcase( nSize
==pPage
->maxLocal
+1 );
1101 if( nSize
>pPage
->maxLocal
){
1104 nSize
+= 4 + (u16
)(pIter
- pCell
);
1106 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1111 /* This variation on cellSizePtr() is used inside of assert() statements
1113 static u16
cellSize(MemPage
*pPage
, int iCell
){
1114 return cellSizePtr(pPage
, findCell(pPage
, iCell
));
1118 #ifndef SQLITE_OMIT_AUTOVACUUM
1120 ** If the cell pCell, part of page pPage contains a pointer
1121 ** to an overflow page, insert an entry into the pointer-map
1122 ** for the overflow page.
1124 static void ptrmapPutOvflPtr(MemPage
*pPage
, u8
*pCell
, int *pRC
){
1128 btreeParseCellPtr(pPage
, pCell
, &info
);
1129 if( info
.iOverflow
){
1130 Pgno ovfl
= get4byte(&pCell
[info
.iOverflow
]);
1131 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1138 ** Defragment the page given. All Cells are moved to the
1139 ** end of the page and all free space is collected into one
1140 ** big FreeBlk that occurs in between the header and cell
1141 ** pointer array and the cell content area.
1143 static int defragmentPage(MemPage
*pPage
){
1144 int i
; /* Loop counter */
1145 int pc
; /* Address of the i-th cell */
1146 int hdr
; /* Offset to the page header */
1147 int size
; /* Size of a cell */
1148 int usableSize
; /* Number of usable bytes on a page */
1149 int cellOffset
; /* Offset to the cell pointer array */
1150 int cbrk
; /* Offset to the cell content area */
1151 int nCell
; /* Number of cells on the page */
1152 unsigned char *data
; /* The page data */
1153 unsigned char *temp
; /* Temp area for cell content */
1154 int iCellFirst
; /* First allowable cell index */
1155 int iCellLast
; /* Last possible cell index */
1158 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1159 assert( pPage
->pBt
!=0 );
1160 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1161 assert( pPage
->nOverflow
==0 );
1162 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1163 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1164 data
= pPage
->aData
;
1165 hdr
= pPage
->hdrOffset
;
1166 cellOffset
= pPage
->cellOffset
;
1167 nCell
= pPage
->nCell
;
1168 assert( nCell
==get2byte(&data
[hdr
+3]) );
1169 usableSize
= pPage
->pBt
->usableSize
;
1170 cbrk
= get2byte(&data
[hdr
+5]);
1171 memcpy(&temp
[cbrk
], &data
[cbrk
], usableSize
- cbrk
);
1173 iCellFirst
= cellOffset
+ 2*nCell
;
1174 iCellLast
= usableSize
- 4;
1175 for(i
=0; i
<nCell
; i
++){
1176 u8
*pAddr
; /* The i-th cell pointer */
1177 pAddr
= &data
[cellOffset
+ i
*2];
1178 pc
= get2byte(pAddr
);
1179 testcase( pc
==iCellFirst
);
1180 testcase( pc
==iCellLast
);
1181 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1182 /* These conditions have already been verified in btreeInitPage()
1183 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1185 if( pc
<iCellFirst
|| pc
>iCellLast
){
1186 return SQLITE_CORRUPT_BKPT
;
1189 assert( pc
>=iCellFirst
&& pc
<=iCellLast
);
1190 size
= cellSizePtr(pPage
, &temp
[pc
]);
1192 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1193 if( cbrk
<iCellFirst
){
1194 return SQLITE_CORRUPT_BKPT
;
1197 if( cbrk
<iCellFirst
|| pc
+size
>usableSize
){
1198 return SQLITE_CORRUPT_BKPT
;
1201 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellFirst
);
1202 testcase( cbrk
+size
==usableSize
);
1203 testcase( pc
+size
==usableSize
);
1204 memcpy(&data
[cbrk
], &temp
[pc
], size
);
1205 put2byte(pAddr
, cbrk
);
1207 assert( cbrk
>=iCellFirst
);
1208 put2byte(&data
[hdr
+5], cbrk
);
1212 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1213 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1214 if( cbrk
-iCellFirst
!=pPage
->nFree
){
1215 return SQLITE_CORRUPT_BKPT
;
1221 ** Allocate nByte bytes of space from within the B-Tree page passed
1222 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1223 ** of the first byte of allocated space. Return either SQLITE_OK or
1224 ** an error code (usually SQLITE_CORRUPT).
1226 ** The caller guarantees that there is sufficient space to make the
1227 ** allocation. This routine might need to defragment in order to bring
1228 ** all the space together, however. This routine will avoid using
1229 ** the first two bytes past the cell pointer area since presumably this
1230 ** allocation is being made in order to insert a new cell, so we will
1231 ** also end up needing a new cell pointer.
1233 static int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1234 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1235 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1236 int top
; /* First byte of cell content area */
1237 int gap
; /* First byte of gap between cell pointers and cell content */
1238 int rc
; /* Integer return code */
1239 int usableSize
; /* Usable size of the page */
1241 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1242 assert( pPage
->pBt
);
1243 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1244 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1245 assert( pPage
->nFree
>=nByte
);
1246 assert( pPage
->nOverflow
==0 );
1247 usableSize
= pPage
->pBt
->usableSize
;
1248 assert( nByte
< usableSize
-8 );
1250 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1251 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1252 assert( gap
<=65536 );
1253 top
= get2byte(&data
[hdr
+5]);
1258 return SQLITE_CORRUPT_BKPT
;
1262 /* If there is enough space between gap and top for one more cell pointer
1263 ** array entry offset, and if the freelist is not empty, then search the
1264 ** freelist looking for a free slot big enough to satisfy the request.
1266 testcase( gap
+2==top
);
1267 testcase( gap
+1==top
);
1268 testcase( gap
==top
);
1269 if( gap
+2<=top
&& (data
[hdr
+1] || data
[hdr
+2]) ){
1271 for(addr
=hdr
+1; (pc
= get2byte(&data
[addr
]))>0; addr
=pc
){
1272 int size
; /* Size of the free slot */
1273 if( pc
>usableSize
-4 || pc
<addr
+4 ){
1274 return SQLITE_CORRUPT_BKPT
;
1276 size
= get2byte(&data
[pc
+2]);
1278 int x
= size
- nByte
;
1282 if( data
[hdr
+7]>=60 ) goto defragment_page
;
1283 /* Remove the slot from the free-list. Update the number of
1284 ** fragmented bytes within the page. */
1285 memcpy(&data
[addr
], &data
[pc
], 2);
1286 data
[hdr
+7] += (u8
)x
;
1287 }else if( size
+pc
> usableSize
){
1288 return SQLITE_CORRUPT_BKPT
;
1290 /* The slot remains on the free-list. Reduce its size to account
1291 ** for the portion used by the new allocation. */
1292 put2byte(&data
[pc
+2], x
);
1300 /* The request could not be fulfilled using a freelist slot. Check
1301 ** to see if defragmentation is necessary.
1303 testcase( gap
+2+nByte
==top
);
1304 if( gap
+2+nByte
>top
){
1306 testcase( pPage
->nCell
==0 );
1307 rc
= defragmentPage(pPage
);
1309 top
= get2byteNotZero(&data
[hdr
+5]);
1310 assert( gap
+nByte
<=top
);
1314 /* Allocate memory from the gap in between the cell pointer array
1315 ** and the cell content area. The btreeInitPage() call has already
1316 ** validated the freelist. Given that the freelist is valid, there
1317 ** is no way that the allocation can extend off the end of the page.
1318 ** The assert() below verifies the previous sentence.
1321 put2byte(&data
[hdr
+5], top
);
1322 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1328 ** Return a section of the pPage->aData to the freelist.
1329 ** The first byte of the new free block is pPage->aData[iStart]
1330 ** and the size of the block is iSize bytes.
1332 ** Adjacent freeblocks are coalesced.
1334 ** Note that even though the freeblock list was checked by btreeInitPage(),
1335 ** that routine will not detect overlap between cells or freeblocks. Nor
1336 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1337 ** at the end of the page. So do additional corruption checks inside this
1338 ** routine and return SQLITE_CORRUPT if any problems are found.
1340 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1341 u16 iPtr
; /* Address of ptr to next freeblock */
1342 u16 iFreeBlk
; /* Address of the next freeblock */
1343 u8 hdr
; /* Page header size. 0 or 100 */
1344 u8 nFrag
= 0; /* Reduction in fragmentation */
1345 u16 iOrigSize
= iSize
; /* Original value of iSize */
1346 u32 iLast
= pPage
->pBt
->usableSize
-4; /* Largest possible freeblock offset */
1347 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1348 unsigned char *data
= pPage
->aData
; /* Page content */
1350 assert( pPage
->pBt
!=0 );
1351 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1352 assert( iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1353 assert( iEnd
<= pPage
->pBt
->usableSize
);
1354 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1355 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1356 assert( iStart
<=iLast
);
1358 /* Overwrite deleted information with zeros when the secure_delete
1359 ** option is enabled */
1360 if( pPage
->pBt
->btsFlags
& BTS_SECURE_DELETE
){
1361 memset(&data
[iStart
], 0, iSize
);
1364 /* The list of freeblocks must be in ascending order. Find the
1365 ** spot on the list where iStart should be inserted.
1367 hdr
= pPage
->hdrOffset
;
1369 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1370 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1372 while( (iFreeBlk
= get2byte(&data
[iPtr
]))>0 && iFreeBlk
<iStart
){
1373 if( iFreeBlk
<iPtr
+4 ) return SQLITE_CORRUPT_BKPT
;
1376 if( iFreeBlk
>iLast
) return SQLITE_CORRUPT_BKPT
;
1377 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 );
1380 ** iFreeBlk: First freeblock after iStart, or zero if none
1381 ** iPtr: The address of a pointer iFreeBlk
1383 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1385 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1386 nFrag
= iFreeBlk
- iEnd
;
1387 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_BKPT
;
1388 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1389 iSize
= iEnd
- iStart
;
1390 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1393 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1394 ** pointer in the page header) then check to see if iStart should be
1395 ** coalesced onto the end of iPtr.
1398 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1399 if( iPtrEnd
+3>=iStart
){
1400 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_BKPT
;
1401 nFrag
+= iStart
- iPtrEnd
;
1402 iSize
= iEnd
- iPtr
;
1406 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_BKPT
;
1407 data
[hdr
+7] -= nFrag
;
1409 if( iStart
==get2byte(&data
[hdr
+5]) ){
1410 /* The new freeblock is at the beginning of the cell content area,
1411 ** so just extend the cell content area rather than create another
1412 ** freelist entry */
1413 if( iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_BKPT
;
1414 put2byte(&data
[hdr
+1], iFreeBlk
);
1415 put2byte(&data
[hdr
+5], iEnd
);
1417 /* Insert the new freeblock into the freelist */
1418 put2byte(&data
[iPtr
], iStart
);
1419 put2byte(&data
[iStart
], iFreeBlk
);
1420 put2byte(&data
[iStart
+2], iSize
);
1422 pPage
->nFree
+= iOrigSize
;
1427 ** Decode the flags byte (the first byte of the header) for a page
1428 ** and initialize fields of the MemPage structure accordingly.
1430 ** Only the following combinations are supported. Anything different
1431 ** indicates a corrupt database files:
1434 ** PTF_ZERODATA | PTF_LEAF
1435 ** PTF_LEAFDATA | PTF_INTKEY
1436 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1438 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1439 BtShared
*pBt
; /* A copy of pPage->pBt */
1441 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1442 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1443 pPage
->leaf
= (u8
)(flagByte
>>3); assert( PTF_LEAF
== 1<<3 );
1444 flagByte
&= ~PTF_LEAF
;
1445 pPage
->childPtrSize
= 4-4*pPage
->leaf
;
1447 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
1449 pPage
->intKeyLeaf
= pPage
->leaf
;
1450 pPage
->noPayload
= !pPage
->leaf
;
1451 pPage
->maxLocal
= pBt
->maxLeaf
;
1452 pPage
->minLocal
= pBt
->minLeaf
;
1453 }else if( flagByte
==PTF_ZERODATA
){
1455 pPage
->intKeyLeaf
= 0;
1456 pPage
->noPayload
= 0;
1457 pPage
->maxLocal
= pBt
->maxLocal
;
1458 pPage
->minLocal
= pBt
->minLocal
;
1460 return SQLITE_CORRUPT_BKPT
;
1462 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1467 ** Initialize the auxiliary information for a disk block.
1469 ** Return SQLITE_OK on success. If we see that the page does
1470 ** not contain a well-formed database page, then return
1471 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1472 ** guarantee that the page is well-formed. It only shows that
1473 ** we failed to detect any corruption.
1475 static int btreeInitPage(MemPage
*pPage
){
1477 assert( pPage
->pBt
!=0 );
1478 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1479 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
1480 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
1481 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
1483 if( !pPage
->isInit
){
1484 u16 pc
; /* Address of a freeblock within pPage->aData[] */
1485 u8 hdr
; /* Offset to beginning of page header */
1486 u8
*data
; /* Equal to pPage->aData */
1487 BtShared
*pBt
; /* The main btree structure */
1488 int usableSize
; /* Amount of usable space on each page */
1489 u16 cellOffset
; /* Offset from start of page to first cell pointer */
1490 int nFree
; /* Number of unused bytes on the page */
1491 int top
; /* First byte of the cell content area */
1492 int iCellFirst
; /* First allowable cell or freeblock offset */
1493 int iCellLast
; /* Last possible cell or freeblock offset */
1497 hdr
= pPage
->hdrOffset
;
1498 data
= pPage
->aData
;
1499 if( decodeFlags(pPage
, data
[hdr
]) ) return SQLITE_CORRUPT_BKPT
;
1500 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
1501 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
1502 pPage
->nOverflow
= 0;
1503 usableSize
= pBt
->usableSize
;
1504 pPage
->cellOffset
= cellOffset
= hdr
+ 12 - 4*pPage
->leaf
;
1505 pPage
->aDataEnd
= &data
[usableSize
];
1506 pPage
->aCellIdx
= &data
[cellOffset
];
1507 top
= get2byteNotZero(&data
[hdr
+5]);
1508 pPage
->nCell
= get2byte(&data
[hdr
+3]);
1509 if( pPage
->nCell
>MX_CELL(pBt
) ){
1510 /* To many cells for a single page. The page must be corrupt */
1511 return SQLITE_CORRUPT_BKPT
;
1513 testcase( pPage
->nCell
==MX_CELL(pBt
) );
1515 /* A malformed database page might cause us to read past the end
1516 ** of page when parsing a cell.
1518 ** The following block of code checks early to see if a cell extends
1519 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1520 ** returned if it does.
1522 iCellFirst
= cellOffset
+ 2*pPage
->nCell
;
1523 iCellLast
= usableSize
- 4;
1524 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1526 int i
; /* Index into the cell pointer array */
1527 int sz
; /* Size of a cell */
1529 if( !pPage
->leaf
) iCellLast
--;
1530 for(i
=0; i
<pPage
->nCell
; i
++){
1531 pc
= get2byte(&data
[cellOffset
+i
*2]);
1532 testcase( pc
==iCellFirst
);
1533 testcase( pc
==iCellLast
);
1534 if( pc
<iCellFirst
|| pc
>iCellLast
){
1535 return SQLITE_CORRUPT_BKPT
;
1537 sz
= cellSizePtr(pPage
, &data
[pc
]);
1538 testcase( pc
+sz
==usableSize
);
1539 if( pc
+sz
>usableSize
){
1540 return SQLITE_CORRUPT_BKPT
;
1543 if( !pPage
->leaf
) iCellLast
++;
1547 /* Compute the total free space on the page */
1548 pc
= get2byte(&data
[hdr
+1]);
1549 nFree
= data
[hdr
+7] + top
;
1552 if( pc
<iCellFirst
|| pc
>iCellLast
){
1553 /* Start of free block is off the page */
1554 return SQLITE_CORRUPT_BKPT
;
1556 next
= get2byte(&data
[pc
]);
1557 size
= get2byte(&data
[pc
+2]);
1558 if( (next
>0 && next
<=pc
+size
+3) || pc
+size
>usableSize
){
1559 /* Free blocks must be in ascending order. And the last byte of
1560 ** the free-block must lie on the database page. */
1561 return SQLITE_CORRUPT_BKPT
;
1563 nFree
= nFree
+ size
;
1567 /* At this point, nFree contains the sum of the offset to the start
1568 ** of the cell-content area plus the number of free bytes within
1569 ** the cell-content area. If this is greater than the usable-size
1570 ** of the page, then the page must be corrupted. This check also
1571 ** serves to verify that the offset to the start of the cell-content
1572 ** area, according to the page header, lies within the page.
1574 if( nFree
>usableSize
){
1575 return SQLITE_CORRUPT_BKPT
;
1577 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
1584 ** Set up a raw page so that it looks like a database page holding
1587 static void zeroPage(MemPage
*pPage
, int flags
){
1588 unsigned char *data
= pPage
->aData
;
1589 BtShared
*pBt
= pPage
->pBt
;
1590 u8 hdr
= pPage
->hdrOffset
;
1593 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
);
1594 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
1595 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
1596 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1597 assert( sqlite3_mutex_held(pBt
->mutex
) );
1598 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
1599 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
1601 data
[hdr
] = (char)flags
;
1602 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
1603 memset(&data
[hdr
+1], 0, 4);
1605 put2byte(&data
[hdr
+5], pBt
->usableSize
);
1606 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
1607 decodeFlags(pPage
, flags
);
1608 pPage
->cellOffset
= first
;
1609 pPage
->aDataEnd
= &data
[pBt
->usableSize
];
1610 pPage
->aCellIdx
= &data
[first
];
1611 pPage
->nOverflow
= 0;
1612 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
1613 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
1620 ** Convert a DbPage obtained from the pager into a MemPage used by
1623 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
1624 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
1625 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
1626 pPage
->pDbPage
= pDbPage
;
1629 pPage
->hdrOffset
= pPage
->pgno
==1 ? 100 : 0;
1634 ** Get a page from the pager. Initialize the MemPage.pBt and
1635 ** MemPage.aData elements if needed.
1637 ** If the noContent flag is set, it means that we do not care about
1638 ** the content of the page at this time. So do not go to the disk
1639 ** to fetch the content. Just fill in the content with zeros for now.
1640 ** If in the future we call sqlite3PagerWrite() on this page, that
1641 ** means we have started to be concerned about content and the disk
1642 ** read should occur at that point.
1644 static int btreeGetPage(
1645 BtShared
*pBt
, /* The btree */
1646 Pgno pgno
, /* Number of the page to fetch */
1647 MemPage
**ppPage
, /* Return the page in this parameter */
1648 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1653 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
1654 assert( sqlite3_mutex_held(pBt
->mutex
) );
1655 rc
= sqlite3PagerAcquire(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
1657 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
1662 ** Retrieve a page from the pager cache. If the requested page is not
1663 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1664 ** MemPage.aData elements if needed.
1666 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
1668 assert( sqlite3_mutex_held(pBt
->mutex
) );
1669 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
1671 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
1677 ** Return the size of the database file in pages. If there is any kind of
1678 ** error, return ((unsigned int)-1).
1680 static Pgno
btreePagecount(BtShared
*pBt
){
1683 u32
sqlite3BtreeLastPage(Btree
*p
){
1684 assert( sqlite3BtreeHoldsMutex(p
) );
1685 assert( ((p
->pBt
->nPage
)&0x8000000)==0 );
1686 return btreePagecount(p
->pBt
);
1690 ** Get a page from the pager and initialize it. This routine is just a
1691 ** convenience wrapper around separate calls to btreeGetPage() and
1694 ** If an error occurs, then the value *ppPage is set to is undefined. It
1695 ** may remain unchanged, or it may be set to an invalid value.
1697 static int getAndInitPage(
1698 BtShared
*pBt
, /* The database file */
1699 Pgno pgno
, /* Number of the page to get */
1700 MemPage
**ppPage
, /* Write the page pointer here */
1701 int bReadonly
/* PAGER_GET_READONLY or 0 */
1704 assert( sqlite3_mutex_held(pBt
->mutex
) );
1705 assert( bReadonly
==PAGER_GET_READONLY
|| bReadonly
==0 );
1707 if( pgno
>btreePagecount(pBt
) ){
1708 rc
= SQLITE_CORRUPT_BKPT
;
1710 rc
= btreeGetPage(pBt
, pgno
, ppPage
, bReadonly
);
1711 if( rc
==SQLITE_OK
&& (*ppPage
)->isInit
==0 ){
1712 rc
= btreeInitPage(*ppPage
);
1713 if( rc
!=SQLITE_OK
){
1714 releasePage(*ppPage
);
1719 testcase( pgno
==0 );
1720 assert( pgno
!=0 || rc
==SQLITE_CORRUPT
);
1725 ** Release a MemPage. This should be called once for each prior
1726 ** call to btreeGetPage.
1728 static void releasePage(MemPage
*pPage
){
1730 assert( pPage
->aData
);
1731 assert( pPage
->pBt
);
1732 assert( pPage
->pDbPage
!=0 );
1733 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
1734 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
1735 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1736 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
1741 ** During a rollback, when the pager reloads information into the cache
1742 ** so that the cache is restored to its original state at the start of
1743 ** the transaction, for each page restored this routine is called.
1745 ** This routine needs to reset the extra data section at the end of the
1746 ** page to agree with the restored data.
1748 static void pageReinit(DbPage
*pData
){
1750 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
1751 assert( sqlite3PagerPageRefcount(pData
)>0 );
1752 if( pPage
->isInit
){
1753 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1755 if( sqlite3PagerPageRefcount(pData
)>1 ){
1756 /* pPage might not be a btree page; it might be an overflow page
1757 ** or ptrmap page or a free page. In those cases, the following
1758 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
1759 ** But no harm is done by this. And it is very important that
1760 ** btreeInitPage() be called on every btree page so we make
1761 ** the call for every page that comes in for re-initing. */
1762 btreeInitPage(pPage
);
1768 ** Invoke the busy handler for a btree.
1770 static int btreeInvokeBusyHandler(void *pArg
){
1771 BtShared
*pBt
= (BtShared
*)pArg
;
1773 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
1774 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
1778 ** Open a database file.
1780 ** zFilename is the name of the database file. If zFilename is NULL
1781 ** then an ephemeral database is created. The ephemeral database might
1782 ** be exclusively in memory, or it might use a disk-based memory cache.
1783 ** Either way, the ephemeral database will be automatically deleted
1784 ** when sqlite3BtreeClose() is called.
1786 ** If zFilename is ":memory:" then an in-memory database is created
1787 ** that is automatically destroyed when it is closed.
1789 ** The "flags" parameter is a bitmask that might contain bits like
1790 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
1792 ** If the database is already opened in the same database connection
1793 ** and we are in shared cache mode, then the open will fail with an
1794 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1795 ** objects in the same database connection since doing so will lead
1796 ** to problems with locking.
1798 int sqlite3BtreeOpen(
1799 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
1800 const char *zFilename
, /* Name of the file containing the BTree database */
1801 sqlite3
*db
, /* Associated database handle */
1802 Btree
**ppBtree
, /* Pointer to new Btree object written here */
1803 int flags
, /* Options */
1804 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
1806 BtShared
*pBt
= 0; /* Shared part of btree structure */
1807 Btree
*p
; /* Handle to return */
1808 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
1809 int rc
= SQLITE_OK
; /* Result code from this function */
1810 u8 nReserve
; /* Byte of unused space on each page */
1811 unsigned char zDbHeader
[100]; /* Database header content */
1813 /* True if opening an ephemeral, temporary database */
1814 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
1816 /* Set the variable isMemdb to true for an in-memory database, or
1817 ** false for a file-based database.
1819 #ifdef SQLITE_OMIT_MEMORYDB
1820 const int isMemdb
= 0;
1822 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
1823 || (isTempDb
&& sqlite3TempInMemory(db
))
1824 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
1829 assert( sqlite3_mutex_held(db
->mutex
) );
1830 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
1832 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1833 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
1835 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1836 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
1839 flags
|= BTREE_MEMORY
;
1841 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
1842 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
1844 p
= sqlite3MallocZero(sizeof(Btree
));
1846 return SQLITE_NOMEM
;
1848 p
->inTrans
= TRANS_NONE
;
1850 #ifndef SQLITE_OMIT_SHARED_CACHE
1855 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1857 ** If this Btree is a candidate for shared cache, try to find an
1858 ** existing BtShared object that we can share with
1860 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
1861 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
1862 int nFullPathname
= pVfs
->mxPathname
+1;
1863 char *zFullPathname
= sqlite3Malloc(nFullPathname
);
1864 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
1866 if( !zFullPathname
){
1868 return SQLITE_NOMEM
;
1871 memcpy(zFullPathname
, zFilename
, sqlite3Strlen30(zFilename
)+1);
1873 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
1874 nFullPathname
, zFullPathname
);
1876 sqlite3_free(zFullPathname
);
1881 #if SQLITE_THREADSAFE
1882 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
1883 sqlite3_mutex_enter(mutexOpen
);
1884 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);
1885 sqlite3_mutex_enter(mutexShared
);
1887 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
1888 assert( pBt
->nRef
>0 );
1889 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
1890 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
1892 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
1893 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
1894 if( pExisting
&& pExisting
->pBt
==pBt
){
1895 sqlite3_mutex_leave(mutexShared
);
1896 sqlite3_mutex_leave(mutexOpen
);
1897 sqlite3_free(zFullPathname
);
1899 return SQLITE_CONSTRAINT
;
1907 sqlite3_mutex_leave(mutexShared
);
1908 sqlite3_free(zFullPathname
);
1912 /* In debug mode, we mark all persistent databases as sharable
1913 ** even when they are not. This exercises the locking code and
1914 ** gives more opportunity for asserts(sqlite3_mutex_held())
1915 ** statements to find locking problems.
1924 ** The following asserts make sure that structures used by the btree are
1925 ** the right size. This is to guard against size changes that result
1926 ** when compiling on a different architecture.
1928 assert( sizeof(i64
)==8 || sizeof(i64
)==4 );
1929 assert( sizeof(u64
)==8 || sizeof(u64
)==4 );
1930 assert( sizeof(u32
)==4 );
1931 assert( sizeof(u16
)==2 );
1932 assert( sizeof(Pgno
)==4 );
1934 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
1937 goto btree_open_out
;
1939 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
1940 EXTRA_SIZE
, flags
, vfsFlags
, pageReinit
);
1941 if( rc
==SQLITE_OK
){
1942 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
1943 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
1945 if( rc
!=SQLITE_OK
){
1946 goto btree_open_out
;
1948 pBt
->openFlags
= (u8
)flags
;
1950 sqlite3PagerSetBusyhandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
1955 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
1956 #ifdef SQLITE_SECURE_DELETE
1957 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
1959 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
1960 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
1961 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
1963 #ifndef SQLITE_OMIT_AUTOVACUUM
1964 /* If the magic name ":memory:" will create an in-memory database, then
1965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1968 ** regular file-name. In this case the auto-vacuum applies as per normal.
1970 if( zFilename
&& !isMemdb
){
1971 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
1972 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
1977 nReserve
= zDbHeader
[20];
1978 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
1979 #ifndef SQLITE_OMIT_AUTOVACUUM
1980 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
1981 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
1984 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
1985 if( rc
) goto btree_open_out
;
1986 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
1987 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
1989 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1990 /* Add the new BtShared object to the linked list sharable BtShareds.
1993 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
1995 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);)
1996 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
1997 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
1998 if( pBt
->mutex
==0 ){
2000 db
->mallocFailed
= 0;
2001 goto btree_open_out
;
2004 sqlite3_mutex_enter(mutexShared
);
2005 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2006 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2007 sqlite3_mutex_leave(mutexShared
);
2012 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2013 /* If the new Btree uses a sharable pBtShared, then link the new
2014 ** Btree into the list of all sharable Btrees for the same connection.
2015 ** The list is kept in ascending order by pBt address.
2020 for(i
=0; i
<db
->nDb
; i
++){
2021 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2022 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2023 if( p
->pBt
<pSib
->pBt
){
2028 while( pSib
->pNext
&& pSib
->pNext
->pBt
<p
->pBt
){
2031 p
->pNext
= pSib
->pNext
;
2034 p
->pNext
->pPrev
= p
;
2046 if( rc
!=SQLITE_OK
){
2047 if( pBt
&& pBt
->pPager
){
2048 sqlite3PagerClose(pBt
->pPager
);
2054 /* If the B-Tree was successfully opened, set the pager-cache size to the
2055 ** default value. Except, when opening on an existing shared pager-cache,
2056 ** do not change the pager-cache size.
2058 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2059 sqlite3PagerSetCachesize(p
->pBt
->pPager
, SQLITE_DEFAULT_CACHE_SIZE
);
2063 assert( sqlite3_mutex_held(mutexOpen
) );
2064 sqlite3_mutex_leave(mutexOpen
);
2070 ** Decrement the BtShared.nRef counter. When it reaches zero,
2071 ** remove the BtShared structure from the sharing list. Return
2072 ** true if the BtShared.nRef counter reaches zero and return
2073 ** false if it is still positive.
2075 static int removeFromSharingList(BtShared
*pBt
){
2076 #ifndef SQLITE_OMIT_SHARED_CACHE
2077 MUTEX_LOGIC( sqlite3_mutex
*pMaster
; )
2081 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2082 MUTEX_LOGIC( pMaster
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
); )
2083 sqlite3_mutex_enter(pMaster
);
2086 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2087 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2089 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2090 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2093 if( ALWAYS(pList
) ){
2094 pList
->pNext
= pBt
->pNext
;
2097 if( SQLITE_THREADSAFE
){
2098 sqlite3_mutex_free(pBt
->mutex
);
2102 sqlite3_mutex_leave(pMaster
);
2110 ** Make sure pBt->pTmpSpace points to an allocation of
2111 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2114 static void allocateTempSpace(BtShared
*pBt
){
2115 if( !pBt
->pTmpSpace
){
2116 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2118 /* One of the uses of pBt->pTmpSpace is to format cells before
2119 ** inserting them into a leaf page (function fillInCell()). If
2120 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2121 ** by the various routines that manipulate binary cells. Which
2122 ** can mean that fillInCell() only initializes the first 2 or 3
2123 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2124 ** it into a database page. This is not actually a problem, but it
2125 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2126 ** data is passed to system call write(). So to avoid this error,
2127 ** zero the first 4 bytes of temp space here.
2129 ** Also: Provide four bytes of initialized space before the
2130 ** beginning of pTmpSpace as an area available to prepend the
2131 ** left-child pointer to the beginning of a cell.
2133 if( pBt
->pTmpSpace
){
2134 memset(pBt
->pTmpSpace
, 0, 8);
2135 pBt
->pTmpSpace
+= 4;
2141 ** Free the pBt->pTmpSpace allocation
2143 static void freeTempSpace(BtShared
*pBt
){
2144 if( pBt
->pTmpSpace
){
2145 pBt
->pTmpSpace
-= 4;
2146 sqlite3PageFree(pBt
->pTmpSpace
);
2152 ** Close an open database and invalidate all cursors.
2154 int sqlite3BtreeClose(Btree
*p
){
2155 BtShared
*pBt
= p
->pBt
;
2158 /* Close all cursors opened via this handle. */
2159 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2160 sqlite3BtreeEnter(p
);
2161 pCur
= pBt
->pCursor
;
2163 BtCursor
*pTmp
= pCur
;
2165 if( pTmp
->pBtree
==p
){
2166 sqlite3BtreeCloseCursor(pTmp
);
2170 /* Rollback any active transaction and free the handle structure.
2171 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2174 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2175 sqlite3BtreeLeave(p
);
2177 /* If there are still other outstanding references to the shared-btree
2178 ** structure, return now. The remainder of this procedure cleans
2179 ** up the shared-btree.
2181 assert( p
->wantToLock
==0 && p
->locked
==0 );
2182 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2183 /* The pBt is no longer on the sharing list, so we can access
2184 ** it without having to hold the mutex.
2186 ** Clean out and delete the BtShared object.
2188 assert( !pBt
->pCursor
);
2189 sqlite3PagerClose(pBt
->pPager
);
2190 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2191 pBt
->xFreeSchema(pBt
->pSchema
);
2193 sqlite3DbFree(0, pBt
->pSchema
);
2198 #ifndef SQLITE_OMIT_SHARED_CACHE
2199 assert( p
->wantToLock
==0 );
2200 assert( p
->locked
==0 );
2201 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2202 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2210 ** Change the limit on the number of pages allowed in the cache.
2212 ** The maximum number of cache pages is set to the absolute
2213 ** value of mxPage. If mxPage is negative, the pager will
2214 ** operate asynchronously - it will not stop to do fsync()s
2215 ** to insure data is written to the disk surface before
2216 ** continuing. Transactions still work if synchronous is off,
2217 ** and the database cannot be corrupted if this program
2218 ** crashes. But if the operating system crashes or there is
2219 ** an abrupt power failure when synchronous is off, the database
2220 ** could be left in an inconsistent and unrecoverable state.
2221 ** Synchronous is on by default so database corruption is not
2222 ** normally a worry.
2224 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2225 BtShared
*pBt
= p
->pBt
;
2226 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2227 sqlite3BtreeEnter(p
);
2228 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2229 sqlite3BtreeLeave(p
);
2233 #if SQLITE_MAX_MMAP_SIZE>0
2235 ** Change the limit on the amount of the database file that may be
2238 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2239 BtShared
*pBt
= p
->pBt
;
2240 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2241 sqlite3BtreeEnter(p
);
2242 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2243 sqlite3BtreeLeave(p
);
2246 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2249 ** Change the way data is synced to disk in order to increase or decrease
2250 ** how well the database resists damage due to OS crashes and power
2251 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2252 ** there is a high probability of damage) Level 2 is the default. There
2253 ** is a very low but non-zero probability of damage. Level 3 reduces the
2254 ** probability of damage to near zero but with a write performance reduction.
2256 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2257 int sqlite3BtreeSetPagerFlags(
2258 Btree
*p
, /* The btree to set the safety level on */
2259 unsigned pgFlags
/* Various PAGER_* flags */
2261 BtShared
*pBt
= p
->pBt
;
2262 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2263 sqlite3BtreeEnter(p
);
2264 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
2265 sqlite3BtreeLeave(p
);
2271 ** Return TRUE if the given btree is set to safety level 1. In other
2272 ** words, return TRUE if no sync() occurs on the disk files.
2274 int sqlite3BtreeSyncDisabled(Btree
*p
){
2275 BtShared
*pBt
= p
->pBt
;
2277 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2278 sqlite3BtreeEnter(p
);
2279 assert( pBt
&& pBt
->pPager
);
2280 rc
= sqlite3PagerNosync(pBt
->pPager
);
2281 sqlite3BtreeLeave(p
);
2286 ** Change the default pages size and the number of reserved bytes per page.
2287 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2288 ** without changing anything.
2290 ** The page size must be a power of 2 between 512 and 65536. If the page
2291 ** size supplied does not meet this constraint then the page size is not
2294 ** Page sizes are constrained to be a power of two so that the region
2295 ** of the database file used for locking (beginning at PENDING_BYTE,
2296 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2297 ** at the beginning of a page.
2299 ** If parameter nReserve is less than zero, then the number of reserved
2300 ** bytes per page is left unchanged.
2302 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2303 ** and autovacuum mode can no longer be changed.
2305 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
2307 BtShared
*pBt
= p
->pBt
;
2308 assert( nReserve
>=-1 && nReserve
<=255 );
2309 sqlite3BtreeEnter(p
);
2310 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
2311 sqlite3BtreeLeave(p
);
2312 return SQLITE_READONLY
;
2315 nReserve
= pBt
->pageSize
- pBt
->usableSize
;
2317 assert( nReserve
>=0 && nReserve
<=255 );
2318 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
2319 ((pageSize
-1)&pageSize
)==0 ){
2320 assert( (pageSize
& 7)==0 );
2321 assert( !pBt
->pPage1
&& !pBt
->pCursor
);
2322 pBt
->pageSize
= (u32
)pageSize
;
2325 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2326 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
2327 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2328 sqlite3BtreeLeave(p
);
2333 ** Return the currently defined page size
2335 int sqlite3BtreeGetPageSize(Btree
*p
){
2336 return p
->pBt
->pageSize
;
2339 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
2341 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2342 ** may only be called if it is guaranteed that the b-tree mutex is already
2345 ** This is useful in one special case in the backup API code where it is
2346 ** known that the shared b-tree mutex is held, but the mutex on the
2347 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2348 ** were to be called, it might collide with some other operation on the
2349 ** database handle that owns *p, causing undefined behavior.
2351 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
2352 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
2353 return p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2355 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
2357 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
2359 ** Return the number of bytes of space at the end of every page that
2360 ** are intentually left unused. This is the "reserved" space that is
2361 ** sometimes used by extensions.
2363 int sqlite3BtreeGetReserve(Btree
*p
){
2365 sqlite3BtreeEnter(p
);
2366 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2367 sqlite3BtreeLeave(p
);
2372 ** Set the maximum page count for a database if mxPage is positive.
2373 ** No changes are made if mxPage is 0 or negative.
2374 ** Regardless of the value of mxPage, return the maximum page count.
2376 int sqlite3BtreeMaxPageCount(Btree
*p
, int mxPage
){
2378 sqlite3BtreeEnter(p
);
2379 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
2380 sqlite3BtreeLeave(p
);
2385 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2386 ** then make no changes. Always return the value of the BTS_SECURE_DELETE
2387 ** setting after the change.
2389 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
2391 if( p
==0 ) return 0;
2392 sqlite3BtreeEnter(p
);
2394 p
->pBt
->btsFlags
&= ~BTS_SECURE_DELETE
;
2395 if( newFlag
) p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2397 b
= (p
->pBt
->btsFlags
& BTS_SECURE_DELETE
)!=0;
2398 sqlite3BtreeLeave(p
);
2401 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
2404 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2405 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2406 ** is disabled. The default value for the auto-vacuum property is
2407 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2409 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
2410 #ifdef SQLITE_OMIT_AUTOVACUUM
2411 return SQLITE_READONLY
;
2413 BtShared
*pBt
= p
->pBt
;
2415 u8 av
= (u8
)autoVacuum
;
2417 sqlite3BtreeEnter(p
);
2418 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
2419 rc
= SQLITE_READONLY
;
2421 pBt
->autoVacuum
= av
?1:0;
2422 pBt
->incrVacuum
= av
==2 ?1:0;
2424 sqlite3BtreeLeave(p
);
2430 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2431 ** enabled 1 is returned. Otherwise 0.
2433 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
2434 #ifdef SQLITE_OMIT_AUTOVACUUM
2435 return BTREE_AUTOVACUUM_NONE
;
2438 sqlite3BtreeEnter(p
);
2440 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
2441 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
2442 BTREE_AUTOVACUUM_INCR
2444 sqlite3BtreeLeave(p
);
2451 ** Get a reference to pPage1 of the database file. This will
2452 ** also acquire a readlock on that file.
2454 ** SQLITE_OK is returned on success. If the file is not a
2455 ** well-formed database file, then SQLITE_CORRUPT is returned.
2456 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
2457 ** is returned if we run out of memory.
2459 static int lockBtree(BtShared
*pBt
){
2460 int rc
; /* Result code from subfunctions */
2461 MemPage
*pPage1
; /* Page 1 of the database file */
2462 int nPage
; /* Number of pages in the database */
2463 int nPageFile
= 0; /* Number of pages in the database file */
2464 int nPageHeader
; /* Number of pages in the database according to hdr */
2466 assert( sqlite3_mutex_held(pBt
->mutex
) );
2467 assert( pBt
->pPage1
==0 );
2468 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
2469 if( rc
!=SQLITE_OK
) return rc
;
2470 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
2471 if( rc
!=SQLITE_OK
) return rc
;
2473 /* Do some checking to help insure the file we opened really is
2474 ** a valid database file.
2476 nPage
= nPageHeader
= get4byte(28+(u8
*)pPage1
->aData
);
2477 sqlite3PagerPagecount(pBt
->pPager
, &nPageFile
);
2478 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
2484 u8
*page1
= pPage1
->aData
;
2486 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
2487 goto page1_init_failed
;
2490 #ifdef SQLITE_OMIT_WAL
2492 pBt
->btsFlags
|= BTS_READ_ONLY
;
2495 goto page1_init_failed
;
2499 pBt
->btsFlags
|= BTS_READ_ONLY
;
2502 goto page1_init_failed
;
2505 /* If the write version is set to 2, this database should be accessed
2506 ** in WAL mode. If the log is not already open, open it now. Then
2507 ** return SQLITE_OK and return without populating BtShared.pPage1.
2508 ** The caller detects this and calls this function again. This is
2509 ** required as the version of page 1 currently in the page1 buffer
2510 ** may not be the latest version - there may be a newer one in the log
2513 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
2515 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
2516 if( rc
!=SQLITE_OK
){
2517 goto page1_init_failed
;
2518 }else if( isOpen
==0 ){
2519 releasePage(pPage1
);
2526 /* The maximum embedded fraction must be exactly 25%. And the minimum
2527 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2528 ** The original design allowed these amounts to vary, but as of
2529 ** version 3.6.0, we require them to be fixed.
2531 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
2532 goto page1_init_failed
;
2534 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
2535 if( ((pageSize
-1)&pageSize
)!=0
2536 || pageSize
>SQLITE_MAX_PAGE_SIZE
2539 goto page1_init_failed
;
2541 assert( (pageSize
& 7)==0 );
2542 usableSize
= pageSize
- page1
[20];
2543 if( (u32
)pageSize
!=pBt
->pageSize
){
2544 /* After reading the first page of the database assuming a page size
2545 ** of BtShared.pageSize, we have discovered that the page-size is
2546 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2547 ** zero and return SQLITE_OK. The caller will call this function
2548 ** again with the correct page-size.
2550 releasePage(pPage1
);
2551 pBt
->usableSize
= usableSize
;
2552 pBt
->pageSize
= pageSize
;
2554 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
2555 pageSize
-usableSize
);
2558 if( (pBt
->db
->flags
& SQLITE_RecoveryMode
)==0 && nPage
>nPageFile
){
2559 rc
= SQLITE_CORRUPT_BKPT
;
2560 goto page1_init_failed
;
2562 if( usableSize
<480 ){
2563 goto page1_init_failed
;
2565 pBt
->pageSize
= pageSize
;
2566 pBt
->usableSize
= usableSize
;
2567 #ifndef SQLITE_OMIT_AUTOVACUUM
2568 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
2569 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
2573 /* maxLocal is the maximum amount of payload to store locally for
2574 ** a cell. Make sure it is small enough so that at least minFanout
2575 ** cells can will fit on one page. We assume a 10-byte page header.
2576 ** Besides the payload, the cell must store:
2577 ** 2-byte pointer to the cell
2578 ** 4-byte child pointer
2579 ** 9-byte nKey value
2580 ** 4-byte nData value
2581 ** 4-byte overflow page pointer
2582 ** So a cell consists of a 2-byte pointer, a header which is as much as
2583 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2586 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
2587 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
2588 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
2589 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
2590 if( pBt
->maxLocal
>127 ){
2591 pBt
->max1bytePayload
= 127;
2593 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
2595 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
2596 pBt
->pPage1
= pPage1
;
2601 releasePage(pPage1
);
2608 ** Return the number of cursors open on pBt. This is for use
2609 ** in assert() expressions, so it is only compiled if NDEBUG is not
2612 ** Only write cursors are counted if wrOnly is true. If wrOnly is
2613 ** false then all cursors are counted.
2615 ** For the purposes of this routine, a cursor is any cursor that
2616 ** is capable of reading or writing to the database. Cursors that
2617 ** have been tripped into the CURSOR_FAULT state are not counted.
2619 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
2622 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
2623 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
2624 && pCur
->eState
!=CURSOR_FAULT
) r
++;
2631 ** If there are no outstanding cursors and we are not in the middle
2632 ** of a transaction but there is a read lock on the database, then
2633 ** this routine unrefs the first page of the database file which
2634 ** has the effect of releasing the read lock.
2636 ** If there is a transaction in progress, this routine is a no-op.
2638 static void unlockBtreeIfUnused(BtShared
*pBt
){
2639 assert( sqlite3_mutex_held(pBt
->mutex
) );
2640 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
2641 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
2642 MemPage
*pPage1
= pBt
->pPage1
;
2643 assert( pPage1
->aData
);
2644 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
2646 releasePage(pPage1
);
2651 ** If pBt points to an empty file then convert that empty file
2652 ** into a new empty database by initializing the first page of
2655 static int newDatabase(BtShared
*pBt
){
2657 unsigned char *data
;
2660 assert( sqlite3_mutex_held(pBt
->mutex
) );
2667 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
2669 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
2670 assert( sizeof(zMagicHeader
)==16 );
2671 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
2672 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
2675 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
2676 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
2680 memset(&data
[24], 0, 100-24);
2681 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
2682 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2683 #ifndef SQLITE_OMIT_AUTOVACUUM
2684 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
2685 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
2686 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
2687 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
2695 ** Initialize the first page of the database file (creating a database
2696 ** consisting of a single page and no schema objects). Return SQLITE_OK
2697 ** if successful, or an SQLite error code otherwise.
2699 int sqlite3BtreeNewDb(Btree
*p
){
2701 sqlite3BtreeEnter(p
);
2703 rc
= newDatabase(p
->pBt
);
2704 sqlite3BtreeLeave(p
);
2709 ** Attempt to start a new transaction. A write-transaction
2710 ** is started if the second argument is nonzero, otherwise a read-
2711 ** transaction. If the second argument is 2 or more and exclusive
2712 ** transaction is started, meaning that no other process is allowed
2713 ** to access the database. A preexisting transaction may not be
2714 ** upgraded to exclusive by calling this routine a second time - the
2715 ** exclusivity flag only works for a new transaction.
2717 ** A write-transaction must be started before attempting any
2718 ** changes to the database. None of the following routines
2719 ** will work unless a transaction is started first:
2721 ** sqlite3BtreeCreateTable()
2722 ** sqlite3BtreeCreateIndex()
2723 ** sqlite3BtreeClearTable()
2724 ** sqlite3BtreeDropTable()
2725 ** sqlite3BtreeInsert()
2726 ** sqlite3BtreeDelete()
2727 ** sqlite3BtreeUpdateMeta()
2729 ** If an initial attempt to acquire the lock fails because of lock contention
2730 ** and the database was previously unlocked, then invoke the busy handler
2731 ** if there is one. But if there was previously a read-lock, do not
2732 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2733 ** returned when there is already a read-lock in order to avoid a deadlock.
2735 ** Suppose there are two processes A and B. A has a read lock and B has
2736 ** a reserved lock. B tries to promote to exclusive but is blocked because
2737 ** of A's read lock. A tries to promote to reserved but is blocked by B.
2738 ** One or the other of the two processes must give way or there can be
2739 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2740 ** when A already has a read lock, we encourage A to give up and let B
2743 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
){
2744 sqlite3
*pBlock
= 0;
2745 BtShared
*pBt
= p
->pBt
;
2748 sqlite3BtreeEnter(p
);
2751 /* If the btree is already in a write-transaction, or it
2752 ** is already in a read-transaction and a read-transaction
2753 ** is requested, this is a no-op.
2755 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
2758 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
2760 /* Write transactions are not possible on a read-only database */
2761 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
2762 rc
= SQLITE_READONLY
;
2766 #ifndef SQLITE_OMIT_SHARED_CACHE
2767 /* If another database handle has already opened a write transaction
2768 ** on this shared-btree structure and a second write transaction is
2769 ** requested, return SQLITE_LOCKED.
2771 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
2772 || (pBt
->btsFlags
& BTS_PENDING
)!=0
2774 pBlock
= pBt
->pWriter
->db
;
2775 }else if( wrflag
>1 ){
2777 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
2778 if( pIter
->pBtree
!=p
){
2779 pBlock
= pIter
->pBtree
->db
;
2785 sqlite3ConnectionBlocked(p
->db
, pBlock
);
2786 rc
= SQLITE_LOCKED_SHAREDCACHE
;
2791 /* Any read-only or read-write transaction implies a read-lock on
2792 ** page 1. So if some other shared-cache client already has a write-lock
2793 ** on page 1, the transaction cannot be opened. */
2794 rc
= querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
);
2795 if( SQLITE_OK
!=rc
) goto trans_begun
;
2797 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
2798 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
2800 /* Call lockBtree() until either pBt->pPage1 is populated or
2801 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2802 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2803 ** reading page 1 it discovers that the page-size of the database
2804 ** file is not pBt->pageSize. In this case lockBtree() will update
2805 ** pBt->pageSize to the page-size of the file on disk.
2807 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
2809 if( rc
==SQLITE_OK
&& wrflag
){
2810 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
2811 rc
= SQLITE_READONLY
;
2813 rc
= sqlite3PagerBegin(pBt
->pPager
,wrflag
>1,sqlite3TempInMemory(p
->db
));
2814 if( rc
==SQLITE_OK
){
2815 rc
= newDatabase(pBt
);
2820 if( rc
!=SQLITE_OK
){
2821 unlockBtreeIfUnused(pBt
);
2823 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
2824 btreeInvokeBusyHandler(pBt
) );
2826 if( rc
==SQLITE_OK
){
2827 if( p
->inTrans
==TRANS_NONE
){
2828 pBt
->nTransaction
++;
2829 #ifndef SQLITE_OMIT_SHARED_CACHE
2831 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
2832 p
->lock
.eLock
= READ_LOCK
;
2833 p
->lock
.pNext
= pBt
->pLock
;
2834 pBt
->pLock
= &p
->lock
;
2838 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
2839 if( p
->inTrans
>pBt
->inTransaction
){
2840 pBt
->inTransaction
= p
->inTrans
;
2843 MemPage
*pPage1
= pBt
->pPage1
;
2844 #ifndef SQLITE_OMIT_SHARED_CACHE
2845 assert( !pBt
->pWriter
);
2847 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
2848 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
2851 /* If the db-size header field is incorrect (as it may be if an old
2852 ** client has been writing the database file), update it now. Doing
2853 ** this sooner rather than later means the database size can safely
2854 ** re-read the database size from page 1 if a savepoint or transaction
2855 ** rollback occurs within the transaction.
2857 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
2858 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
2859 if( rc
==SQLITE_OK
){
2860 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
2868 if( rc
==SQLITE_OK
&& wrflag
){
2869 /* This call makes sure that the pager has the correct number of
2870 ** open savepoints. If the second parameter is greater than 0 and
2871 ** the sub-journal is not already open, then it will be opened here.
2873 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, p
->db
->nSavepoint
);
2877 sqlite3BtreeLeave(p
);
2881 #ifndef SQLITE_OMIT_AUTOVACUUM
2884 ** Set the pointer-map entries for all children of page pPage. Also, if
2885 ** pPage contains cells that point to overflow pages, set the pointer
2886 ** map entries for the overflow pages as well.
2888 static int setChildPtrmaps(MemPage
*pPage
){
2889 int i
; /* Counter variable */
2890 int nCell
; /* Number of cells in page pPage */
2891 int rc
; /* Return code */
2892 BtShared
*pBt
= pPage
->pBt
;
2893 u8 isInitOrig
= pPage
->isInit
;
2894 Pgno pgno
= pPage
->pgno
;
2896 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2897 rc
= btreeInitPage(pPage
);
2898 if( rc
!=SQLITE_OK
){
2899 goto set_child_ptrmaps_out
;
2901 nCell
= pPage
->nCell
;
2903 for(i
=0; i
<nCell
; i
++){
2904 u8
*pCell
= findCell(pPage
, i
);
2906 ptrmapPutOvflPtr(pPage
, pCell
, &rc
);
2909 Pgno childPgno
= get4byte(pCell
);
2910 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
2915 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
2916 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
2919 set_child_ptrmaps_out
:
2920 pPage
->isInit
= isInitOrig
;
2925 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2926 ** that it points to iTo. Parameter eType describes the type of pointer to
2927 ** be modified, as follows:
2929 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2932 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2933 ** page pointed to by one of the cells on pPage.
2935 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2936 ** overflow page in the list.
2938 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
2939 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2940 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2941 if( eType
==PTRMAP_OVERFLOW2
){
2942 /* The pointer is always the first 4 bytes of the page in this case. */
2943 if( get4byte(pPage
->aData
)!=iFrom
){
2944 return SQLITE_CORRUPT_BKPT
;
2946 put4byte(pPage
->aData
, iTo
);
2948 u8 isInitOrig
= pPage
->isInit
;
2952 btreeInitPage(pPage
);
2953 nCell
= pPage
->nCell
;
2955 for(i
=0; i
<nCell
; i
++){
2956 u8
*pCell
= findCell(pPage
, i
);
2957 if( eType
==PTRMAP_OVERFLOW1
){
2959 btreeParseCellPtr(pPage
, pCell
, &info
);
2961 && pCell
+info
.iOverflow
+3<=pPage
->aData
+pPage
->maskPage
2962 && iFrom
==get4byte(&pCell
[info
.iOverflow
])
2964 put4byte(&pCell
[info
.iOverflow
], iTo
);
2968 if( get4byte(pCell
)==iFrom
){
2969 put4byte(pCell
, iTo
);
2976 if( eType
!=PTRMAP_BTREE
||
2977 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
2978 return SQLITE_CORRUPT_BKPT
;
2980 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
2983 pPage
->isInit
= isInitOrig
;
2990 ** Move the open database page pDbPage to location iFreePage in the
2991 ** database. The pDbPage reference remains valid.
2993 ** The isCommit flag indicates that there is no need to remember that
2994 ** the journal needs to be sync()ed before database page pDbPage->pgno
2995 ** can be written to. The caller has already promised not to write to that
2998 static int relocatePage(
2999 BtShared
*pBt
, /* Btree */
3000 MemPage
*pDbPage
, /* Open page to move */
3001 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3002 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3003 Pgno iFreePage
, /* The location to move pDbPage to */
3004 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3006 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3007 Pgno iDbPage
= pDbPage
->pgno
;
3008 Pager
*pPager
= pBt
->pPager
;
3011 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3012 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3013 assert( sqlite3_mutex_held(pBt
->mutex
) );
3014 assert( pDbPage
->pBt
==pBt
);
3016 /* Move page iDbPage from its current location to page number iFreePage */
3017 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3018 iDbPage
, iFreePage
, iPtrPage
, eType
));
3019 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3020 if( rc
!=SQLITE_OK
){
3023 pDbPage
->pgno
= iFreePage
;
3025 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3026 ** that point to overflow pages. The pointer map entries for all these
3027 ** pages need to be changed.
3029 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3030 ** pointer to a subsequent overflow page. If this is the case, then
3031 ** the pointer map needs to be updated for the subsequent overflow page.
3033 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3034 rc
= setChildPtrmaps(pDbPage
);
3035 if( rc
!=SQLITE_OK
){
3039 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3041 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3042 if( rc
!=SQLITE_OK
){
3048 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3049 ** that it points at iFreePage. Also fix the pointer map entry for
3052 if( eType
!=PTRMAP_ROOTPAGE
){
3053 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3054 if( rc
!=SQLITE_OK
){
3057 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3058 if( rc
!=SQLITE_OK
){
3059 releasePage(pPtrPage
);
3062 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3063 releasePage(pPtrPage
);
3064 if( rc
==SQLITE_OK
){
3065 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3071 /* Forward declaration required by incrVacuumStep(). */
3072 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3075 ** Perform a single step of an incremental-vacuum. If successful, return
3076 ** SQLITE_OK. If there is no work to do (and therefore no point in
3077 ** calling this function again), return SQLITE_DONE. Or, if an error
3078 ** occurs, return some other error code.
3080 ** More specifically, this function attempts to re-organize the database so
3081 ** that the last page of the file currently in use is no longer in use.
3083 ** Parameter nFin is the number of pages that this database would contain
3084 ** were this function called until it returns SQLITE_DONE.
3086 ** If the bCommit parameter is non-zero, this function assumes that the
3087 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3088 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3089 ** operation, or false for an incremental vacuum.
3091 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3092 Pgno nFreeList
; /* Number of pages still on the free-list */
3095 assert( sqlite3_mutex_held(pBt
->mutex
) );
3096 assert( iLastPg
>nFin
);
3098 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3102 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3107 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3108 if( rc
!=SQLITE_OK
){
3111 if( eType
==PTRMAP_ROOTPAGE
){
3112 return SQLITE_CORRUPT_BKPT
;
3115 if( eType
==PTRMAP_FREEPAGE
){
3117 /* Remove the page from the files free-list. This is not required
3118 ** if bCommit is non-zero. In that case, the free-list will be
3119 ** truncated to zero after this function returns, so it doesn't
3120 ** matter if it still contains some garbage entries.
3124 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3125 if( rc
!=SQLITE_OK
){
3128 assert( iFreePg
==iLastPg
);
3129 releasePage(pFreePg
);
3132 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3134 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3135 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3137 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3138 if( rc
!=SQLITE_OK
){
3142 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3143 ** is swapped with the first free page pulled off the free list.
3145 ** On the other hand, if bCommit is greater than zero, then keep
3146 ** looping until a free-page located within the first nFin pages
3147 ** of the file is found.
3155 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
3156 if( rc
!=SQLITE_OK
){
3157 releasePage(pLastPg
);
3160 releasePage(pFreePg
);
3161 }while( bCommit
&& iFreePg
>nFin
);
3162 assert( iFreePg
<iLastPg
);
3164 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
3165 releasePage(pLastPg
);
3166 if( rc
!=SQLITE_OK
){
3175 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
3176 pBt
->bDoTruncate
= 1;
3177 pBt
->nPage
= iLastPg
;
3183 ** The database opened by the first argument is an auto-vacuum database
3184 ** nOrig pages in size containing nFree free pages. Return the expected
3185 ** size of the database in pages following an auto-vacuum operation.
3187 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
3188 int nEntry
; /* Number of entries on one ptrmap page */
3189 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
3190 Pgno nFin
; /* Return value */
3192 nEntry
= pBt
->usableSize
/5;
3193 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
3194 nFin
= nOrig
- nFree
- nPtrmap
;
3195 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
3198 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
3206 ** A write-transaction must be opened before calling this function.
3207 ** It performs a single unit of work towards an incremental vacuum.
3209 ** If the incremental vacuum is finished after this function has run,
3210 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3211 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3213 int sqlite3BtreeIncrVacuum(Btree
*p
){
3215 BtShared
*pBt
= p
->pBt
;
3217 sqlite3BtreeEnter(p
);
3218 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
3219 if( !pBt
->autoVacuum
){
3222 Pgno nOrig
= btreePagecount(pBt
);
3223 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3224 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3227 rc
= SQLITE_CORRUPT_BKPT
;
3228 }else if( nFree
>0 ){
3229 rc
= saveAllCursors(pBt
, 0, 0);
3230 if( rc
==SQLITE_OK
){
3231 invalidateAllOverflowCache(pBt
);
3232 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
3234 if( rc
==SQLITE_OK
){
3235 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3236 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
3242 sqlite3BtreeLeave(p
);
3247 ** This routine is called prior to sqlite3PagerCommit when a transaction
3248 ** is committed for an auto-vacuum database.
3250 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3251 ** the database file should be truncated to during the commit process.
3252 ** i.e. the database has been reorganized so that only the first *pnTrunc
3253 ** pages are in use.
3255 static int autoVacuumCommit(BtShared
*pBt
){
3257 Pager
*pPager
= pBt
->pPager
;
3258 VVA_ONLY( int nRef
= sqlite3PagerRefcount(pPager
) );
3260 assert( sqlite3_mutex_held(pBt
->mutex
) );
3261 invalidateAllOverflowCache(pBt
);
3262 assert(pBt
->autoVacuum
);
3263 if( !pBt
->incrVacuum
){
3264 Pgno nFin
; /* Number of pages in database after autovacuuming */
3265 Pgno nFree
; /* Number of pages on the freelist initially */
3266 Pgno iFree
; /* The next page to be freed */
3267 Pgno nOrig
; /* Database size before freeing */
3269 nOrig
= btreePagecount(pBt
);
3270 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
3271 /* It is not possible to create a database for which the final page
3272 ** is either a pointer-map page or the pending-byte page. If one
3273 ** is encountered, this indicates corruption.
3275 return SQLITE_CORRUPT_BKPT
;
3278 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3279 nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3280 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
3282 rc
= saveAllCursors(pBt
, 0, 0);
3284 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
3285 rc
= incrVacuumStep(pBt
, nFin
, iFree
, 1);
3287 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
3288 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3289 put4byte(&pBt
->pPage1
->aData
[32], 0);
3290 put4byte(&pBt
->pPage1
->aData
[36], 0);
3291 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
3292 pBt
->bDoTruncate
= 1;
3295 if( rc
!=SQLITE_OK
){
3296 sqlite3PagerRollback(pPager
);
3300 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
3304 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3305 # define setChildPtrmaps(x) SQLITE_OK
3309 ** This routine does the first phase of a two-phase commit. This routine
3310 ** causes a rollback journal to be created (if it does not already exist)
3311 ** and populated with enough information so that if a power loss occurs
3312 ** the database can be restored to its original state by playing back
3313 ** the journal. Then the contents of the journal are flushed out to
3314 ** the disk. After the journal is safely on oxide, the changes to the
3315 ** database are written into the database file and flushed to oxide.
3316 ** At the end of this call, the rollback journal still exists on the
3317 ** disk and we are still holding all locks, so the transaction has not
3318 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3321 ** This call is a no-op if no write-transaction is currently active on pBt.
3323 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3324 ** the name of a master journal file that should be written into the
3325 ** individual journal file, or is NULL, indicating no master journal file
3326 ** (single database transaction).
3328 ** When this is called, the master journal should already have been
3329 ** created, populated with this journal pointer and synced to disk.
3331 ** Once this is routine has returned, the only thing required to commit
3332 ** the write-transaction for this database file is to delete the journal.
3334 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zMaster
){
3336 if( p
->inTrans
==TRANS_WRITE
){
3337 BtShared
*pBt
= p
->pBt
;
3338 sqlite3BtreeEnter(p
);
3339 #ifndef SQLITE_OMIT_AUTOVACUUM
3340 if( pBt
->autoVacuum
){
3341 rc
= autoVacuumCommit(pBt
);
3342 if( rc
!=SQLITE_OK
){
3343 sqlite3BtreeLeave(p
);
3347 if( pBt
->bDoTruncate
){
3348 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
3351 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zMaster
, 0);
3352 sqlite3BtreeLeave(p
);
3358 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3359 ** at the conclusion of a transaction.
3361 static void btreeEndTransaction(Btree
*p
){
3362 BtShared
*pBt
= p
->pBt
;
3363 sqlite3
*db
= p
->db
;
3364 assert( sqlite3BtreeHoldsMutex(p
) );
3366 #ifndef SQLITE_OMIT_AUTOVACUUM
3367 pBt
->bDoTruncate
= 0;
3369 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
3370 /* If there are other active statements that belong to this database
3371 ** handle, downgrade to a read-only transaction. The other statements
3372 ** may still be reading from the database. */
3373 downgradeAllSharedCacheTableLocks(p
);
3374 p
->inTrans
= TRANS_READ
;
3376 /* If the handle had any kind of transaction open, decrement the
3377 ** transaction count of the shared btree. If the transaction count
3378 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3379 ** call below will unlock the pager. */
3380 if( p
->inTrans
!=TRANS_NONE
){
3381 clearAllSharedCacheTableLocks(p
);
3382 pBt
->nTransaction
--;
3383 if( 0==pBt
->nTransaction
){
3384 pBt
->inTransaction
= TRANS_NONE
;
3388 /* Set the current transaction state to TRANS_NONE and unlock the
3389 ** pager if this call closed the only read or write transaction. */
3390 p
->inTrans
= TRANS_NONE
;
3391 unlockBtreeIfUnused(pBt
);
3398 ** Commit the transaction currently in progress.
3400 ** This routine implements the second phase of a 2-phase commit. The
3401 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3402 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3403 ** routine did all the work of writing information out to disk and flushing the
3404 ** contents so that they are written onto the disk platter. All this
3405 ** routine has to do is delete or truncate or zero the header in the
3406 ** the rollback journal (which causes the transaction to commit) and
3409 ** Normally, if an error occurs while the pager layer is attempting to
3410 ** finalize the underlying journal file, this function returns an error and
3411 ** the upper layer will attempt a rollback. However, if the second argument
3412 ** is non-zero then this b-tree transaction is part of a multi-file
3413 ** transaction. In this case, the transaction has already been committed
3414 ** (by deleting a master journal file) and the caller will ignore this
3415 ** functions return code. So, even if an error occurs in the pager layer,
3416 ** reset the b-tree objects internal state to indicate that the write
3417 ** transaction has been closed. This is quite safe, as the pager will have
3418 ** transitioned to the error state.
3420 ** This will release the write lock on the database file. If there
3421 ** are no active cursors, it also releases the read lock.
3423 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
3425 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
3426 sqlite3BtreeEnter(p
);
3429 /* If the handle has a write-transaction open, commit the shared-btrees
3430 ** transaction and set the shared state to TRANS_READ.
3432 if( p
->inTrans
==TRANS_WRITE
){
3434 BtShared
*pBt
= p
->pBt
;
3435 assert( pBt
->inTransaction
==TRANS_WRITE
);
3436 assert( pBt
->nTransaction
>0 );
3437 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
3438 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
3439 sqlite3BtreeLeave(p
);
3442 pBt
->inTransaction
= TRANS_READ
;
3443 btreeClearHasContent(pBt
);
3446 btreeEndTransaction(p
);
3447 sqlite3BtreeLeave(p
);
3452 ** Do both phases of a commit.
3454 int sqlite3BtreeCommit(Btree
*p
){
3456 sqlite3BtreeEnter(p
);
3457 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
3458 if( rc
==SQLITE_OK
){
3459 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
3461 sqlite3BtreeLeave(p
);
3466 ** This routine sets the state to CURSOR_FAULT and the error
3467 ** code to errCode for every cursor on any BtShared that pBtree
3468 ** references. Or if the writeOnly flag is set to 1, then only
3469 ** trip write cursors and leave read cursors unchanged.
3471 ** Every cursor is a candidate to be tripped, including cursors
3472 ** that belong to other database connections that happen to be
3473 ** sharing the cache with pBtree.
3475 ** This routine gets called when a rollback occurs. If the writeOnly
3476 ** flag is true, then only write-cursors need be tripped - read-only
3477 ** cursors save their current positions so that they may continue
3478 ** following the rollback. Or, if writeOnly is false, all cursors are
3479 ** tripped. In general, writeOnly is false if the transaction being
3480 ** rolled back modified the database schema. In this case b-tree root
3481 ** pages may be moved or deleted from the database altogether, making
3482 ** it unsafe for read cursors to continue.
3484 ** If the writeOnly flag is true and an error is encountered while
3485 ** saving the current position of a read-only cursor, all cursors,
3486 ** including all read-cursors are tripped.
3488 ** SQLITE_OK is returned if successful, or if an error occurs while
3489 ** saving a cursor position, an SQLite error code.
3491 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
3495 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
3497 sqlite3BtreeEnter(pBtree
);
3498 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
3500 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
3501 if( p
->eState
==CURSOR_VALID
){
3502 rc
= saveCursorPosition(p
);
3503 if( rc
!=SQLITE_OK
){
3504 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
3509 sqlite3BtreeClearCursor(p
);
3510 p
->eState
= CURSOR_FAULT
;
3511 p
->skipNext
= errCode
;
3513 for(i
=0; i
<=p
->iPage
; i
++){
3514 releasePage(p
->apPage
[i
]);
3518 sqlite3BtreeLeave(pBtree
);
3524 ** Rollback the transaction in progress.
3526 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3527 ** Only write cursors are tripped if writeOnly is true but all cursors are
3528 ** tripped if writeOnly is false. Any attempt to use
3529 ** a tripped cursor will result in an error.
3531 ** This will release the write lock on the database file. If there
3532 ** are no active cursors, it also releases the read lock.
3534 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
3536 BtShared
*pBt
= p
->pBt
;
3539 assert( writeOnly
==1 || writeOnly
==0 );
3540 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
3541 sqlite3BtreeEnter(p
);
3542 if( tripCode
==SQLITE_OK
){
3543 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
3544 if( rc
) writeOnly
= 0;
3549 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
3550 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
3551 if( rc2
!=SQLITE_OK
) rc
= rc2
;
3555 if( p
->inTrans
==TRANS_WRITE
){
3558 assert( TRANS_WRITE
==pBt
->inTransaction
);
3559 rc2
= sqlite3PagerRollback(pBt
->pPager
);
3560 if( rc2
!=SQLITE_OK
){
3564 /* The rollback may have destroyed the pPage1->aData value. So
3565 ** call btreeGetPage() on page 1 again to make
3566 ** sure pPage1->aData is set correctly. */
3567 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
3568 int nPage
= get4byte(28+(u8
*)pPage1
->aData
);
3569 testcase( nPage
==0 );
3570 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
3571 testcase( pBt
->nPage
!=nPage
);
3573 releasePage(pPage1
);
3575 assert( countValidCursors(pBt
, 1)==0 );
3576 pBt
->inTransaction
= TRANS_READ
;
3577 btreeClearHasContent(pBt
);
3580 btreeEndTransaction(p
);
3581 sqlite3BtreeLeave(p
);
3586 ** Start a statement subtransaction. The subtransaction can be rolled
3587 ** back independently of the main transaction. You must start a transaction
3588 ** before starting a subtransaction. The subtransaction is ended automatically
3589 ** if the main transaction commits or rolls back.
3591 ** Statement subtransactions are used around individual SQL statements
3592 ** that are contained within a BEGIN...COMMIT block. If a constraint
3593 ** error occurs within the statement, the effect of that one statement
3594 ** can be rolled back without having to rollback the entire transaction.
3596 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3597 ** value passed as the second parameter is the total number of savepoints,
3598 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3599 ** are no active savepoints and no other statement-transactions open,
3600 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3601 ** using the sqlite3BtreeSavepoint() function.
3603 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
3605 BtShared
*pBt
= p
->pBt
;
3606 sqlite3BtreeEnter(p
);
3607 assert( p
->inTrans
==TRANS_WRITE
);
3608 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
3609 assert( iStatement
>0 );
3610 assert( iStatement
>p
->db
->nSavepoint
);
3611 assert( pBt
->inTransaction
==TRANS_WRITE
);
3612 /* At the pager level, a statement transaction is a savepoint with
3613 ** an index greater than all savepoints created explicitly using
3614 ** SQL statements. It is illegal to open, release or rollback any
3615 ** such savepoints while the statement transaction savepoint is active.
3617 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
3618 sqlite3BtreeLeave(p
);
3623 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3624 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
3625 ** savepoint identified by parameter iSavepoint, depending on the value
3628 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
3629 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3630 ** contents of the entire transaction are rolled back. This is different
3631 ** from a normal transaction rollback, as no locks are released and the
3632 ** transaction remains open.
3634 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
3636 if( p
&& p
->inTrans
==TRANS_WRITE
){
3637 BtShared
*pBt
= p
->pBt
;
3638 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
3639 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
3640 sqlite3BtreeEnter(p
);
3641 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
3642 if( rc
==SQLITE_OK
){
3643 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
3646 rc
= newDatabase(pBt
);
3647 pBt
->nPage
= get4byte(28 + pBt
->pPage1
->aData
);
3649 /* The database size was written into the offset 28 of the header
3650 ** when the transaction started, so we know that the value at offset
3651 ** 28 is nonzero. */
3652 assert( pBt
->nPage
>0 );
3654 sqlite3BtreeLeave(p
);
3660 ** Create a new cursor for the BTree whose root is on the page
3661 ** iTable. If a read-only cursor is requested, it is assumed that
3662 ** the caller already has at least a read-only transaction open
3663 ** on the database already. If a write-cursor is requested, then
3664 ** the caller is assumed to have an open write transaction.
3666 ** If wrFlag==0, then the cursor can only be used for reading.
3667 ** If wrFlag==1, then the cursor can be used for reading or for
3668 ** writing if other conditions for writing are also met. These
3669 ** are the conditions that must be met in order for writing to
3672 ** 1: The cursor must have been opened with wrFlag==1
3674 ** 2: Other database connections that share the same pager cache
3675 ** but which are not in the READ_UNCOMMITTED state may not have
3676 ** cursors open with wrFlag==0 on the same table. Otherwise
3677 ** the changes made by this write cursor would be visible to
3678 ** the read cursors in the other database connection.
3680 ** 3: The database must be writable (not on read-only media)
3682 ** 4: There must be an active transaction.
3684 ** No checking is done to make sure that page iTable really is the
3685 ** root page of a b-tree. If it is not, then the cursor acquired
3686 ** will not work correctly.
3688 ** It is assumed that the sqlite3BtreeCursorZero() has been called
3689 ** on pCur to initialize the memory space prior to invoking this routine.
3691 static int btreeCursor(
3692 Btree
*p
, /* The btree */
3693 int iTable
, /* Root page of table to open */
3694 int wrFlag
, /* 1 to write. 0 read-only */
3695 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
3696 BtCursor
*pCur
/* Space for new cursor */
3698 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
3700 assert( sqlite3BtreeHoldsMutex(p
) );
3701 assert( wrFlag
==0 || wrFlag
==1 );
3703 /* The following assert statements verify that if this is a sharable
3704 ** b-tree database, the connection is holding the required table locks,
3705 ** and that no other connection has any open cursor that conflicts with
3707 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, wrFlag
+1) );
3708 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
3710 /* Assert that the caller has opened the required transaction. */
3711 assert( p
->inTrans
>TRANS_NONE
);
3712 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
3713 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
3715 if( NEVER(wrFlag
&& (pBt
->btsFlags
& BTS_READ_ONLY
)!=0) ){
3716 return SQLITE_READONLY
;
3719 allocateTempSpace(pBt
);
3720 if( pBt
->pTmpSpace
==0 ) return SQLITE_NOMEM
;
3722 if( iTable
==1 && btreePagecount(pBt
)==0 ){
3723 assert( wrFlag
==0 );
3727 /* Now that no other errors can occur, finish filling in the BtCursor
3728 ** variables and link the cursor into the BtShared list. */
3729 pCur
->pgnoRoot
= (Pgno
)iTable
;
3731 pCur
->pKeyInfo
= pKeyInfo
;
3734 assert( wrFlag
==0 || wrFlag
==BTCF_WriteFlag
);
3735 pCur
->curFlags
= wrFlag
;
3736 pCur
->pNext
= pBt
->pCursor
;
3738 pCur
->pNext
->pPrev
= pCur
;
3740 pBt
->pCursor
= pCur
;
3741 pCur
->eState
= CURSOR_INVALID
;
3744 int sqlite3BtreeCursor(
3745 Btree
*p
, /* The btree */
3746 int iTable
, /* Root page of table to open */
3747 int wrFlag
, /* 1 to write. 0 read-only */
3748 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
3749 BtCursor
*pCur
/* Write new cursor here */
3752 sqlite3BtreeEnter(p
);
3753 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
3754 sqlite3BtreeLeave(p
);
3759 ** Return the size of a BtCursor object in bytes.
3761 ** This interfaces is needed so that users of cursors can preallocate
3762 ** sufficient storage to hold a cursor. The BtCursor object is opaque
3763 ** to users so they cannot do the sizeof() themselves - they must call
3766 int sqlite3BtreeCursorSize(void){
3767 return ROUND8(sizeof(BtCursor
));
3771 ** Initialize memory that will be converted into a BtCursor object.
3773 ** The simple approach here would be to memset() the entire object
3774 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3775 ** do not need to be zeroed and they are large, so we can save a lot
3776 ** of run-time by skipping the initialization of those elements.
3778 void sqlite3BtreeCursorZero(BtCursor
*p
){
3779 memset(p
, 0, offsetof(BtCursor
, iPage
));
3783 ** Close a cursor. The read lock on the database file is released
3784 ** when the last cursor is closed.
3786 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
3787 Btree
*pBtree
= pCur
->pBtree
;
3790 BtShared
*pBt
= pCur
->pBt
;
3791 sqlite3BtreeEnter(pBtree
);
3792 sqlite3BtreeClearCursor(pCur
);
3794 pCur
->pPrev
->pNext
= pCur
->pNext
;
3796 pBt
->pCursor
= pCur
->pNext
;
3799 pCur
->pNext
->pPrev
= pCur
->pPrev
;
3801 for(i
=0; i
<=pCur
->iPage
; i
++){
3802 releasePage(pCur
->apPage
[i
]);
3804 unlockBtreeIfUnused(pBt
);
3805 sqlite3DbFree(pBtree
->db
, pCur
->aOverflow
);
3806 /* sqlite3_free(pCur); */
3807 sqlite3BtreeLeave(pBtree
);
3813 ** Make sure the BtCursor* given in the argument has a valid
3814 ** BtCursor.info structure. If it is not already valid, call
3815 ** btreeParseCell() to fill it in.
3817 ** BtCursor.info is a cache of the information in the current cell.
3818 ** Using this cache reduces the number of calls to btreeParseCell().
3820 ** 2007-06-25: There is a bug in some versions of MSVC that cause the
3821 ** compiler to crash when getCellInfo() is implemented as a macro.
3822 ** But there is a measureable speed advantage to using the macro on gcc
3823 ** (when less compiler optimizations like -Os or -O0 are used and the
3824 ** compiler is not doing aggressive inlining.) So we use a real function
3825 ** for MSVC and a macro for everything else. Ticket #2457.
3828 static void assertCellInfo(BtCursor
*pCur
){
3830 int iPage
= pCur
->iPage
;
3831 memset(&info
, 0, sizeof(info
));
3832 btreeParseCell(pCur
->apPage
[iPage
], pCur
->aiIdx
[iPage
], &info
);
3833 assert( CORRUPT_DB
|| memcmp(&info
, &pCur
->info
, sizeof(info
))==0 );
3836 #define assertCellInfo(x)
3839 /* Use a real function in MSVC to work around bugs in that compiler. */
3840 static void getCellInfo(BtCursor
*pCur
){
3841 if( pCur
->info
.nSize
==0 ){
3842 int iPage
= pCur
->iPage
;
3843 btreeParseCell(pCur
->apPage
[iPage
],pCur
->aiIdx
[iPage
],&pCur
->info
);
3844 pCur
->curFlags
|= BTCF_ValidNKey
;
3846 assertCellInfo(pCur
);
3849 #else /* if not _MSC_VER */
3850 /* Use a macro in all other compilers so that the function is inlined */
3851 #define getCellInfo(pCur) \
3852 if( pCur->info.nSize==0 ){ \
3853 int iPage = pCur->iPage; \
3854 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3855 pCur->curFlags |= BTCF_ValidNKey; \
3857 assertCellInfo(pCur); \
3859 #endif /* _MSC_VER */
3861 #ifndef NDEBUG /* The next routine used only within assert() statements */
3863 ** Return true if the given BtCursor is valid. A valid cursor is one
3864 ** that is currently pointing to a row in a (non-empty) table.
3865 ** This is a verification routine is used only within assert() statements.
3867 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
3868 return pCur
&& pCur
->eState
==CURSOR_VALID
;
3873 ** Set *pSize to the size of the buffer needed to hold the value of
3874 ** the key for the current entry. If the cursor is not pointing
3875 ** to a valid entry, *pSize is set to 0.
3877 ** For a table with the INTKEY flag set, this routine returns the key
3878 ** itself, not the number of bytes in the key.
3880 ** The caller must position the cursor prior to invoking this routine.
3882 ** This routine cannot fail. It always returns SQLITE_OK.
3884 int sqlite3BtreeKeySize(BtCursor
*pCur
, i64
*pSize
){
3885 assert( cursorHoldsMutex(pCur
) );
3886 assert( pCur
->eState
==CURSOR_VALID
);
3888 *pSize
= pCur
->info
.nKey
;
3893 ** Set *pSize to the number of bytes of data in the entry the
3894 ** cursor currently points to.
3896 ** The caller must guarantee that the cursor is pointing to a non-NULL
3897 ** valid entry. In other words, the calling procedure must guarantee
3898 ** that the cursor has Cursor.eState==CURSOR_VALID.
3900 ** Failure is not possible. This function always returns SQLITE_OK.
3901 ** It might just as well be a procedure (returning void) but we continue
3902 ** to return an integer result code for historical reasons.
3904 int sqlite3BtreeDataSize(BtCursor
*pCur
, u32
*pSize
){
3905 assert( cursorHoldsMutex(pCur
) );
3906 assert( pCur
->eState
==CURSOR_VALID
);
3907 assert( pCur
->apPage
[pCur
->iPage
]->intKeyLeaf
==1 );
3909 *pSize
= pCur
->info
.nPayload
;
3914 ** Given the page number of an overflow page in the database (parameter
3915 ** ovfl), this function finds the page number of the next page in the
3916 ** linked list of overflow pages. If possible, it uses the auto-vacuum
3917 ** pointer-map data instead of reading the content of page ovfl to do so.
3919 ** If an error occurs an SQLite error code is returned. Otherwise:
3921 ** The page number of the next overflow page in the linked list is
3922 ** written to *pPgnoNext. If page ovfl is the last page in its linked
3923 ** list, *pPgnoNext is set to zero.
3925 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
3926 ** to page number pOvfl was obtained, then *ppPage is set to point to that
3927 ** reference. It is the responsibility of the caller to call releasePage()
3928 ** on *ppPage to free the reference. In no reference was obtained (because
3929 ** the pointer-map was used to obtain the value for *pPgnoNext), then
3930 ** *ppPage is set to zero.
3932 static int getOverflowPage(
3933 BtShared
*pBt
, /* The database file */
3934 Pgno ovfl
, /* Current overflow page number */
3935 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
3936 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
3942 assert( sqlite3_mutex_held(pBt
->mutex
) );
3945 #ifndef SQLITE_OMIT_AUTOVACUUM
3946 /* Try to find the next page in the overflow list using the
3947 ** autovacuum pointer-map pages. Guess that the next page in
3948 ** the overflow list is page number (ovfl+1). If that guess turns
3949 ** out to be wrong, fall back to loading the data of page
3950 ** number ovfl to determine the next page number.
3952 if( pBt
->autoVacuum
){
3954 Pgno iGuess
= ovfl
+1;
3957 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
3961 if( iGuess
<=btreePagecount(pBt
) ){
3962 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
3963 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
3971 assert( next
==0 || rc
==SQLITE_DONE
);
3972 if( rc
==SQLITE_OK
){
3973 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
3974 assert( rc
==SQLITE_OK
|| pPage
==0 );
3975 if( rc
==SQLITE_OK
){
3976 next
= get4byte(pPage
->aData
);
3986 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
3990 ** Copy data from a buffer to a page, or from a page to a buffer.
3992 ** pPayload is a pointer to data stored on database page pDbPage.
3993 ** If argument eOp is false, then nByte bytes of data are copied
3994 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3995 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3996 ** of data are copied from the buffer pBuf to pPayload.
3998 ** SQLITE_OK is returned on success, otherwise an error code.
4000 static int copyPayload(
4001 void *pPayload
, /* Pointer to page data */
4002 void *pBuf
, /* Pointer to buffer */
4003 int nByte
, /* Number of bytes to copy */
4004 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4005 DbPage
*pDbPage
/* Page containing pPayload */
4008 /* Copy data from buffer to page (a write operation) */
4009 int rc
= sqlite3PagerWrite(pDbPage
);
4010 if( rc
!=SQLITE_OK
){
4013 memcpy(pPayload
, pBuf
, nByte
);
4015 /* Copy data from page to buffer (a read operation) */
4016 memcpy(pBuf
, pPayload
, nByte
);
4022 ** This function is used to read or overwrite payload information
4023 ** for the entry that the pCur cursor is pointing to. The eOp
4024 ** argument is interpreted as follows:
4026 ** 0: The operation is a read. Populate the overflow cache.
4027 ** 1: The operation is a write. Populate the overflow cache.
4028 ** 2: The operation is a read. Do not populate the overflow cache.
4030 ** A total of "amt" bytes are read or written beginning at "offset".
4031 ** Data is read to or from the buffer pBuf.
4033 ** The content being read or written might appear on the main page
4034 ** or be scattered out on multiple overflow pages.
4036 ** If the current cursor entry uses one or more overflow pages and the
4037 ** eOp argument is not 2, this function may allocate space for and lazily
4038 ** populates the overflow page-list cache array (BtCursor.aOverflow).
4039 ** Subsequent calls use this cache to make seeking to the supplied offset
4042 ** Once an overflow page-list cache has been allocated, it may be
4043 ** invalidated if some other cursor writes to the same table, or if
4044 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4045 ** mode, the following events may invalidate an overflow page-list cache.
4047 ** * An incremental vacuum,
4048 ** * A commit in auto_vacuum="full" mode,
4049 ** * Creating a table (may require moving an overflow page).
4051 static int accessPayload(
4052 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4053 u32 offset
, /* Begin reading this far into payload */
4054 u32 amt
, /* Read this many bytes */
4055 unsigned char *pBuf
, /* Write the bytes into this buffer */
4056 int eOp
/* zero to read. non-zero to write. */
4058 unsigned char *aPayload
;
4061 MemPage
*pPage
= pCur
->apPage
[pCur
->iPage
]; /* Btree page of current entry */
4062 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
4063 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4064 unsigned char * const pBufStart
= pBuf
;
4065 int bEnd
; /* True if reading to end of data */
4069 assert( pCur
->eState
==CURSOR_VALID
);
4070 assert( pCur
->aiIdx
[pCur
->iPage
]<pPage
->nCell
);
4071 assert( cursorHoldsMutex(pCur
) );
4072 assert( eOp
!=2 || offset
==0 ); /* Always start from beginning for eOp==2 */
4075 aPayload
= pCur
->info
.pPayload
;
4076 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4077 bEnd
= offset
+amt
==pCur
->info
.nPayload
;
4079 assert( offset
+amt
<= pCur
->info
.nPayload
);
4081 if( &aPayload
[pCur
->info
.nLocal
] > &pPage
->aData
[pBt
->usableSize
] ){
4082 /* Trying to read or write past the end of the data is an error */
4083 return SQLITE_CORRUPT_BKPT
;
4086 /* Check if data must be read/written to/from the btree page itself. */
4087 if( offset
<pCur
->info
.nLocal
){
4089 if( a
+offset
>pCur
->info
.nLocal
){
4090 a
= pCur
->info
.nLocal
- offset
;
4092 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, (eOp
& 0x01), pPage
->pDbPage
);
4097 offset
-= pCur
->info
.nLocal
;
4100 if( rc
==SQLITE_OK
&& amt
>0 ){
4101 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
4104 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
4106 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4107 ** Except, do not allocate aOverflow[] for eOp==2.
4109 ** The aOverflow[] array is sized at one entry for each overflow page
4110 ** in the overflow chain. The page number of the first overflow page is
4111 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4112 ** means "not yet known" (the cache is lazily populated).
4114 if( eOp
!=2 && (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
4115 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
4116 if( nOvfl
>pCur
->nOvflAlloc
){
4117 Pgno
*aNew
= (Pgno
*)sqlite3DbRealloc(
4118 pCur
->pBtree
->db
, pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
4123 pCur
->nOvflAlloc
= nOvfl
*2;
4124 pCur
->aOverflow
= aNew
;
4127 if( rc
==SQLITE_OK
){
4128 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
4129 pCur
->curFlags
|= BTCF_ValidOvfl
;
4133 /* If the overflow page-list cache has been allocated and the
4134 ** entry for the first required overflow page is valid, skip
4137 if( (pCur
->curFlags
& BTCF_ValidOvfl
)!=0
4138 && pCur
->aOverflow
[offset
/ovflSize
]
4140 iIdx
= (offset
/ovflSize
);
4141 nextPage
= pCur
->aOverflow
[iIdx
];
4142 offset
= (offset
%ovflSize
);
4145 for( ; rc
==SQLITE_OK
&& amt
>0 && nextPage
; iIdx
++){
4147 /* If required, populate the overflow page-list cache. */
4148 if( (pCur
->curFlags
& BTCF_ValidOvfl
)!=0 ){
4149 assert(!pCur
->aOverflow
[iIdx
] || pCur
->aOverflow
[iIdx
]==nextPage
);
4150 pCur
->aOverflow
[iIdx
] = nextPage
;
4153 if( offset
>=ovflSize
){
4154 /* The only reason to read this page is to obtain the page
4155 ** number for the next page in the overflow chain. The page
4156 ** data is not required. So first try to lookup the overflow
4157 ** page-list cache, if any, then fall back to the getOverflowPage()
4160 ** Note that the aOverflow[] array must be allocated because eOp!=2
4161 ** here. If eOp==2, then offset==0 and this branch is never taken.
4164 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
4165 if( pCur
->aOverflow
[iIdx
+1] ){
4166 nextPage
= pCur
->aOverflow
[iIdx
+1];
4168 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
4172 /* Need to read this page properly. It contains some of the
4173 ** range of data that is being read (eOp==0) or written (eOp!=0).
4175 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4179 if( a
+ offset
> ovflSize
){
4180 a
= ovflSize
- offset
;
4183 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4184 /* If all the following are true:
4186 ** 1) this is a read operation, and
4187 ** 2) data is required from the start of this overflow page, and
4188 ** 3) the database is file-backed, and
4189 ** 4) there is no open write-transaction, and
4190 ** 5) the database is not a WAL database,
4191 ** 6) all data from the page is being read.
4192 ** 7) at least 4 bytes have already been read into the output buffer
4194 ** then data can be read directly from the database file into the
4195 ** output buffer, bypassing the page-cache altogether. This speeds
4196 ** up loading large records that span many overflow pages.
4198 if( (eOp
&0x01)==0 /* (1) */
4199 && offset
==0 /* (2) */
4200 && (bEnd
|| a
==ovflSize
) /* (6) */
4201 && pBt
->inTransaction
==TRANS_READ
/* (4) */
4202 && (fd
= sqlite3PagerFile(pBt
->pPager
))->pMethods
/* (3) */
4203 && pBt
->pPage1
->aData
[19]==0x01 /* (5) */
4204 && &pBuf
[-4]>=pBufStart
/* (7) */
4207 u8
*aWrite
= &pBuf
[-4];
4208 assert( aWrite
>=pBufStart
); /* hence (7) */
4209 memcpy(aSave
, aWrite
, 4);
4210 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
4211 nextPage
= get4byte(aWrite
);
4212 memcpy(aWrite
, aSave
, 4);
4218 rc
= sqlite3PagerAcquire(pBt
->pPager
, nextPage
, &pDbPage
,
4219 ((eOp
&0x01)==0 ? PAGER_GET_READONLY
: 0)
4221 if( rc
==SQLITE_OK
){
4222 aPayload
= sqlite3PagerGetData(pDbPage
);
4223 nextPage
= get4byte(aPayload
);
4224 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, (eOp
&0x01), pDbPage
);
4225 sqlite3PagerUnref(pDbPage
);
4235 if( rc
==SQLITE_OK
&& amt
>0 ){
4236 return SQLITE_CORRUPT_BKPT
;
4242 ** Read part of the key associated with cursor pCur. Exactly
4243 ** "amt" bytes will be transferred into pBuf[]. The transfer
4244 ** begins at "offset".
4246 ** The caller must ensure that pCur is pointing to a valid row
4249 ** Return SQLITE_OK on success or an error code if anything goes
4250 ** wrong. An error is returned if "offset+amt" is larger than
4251 ** the available payload.
4253 int sqlite3BtreeKey(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
4254 assert( cursorHoldsMutex(pCur
) );
4255 assert( pCur
->eState
==CURSOR_VALID
);
4256 assert( pCur
->iPage
>=0 && pCur
->apPage
[pCur
->iPage
] );
4257 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4258 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
4262 ** Read part of the data associated with cursor pCur. Exactly
4263 ** "amt" bytes will be transfered into pBuf[]. The transfer
4264 ** begins at "offset".
4266 ** Return SQLITE_OK on success or an error code if anything goes
4267 ** wrong. An error is returned if "offset+amt" is larger than
4268 ** the available payload.
4270 int sqlite3BtreeData(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
4273 #ifndef SQLITE_OMIT_INCRBLOB
4274 if ( pCur
->eState
==CURSOR_INVALID
){
4275 return SQLITE_ABORT
;
4279 assert( cursorHoldsMutex(pCur
) );
4280 rc
= restoreCursorPosition(pCur
);
4281 if( rc
==SQLITE_OK
){
4282 assert( pCur
->eState
==CURSOR_VALID
);
4283 assert( pCur
->iPage
>=0 && pCur
->apPage
[pCur
->iPage
] );
4284 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4285 rc
= accessPayload(pCur
, offset
, amt
, pBuf
, 0);
4291 ** Return a pointer to payload information from the entry that the
4292 ** pCur cursor is pointing to. The pointer is to the beginning of
4293 ** the key if index btrees (pPage->intKey==0) and is the data for
4294 ** table btrees (pPage->intKey==1). The number of bytes of available
4295 ** key/data is written into *pAmt. If *pAmt==0, then the value
4296 ** returned will not be a valid pointer.
4298 ** This routine is an optimization. It is common for the entire key
4299 ** and data to fit on the local page and for there to be no overflow
4300 ** pages. When that is so, this routine can be used to access the
4301 ** key and data without making a copy. If the key and/or data spills
4302 ** onto overflow pages, then accessPayload() must be used to reassemble
4303 ** the key/data and copy it into a preallocated buffer.
4305 ** The pointer returned by this routine looks directly into the cached
4306 ** page of the database. The data might change or move the next time
4307 ** any btree routine is called.
4309 static const void *fetchPayload(
4310 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4311 u32
*pAmt
/* Write the number of available bytes here */
4313 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->apPage
[pCur
->iPage
]);
4314 assert( pCur
->eState
==CURSOR_VALID
);
4315 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4316 assert( cursorHoldsMutex(pCur
) );
4317 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4318 assert( pCur
->info
.nSize
>0 );
4319 *pAmt
= pCur
->info
.nLocal
;
4320 return (void*)pCur
->info
.pPayload
;
4325 ** For the entry that cursor pCur is point to, return as
4326 ** many bytes of the key or data as are available on the local
4327 ** b-tree page. Write the number of available bytes into *pAmt.
4329 ** The pointer returned is ephemeral. The key/data may move
4330 ** or be destroyed on the next call to any Btree routine,
4331 ** including calls from other threads against the same cache.
4332 ** Hence, a mutex on the BtShared should be held prior to calling
4335 ** These routines is used to get quick access to key and data
4336 ** in the common case where no overflow pages are used.
4338 const void *sqlite3BtreeKeyFetch(BtCursor
*pCur
, u32
*pAmt
){
4339 return fetchPayload(pCur
, pAmt
);
4341 const void *sqlite3BtreeDataFetch(BtCursor
*pCur
, u32
*pAmt
){
4342 return fetchPayload(pCur
, pAmt
);
4347 ** Move the cursor down to a new child page. The newPgno argument is the
4348 ** page number of the child page to move to.
4350 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4351 ** the new child page does not match the flags field of the parent (i.e.
4352 ** if an intkey page appears to be the parent of a non-intkey page, or
4355 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
4357 int i
= pCur
->iPage
;
4359 BtShared
*pBt
= pCur
->pBt
;
4361 assert( cursorHoldsMutex(pCur
) );
4362 assert( pCur
->eState
==CURSOR_VALID
);
4363 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
4364 assert( pCur
->iPage
>=0 );
4365 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
4366 return SQLITE_CORRUPT_BKPT
;
4368 rc
= getAndInitPage(pBt
, newPgno
, &pNewPage
,
4369 (pCur
->curFlags
& BTCF_WriteFlag
)==0 ? PAGER_GET_READONLY
: 0);
4371 pCur
->apPage
[i
+1] = pNewPage
;
4372 pCur
->aiIdx
[i
+1] = 0;
4375 pCur
->info
.nSize
= 0;
4376 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
4377 if( pNewPage
->nCell
<1 || pNewPage
->intKey
!=pCur
->apPage
[i
]->intKey
){
4378 return SQLITE_CORRUPT_BKPT
;
4385 ** Page pParent is an internal (non-leaf) tree page. This function
4386 ** asserts that page number iChild is the left-child if the iIdx'th
4387 ** cell in page pParent. Or, if iIdx is equal to the total number of
4388 ** cells in pParent, that page number iChild is the right-child of
4391 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
4392 assert( iIdx
<=pParent
->nCell
);
4393 if( iIdx
==pParent
->nCell
){
4394 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
4396 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
4400 # define assertParentIndex(x,y,z)
4404 ** Move the cursor up to the parent page.
4406 ** pCur->idx is set to the cell index that contains the pointer
4407 ** to the page we are coming from. If we are coming from the
4408 ** right-most child page then pCur->idx is set to one more than
4409 ** the largest cell index.
4411 static void moveToParent(BtCursor
*pCur
){
4412 assert( cursorHoldsMutex(pCur
) );
4413 assert( pCur
->eState
==CURSOR_VALID
);
4414 assert( pCur
->iPage
>0 );
4415 assert( pCur
->apPage
[pCur
->iPage
] );
4417 /* UPDATE: It is actually possible for the condition tested by the assert
4418 ** below to be untrue if the database file is corrupt. This can occur if
4419 ** one cursor has modified page pParent while a reference to it is held
4420 ** by a second cursor. Which can only happen if a single page is linked
4421 ** into more than one b-tree structure in a corrupt database. */
4424 pCur
->apPage
[pCur
->iPage
-1],
4425 pCur
->aiIdx
[pCur
->iPage
-1],
4426 pCur
->apPage
[pCur
->iPage
]->pgno
4429 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
4431 releasePage(pCur
->apPage
[pCur
->iPage
]);
4433 pCur
->info
.nSize
= 0;
4434 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
4438 ** Move the cursor to point to the root page of its b-tree structure.
4440 ** If the table has a virtual root page, then the cursor is moved to point
4441 ** to the virtual root page instead of the actual root page. A table has a
4442 ** virtual root page when the actual root page contains no cells and a
4443 ** single child page. This can only happen with the table rooted at page 1.
4445 ** If the b-tree structure is empty, the cursor state is set to
4446 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4447 ** cell located on the root (or virtual root) page and the cursor state
4448 ** is set to CURSOR_VALID.
4450 ** If this function returns successfully, it may be assumed that the
4451 ** page-header flags indicate that the [virtual] root-page is the expected
4452 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4453 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4454 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4455 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4458 static int moveToRoot(BtCursor
*pCur
){
4462 assert( cursorHoldsMutex(pCur
) );
4463 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
4464 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
4465 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
4466 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
4467 if( pCur
->eState
==CURSOR_FAULT
){
4468 assert( pCur
->skipNext
!=SQLITE_OK
);
4469 return pCur
->skipNext
;
4471 sqlite3BtreeClearCursor(pCur
);
4474 if( pCur
->iPage
>=0 ){
4475 while( pCur
->iPage
) releasePage(pCur
->apPage
[pCur
->iPage
--]);
4476 }else if( pCur
->pgnoRoot
==0 ){
4477 pCur
->eState
= CURSOR_INVALID
;
4480 rc
= getAndInitPage(pCur
->pBtree
->pBt
, pCur
->pgnoRoot
, &pCur
->apPage
[0],
4481 (pCur
->curFlags
& BTCF_WriteFlag
)==0 ? PAGER_GET_READONLY
: 0);
4482 if( rc
!=SQLITE_OK
){
4483 pCur
->eState
= CURSOR_INVALID
;
4488 pRoot
= pCur
->apPage
[0];
4489 assert( pRoot
->pgno
==pCur
->pgnoRoot
);
4491 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4492 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4493 ** NULL, the caller expects a table b-tree. If this is not the case,
4494 ** return an SQLITE_CORRUPT error.
4496 ** Earlier versions of SQLite assumed that this test could not fail
4497 ** if the root page was already loaded when this function was called (i.e.
4498 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4499 ** in such a way that page pRoot is linked into a second b-tree table
4500 ** (or the freelist). */
4501 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
4502 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
4503 return SQLITE_CORRUPT_BKPT
;
4507 pCur
->info
.nSize
= 0;
4508 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
4510 if( pRoot
->nCell
>0 ){
4511 pCur
->eState
= CURSOR_VALID
;
4512 }else if( !pRoot
->leaf
){
4514 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
4515 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
4516 pCur
->eState
= CURSOR_VALID
;
4517 rc
= moveToChild(pCur
, subpage
);
4519 pCur
->eState
= CURSOR_INVALID
;
4525 ** Move the cursor down to the left-most leaf entry beneath the
4526 ** entry to which it is currently pointing.
4528 ** The left-most leaf is the one with the smallest key - the first
4529 ** in ascending order.
4531 static int moveToLeftmost(BtCursor
*pCur
){
4536 assert( cursorHoldsMutex(pCur
) );
4537 assert( pCur
->eState
==CURSOR_VALID
);
4538 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->apPage
[pCur
->iPage
])->leaf
){
4539 assert( pCur
->aiIdx
[pCur
->iPage
]<pPage
->nCell
);
4540 pgno
= get4byte(findCell(pPage
, pCur
->aiIdx
[pCur
->iPage
]));
4541 rc
= moveToChild(pCur
, pgno
);
4547 ** Move the cursor down to the right-most leaf entry beneath the
4548 ** page to which it is currently pointing. Notice the difference
4549 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4550 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4551 ** finds the right-most entry beneath the *page*.
4553 ** The right-most entry is the one with the largest key - the last
4554 ** key in ascending order.
4556 static int moveToRightmost(BtCursor
*pCur
){
4561 assert( cursorHoldsMutex(pCur
) );
4562 assert( pCur
->eState
==CURSOR_VALID
);
4563 while( !(pPage
= pCur
->apPage
[pCur
->iPage
])->leaf
){
4564 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
4565 pCur
->aiIdx
[pCur
->iPage
] = pPage
->nCell
;
4566 rc
= moveToChild(pCur
, pgno
);
4569 pCur
->aiIdx
[pCur
->iPage
] = pPage
->nCell
-1;
4570 assert( pCur
->info
.nSize
==0 );
4571 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
4575 /* Move the cursor to the first entry in the table. Return SQLITE_OK
4576 ** on success. Set *pRes to 0 if the cursor actually points to something
4577 ** or set *pRes to 1 if the table is empty.
4579 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
4582 assert( cursorHoldsMutex(pCur
) );
4583 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4584 rc
= moveToRoot(pCur
);
4585 if( rc
==SQLITE_OK
){
4586 if( pCur
->eState
==CURSOR_INVALID
){
4587 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->nCell
==0 );
4590 assert( pCur
->apPage
[pCur
->iPage
]->nCell
>0 );
4592 rc
= moveToLeftmost(pCur
);
4598 /* Move the cursor to the last entry in the table. Return SQLITE_OK
4599 ** on success. Set *pRes to 0 if the cursor actually points to something
4600 ** or set *pRes to 1 if the table is empty.
4602 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
4605 assert( cursorHoldsMutex(pCur
) );
4606 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4608 /* If the cursor already points to the last entry, this is a no-op. */
4609 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
4611 /* This block serves to assert() that the cursor really does point
4612 ** to the last entry in the b-tree. */
4614 for(ii
=0; ii
<pCur
->iPage
; ii
++){
4615 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
4617 assert( pCur
->aiIdx
[pCur
->iPage
]==pCur
->apPage
[pCur
->iPage
]->nCell
-1 );
4618 assert( pCur
->apPage
[pCur
->iPage
]->leaf
);
4623 rc
= moveToRoot(pCur
);
4624 if( rc
==SQLITE_OK
){
4625 if( CURSOR_INVALID
==pCur
->eState
){
4626 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->nCell
==0 );
4629 assert( pCur
->eState
==CURSOR_VALID
);
4631 rc
= moveToRightmost(pCur
);
4632 if( rc
==SQLITE_OK
){
4633 pCur
->curFlags
|= BTCF_AtLast
;
4635 pCur
->curFlags
&= ~BTCF_AtLast
;
4643 /* Move the cursor so that it points to an entry near the key
4644 ** specified by pIdxKey or intKey. Return a success code.
4646 ** For INTKEY tables, the intKey parameter is used. pIdxKey
4647 ** must be NULL. For index tables, pIdxKey is used and intKey
4650 ** If an exact match is not found, then the cursor is always
4651 ** left pointing at a leaf page which would hold the entry if it
4652 ** were present. The cursor might point to an entry that comes
4653 ** before or after the key.
4655 ** An integer is written into *pRes which is the result of
4656 ** comparing the key with the entry to which the cursor is
4657 ** pointing. The meaning of the integer written into
4658 ** *pRes is as follows:
4660 ** *pRes<0 The cursor is left pointing at an entry that
4661 ** is smaller than intKey/pIdxKey or if the table is empty
4662 ** and the cursor is therefore left point to nothing.
4664 ** *pRes==0 The cursor is left pointing at an entry that
4665 ** exactly matches intKey/pIdxKey.
4667 ** *pRes>0 The cursor is left pointing at an entry that
4668 ** is larger than intKey/pIdxKey.
4671 int sqlite3BtreeMovetoUnpacked(
4672 BtCursor
*pCur
, /* The cursor to be moved */
4673 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
4674 i64 intKey
, /* The table key */
4675 int biasRight
, /* If true, bias the search to the high end */
4676 int *pRes
/* Write search results here */
4679 RecordCompare xRecordCompare
;
4681 assert( cursorHoldsMutex(pCur
) );
4682 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4684 assert( (pIdxKey
==0)==(pCur
->pKeyInfo
==0) );
4686 /* If the cursor is already positioned at the point we are trying
4687 ** to move to, then just return without doing any work */
4688 if( pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0
4689 && pCur
->apPage
[0]->intKey
4691 if( pCur
->info
.nKey
==intKey
){
4695 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 && pCur
->info
.nKey
<intKey
){
4702 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
4703 pIdxKey
->errCode
= 0;
4704 assert( pIdxKey
->default_rc
==1
4705 || pIdxKey
->default_rc
==0
4706 || pIdxKey
->default_rc
==-1
4709 xRecordCompare
= 0; /* All keys are integers */
4712 rc
= moveToRoot(pCur
);
4716 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
] );
4717 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->isInit
);
4718 assert( pCur
->eState
==CURSOR_INVALID
|| pCur
->apPage
[pCur
->iPage
]->nCell
>0 );
4719 if( pCur
->eState
==CURSOR_INVALID
){
4721 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->nCell
==0 );
4724 assert( pCur
->apPage
[0]->intKey
|| pIdxKey
);
4726 int lwr
, upr
, idx
, c
;
4728 MemPage
*pPage
= pCur
->apPage
[pCur
->iPage
];
4729 u8
*pCell
; /* Pointer to current cell in pPage */
4731 /* pPage->nCell must be greater than zero. If this is the root-page
4732 ** the cursor would have been INVALID above and this for(;;) loop
4733 ** not run. If this is not the root-page, then the moveToChild() routine
4734 ** would have already detected db corruption. Similarly, pPage must
4735 ** be the right kind (index or table) of b-tree page. Otherwise
4736 ** a moveToChild() or moveToRoot() call would have detected corruption. */
4737 assert( pPage
->nCell
>0 );
4738 assert( pPage
->intKey
==(pIdxKey
==0) );
4740 upr
= pPage
->nCell
-1;
4741 assert( biasRight
==0 || biasRight
==1 );
4742 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
4743 pCur
->aiIdx
[pCur
->iPage
] = (u16
)idx
;
4744 if( xRecordCompare
==0 ){
4747 pCell
= findCell(pPage
, idx
) + pPage
->childPtrSize
;
4748 if( pPage
->intKeyLeaf
){
4749 while( 0x80 <= *(pCell
++) ){
4750 if( pCell
>=pPage
->aDataEnd
) return SQLITE_CORRUPT_BKPT
;
4753 getVarint(pCell
, (u64
*)&nCellKey
);
4754 if( nCellKey
<intKey
){
4756 if( lwr
>upr
){ c
= -1; break; }
4757 }else if( nCellKey
>intKey
){
4759 if( lwr
>upr
){ c
= +1; break; }
4761 assert( nCellKey
==intKey
);
4762 pCur
->curFlags
|= BTCF_ValidNKey
;
4763 pCur
->info
.nKey
= nCellKey
;
4764 pCur
->aiIdx
[pCur
->iPage
] = (u16
)idx
;
4767 goto moveto_next_layer
;
4774 assert( lwr
+upr
>=0 );
4775 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
4780 pCell
= findCell(pPage
, idx
) + pPage
->childPtrSize
;
4782 /* The maximum supported page-size is 65536 bytes. This means that
4783 ** the maximum number of record bytes stored on an index B-Tree
4784 ** page is less than 16384 bytes and may be stored as a 2-byte
4785 ** varint. This information is used to attempt to avoid parsing
4786 ** the entire cell by checking for the cases where the record is
4787 ** stored entirely within the b-tree page by inspecting the first
4788 ** 2 bytes of the cell.
4791 if( nCell
<=pPage
->max1bytePayload
){
4792 /* This branch runs if the record-size field of the cell is a
4793 ** single byte varint and the record fits entirely on the main
4795 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
4796 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
4797 }else if( !(pCell
[1] & 0x80)
4798 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
4800 /* The record-size field is a 2 byte varint and the record
4801 ** fits entirely on the main b-tree page. */
4802 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
4803 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
4805 /* The record flows over onto one or more overflow pages. In
4806 ** this case the whole cell needs to be parsed, a buffer allocated
4807 ** and accessPayload() used to retrieve the record into the
4808 ** buffer before VdbeRecordCompare() can be called. */
4810 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
4811 btreeParseCellPtr(pPage
, pCellBody
, &pCur
->info
);
4812 nCell
= (int)pCur
->info
.nKey
;
4813 pCellKey
= sqlite3Malloc( nCell
);
4818 pCur
->aiIdx
[pCur
->iPage
] = (u16
)idx
;
4819 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 2);
4821 sqlite3_free(pCellKey
);
4824 c
= xRecordCompare(nCell
, pCellKey
, pIdxKey
);
4825 sqlite3_free(pCellKey
);
4828 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
4829 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
4839 pCur
->aiIdx
[pCur
->iPage
] = (u16
)idx
;
4840 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT
;
4843 if( lwr
>upr
) break;
4844 assert( lwr
+upr
>=0 );
4845 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
4848 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
4849 assert( pPage
->isInit
);
4851 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4852 pCur
->aiIdx
[pCur
->iPage
] = (u16
)idx
;
4858 if( lwr
>=pPage
->nCell
){
4859 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
4861 chldPg
= get4byte(findCell(pPage
, lwr
));
4863 pCur
->aiIdx
[pCur
->iPage
] = (u16
)lwr
;
4864 rc
= moveToChild(pCur
, chldPg
);
4868 pCur
->info
.nSize
= 0;
4869 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
4875 ** Return TRUE if the cursor is not pointing at an entry of the table.
4877 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
4878 ** past the last entry in the table or sqlite3BtreePrev() moves past
4879 ** the first entry. TRUE is also returned if the table is empty.
4881 int sqlite3BtreeEof(BtCursor
*pCur
){
4882 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4883 ** have been deleted? This API will need to change to return an error code
4884 ** as well as the boolean result value.
4886 return (CURSOR_VALID
!=pCur
->eState
);
4890 ** Advance the cursor to the next entry in the database. If
4891 ** successful then set *pRes=0. If the cursor
4892 ** was already pointing to the last entry in the database before
4893 ** this routine was called, then set *pRes=1.
4895 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
4896 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
4897 ** to the next cell on the current page. The (slower) btreeNext() helper
4898 ** routine is called when it is necessary to move to a different page or
4899 ** to restore the cursor.
4901 ** The calling function will set *pRes to 0 or 1. The initial *pRes value
4902 ** will be 1 if the cursor being stepped corresponds to an SQL index and
4903 ** if this routine could have been skipped if that SQL index had been
4904 ** a unique index. Otherwise the caller will have set *pRes to zero.
4905 ** Zero is the common case. The btree implementation is free to use the
4906 ** initial *pRes value as a hint to improve performance, but the current
4907 ** SQLite btree implementation does not. (Note that the comdb2 btree
4908 ** implementation does use this hint, however.)
4910 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
, int *pRes
){
4915 assert( cursorHoldsMutex(pCur
) );
4916 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
4918 if( pCur
->eState
!=CURSOR_VALID
){
4919 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
4920 rc
= restoreCursorPosition(pCur
);
4921 if( rc
!=SQLITE_OK
){
4924 if( CURSOR_INVALID
==pCur
->eState
){
4928 if( pCur
->skipNext
){
4929 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_SKIPNEXT
);
4930 pCur
->eState
= CURSOR_VALID
;
4931 if( pCur
->skipNext
>0 ){
4939 pPage
= pCur
->apPage
[pCur
->iPage
];
4940 idx
= ++pCur
->aiIdx
[pCur
->iPage
];
4941 assert( pPage
->isInit
);
4943 /* If the database file is corrupt, it is possible for the value of idx
4944 ** to be invalid here. This can only occur if a second cursor modifies
4945 ** the page while cursor pCur is holding a reference to it. Which can
4946 ** only happen if the database is corrupt in such a way as to link the
4947 ** page into more than one b-tree structure. */
4948 testcase( idx
>pPage
->nCell
);
4950 if( idx
>=pPage
->nCell
){
4952 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
4954 return moveToLeftmost(pCur
);
4957 if( pCur
->iPage
==0 ){
4959 pCur
->eState
= CURSOR_INVALID
;
4963 pPage
= pCur
->apPage
[pCur
->iPage
];
4964 }while( pCur
->aiIdx
[pCur
->iPage
]>=pPage
->nCell
);
4965 if( pPage
->intKey
){
4966 return sqlite3BtreeNext(pCur
, pRes
);
4974 return moveToLeftmost(pCur
);
4977 int sqlite3BtreeNext(BtCursor
*pCur
, int *pRes
){
4979 assert( cursorHoldsMutex(pCur
) );
4981 assert( *pRes
==0 || *pRes
==1 );
4982 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
4983 pCur
->info
.nSize
= 0;
4984 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
4986 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
, pRes
);
4987 pPage
= pCur
->apPage
[pCur
->iPage
];
4988 if( (++pCur
->aiIdx
[pCur
->iPage
])>=pPage
->nCell
){
4989 pCur
->aiIdx
[pCur
->iPage
]--;
4990 return btreeNext(pCur
, pRes
);
4995 return moveToLeftmost(pCur
);
5000 ** Step the cursor to the back to the previous entry in the database. If
5001 ** successful then set *pRes=0. If the cursor
5002 ** was already pointing to the first entry in the database before
5003 ** this routine was called, then set *pRes=1.
5005 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5006 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5007 ** to the previous cell on the current page. The (slower) btreePrevious()
5008 ** helper routine is called when it is necessary to move to a different page
5009 ** or to restore the cursor.
5011 ** The calling function will set *pRes to 0 or 1. The initial *pRes value
5012 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5013 ** if this routine could have been skipped if that SQL index had been
5014 ** a unique index. Otherwise the caller will have set *pRes to zero.
5015 ** Zero is the common case. The btree implementation is free to use the
5016 ** initial *pRes value as a hint to improve performance, but the current
5017 ** SQLite btree implementation does not. (Note that the comdb2 btree
5018 ** implementation does use this hint, however.)
5020 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
, int *pRes
){
5024 assert( cursorHoldsMutex(pCur
) );
5027 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
5028 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
5029 assert( pCur
->info
.nSize
==0 );
5030 if( pCur
->eState
!=CURSOR_VALID
){
5031 rc
= restoreCursorPosition(pCur
);
5032 if( rc
!=SQLITE_OK
){
5035 if( CURSOR_INVALID
==pCur
->eState
){
5039 if( pCur
->skipNext
){
5040 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_SKIPNEXT
);
5041 pCur
->eState
= CURSOR_VALID
;
5042 if( pCur
->skipNext
<0 ){
5050 pPage
= pCur
->apPage
[pCur
->iPage
];
5051 assert( pPage
->isInit
);
5053 int idx
= pCur
->aiIdx
[pCur
->iPage
];
5054 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
5056 rc
= moveToRightmost(pCur
);
5058 while( pCur
->aiIdx
[pCur
->iPage
]==0 ){
5059 if( pCur
->iPage
==0 ){
5060 pCur
->eState
= CURSOR_INVALID
;
5066 assert( pCur
->info
.nSize
==0 );
5067 assert( (pCur
->curFlags
& (BTCF_ValidNKey
|BTCF_ValidOvfl
))==0 );
5069 pCur
->aiIdx
[pCur
->iPage
]--;
5070 pPage
= pCur
->apPage
[pCur
->iPage
];
5071 if( pPage
->intKey
&& !pPage
->leaf
){
5072 rc
= sqlite3BtreePrevious(pCur
, pRes
);
5079 int sqlite3BtreePrevious(BtCursor
*pCur
, int *pRes
){
5080 assert( cursorHoldsMutex(pCur
) );
5082 assert( *pRes
==0 || *pRes
==1 );
5083 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
5085 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
5086 pCur
->info
.nSize
= 0;
5087 if( pCur
->eState
!=CURSOR_VALID
5088 || pCur
->aiIdx
[pCur
->iPage
]==0
5089 || pCur
->apPage
[pCur
->iPage
]->leaf
==0
5091 return btreePrevious(pCur
, pRes
);
5093 pCur
->aiIdx
[pCur
->iPage
]--;
5098 ** Allocate a new page from the database file.
5100 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5101 ** has already been called on the new page.) The new page has also
5102 ** been referenced and the calling routine is responsible for calling
5103 ** sqlite3PagerUnref() on the new page when it is done.
5105 ** SQLITE_OK is returned on success. Any other return value indicates
5106 ** an error. *ppPage and *pPgno are undefined in the event of an error.
5107 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
5109 ** If the "nearby" parameter is not 0, then an effort is made to
5110 ** locate a page close to the page number "nearby". This can be used in an
5111 ** attempt to keep related pages close to each other in the database file,
5112 ** which in turn can make database access faster.
5114 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5115 ** anywhere on the free-list, then it is guaranteed to be returned. If
5116 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5117 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5118 ** are no restrictions on which page is returned.
5120 static int allocateBtreePage(
5121 BtShared
*pBt
, /* The btree */
5122 MemPage
**ppPage
, /* Store pointer to the allocated page here */
5123 Pgno
*pPgno
, /* Store the page number here */
5124 Pgno nearby
, /* Search for a page near this one */
5125 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5129 u32 n
; /* Number of pages on the freelist */
5130 u32 k
; /* Number of leaves on the trunk of the freelist */
5131 MemPage
*pTrunk
= 0;
5132 MemPage
*pPrevTrunk
= 0;
5133 Pgno mxPage
; /* Total size of the database file */
5135 assert( sqlite3_mutex_held(pBt
->mutex
) );
5136 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
5137 pPage1
= pBt
->pPage1
;
5138 mxPage
= btreePagecount(pBt
);
5139 n
= get4byte(&pPage1
->aData
[36]);
5140 testcase( n
==mxPage
-1 );
5142 return SQLITE_CORRUPT_BKPT
;
5145 /* There are pages on the freelist. Reuse one of those pages. */
5147 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
5149 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5150 ** shows that the page 'nearby' is somewhere on the free-list, then
5151 ** the entire-list will be searched for that page.
5153 #ifndef SQLITE_OMIT_AUTOVACUUM
5154 if( eMode
==BTALLOC_EXACT
){
5155 if( nearby
<=mxPage
){
5158 assert( pBt
->autoVacuum
);
5159 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
5161 if( eType
==PTRMAP_FREEPAGE
){
5165 }else if( eMode
==BTALLOC_LE
){
5170 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5171 ** first free-list trunk page. iPrevTrunk is initially 1.
5173 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
5175 put4byte(&pPage1
->aData
[36], n
-1);
5177 /* The code within this loop is run only once if the 'searchList' variable
5178 ** is not true. Otherwise, it runs once for each trunk-page on the
5179 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5180 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5183 pPrevTrunk
= pTrunk
;
5185 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
5187 iTrunk
= get4byte(&pPage1
->aData
[32]);
5189 testcase( iTrunk
==mxPage
);
5190 if( iTrunk
>mxPage
){
5191 rc
= SQLITE_CORRUPT_BKPT
;
5193 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
5197 goto end_allocate_page
;
5199 assert( pTrunk
!=0 );
5200 assert( pTrunk
->aData
!=0 );
5202 k
= get4byte(&pTrunk
->aData
[4]); /* # of leaves on this trunk page */
5203 if( k
==0 && !searchList
){
5204 /* The trunk has no leaves and the list is not being searched.
5205 ** So extract the trunk page itself and use it as the newly
5206 ** allocated page */
5207 assert( pPrevTrunk
==0 );
5208 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5210 goto end_allocate_page
;
5213 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
5216 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
5217 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
5218 /* Value of k is out of range. Database corruption */
5219 rc
= SQLITE_CORRUPT_BKPT
;
5220 goto end_allocate_page
;
5221 #ifndef SQLITE_OMIT_AUTOVACUUM
5222 }else if( searchList
5223 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
5225 /* The list is being searched and this trunk page is the page
5226 ** to allocate, regardless of whether it has leaves.
5231 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5233 goto end_allocate_page
;
5237 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
5239 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
5240 if( rc
!=SQLITE_OK
){
5241 goto end_allocate_page
;
5243 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
5246 /* The trunk page is required by the caller but it contains
5247 ** pointers to free-list leaves. The first leaf becomes a trunk
5248 ** page in this case.
5251 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
5252 if( iNewTrunk
>mxPage
){
5253 rc
= SQLITE_CORRUPT_BKPT
;
5254 goto end_allocate_page
;
5256 testcase( iNewTrunk
==mxPage
);
5257 rc
= btreeGetPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
5258 if( rc
!=SQLITE_OK
){
5259 goto end_allocate_page
;
5261 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
5262 if( rc
!=SQLITE_OK
){
5263 releasePage(pNewTrunk
);
5264 goto end_allocate_page
;
5266 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
5267 put4byte(&pNewTrunk
->aData
[4], k
-1);
5268 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
5269 releasePage(pNewTrunk
);
5271 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
5272 put4byte(&pPage1
->aData
[32], iNewTrunk
);
5274 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
5276 goto end_allocate_page
;
5278 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
5282 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
5285 /* Extract a leaf from the trunk */
5288 unsigned char *aData
= pTrunk
->aData
;
5292 if( eMode
==BTALLOC_LE
){
5294 iPage
= get4byte(&aData
[8+i
*4]);
5295 if( iPage
<=nearby
){
5302 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
5304 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
5315 iPage
= get4byte(&aData
[8+closest
*4]);
5316 testcase( iPage
==mxPage
);
5318 rc
= SQLITE_CORRUPT_BKPT
;
5319 goto end_allocate_page
;
5321 testcase( iPage
==mxPage
);
5323 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
5327 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5328 ": %d more free pages\n",
5329 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
5330 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5331 if( rc
) goto end_allocate_page
;
5333 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
5335 put4byte(&aData
[4], k
-1);
5336 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
5337 rc
= btreeGetPage(pBt
, *pPgno
, ppPage
, noContent
);
5338 if( rc
==SQLITE_OK
){
5339 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
5340 if( rc
!=SQLITE_OK
){
5341 releasePage(*ppPage
);
5347 releasePage(pPrevTrunk
);
5349 }while( searchList
);
5351 /* There are no pages on the freelist, so append a new page to the
5354 ** Normally, new pages allocated by this block can be requested from the
5355 ** pager layer with the 'no-content' flag set. This prevents the pager
5356 ** from trying to read the pages content from disk. However, if the
5357 ** current transaction has already run one or more incremental-vacuum
5358 ** steps, then the page we are about to allocate may contain content
5359 ** that is required in the event of a rollback. In this case, do
5360 ** not set the no-content flag. This causes the pager to load and journal
5361 ** the current page content before overwriting it.
5363 ** Note that the pager will not actually attempt to load or journal
5364 ** content for any page that really does lie past the end of the database
5365 ** file on disk. So the effects of disabling the no-content optimization
5366 ** here are confined to those pages that lie between the end of the
5367 ** database image and the end of the database file.
5369 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
5371 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
5374 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
5376 #ifndef SQLITE_OMIT_AUTOVACUUM
5377 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
5378 /* If *pPgno refers to a pointer-map page, allocate two new pages
5379 ** at the end of the file instead of one. The first allocated page
5380 ** becomes a new pointer-map page, the second is used by the caller.
5383 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt
->nPage
));
5384 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
5385 rc
= btreeGetPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
5386 if( rc
==SQLITE_OK
){
5387 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
5392 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
5395 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
5396 *pPgno
= pBt
->nPage
;
5398 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
5399 rc
= btreeGetPage(pBt
, *pPgno
, ppPage
, bNoContent
);
5401 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
5402 if( rc
!=SQLITE_OK
){
5403 releasePage(*ppPage
);
5405 TRACE(("ALLOCATE: %d from end of file\n", *pPgno
));
5408 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
5411 releasePage(pTrunk
);
5412 releasePage(pPrevTrunk
);
5413 if( rc
==SQLITE_OK
){
5414 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
5415 releasePage(*ppPage
);
5417 return SQLITE_CORRUPT_BKPT
;
5419 (*ppPage
)->isInit
= 0;
5423 assert( rc
!=SQLITE_OK
|| sqlite3PagerIswriteable((*ppPage
)->pDbPage
) );
5428 ** This function is used to add page iPage to the database file free-list.
5429 ** It is assumed that the page is not already a part of the free-list.
5431 ** The value passed as the second argument to this function is optional.
5432 ** If the caller happens to have a pointer to the MemPage object
5433 ** corresponding to page iPage handy, it may pass it as the second value.
5434 ** Otherwise, it may pass NULL.
5436 ** If a pointer to a MemPage object is passed as the second argument,
5437 ** its reference count is not altered by this function.
5439 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
5440 MemPage
*pTrunk
= 0; /* Free-list trunk page */
5441 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
5442 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
5443 MemPage
*pPage
; /* Page being freed. May be NULL. */
5444 int rc
; /* Return Code */
5445 int nFree
; /* Initial number of pages on free-list */
5447 assert( sqlite3_mutex_held(pBt
->mutex
) );
5449 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
5453 sqlite3PagerRef(pPage
->pDbPage
);
5455 pPage
= btreePageLookup(pBt
, iPage
);
5458 /* Increment the free page count on pPage1 */
5459 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
5460 if( rc
) goto freepage_out
;
5461 nFree
= get4byte(&pPage1
->aData
[36]);
5462 put4byte(&pPage1
->aData
[36], nFree
+1);
5464 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
5465 /* If the secure_delete option is enabled, then
5466 ** always fully overwrite deleted information with zeros.
5468 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
5469 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
5473 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
5476 /* If the database supports auto-vacuum, write an entry in the pointer-map
5477 ** to indicate that the page is free.
5480 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
5481 if( rc
) goto freepage_out
;
5484 /* Now manipulate the actual database free-list structure. There are two
5485 ** possibilities. If the free-list is currently empty, or if the first
5486 ** trunk page in the free-list is full, then this page will become a
5487 ** new free-list trunk page. Otherwise, it will become a leaf of the
5488 ** first trunk page in the current free-list. This block tests if it
5489 ** is possible to add the page as a new free-list leaf.
5492 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
5494 iTrunk
= get4byte(&pPage1
->aData
[32]);
5495 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
5496 if( rc
!=SQLITE_OK
){
5500 nLeaf
= get4byte(&pTrunk
->aData
[4]);
5501 assert( pBt
->usableSize
>32 );
5502 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
5503 rc
= SQLITE_CORRUPT_BKPT
;
5506 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
5507 /* In this case there is room on the trunk page to insert the page
5508 ** being freed as a new leaf.
5510 ** Note that the trunk page is not really full until it contains
5511 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5512 ** coded. But due to a coding error in versions of SQLite prior to
5513 ** 3.6.0, databases with freelist trunk pages holding more than
5514 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5515 ** to maintain backwards compatibility with older versions of SQLite,
5516 ** we will continue to restrict the number of entries to usableSize/4 - 8
5517 ** for now. At some point in the future (once everyone has upgraded
5518 ** to 3.6.0 or later) we should consider fixing the conditional above
5519 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5521 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5522 if( rc
==SQLITE_OK
){
5523 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
5524 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
5525 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
5526 sqlite3PagerDontWrite(pPage
->pDbPage
);
5528 rc
= btreeSetHasContent(pBt
, iPage
);
5530 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage
->pgno
,pTrunk
->pgno
));
5535 /* If control flows to this point, then it was not possible to add the
5536 ** the page being freed as a leaf page of the first trunk in the free-list.
5537 ** Possibly because the free-list is empty, or possibly because the
5538 ** first trunk in the free-list is full. Either way, the page being freed
5539 ** will become the new first trunk page in the free-list.
5541 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
5544 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
5545 if( rc
!=SQLITE_OK
){
5548 put4byte(pPage
->aData
, iTrunk
);
5549 put4byte(&pPage
->aData
[4], 0);
5550 put4byte(&pPage1
->aData
[32], iPage
);
5551 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage
->pgno
, iTrunk
));
5558 releasePage(pTrunk
);
5561 static void freePage(MemPage
*pPage
, int *pRC
){
5562 if( (*pRC
)==SQLITE_OK
){
5563 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
5568 ** Free any overflow pages associated with the given Cell. Write the
5569 ** local Cell size (the number of bytes on the original page, omitting
5570 ** overflow) into *pnSize.
5572 static int clearCell(
5573 MemPage
*pPage
, /* The page that contains the Cell */
5574 unsigned char *pCell
, /* First byte of the Cell */
5575 u16
*pnSize
/* Write the size of the Cell here */
5577 BtShared
*pBt
= pPage
->pBt
;
5584 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5585 btreeParseCellPtr(pPage
, pCell
, &info
);
5586 *pnSize
= info
.nSize
;
5587 if( info
.iOverflow
==0 ){
5588 return SQLITE_OK
; /* No overflow pages. Return without doing anything */
5590 if( pCell
+info
.iOverflow
+3 > pPage
->aData
+pPage
->maskPage
){
5591 return SQLITE_CORRUPT_BKPT
; /* Cell extends past end of page */
5593 ovflPgno
= get4byte(&pCell
[info
.iOverflow
]);
5594 assert( pBt
->usableSize
> 4 );
5595 ovflPageSize
= pBt
->usableSize
- 4;
5596 nOvfl
= (info
.nPayload
- info
.nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
5597 assert( ovflPgno
==0 || nOvfl
>0 );
5601 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
5602 /* 0 is not a legal page number and page 1 cannot be an
5603 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5604 ** file the database must be corrupt. */
5605 return SQLITE_CORRUPT_BKPT
;
5608 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
5612 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
5613 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
5615 /* There is no reason any cursor should have an outstanding reference
5616 ** to an overflow page belonging to a cell that is being deleted/updated.
5617 ** So if there exists more than one reference to this page, then it
5618 ** must not really be an overflow page and the database must be corrupt.
5619 ** It is helpful to detect this before calling freePage2(), as
5620 ** freePage2() may zero the page contents if secure-delete mode is
5621 ** enabled. If this 'overflow' page happens to be a page that the
5622 ** caller is iterating through or using in some other way, this
5623 ** can be problematic.
5625 rc
= SQLITE_CORRUPT_BKPT
;
5627 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
5631 sqlite3PagerUnref(pOvfl
->pDbPage
);
5640 ** Create the byte sequence used to represent a cell on page pPage
5641 ** and write that byte sequence into pCell[]. Overflow pages are
5642 ** allocated and filled in as necessary. The calling procedure
5643 ** is responsible for making sure sufficient space has been allocated
5646 ** Note that pCell does not necessary need to point to the pPage->aData
5647 ** area. pCell might point to some temporary storage. The cell will
5648 ** be constructed in this temporary area then copied into pPage->aData
5651 static int fillInCell(
5652 MemPage
*pPage
, /* The page that contains the cell */
5653 unsigned char *pCell
, /* Complete text of the cell */
5654 const void *pKey
, i64 nKey
, /* The key */
5655 const void *pData
,int nData
, /* The data */
5656 int nZero
, /* Extra zero bytes to append to pData */
5657 int *pnSize
/* Write cell size here */
5664 MemPage
*pToRelease
= 0;
5665 unsigned char *pPrior
;
5666 unsigned char *pPayload
;
5667 BtShared
*pBt
= pPage
->pBt
;
5671 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5673 /* pPage is not necessarily writeable since pCell might be auxiliary
5674 ** buffer space that is separate from the pPage buffer area */
5675 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pBt
->pageSize
]
5676 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
5678 /* Fill in the header. */
5679 nHeader
= pPage
->childPtrSize
;
5680 nPayload
= nData
+ nZero
;
5681 if( pPage
->intKeyLeaf
){
5682 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
5687 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&nKey
);
5689 /* Fill in the payload size */
5690 if( pPage
->intKey
){
5695 if( NEVER(nKey
>0x7fffffff || pKey
==0) ){
5696 return SQLITE_CORRUPT_BKPT
;
5698 nPayload
= (int)nKey
;
5702 if( nPayload
<=pPage
->maxLocal
){
5703 n
= nHeader
+ nPayload
;
5708 spaceLeft
= nPayload
;
5711 int mn
= pPage
->minLocal
;
5712 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
5713 testcase( n
==pPage
->maxLocal
);
5714 testcase( n
==pPage
->maxLocal
+1 );
5715 if( n
> pPage
->maxLocal
) n
= mn
;
5717 *pnSize
= n
+ nHeader
+ 4;
5718 pPrior
= &pCell
[nHeader
+n
];
5720 pPayload
= &pCell
[nHeader
];
5722 /* At this point variables should be set as follows:
5724 ** nPayload Total payload size in bytes
5725 ** pPayload Begin writing payload here
5726 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5727 ** that means content must spill into overflow pages.
5728 ** *pnSize Size of the local cell (not counting overflow pages)
5729 ** pPrior Where to write the pgno of the first overflow page
5731 ** Use a call to btreeParseCellPtr() to verify that the values above
5732 ** were computed correctly.
5737 btreeParseCellPtr(pPage
, pCell
, &info
);
5738 assert( nHeader
=(int)(info
.pPayload
- pCell
) );
5739 assert( info
.nKey
==nKey
);
5740 assert( *pnSize
== info
.nSize
);
5741 assert( spaceLeft
== info
.nLocal
);
5742 assert( pPrior
== &pCell
[info
.iOverflow
] );
5746 /* Write the payload into the local Cell and any extra into overflow pages */
5747 while( nPayload
>0 ){
5749 #ifndef SQLITE_OMIT_AUTOVACUUM
5750 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
5751 if( pBt
->autoVacuum
){
5755 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
5759 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
5760 #ifndef SQLITE_OMIT_AUTOVACUUM
5761 /* If the database supports auto-vacuum, and the second or subsequent
5762 ** overflow page is being allocated, add an entry to the pointer-map
5763 ** for that page now.
5765 ** If this is the first overflow page, then write a partial entry
5766 ** to the pointer-map. If we write nothing to this pointer-map slot,
5767 ** then the optimistic overflow chain processing in clearCell()
5768 ** may misinterpret the uninitialized values and delete the
5769 ** wrong pages from the database.
5771 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
5772 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
5773 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
5780 releasePage(pToRelease
);
5784 /* If pToRelease is not zero than pPrior points into the data area
5785 ** of pToRelease. Make sure pToRelease is still writeable. */
5786 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
5788 /* If pPrior is part of the data area of pPage, then make sure pPage
5789 ** is still writeable */
5790 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
5791 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
5793 put4byte(pPrior
, pgnoOvfl
);
5794 releasePage(pToRelease
);
5796 pPrior
= pOvfl
->aData
;
5797 put4byte(pPrior
, 0);
5798 pPayload
= &pOvfl
->aData
[4];
5799 spaceLeft
= pBt
->usableSize
- 4;
5802 if( n
>spaceLeft
) n
= spaceLeft
;
5804 /* If pToRelease is not zero than pPayload points into the data area
5805 ** of pToRelease. Make sure pToRelease is still writeable. */
5806 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
5808 /* If pPayload is part of the data area of pPage, then make sure pPage
5809 ** is still writeable */
5810 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
5811 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
5814 if( n
>nSrc
) n
= nSrc
;
5816 memcpy(pPayload
, pSrc
, n
);
5818 memset(pPayload
, 0, n
);
5830 releasePage(pToRelease
);
5835 ** Remove the i-th cell from pPage. This routine effects pPage only.
5836 ** The cell content is not freed or deallocated. It is assumed that
5837 ** the cell content has been copied someplace else. This routine just
5838 ** removes the reference to the cell from pPage.
5840 ** "sz" must be the number of bytes in the cell.
5842 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
5843 u32 pc
; /* Offset to cell content of cell being deleted */
5844 u8
*data
; /* pPage->aData */
5845 u8
*ptr
; /* Used to move bytes around within data[] */
5846 int rc
; /* The return code */
5847 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
5851 assert( idx
>=0 && idx
<pPage
->nCell
);
5852 assert( sz
==cellSize(pPage
, idx
) );
5853 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
5854 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5855 data
= pPage
->aData
;
5856 ptr
= &pPage
->aCellIdx
[2*idx
];
5858 hdr
= pPage
->hdrOffset
;
5859 testcase( pc
==get2byte(&data
[hdr
+5]) );
5860 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
5861 if( pc
< (u32
)get2byte(&data
[hdr
+5]) || pc
+sz
> pPage
->pBt
->usableSize
){
5862 *pRC
= SQLITE_CORRUPT_BKPT
;
5865 rc
= freeSpace(pPage
, pc
, sz
);
5871 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
5872 put2byte(&data
[hdr
+3], pPage
->nCell
);
5877 ** Insert a new cell on pPage at cell index "i". pCell points to the
5878 ** content of the cell.
5880 ** If the cell content will fit on the page, then put it there. If it
5881 ** will not fit, then make a copy of the cell content into pTemp if
5882 ** pTemp is not null. Regardless of pTemp, allocate a new entry
5883 ** in pPage->apOvfl[] and make it point to the cell content (either
5884 ** in pTemp or the original pCell) and also record its index.
5885 ** Allocating a new entry in pPage->aCell[] implies that
5886 ** pPage->nOverflow is incremented.
5888 static void insertCell(
5889 MemPage
*pPage
, /* Page into which we are copying */
5890 int i
, /* New cell becomes the i-th cell of the page */
5891 u8
*pCell
, /* Content of the new cell */
5892 int sz
, /* Bytes of content in pCell */
5893 u8
*pTemp
, /* Temp storage space for pCell, if needed */
5894 Pgno iChild
, /* If non-zero, replace first 4 bytes with this value */
5895 int *pRC
/* Read and write return code from here */
5897 int idx
= 0; /* Where to write new cell content in data[] */
5898 int j
; /* Loop counter */
5899 int end
; /* First byte past the last cell pointer in data[] */
5900 int ins
; /* Index in data[] where new cell pointer is inserted */
5901 int cellOffset
; /* Address of first cell pointer in data[] */
5902 u8
*data
; /* The content of the whole page */
5906 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
5907 assert( MX_CELL(pPage
->pBt
)<=10921 );
5908 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
5909 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
5910 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
5911 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5912 /* The cell should normally be sized correctly. However, when moving a
5913 ** malformed cell from a leaf page to an interior page, if the cell size
5914 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5915 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5916 ** the term after the || in the following assert(). */
5917 assert( sz
==cellSizePtr(pPage
, pCell
) || (sz
==8 && iChild
>0) );
5918 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
5920 memcpy(pTemp
, pCell
, sz
);
5924 put4byte(pCell
, iChild
);
5926 j
= pPage
->nOverflow
++;
5927 assert( j
<(int)(sizeof(pPage
->apOvfl
)/sizeof(pPage
->apOvfl
[0])) );
5928 pPage
->apOvfl
[j
] = pCell
;
5929 pPage
->aiOvfl
[j
] = (u16
)i
;
5931 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
5932 if( rc
!=SQLITE_OK
){
5936 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
5937 data
= pPage
->aData
;
5938 cellOffset
= pPage
->cellOffset
;
5939 end
= cellOffset
+ 2*pPage
->nCell
;
5940 ins
= cellOffset
+ 2*i
;
5941 rc
= allocateSpace(pPage
, sz
, &idx
);
5942 if( rc
){ *pRC
= rc
; return; }
5943 /* The allocateSpace() routine guarantees the following two properties
5944 ** if it returns success */
5945 assert( idx
>= end
+2 );
5946 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
5948 pPage
->nFree
-= (u16
)(2 + sz
);
5949 memcpy(&data
[idx
], pCell
, sz
);
5951 put4byte(&data
[idx
], iChild
);
5953 memmove(&data
[ins
+2], &data
[ins
], end
-ins
);
5954 put2byte(&data
[ins
], idx
);
5955 put2byte(&data
[pPage
->hdrOffset
+3], pPage
->nCell
);
5956 #ifndef SQLITE_OMIT_AUTOVACUUM
5957 if( pPage
->pBt
->autoVacuum
){
5958 /* The cell may contain a pointer to an overflow page. If so, write
5959 ** the entry for the overflow page into the pointer map.
5961 ptrmapPutOvflPtr(pPage
, pCell
, pRC
);
5968 ** Add a list of cells to a page. The page should be initially empty.
5969 ** The cells are guaranteed to fit on the page.
5971 static void assemblePage(
5972 MemPage
*pPage
, /* The page to be assembled */
5973 int nCell
, /* The number of cells to add to this page */
5974 u8
**apCell
, /* Pointers to cell bodies */
5975 u16
*aSize
/* Sizes of the cells */
5977 int i
; /* Loop counter */
5978 u8
*pCellptr
; /* Address of next cell pointer */
5979 int cellbody
; /* Address of next cell body */
5980 u8
* const data
= pPage
->aData
; /* Pointer to data for pPage */
5981 const int hdr
= pPage
->hdrOffset
; /* Offset of header on pPage */
5982 const int nUsable
= pPage
->pBt
->usableSize
; /* Usable size of page */
5984 assert( pPage
->nOverflow
==0 );
5985 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5986 assert( nCell
>=0 && nCell
<=(int)MX_CELL(pPage
->pBt
)
5987 && (int)MX_CELL(pPage
->pBt
)<=10921);
5988 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
5990 /* Check that the page has just been zeroed by zeroPage() */
5991 assert( pPage
->nCell
==0 );
5992 assert( get2byteNotZero(&data
[hdr
+5])==nUsable
);
5994 pCellptr
= &pPage
->aCellIdx
[nCell
*2];
5996 for(i
=nCell
-1; i
>=0; i
--){
6000 put2byte(pCellptr
, cellbody
);
6001 memcpy(&data
[cellbody
], apCell
[i
], sz
);
6003 put2byte(&data
[hdr
+3], nCell
);
6004 put2byte(&data
[hdr
+5], cellbody
);
6005 pPage
->nFree
-= (nCell
*2 + nUsable
- cellbody
);
6006 pPage
->nCell
= (u16
)nCell
;
6010 ** The following parameters determine how many adjacent pages get involved
6011 ** in a balancing operation. NN is the number of neighbors on either side
6012 ** of the page that participate in the balancing operation. NB is the
6013 ** total number of pages that participate, including the target page and
6014 ** NN neighbors on either side.
6016 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6017 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6018 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6019 ** The value of NN appears to give the best results overall.
6021 #define NN 1 /* Number of neighbors on either side of pPage */
6022 #define NB (NN*2+1) /* Total pages involved in the balance */
6025 #ifndef SQLITE_OMIT_QUICKBALANCE
6027 ** This version of balance() handles the common special case where
6028 ** a new entry is being inserted on the extreme right-end of the
6029 ** tree, in other words, when the new entry will become the largest
6030 ** entry in the tree.
6032 ** Instead of trying to balance the 3 right-most leaf pages, just add
6033 ** a new page to the right-hand side and put the one new entry in
6034 ** that page. This leaves the right side of the tree somewhat
6035 ** unbalanced. But odds are that we will be inserting new entries
6036 ** at the end soon afterwards so the nearly empty page will quickly
6037 ** fill up. On average.
6039 ** pPage is the leaf page which is the right-most page in the tree.
6040 ** pParent is its parent. pPage must have a single overflow entry
6041 ** which is also the right-most entry on the page.
6043 ** The pSpace buffer is used to store a temporary copy of the divider
6044 ** cell that will be inserted into pParent. Such a cell consists of a 4
6045 ** byte page number followed by a variable length integer. In other
6046 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6047 ** least 13 bytes in size.
6049 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
6050 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
6051 MemPage
*pNew
; /* Newly allocated page */
6052 int rc
; /* Return Code */
6053 Pgno pgnoNew
; /* Page number of pNew */
6055 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6056 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6057 assert( pPage
->nOverflow
==1 );
6059 /* This error condition is now caught prior to reaching this function */
6060 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
;
6062 /* Allocate a new page. This page will become the right-sibling of
6063 ** pPage. Make the parent page writable, so that the new divider cell
6064 ** may be inserted. If both these operations are successful, proceed.
6066 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
6068 if( rc
==SQLITE_OK
){
6070 u8
*pOut
= &pSpace
[4];
6071 u8
*pCell
= pPage
->apOvfl
[0];
6072 u16 szCell
= cellSizePtr(pPage
, pCell
);
6075 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
6076 assert( pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
6077 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
6078 assemblePage(pNew
, 1, &pCell
, &szCell
);
6080 /* If this is an auto-vacuum database, update the pointer map
6081 ** with entries for the new page, and any pointer from the
6082 ** cell on the page to an overflow page. If either of these
6083 ** operations fails, the return code is set, but the contents
6084 ** of the parent page are still manipulated by thh code below.
6085 ** That is Ok, at this point the parent page is guaranteed to
6086 ** be marked as dirty. Returning an error code will cause a
6087 ** rollback, undoing any changes made to the parent page.
6090 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
6091 if( szCell
>pNew
->minLocal
){
6092 ptrmapPutOvflPtr(pNew
, pCell
, &rc
);
6096 /* Create a divider cell to insert into pParent. The divider cell
6097 ** consists of a 4-byte page number (the page number of pPage) and
6098 ** a variable length key value (which must be the same value as the
6099 ** largest key on pPage).
6101 ** To find the largest key value on pPage, first find the right-most
6102 ** cell on pPage. The first two fields of this cell are the
6103 ** record-length (a variable length integer at most 32-bits in size)
6104 ** and the key value (a variable length integer, may have any value).
6105 ** The first of the while(...) loops below skips over the record-length
6106 ** field. The second while(...) loop copies the key value from the
6107 ** cell on pPage into the pSpace buffer.
6109 pCell
= findCell(pPage
, pPage
->nCell
-1);
6111 while( (*(pCell
++)&0x80) && pCell
<pStop
);
6113 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
6115 /* Insert the new divider cell into pParent. */
6116 insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
6117 0, pPage
->pgno
, &rc
);
6119 /* Set the right-child pointer of pParent to point to the new page. */
6120 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
6122 /* Release the reference to the new page. */
6128 #endif /* SQLITE_OMIT_QUICKBALANCE */
6132 ** This function does not contribute anything to the operation of SQLite.
6133 ** it is sometimes activated temporarily while debugging code responsible
6134 ** for setting pointer-map entries.
6136 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
6138 for(i
=0; i
<nPage
; i
++){
6141 MemPage
*pPage
= apPage
[i
];
6142 BtShared
*pBt
= pPage
->pBt
;
6143 assert( pPage
->isInit
);
6145 for(j
=0; j
<pPage
->nCell
; j
++){
6149 z
= findCell(pPage
, j
);
6150 btreeParseCellPtr(pPage
, z
, &info
);
6151 if( info
.iOverflow
){
6152 Pgno ovfl
= get4byte(&z
[info
.iOverflow
]);
6153 ptrmapGet(pBt
, ovfl
, &e
, &n
);
6154 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
6157 Pgno child
= get4byte(z
);
6158 ptrmapGet(pBt
, child
, &e
, &n
);
6159 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
6163 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
6164 ptrmapGet(pBt
, child
, &e
, &n
);
6165 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
6173 ** This function is used to copy the contents of the b-tree node stored
6174 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6175 ** the pointer-map entries for each child page are updated so that the
6176 ** parent page stored in the pointer map is page pTo. If pFrom contained
6177 ** any cells with overflow page pointers, then the corresponding pointer
6178 ** map entries are also updated so that the parent page is page pTo.
6180 ** If pFrom is currently carrying any overflow cells (entries in the
6181 ** MemPage.apOvfl[] array), they are not copied to pTo.
6183 ** Before returning, page pTo is reinitialized using btreeInitPage().
6185 ** The performance of this function is not critical. It is only used by
6186 ** the balance_shallower() and balance_deeper() procedures, neither of
6187 ** which are called often under normal circumstances.
6189 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
6190 if( (*pRC
)==SQLITE_OK
){
6191 BtShared
* const pBt
= pFrom
->pBt
;
6192 u8
* const aFrom
= pFrom
->aData
;
6193 u8
* const aTo
= pTo
->aData
;
6194 int const iFromHdr
= pFrom
->hdrOffset
;
6195 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
6200 assert( pFrom
->isInit
);
6201 assert( pFrom
->nFree
>=iToHdr
);
6202 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
6204 /* Copy the b-tree node content from page pFrom to page pTo. */
6205 iData
= get2byte(&aFrom
[iFromHdr
+5]);
6206 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
6207 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
6209 /* Reinitialize page pTo so that the contents of the MemPage structure
6210 ** match the new data. The initialization of pTo can actually fail under
6211 ** fairly obscure circumstances, even though it is a copy of initialized
6215 rc
= btreeInitPage(pTo
);
6216 if( rc
!=SQLITE_OK
){
6221 /* If this is an auto-vacuum database, update the pointer-map entries
6222 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6225 *pRC
= setChildPtrmaps(pTo
);
6231 ** This routine redistributes cells on the iParentIdx'th child of pParent
6232 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6233 ** same amount of free space. Usually a single sibling on either side of the
6234 ** page are used in the balancing, though both siblings might come from one
6235 ** side if the page is the first or last child of its parent. If the page
6236 ** has fewer than 2 siblings (something which can only happen if the page
6237 ** is a root page or a child of a root page) then all available siblings
6238 ** participate in the balancing.
6240 ** The number of siblings of the page might be increased or decreased by
6241 ** one or two in an effort to keep pages nearly full but not over full.
6243 ** Note that when this routine is called, some of the cells on the page
6244 ** might not actually be stored in MemPage.aData[]. This can happen
6245 ** if the page is overfull. This routine ensures that all cells allocated
6246 ** to the page and its siblings fit into MemPage.aData[] before returning.
6248 ** In the course of balancing the page and its siblings, cells may be
6249 ** inserted into or removed from the parent page (pParent). Doing so
6250 ** may cause the parent page to become overfull or underfull. If this
6251 ** happens, it is the responsibility of the caller to invoke the correct
6252 ** balancing routine to fix this problem (see the balance() routine).
6254 ** If this routine fails for any reason, it might leave the database
6255 ** in a corrupted state. So if this routine fails, the database should
6258 ** The third argument to this function, aOvflSpace, is a pointer to a
6259 ** buffer big enough to hold one page. If while inserting cells into the parent
6260 ** page (pParent) the parent page becomes overfull, this buffer is
6261 ** used to store the parent's overflow cells. Because this function inserts
6262 ** a maximum of four divider cells into the parent page, and the maximum
6263 ** size of a cell stored within an internal node is always less than 1/4
6264 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6265 ** enough for all overflow cells.
6267 ** If aOvflSpace is set to a null pointer, this function returns
6270 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6271 #pragma optimize("", off)
6273 static int balance_nonroot(
6274 MemPage
*pParent
, /* Parent page of siblings being balanced */
6275 int iParentIdx
, /* Index of "the page" in pParent */
6276 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
6277 int isRoot
, /* True if pParent is a root-page */
6278 int bBulk
/* True if this call is part of a bulk load */
6280 BtShared
*pBt
; /* The whole database */
6281 int nCell
= 0; /* Number of cells in apCell[] */
6282 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
6283 int nNew
= 0; /* Number of pages in apNew[] */
6284 int nOld
; /* Number of pages in apOld[] */
6285 int i
, j
, k
; /* Loop counters */
6286 int nxDiv
; /* Next divider slot in pParent->aCell[] */
6287 int rc
= SQLITE_OK
; /* The return code */
6288 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
6289 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
6290 int usableSpace
; /* Bytes in pPage beyond the header */
6291 int pageFlags
; /* Value of pPage->aData[0] */
6292 int subtotal
; /* Subtotal of bytes in cells on one page */
6293 int iSpace1
= 0; /* First unused byte of aSpace1[] */
6294 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
6295 int szScratch
; /* Size of scratch memory requested */
6296 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
6297 MemPage
*apCopy
[NB
]; /* Private copies of apOld[] pages */
6298 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
6299 u8
*pRight
; /* Location in parent of right-sibling pointer */
6300 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
6301 int cntNew
[NB
+2]; /* Index in aCell[] of cell after i-th page */
6302 int szNew
[NB
+2]; /* Combined size of cells place on i-th page */
6303 u8
**apCell
= 0; /* All cells begin balanced */
6304 u16
*szCell
; /* Local size of all cells in apCell[] */
6305 u8
*aSpace1
; /* Space for copies of dividers cells */
6306 Pgno pgno
; /* Temp var to store a page number in */
6309 assert( sqlite3_mutex_held(pBt
->mutex
) );
6310 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6313 TRACE(("BALANCE: begin page %d child of %d\n", pPage
->pgno
, pParent
->pgno
));
6316 /* At this point pParent may have at most one overflow cell. And if
6317 ** this overflow cell is present, it must be the cell with
6318 ** index iParentIdx. This scenario comes about when this function
6319 ** is called (indirectly) from sqlite3BtreeDelete().
6321 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
6322 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
6325 return SQLITE_NOMEM
;
6328 /* Find the sibling pages to balance. Also locate the cells in pParent
6329 ** that divide the siblings. An attempt is made to find NN siblings on
6330 ** either side of pPage. More siblings are taken from one side, however,
6331 ** if there are fewer than NN siblings on the other side. If pParent
6332 ** has NB or fewer children then all children of pParent are taken.
6334 ** This loop also drops the divider cells from the parent page. This
6335 ** way, the remainder of the function does not have to deal with any
6336 ** overflow cells in the parent page, since if any existed they will
6337 ** have already been removed.
6339 i
= pParent
->nOverflow
+ pParent
->nCell
;
6343 assert( bBulk
==0 || bBulk
==1 );
6344 if( iParentIdx
==0 ){
6346 }else if( iParentIdx
==i
){
6350 nxDiv
= iParentIdx
-1;
6355 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
6356 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
6358 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
6360 pgno
= get4byte(pRight
);
6362 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0);
6364 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
6365 goto balance_cleanup
;
6367 nMaxCells
+= 1+apOld
[i
]->nCell
+apOld
[i
]->nOverflow
;
6368 if( (i
--)==0 ) break;
6370 if( i
+nxDiv
==pParent
->aiOvfl
[0] && pParent
->nOverflow
){
6371 apDiv
[i
] = pParent
->apOvfl
[0];
6372 pgno
= get4byte(apDiv
[i
]);
6373 szNew
[i
] = cellSizePtr(pParent
, apDiv
[i
]);
6374 pParent
->nOverflow
= 0;
6376 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
6377 pgno
= get4byte(apDiv
[i
]);
6378 szNew
[i
] = cellSizePtr(pParent
, apDiv
[i
]);
6380 /* Drop the cell from the parent page. apDiv[i] still points to
6381 ** the cell within the parent, even though it has been dropped.
6382 ** This is safe because dropping a cell only overwrites the first
6383 ** four bytes of it, and this function does not need the first
6384 ** four bytes of the divider cell. So the pointer is safe to use
6387 ** But not if we are in secure-delete mode. In secure-delete mode,
6388 ** the dropCell() routine will overwrite the entire cell with zeroes.
6389 ** In this case, temporarily copy the cell into the aOvflSpace[]
6390 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6392 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6395 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
6396 if( (iOff
+szNew
[i
])>(int)pBt
->usableSize
){
6397 rc
= SQLITE_CORRUPT_BKPT
;
6398 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
6399 goto balance_cleanup
;
6401 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
6402 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
6405 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
6409 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
6411 nMaxCells
= (nMaxCells
+ 3)&~3;
6414 ** Allocate space for memory structures
6416 k
= pBt
->pageSize
+ ROUND8(sizeof(MemPage
));
6418 nMaxCells
*sizeof(u8
*) /* apCell */
6419 + nMaxCells
*sizeof(u16
) /* szCell */
6420 + pBt
->pageSize
/* aSpace1 */
6421 + k
*nOld
; /* Page copies (apCopy) */
6422 apCell
= sqlite3ScratchMalloc( szScratch
);
6425 goto balance_cleanup
;
6427 szCell
= (u16
*)&apCell
[nMaxCells
];
6428 aSpace1
= (u8
*)&szCell
[nMaxCells
];
6429 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
6432 ** Load pointers to all cells on sibling pages and the divider cells
6433 ** into the local apCell[] array. Make copies of the divider cells
6434 ** into space obtained from aSpace1[] and remove the divider cells
6437 ** If the siblings are on leaf pages, then the child pointers of the
6438 ** divider cells are stripped from the cells before they are copied
6439 ** into aSpace1[]. In this way, all cells in apCell[] are without
6440 ** child pointers. If siblings are not leaves, then all cell in
6441 ** apCell[] include child pointers. Either way, all cells in apCell[]
6444 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6445 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
6447 leafCorrection
= apOld
[0]->leaf
*4;
6448 leafData
= apOld
[0]->intKeyLeaf
;
6449 for(i
=0; i
<nOld
; i
++){
6452 /* Before doing anything else, take a copy of the i'th original sibling
6453 ** The rest of this function will use data from the copies rather
6454 ** that the original pages since the original pages will be in the
6455 ** process of being overwritten. */
6456 MemPage
*pOld
= apCopy
[i
] = (MemPage
*)&aSpace1
[pBt
->pageSize
+ k
*i
];
6457 memcpy(pOld
, apOld
[i
], sizeof(MemPage
));
6458 pOld
->aData
= (void*)&pOld
[1];
6459 memcpy(pOld
->aData
, apOld
[i
]->aData
, pBt
->pageSize
);
6461 limit
= pOld
->nCell
+pOld
->nOverflow
;
6462 if( pOld
->nOverflow
>0 ){
6463 for(j
=0; j
<limit
; j
++){
6464 assert( nCell
<nMaxCells
);
6465 apCell
[nCell
] = findOverflowCell(pOld
, j
);
6466 szCell
[nCell
] = cellSizePtr(pOld
, apCell
[nCell
]);
6470 u8
*aData
= pOld
->aData
;
6471 u16 maskPage
= pOld
->maskPage
;
6472 u16 cellOffset
= pOld
->cellOffset
;
6473 for(j
=0; j
<limit
; j
++){
6474 assert( nCell
<nMaxCells
);
6475 apCell
[nCell
] = findCellv2(aData
, maskPage
, cellOffset
, j
);
6476 szCell
[nCell
] = cellSizePtr(pOld
, apCell
[nCell
]);
6480 if( i
<nOld
-1 && !leafData
){
6481 u16 sz
= (u16
)szNew
[i
];
6483 assert( nCell
<nMaxCells
);
6485 pTemp
= &aSpace1
[iSpace1
];
6487 assert( sz
<=pBt
->maxLocal
+23 );
6488 assert( iSpace1
<= (int)pBt
->pageSize
);
6489 memcpy(pTemp
, apDiv
[i
], sz
);
6490 apCell
[nCell
] = pTemp
+leafCorrection
;
6491 assert( leafCorrection
==0 || leafCorrection
==4 );
6492 szCell
[nCell
] = szCell
[nCell
] - leafCorrection
;
6494 assert( leafCorrection
==0 );
6495 assert( pOld
->hdrOffset
==0 );
6496 /* The right pointer of the child page pOld becomes the left
6497 ** pointer of the divider cell */
6498 memcpy(apCell
[nCell
], &pOld
->aData
[8], 4);
6500 assert( leafCorrection
==4 );
6501 if( szCell
[nCell
]<4 ){
6502 /* Do not allow any cells smaller than 4 bytes. */
6511 ** Figure out the number of pages needed to hold all nCell cells.
6512 ** Store this number in "k". Also compute szNew[] which is the total
6513 ** size of all cells on the i-th page and cntNew[] which is the index
6514 ** in apCell[] of the cell that divides page i from page i+1.
6515 ** cntNew[k] should equal nCell.
6517 ** Values computed by this block:
6519 ** k: The total number of sibling pages
6520 ** szNew[i]: Spaced used on the i-th sibling page.
6521 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6522 ** the right of the i-th sibling page.
6523 ** usableSpace: Number of bytes of space available on each sibling.
6526 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
6527 for(subtotal
=k
=i
=0; i
<nCell
; i
++){
6528 assert( i
<nMaxCells
);
6529 subtotal
+= szCell
[i
] + 2;
6530 if( subtotal
> usableSpace
){
6531 szNew
[k
] = subtotal
- szCell
[i
];
6533 if( leafData
){ i
--; }
6536 if( k
>NB
+1 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
6539 szNew
[k
] = subtotal
;
6544 ** The packing computed by the previous block is biased toward the siblings
6545 ** on the left side. The left siblings are always nearly full, while the
6546 ** right-most sibling might be nearly empty. This block of code attempts
6547 ** to adjust the packing of siblings to get a better balance.
6549 ** This adjustment is more than an optimization. The packing above might
6550 ** be so out of balance as to be illegal. For example, the right-most
6551 ** sibling might be completely empty. This adjustment is not optional.
6553 for(i
=k
-1; i
>0; i
--){
6554 int szRight
= szNew
[i
]; /* Size of sibling on the right */
6555 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
6556 int r
; /* Index of right-most cell in left sibling */
6557 int d
; /* Index of first cell to the left of right sibling */
6559 r
= cntNew
[i
-1] - 1;
6560 d
= r
+ 1 - leafData
;
6561 assert( d
<nMaxCells
);
6562 assert( r
<nMaxCells
);
6564 || (!bBulk
&& szRight
+szCell
[d
]+2<=szLeft
-(szCell
[r
]+2))
6566 szRight
+= szCell
[d
] + 2;
6567 szLeft
-= szCell
[r
] + 2;
6569 r
= cntNew
[i
-1] - 1;
6570 d
= r
+ 1 - leafData
;
6573 szNew
[i
-1] = szLeft
;
6576 /* Either we found one or more cells (cntnew[0])>0) or pPage is
6577 ** a virtual root page. A virtual root page is when the real root
6578 ** page is page 1 and we are the only child of that page.
6580 ** UPDATE: The assert() below is not necessarily true if the database
6581 ** file is corrupt. The corruption will be detected and reported later
6582 ** in this procedure so there is no need to act upon it now.
6585 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) );
6588 TRACE(("BALANCE: old: %d %d %d ",
6590 nOld
>=2 ? apOld
[1]->pgno
: 0,
6591 nOld
>=3 ? apOld
[2]->pgno
: 0
6595 ** Allocate k new pages. Reuse old pages where possible.
6597 if( apOld
[0]->pgno
<=1 ){
6598 rc
= SQLITE_CORRUPT_BKPT
;
6599 goto balance_cleanup
;
6601 pageFlags
= apOld
[0]->aData
[0];
6605 pNew
= apNew
[i
] = apOld
[i
];
6607 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
6609 if( rc
) goto balance_cleanup
;
6612 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
6613 if( rc
) goto balance_cleanup
;
6617 /* Set the pointer-map entry for the new sibling page. */
6619 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
6620 if( rc
!=SQLITE_OK
){
6621 goto balance_cleanup
;
6627 /* Free any old pages that were not reused as new pages.
6630 freePage(apOld
[i
], &rc
);
6631 if( rc
) goto balance_cleanup
;
6632 releasePage(apOld
[i
]);
6638 ** Put the new pages in ascending order. This helps to
6639 ** keep entries in the disk file in order so that a scan
6640 ** of the table is a linear scan through the file. That
6641 ** in turn helps the operating system to deliver pages
6642 ** from the disk more rapidly.
6644 ** An O(n^2) insertion sort algorithm is used, but since
6645 ** n is never more than NB (a small constant), that should
6646 ** not be a problem.
6648 ** When NB==3, this one optimization makes the database
6649 ** about 25% faster for large insertions and deletions.
6651 for(i
=0; i
<k
-1; i
++){
6652 int minV
= apNew
[i
]->pgno
;
6654 for(j
=i
+1; j
<k
; j
++){
6655 if( apNew
[j
]->pgno
<(unsigned)minV
){
6657 minV
= apNew
[j
]->pgno
;
6663 apNew
[i
] = apNew
[minI
];
6667 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
6668 apNew
[0]->pgno
, szNew
[0],
6669 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
6670 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
6671 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
6672 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0));
6674 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6675 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
6678 ** Evenly distribute the data in apCell[] across the new pages.
6679 ** Insert divider cells into pParent as necessary.
6682 for(i
=0; i
<nNew
; i
++){
6683 /* Assemble the new sibling page. */
6684 MemPage
*pNew
= apNew
[i
];
6685 assert( j
<nMaxCells
);
6686 zeroPage(pNew
, pageFlags
);
6687 assemblePage(pNew
, cntNew
[i
]-j
, &apCell
[j
], &szCell
[j
]);
6688 assert( pNew
->nCell
>0 || (nNew
==1 && cntNew
[0]==0) );
6689 assert( pNew
->nOverflow
==0 );
6693 /* If the sibling page assembled above was not the right-most sibling,
6694 ** insert a divider cell into the parent page.
6696 assert( i
<nNew
-1 || j
==nCell
);
6702 assert( j
<nMaxCells
);
6704 sz
= szCell
[j
] + leafCorrection
;
6705 pTemp
= &aOvflSpace
[iOvflSpace
];
6707 memcpy(&pNew
->aData
[8], pCell
, 4);
6708 }else if( leafData
){
6709 /* If the tree is a leaf-data tree, and the siblings are leaves,
6710 ** then there is no divider cell in apCell[]. Instead, the divider
6711 ** cell consists of the integer key for the right-most cell of
6712 ** the sibling-page assembled above only.
6716 btreeParseCellPtr(pNew
, apCell
[j
], &info
);
6718 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
6722 /* Obscure case for non-leaf-data trees: If the cell at pCell was
6723 ** previously stored on a leaf node, and its reported size was 4
6724 ** bytes, then it may actually be smaller than this
6725 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
6726 ** any cell). But it is important to pass the correct size to
6727 ** insertCell(), so reparse the cell now.
6729 ** Note that this can never happen in an SQLite data file, as all
6730 ** cells are at least 4 bytes. It only happens in b-trees used
6731 ** to evaluate "IN (SELECT ...)" and similar clauses.
6734 assert(leafCorrection
==4);
6735 sz
= cellSizePtr(pParent
, pCell
);
6739 assert( sz
<=pBt
->maxLocal
+23 );
6740 assert( iOvflSpace
<= (int)pBt
->pageSize
);
6741 insertCell(pParent
, nxDiv
, pCell
, sz
, pTemp
, pNew
->pgno
, &rc
);
6742 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
6743 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6752 if( (pageFlags
& PTF_LEAF
)==0 ){
6753 u8
*zChild
= &apCopy
[nOld
-1]->aData
[8];
6754 memcpy(&apNew
[nNew
-1]->aData
[8], zChild
, 4);
6757 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
6758 /* The root page of the b-tree now contains no cells. The only sibling
6759 ** page is the right-child of the parent. Copy the contents of the
6760 ** child page into the parent, decreasing the overall height of the
6761 ** b-tree structure by one. This is described as the "balance-shallower"
6762 ** sub-algorithm in some documentation.
6764 ** If this is an auto-vacuum database, the call to copyNodeContent()
6765 ** sets all pointer-map entries corresponding to database image pages
6766 ** for which the pointer is stored within the content being copied.
6768 ** The second assert below verifies that the child page is defragmented
6769 ** (it must be, as it was just reconstructed using assemblePage()). This
6770 ** is important if the parent page happens to be page 1 of the database
6773 assert( apNew
[0]->nFree
==
6774 (get2byte(&apNew
[0]->aData
[5])-apNew
[0]->cellOffset
-apNew
[0]->nCell
*2)
6776 copyNodeContent(apNew
[0], pParent
, &rc
);
6777 freePage(apNew
[0], &rc
);
6778 }else if( ISAUTOVACUUM
){
6779 /* Fix the pointer-map entries for all the cells that were shifted around.
6780 ** There are several different types of pointer-map entries that need to
6781 ** be dealt with by this routine. Some of these have been set already, but
6782 ** many have not. The following is a summary:
6784 ** 1) The entries associated with new sibling pages that were not
6785 ** siblings when this function was called. These have already
6786 ** been set. We don't need to worry about old siblings that were
6787 ** moved to the free-list - the freePage() code has taken care
6790 ** 2) The pointer-map entries associated with the first overflow
6791 ** page in any overflow chains used by new divider cells. These
6792 ** have also already been taken care of by the insertCell() code.
6794 ** 3) If the sibling pages are not leaves, then the child pages of
6795 ** cells stored on the sibling pages may need to be updated.
6797 ** 4) If the sibling pages are not internal intkey nodes, then any
6798 ** overflow pages used by these cells may need to be updated
6799 ** (internal intkey nodes never contain pointers to overflow pages).
6801 ** 5) If the sibling pages are not leaves, then the pointer-map
6802 ** entries for the right-child pages of each sibling may need
6805 ** Cases 1 and 2 are dealt with above by other code. The next
6806 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6807 ** setting a pointer map entry is a relatively expensive operation, this
6808 ** code only sets pointer map entries for child or overflow pages that have
6809 ** actually moved between pages. */
6810 MemPage
*pNew
= apNew
[0];
6811 MemPage
*pOld
= apCopy
[0];
6812 int nOverflow
= pOld
->nOverflow
;
6813 int iNextOld
= pOld
->nCell
+ nOverflow
;
6814 int iOverflow
= (nOverflow
? pOld
->aiOvfl
[0] : -1);
6815 j
= 0; /* Current 'old' sibling page */
6816 k
= 0; /* Current 'new' sibling page */
6817 for(i
=0; i
<nCell
; i
++){
6819 while( i
==iNextOld
){
6820 /* Cell i is the cell immediately following the last cell on old
6821 ** sibling page j. If the siblings are not leaf pages of an
6822 ** intkey b-tree, then cell i was a divider cell. */
6823 assert( j
+1 < ArraySize(apCopy
) );
6824 assert( j
+1 < nOld
);
6826 iNextOld
= i
+ !leafData
+ pOld
->nCell
+ pOld
->nOverflow
;
6827 if( pOld
->nOverflow
){
6828 nOverflow
= pOld
->nOverflow
;
6829 iOverflow
= i
+ !leafData
+ pOld
->aiOvfl
[0];
6831 isDivider
= !leafData
;
6834 assert(nOverflow
>0 || iOverflow
<i
);
6835 assert(nOverflow
<2 || pOld
->aiOvfl
[0]==pOld
->aiOvfl
[1]-1);
6836 assert(nOverflow
<3 || pOld
->aiOvfl
[1]==pOld
->aiOvfl
[2]-1);
6839 if( (--nOverflow
)>0 ){
6845 /* Cell i is the cell immediately following the last cell on new
6846 ** sibling page k. If the siblings are not leaf pages of an
6847 ** intkey b-tree, then cell i is a divider cell. */
6849 if( !leafData
) continue;
6854 /* If the cell was originally divider cell (and is not now) or
6855 ** an overflow cell, or if the cell was located on a different sibling
6856 ** page before the balancing, then the pointer map entries associated
6857 ** with any child or overflow pages need to be updated. */
6858 if( isDivider
|| pOld
->pgno
!=pNew
->pgno
){
6859 if( !leafCorrection
){
6860 ptrmapPut(pBt
, get4byte(apCell
[i
]), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
6862 if( szCell
[i
]>pNew
->minLocal
){
6863 ptrmapPutOvflPtr(pNew
, apCell
[i
], &rc
);
6868 if( !leafCorrection
){
6869 for(i
=0; i
<nNew
; i
++){
6870 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
6871 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
6876 /* The ptrmapCheckPages() contains assert() statements that verify that
6877 ** all pointer map pages are set correctly. This is helpful while
6878 ** debugging. This is usually disabled because a corrupt database may
6879 ** cause an assert() statement to fail. */
6880 ptrmapCheckPages(apNew
, nNew
);
6881 ptrmapCheckPages(&pParent
, 1);
6885 assert( pParent
->isInit
);
6886 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6887 nOld
, nNew
, nCell
));
6890 ** Cleanup before returning.
6893 sqlite3ScratchFree(apCell
);
6894 for(i
=0; i
<nOld
; i
++){
6895 releasePage(apOld
[i
]);
6897 for(i
=0; i
<nNew
; i
++){
6898 releasePage(apNew
[i
]);
6903 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6904 #pragma optimize("", on)
6909 ** This function is called when the root page of a b-tree structure is
6910 ** overfull (has one or more overflow pages).
6912 ** A new child page is allocated and the contents of the current root
6913 ** page, including overflow cells, are copied into the child. The root
6914 ** page is then overwritten to make it an empty page with the right-child
6915 ** pointer pointing to the new page.
6917 ** Before returning, all pointer-map entries corresponding to pages
6918 ** that the new child-page now contains pointers to are updated. The
6919 ** entry corresponding to the new right-child pointer of the root
6920 ** page is also updated.
6922 ** If successful, *ppChild is set to contain a reference to the child
6923 ** page and SQLITE_OK is returned. In this case the caller is required
6924 ** to call releasePage() on *ppChild exactly once. If an error occurs,
6925 ** an error code is returned and *ppChild is set to 0.
6927 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
6928 int rc
; /* Return value from subprocedures */
6929 MemPage
*pChild
= 0; /* Pointer to a new child page */
6930 Pgno pgnoChild
= 0; /* Page number of the new child page */
6931 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
6933 assert( pRoot
->nOverflow
>0 );
6934 assert( sqlite3_mutex_held(pBt
->mutex
) );
6936 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6937 ** page that will become the new right-child of pPage. Copy the contents
6938 ** of the node stored on pRoot into the new child page.
6940 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
6941 if( rc
==SQLITE_OK
){
6942 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
6943 copyNodeContent(pRoot
, pChild
, &rc
);
6945 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
6950 releasePage(pChild
);
6953 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
6954 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
6955 assert( pChild
->nCell
==pRoot
->nCell
);
6957 TRACE(("BALANCE: copy root %d into %d\n", pRoot
->pgno
, pChild
->pgno
));
6959 /* Copy the overflow cells from pRoot to pChild */
6960 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
6961 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
6962 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
6963 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
6964 pChild
->nOverflow
= pRoot
->nOverflow
;
6966 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6967 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
6968 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
6975 ** The page that pCur currently points to has just been modified in
6976 ** some way. This function figures out if this modification means the
6977 ** tree needs to be balanced, and if so calls the appropriate balancing
6978 ** routine. Balancing routines are:
6982 ** balance_nonroot()
6984 static int balance(BtCursor
*pCur
){
6986 const int nMin
= pCur
->pBt
->usableSize
* 2 / 3;
6987 u8 aBalanceQuickSpace
[13];
6990 TESTONLY( int balance_quick_called
= 0 );
6991 TESTONLY( int balance_deeper_called
= 0 );
6994 int iPage
= pCur
->iPage
;
6995 MemPage
*pPage
= pCur
->apPage
[iPage
];
6998 if( pPage
->nOverflow
){
6999 /* The root page of the b-tree is overfull. In this case call the
7000 ** balance_deeper() function to create a new child for the root-page
7001 ** and copy the current contents of the root-page to it. The
7002 ** next iteration of the do-loop will balance the child page.
7004 assert( (balance_deeper_called
++)==0 );
7005 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
7006 if( rc
==SQLITE_OK
){
7010 assert( pCur
->apPage
[1]->nOverflow
);
7015 }else if( pPage
->nOverflow
==0 && pPage
->nFree
<=nMin
){
7018 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
7019 int const iIdx
= pCur
->aiIdx
[iPage
-1];
7021 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
7022 if( rc
==SQLITE_OK
){
7023 #ifndef SQLITE_OMIT_QUICKBALANCE
7024 if( pPage
->intKeyLeaf
7025 && pPage
->nOverflow
==1
7026 && pPage
->aiOvfl
[0]==pPage
->nCell
7028 && pParent
->nCell
==iIdx
7030 /* Call balance_quick() to create a new sibling of pPage on which
7031 ** to store the overflow cell. balance_quick() inserts a new cell
7032 ** into pParent, which may cause pParent overflow. If this
7033 ** happens, the next iteration of the do-loop will balance pParent
7034 ** use either balance_nonroot() or balance_deeper(). Until this
7035 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7038 ** The purpose of the following assert() is to check that only a
7039 ** single call to balance_quick() is made for each call to this
7040 ** function. If this were not verified, a subtle bug involving reuse
7041 ** of the aBalanceQuickSpace[] might sneak in.
7043 assert( (balance_quick_called
++)==0 );
7044 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
7048 /* In this case, call balance_nonroot() to redistribute cells
7049 ** between pPage and up to 2 of its sibling pages. This involves
7050 ** modifying the contents of pParent, which may cause pParent to
7051 ** become overfull or underfull. The next iteration of the do-loop
7052 ** will balance the parent page to correct this.
7054 ** If the parent page becomes overfull, the overflow cell or cells
7055 ** are stored in the pSpace buffer allocated immediately below.
7056 ** A subsequent iteration of the do-loop will deal with this by
7057 ** calling balance_nonroot() (balance_deeper() may be called first,
7058 ** but it doesn't deal with overflow cells - just moves them to a
7059 ** different page). Once this subsequent call to balance_nonroot()
7060 ** has completed, it is safe to release the pSpace buffer used by
7061 ** the previous call, as the overflow cell data will have been
7062 ** copied either into the body of a database page or into the new
7063 ** pSpace buffer passed to the latter call to balance_nonroot().
7065 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
7066 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1, pCur
->hints
);
7068 /* If pFree is not NULL, it points to the pSpace buffer used
7069 ** by a previous call to balance_nonroot(). Its contents are
7070 ** now stored either on real database pages or within the
7071 ** new pSpace buffer, so it may be safely freed here. */
7072 sqlite3PageFree(pFree
);
7075 /* The pSpace buffer will be freed after the next call to
7076 ** balance_nonroot(), or just before this function returns, whichever
7082 pPage
->nOverflow
= 0;
7084 /* The next iteration of the do-loop balances the parent page. */
7088 }while( rc
==SQLITE_OK
);
7091 sqlite3PageFree(pFree
);
7098 ** Insert a new record into the BTree. The key is given by (pKey,nKey)
7099 ** and the data is given by (pData,nData). The cursor is used only to
7100 ** define what table the record should be inserted into. The cursor
7101 ** is left pointing at a random location.
7103 ** For an INTKEY table, only the nKey value of the key is used. pKey is
7104 ** ignored. For a ZERODATA table, the pData and nData are both ignored.
7106 ** If the seekResult parameter is non-zero, then a successful call to
7107 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
7108 ** been performed. seekResult is the search result returned (a negative
7109 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
7110 ** a positive value if pCur points at an entry that is larger than
7113 ** If the seekResult parameter is non-zero, then the caller guarantees that
7114 ** cursor pCur is pointing at the existing copy of a row that is to be
7115 ** overwritten. If the seekResult parameter is 0, then cursor pCur may
7116 ** point to any entry or to no entry at all and so this function has to seek
7117 ** the cursor before the new key can be inserted.
7119 int sqlite3BtreeInsert(
7120 BtCursor
*pCur
, /* Insert data into the table of this cursor */
7121 const void *pKey
, i64 nKey
, /* The key of the new record */
7122 const void *pData
, int nData
, /* The data of the new record */
7123 int nZero
, /* Number of extra 0 bytes to append to data */
7124 int appendBias
, /* True if this is likely an append */
7125 int seekResult
/* Result of prior MovetoUnpacked() call */
7128 int loc
= seekResult
; /* -1: before desired location +1: after */
7132 Btree
*p
= pCur
->pBtree
;
7133 BtShared
*pBt
= p
->pBt
;
7134 unsigned char *oldCell
;
7135 unsigned char *newCell
= 0;
7137 if( pCur
->eState
==CURSOR_FAULT
){
7138 assert( pCur
->skipNext
!=SQLITE_OK
);
7139 return pCur
->skipNext
;
7142 assert( cursorHoldsMutex(pCur
) );
7143 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
7144 && pBt
->inTransaction
==TRANS_WRITE
7145 && (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
7146 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
7148 /* Assert that the caller has been consistent. If this cursor was opened
7149 ** expecting an index b-tree, then the caller should be inserting blob
7150 ** keys with no associated data. If the cursor was opened expecting an
7151 ** intkey table, the caller should be inserting integer keys with a
7152 ** blob of associated data. */
7153 assert( (pKey
==0)==(pCur
->pKeyInfo
==0) );
7155 /* Save the positions of any other cursors open on this table.
7157 ** In some cases, the call to btreeMoveto() below is a no-op. For
7158 ** example, when inserting data into a table with auto-generated integer
7159 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7160 ** integer key to use. It then calls this function to actually insert the
7161 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
7162 ** that the cursor is already where it needs to be and returns without
7163 ** doing any work. To avoid thwarting these optimizations, it is important
7164 ** not to clear the cursor here.
7166 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
7169 if( pCur
->pKeyInfo
==0 ){
7170 /* If this is an insert into a table b-tree, invalidate any incrblob
7171 ** cursors open on the row being replaced */
7172 invalidateIncrblobCursors(p
, nKey
, 0);
7174 /* If the cursor is currently on the last row and we are appending a
7175 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7177 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && nKey
>0
7178 && pCur
->info
.nKey
==nKey
-1 ){
7184 rc
= btreeMoveto(pCur
, pKey
, nKey
, appendBias
, &loc
);
7187 assert( pCur
->eState
==CURSOR_VALID
|| (pCur
->eState
==CURSOR_INVALID
&& loc
) );
7189 pPage
= pCur
->apPage
[pCur
->iPage
];
7190 assert( pPage
->intKey
|| nKey
>=0 );
7191 assert( pPage
->leaf
|| !pPage
->intKey
);
7193 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7194 pCur
->pgnoRoot
, nKey
, nData
, pPage
->pgno
,
7195 loc
==0 ? "overwrite" : "new entry"));
7196 assert( pPage
->isInit
);
7197 newCell
= pBt
->pTmpSpace
;
7198 assert( newCell
!=0 );
7199 rc
= fillInCell(pPage
, newCell
, pKey
, nKey
, pData
, nData
, nZero
, &szNew
);
7200 if( rc
) goto end_insert
;
7201 assert( szNew
==cellSizePtr(pPage
, newCell
) );
7202 assert( szNew
<= MX_CELL_SIZE(pBt
) );
7203 idx
= pCur
->aiIdx
[pCur
->iPage
];
7206 assert( idx
<pPage
->nCell
);
7207 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7211 oldCell
= findCell(pPage
, idx
);
7213 memcpy(newCell
, oldCell
, 4);
7215 rc
= clearCell(pPage
, oldCell
, &szOld
);
7216 dropCell(pPage
, idx
, szOld
, &rc
);
7217 if( rc
) goto end_insert
;
7218 }else if( loc
<0 && pPage
->nCell
>0 ){
7219 assert( pPage
->leaf
);
7220 idx
= ++pCur
->aiIdx
[pCur
->iPage
];
7222 assert( pPage
->leaf
);
7224 insertCell(pPage
, idx
, newCell
, szNew
, 0, 0, &rc
);
7225 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
7227 /* If no error has occurred and pPage has an overflow cell, call balance()
7228 ** to redistribute the cells within the tree. Since balance() may move
7229 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
7232 ** Previous versions of SQLite called moveToRoot() to move the cursor
7233 ** back to the root page as balance() used to invalidate the contents
7234 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7235 ** set the cursor state to "invalid". This makes common insert operations
7238 ** There is a subtle but important optimization here too. When inserting
7239 ** multiple records into an intkey b-tree using a single cursor (as can
7240 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7241 ** is advantageous to leave the cursor pointing to the last entry in
7242 ** the b-tree if possible. If the cursor is left pointing to the last
7243 ** entry in the table, and the next row inserted has an integer key
7244 ** larger than the largest existing key, it is possible to insert the
7245 ** row without seeking the cursor. This can be a big performance boost.
7247 pCur
->info
.nSize
= 0;
7248 if( rc
==SQLITE_OK
&& pPage
->nOverflow
){
7249 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
7252 /* Must make sure nOverflow is reset to zero even if the balance()
7253 ** fails. Internal data structure corruption will result otherwise.
7254 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7255 ** from trying to save the current position of the cursor. */
7256 pCur
->apPage
[pCur
->iPage
]->nOverflow
= 0;
7257 pCur
->eState
= CURSOR_INVALID
;
7259 assert( pCur
->apPage
[pCur
->iPage
]->nOverflow
==0 );
7266 ** Delete the entry that the cursor is pointing to. The cursor
7267 ** is left pointing at an arbitrary location.
7269 int sqlite3BtreeDelete(BtCursor
*pCur
){
7270 Btree
*p
= pCur
->pBtree
;
7271 BtShared
*pBt
= p
->pBt
;
7272 int rc
; /* Return code */
7273 MemPage
*pPage
; /* Page to delete cell from */
7274 unsigned char *pCell
; /* Pointer to cell to delete */
7275 int iCellIdx
; /* Index of cell to delete */
7276 int iCellDepth
; /* Depth of node containing pCell */
7277 u16 szCell
; /* Size of the cell being deleted */
7279 assert( cursorHoldsMutex(pCur
) );
7280 assert( pBt
->inTransaction
==TRANS_WRITE
);
7281 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
7282 assert( pCur
->curFlags
& BTCF_WriteFlag
);
7283 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
7284 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
7286 if( NEVER(pCur
->aiIdx
[pCur
->iPage
]>=pCur
->apPage
[pCur
->iPage
]->nCell
)
7287 || NEVER(pCur
->eState
!=CURSOR_VALID
)
7289 return SQLITE_ERROR
; /* Something has gone awry. */
7292 iCellDepth
= pCur
->iPage
;
7293 iCellIdx
= pCur
->aiIdx
[iCellDepth
];
7294 pPage
= pCur
->apPage
[iCellDepth
];
7295 pCell
= findCell(pPage
, iCellIdx
);
7297 /* If the page containing the entry to delete is not a leaf page, move
7298 ** the cursor to the largest entry in the tree that is smaller than
7299 ** the entry being deleted. This cell will replace the cell being deleted
7300 ** from the internal node. The 'previous' entry is used for this instead
7301 ** of the 'next' entry, as the previous entry is always a part of the
7302 ** sub-tree headed by the child page of the cell being deleted. This makes
7303 ** balancing the tree following the delete operation easier. */
7306 rc
= sqlite3BtreePrevious(pCur
, ¬Used
);
7310 /* Save the positions of any other cursors open on this table before
7311 ** making any modifications. Make the page containing the entry to be
7312 ** deleted writable. Then free any overflow pages associated with the
7313 ** entry and finally remove the cell itself from within the page.
7315 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
7318 /* If this is a delete operation to remove a row from a table b-tree,
7319 ** invalidate any incrblob cursors open on the row being deleted. */
7320 if( pCur
->pKeyInfo
==0 ){
7321 invalidateIncrblobCursors(p
, pCur
->info
.nKey
, 0);
7324 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7326 rc
= clearCell(pPage
, pCell
, &szCell
);
7327 dropCell(pPage
, iCellIdx
, szCell
, &rc
);
7330 /* If the cell deleted was not located on a leaf page, then the cursor
7331 ** is currently pointing to the largest entry in the sub-tree headed
7332 ** by the child-page of the cell that was just deleted from an internal
7333 ** node. The cell from the leaf node needs to be moved to the internal
7334 ** node to replace the deleted cell. */
7336 MemPage
*pLeaf
= pCur
->apPage
[pCur
->iPage
];
7338 Pgno n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
7339 unsigned char *pTmp
;
7341 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
7342 nCell
= cellSizePtr(pLeaf
, pCell
);
7343 assert( MX_CELL_SIZE(pBt
) >= nCell
);
7344 pTmp
= pBt
->pTmpSpace
;
7346 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
7347 insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
, &rc
);
7348 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
7352 /* Balance the tree. If the entry deleted was located on a leaf page,
7353 ** then the cursor still points to that page. In this case the first
7354 ** call to balance() repairs the tree, and the if(...) condition is
7357 ** Otherwise, if the entry deleted was on an internal node page, then
7358 ** pCur is pointing to the leaf page from which a cell was removed to
7359 ** replace the cell deleted from the internal node. This is slightly
7360 ** tricky as the leaf node may be underfull, and the internal node may
7361 ** be either under or overfull. In this case run the balancing algorithm
7362 ** on the leaf node first. If the balance proceeds far enough up the
7363 ** tree that we can be sure that any problem in the internal node has
7364 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7365 ** walk the cursor up the tree to the internal node and balance it as
7368 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
7369 while( pCur
->iPage
>iCellDepth
){
7370 releasePage(pCur
->apPage
[pCur
->iPage
--]);
7375 if( rc
==SQLITE_OK
){
7382 ** Create a new BTree table. Write into *piTable the page
7383 ** number for the root page of the new table.
7385 ** The type of type is determined by the flags parameter. Only the
7386 ** following values of flags are currently in use. Other values for
7387 ** flags might not work:
7389 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7390 ** BTREE_ZERODATA Used for SQL indices
7392 static int btreeCreateTable(Btree
*p
, int *piTable
, int createTabFlags
){
7393 BtShared
*pBt
= p
->pBt
;
7397 int ptfFlags
; /* Page-type flage for the root page of new table */
7399 assert( sqlite3BtreeHoldsMutex(p
) );
7400 assert( pBt
->inTransaction
==TRANS_WRITE
);
7401 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
7403 #ifdef SQLITE_OMIT_AUTOVACUUM
7404 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
7409 if( pBt
->autoVacuum
){
7410 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
7411 MemPage
*pPageMove
; /* The page to move to. */
7413 /* Creating a new table may probably require moving an existing database
7414 ** to make room for the new tables root page. In case this page turns
7415 ** out to be an overflow page, delete all overflow page-map caches
7416 ** held by open cursors.
7418 invalidateAllOverflowCache(pBt
);
7420 /* Read the value of meta[3] from the database to determine where the
7421 ** root page of the new table should go. meta[3] is the largest root-page
7422 ** created so far, so the new root-page is (meta[3]+1).
7424 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
7427 /* The new root-page may not be allocated on a pointer-map page, or the
7428 ** PENDING_BYTE page.
7430 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
7431 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
7434 assert( pgnoRoot
>=3 );
7436 /* Allocate a page. The page that currently resides at pgnoRoot will
7437 ** be moved to the allocated page (unless the allocated page happens
7438 ** to reside at pgnoRoot).
7440 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
7441 if( rc
!=SQLITE_OK
){
7445 if( pgnoMove
!=pgnoRoot
){
7446 /* pgnoRoot is the page that will be used for the root-page of
7447 ** the new table (assuming an error did not occur). But we were
7448 ** allocated pgnoMove. If required (i.e. if it was not allocated
7449 ** by extending the file), the current page at position pgnoMove
7450 ** is already journaled.
7455 /* Save the positions of any open cursors. This is required in
7456 ** case they are holding a reference to an xFetch reference
7457 ** corresponding to page pgnoRoot. */
7458 rc
= saveAllCursors(pBt
, 0, 0);
7459 releasePage(pPageMove
);
7460 if( rc
!=SQLITE_OK
){
7464 /* Move the page currently at pgnoRoot to pgnoMove. */
7465 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
7466 if( rc
!=SQLITE_OK
){
7469 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
7470 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
7471 rc
= SQLITE_CORRUPT_BKPT
;
7473 if( rc
!=SQLITE_OK
){
7477 assert( eType
!=PTRMAP_ROOTPAGE
);
7478 assert( eType
!=PTRMAP_FREEPAGE
);
7479 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
7482 /* Obtain the page at pgnoRoot */
7483 if( rc
!=SQLITE_OK
){
7486 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
7487 if( rc
!=SQLITE_OK
){
7490 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
7491 if( rc
!=SQLITE_OK
){
7499 /* Update the pointer-map and meta-data with the new root-page number. */
7500 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
7506 /* When the new root page was allocated, page 1 was made writable in
7507 ** order either to increase the database filesize, or to decrement the
7508 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7510 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
7511 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
7518 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
7522 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
7523 if( createTabFlags
& BTREE_INTKEY
){
7524 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
7526 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
7528 zeroPage(pRoot
, ptfFlags
);
7529 sqlite3PagerUnref(pRoot
->pDbPage
);
7530 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
7531 *piTable
= (int)pgnoRoot
;
7534 int sqlite3BtreeCreateTable(Btree
*p
, int *piTable
, int flags
){
7536 sqlite3BtreeEnter(p
);
7537 rc
= btreeCreateTable(p
, piTable
, flags
);
7538 sqlite3BtreeLeave(p
);
7543 ** Erase the given database page and all its children. Return
7544 ** the page to the freelist.
7546 static int clearDatabasePage(
7547 BtShared
*pBt
, /* The BTree that contains the table */
7548 Pgno pgno
, /* Page number to clear */
7549 int freePageFlag
, /* Deallocate page if true */
7550 int *pnChange
/* Add number of Cells freed to this counter */
7554 unsigned char *pCell
;
7559 assert( sqlite3_mutex_held(pBt
->mutex
) );
7560 if( pgno
>btreePagecount(pBt
) ){
7561 return SQLITE_CORRUPT_BKPT
;
7564 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0);
7566 hdr
= pPage
->hdrOffset
;
7567 for(i
=0; i
<pPage
->nCell
; i
++){
7568 pCell
= findCell(pPage
, i
);
7570 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
7571 if( rc
) goto cleardatabasepage_out
;
7573 rc
= clearCell(pPage
, pCell
, &szCell
);
7574 if( rc
) goto cleardatabasepage_out
;
7577 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
7578 if( rc
) goto cleardatabasepage_out
;
7579 }else if( pnChange
){
7580 assert( pPage
->intKey
);
7581 *pnChange
+= pPage
->nCell
;
7584 freePage(pPage
, &rc
);
7585 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
7586 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
7589 cleardatabasepage_out
:
7595 ** Delete all information from a single table in the database. iTable is
7596 ** the page number of the root of the table. After this routine returns,
7597 ** the root page is empty, but still exists.
7599 ** This routine will fail with SQLITE_LOCKED if there are any open
7600 ** read cursors on the table. Open write cursors are moved to the
7601 ** root of the table.
7603 ** If pnChange is not NULL, then table iTable must be an intkey table. The
7604 ** integer value pointed to by pnChange is incremented by the number of
7605 ** entries in the table.
7607 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, int *pnChange
){
7609 BtShared
*pBt
= p
->pBt
;
7610 sqlite3BtreeEnter(p
);
7611 assert( p
->inTrans
==TRANS_WRITE
);
7613 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
7615 if( SQLITE_OK
==rc
){
7616 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7617 ** is the root of a table b-tree - if it is not, the following call is
7619 invalidateIncrblobCursors(p
, 0, 1);
7620 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
7622 sqlite3BtreeLeave(p
);
7627 ** Delete all information from the single table that pCur is open on.
7629 ** This routine only work for pCur on an ephemeral table.
7631 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
7632 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
7636 ** Erase all information in a table and add the root of the table to
7637 ** the freelist. Except, the root of the principle table (the one on
7638 ** page 1) is never added to the freelist.
7640 ** This routine will fail with SQLITE_LOCKED if there are any open
7641 ** cursors on the table.
7643 ** If AUTOVACUUM is enabled and the page at iTable is not the last
7644 ** root page in the database file, then the last root page
7645 ** in the database file is moved into the slot formerly occupied by
7646 ** iTable and that last slot formerly occupied by the last root page
7647 ** is added to the freelist instead of iTable. In this say, all
7648 ** root pages are kept at the beginning of the database file, which
7649 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7650 ** page number that used to be the last root page in the file before
7651 ** the move. If no page gets moved, *piMoved is set to 0.
7652 ** The last root page is recorded in meta[3] and the value of
7653 ** meta[3] is updated by this procedure.
7655 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
7658 BtShared
*pBt
= p
->pBt
;
7660 assert( sqlite3BtreeHoldsMutex(p
) );
7661 assert( p
->inTrans
==TRANS_WRITE
);
7663 /* It is illegal to drop a table if any cursors are open on the
7664 ** database. This is because in auto-vacuum mode the backend may
7665 ** need to move another root-page to fill a gap left by the deleted
7666 ** root page. If an open cursor was using this page a problem would
7669 ** This error is caught long before control reaches this point.
7671 if( NEVER(pBt
->pCursor
) ){
7672 sqlite3ConnectionBlocked(p
->db
, pBt
->pCursor
->pBtree
->db
);
7673 return SQLITE_LOCKED_SHAREDCACHE
;
7676 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
7678 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
7687 #ifdef SQLITE_OMIT_AUTOVACUUM
7688 freePage(pPage
, &rc
);
7691 if( pBt
->autoVacuum
){
7693 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
7695 if( iTable
==maxRootPgno
){
7696 /* If the table being dropped is the table with the largest root-page
7697 ** number in the database, put the root page on the free list.
7699 freePage(pPage
, &rc
);
7701 if( rc
!=SQLITE_OK
){
7705 /* The table being dropped does not have the largest root-page
7706 ** number in the database. So move the page that does into the
7707 ** gap left by the deleted root-page.
7711 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
7712 if( rc
!=SQLITE_OK
){
7715 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
7717 if( rc
!=SQLITE_OK
){
7721 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
7722 freePage(pMove
, &rc
);
7724 if( rc
!=SQLITE_OK
){
7727 *piMoved
= maxRootPgno
;
7730 /* Set the new 'max-root-page' value in the database header. This
7731 ** is the old value less one, less one more if that happens to
7732 ** be a root-page number, less one again if that is the
7733 ** PENDING_BYTE_PAGE.
7736 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
7737 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
7740 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
7742 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
7744 freePage(pPage
, &rc
);
7749 /* If sqlite3BtreeDropTable was called on page 1.
7750 ** This really never should happen except in a corrupt
7753 zeroPage(pPage
, PTF_INTKEY
|PTF_LEAF
);
7758 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
7760 sqlite3BtreeEnter(p
);
7761 rc
= btreeDropTable(p
, iTable
, piMoved
);
7762 sqlite3BtreeLeave(p
);
7768 ** This function may only be called if the b-tree connection already
7769 ** has a read or write transaction open on the database.
7771 ** Read the meta-information out of a database file. Meta[0]
7772 ** is the number of free pages currently in the database. Meta[1]
7773 ** through meta[15] are available for use by higher layers. Meta[0]
7774 ** is read-only, the others are read/write.
7776 ** The schema layer numbers meta values differently. At the schema
7777 ** layer (and the SetCookie and ReadCookie opcodes) the number of
7778 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
7780 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
7781 BtShared
*pBt
= p
->pBt
;
7783 sqlite3BtreeEnter(p
);
7784 assert( p
->inTrans
>TRANS_NONE
);
7785 assert( SQLITE_OK
==querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
) );
7786 assert( pBt
->pPage1
);
7787 assert( idx
>=0 && idx
<=15 );
7789 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
7791 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7792 ** database, mark the database as read-only. */
7793 #ifdef SQLITE_OMIT_AUTOVACUUM
7794 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
7795 pBt
->btsFlags
|= BTS_READ_ONLY
;
7799 sqlite3BtreeLeave(p
);
7803 ** Write meta-information back into the database. Meta[0] is
7804 ** read-only and may not be written.
7806 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
7807 BtShared
*pBt
= p
->pBt
;
7810 assert( idx
>=1 && idx
<=15 );
7811 sqlite3BtreeEnter(p
);
7812 assert( p
->inTrans
==TRANS_WRITE
);
7813 assert( pBt
->pPage1
!=0 );
7814 pP1
= pBt
->pPage1
->aData
;
7815 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
7816 if( rc
==SQLITE_OK
){
7817 put4byte(&pP1
[36 + idx
*4], iMeta
);
7818 #ifndef SQLITE_OMIT_AUTOVACUUM
7819 if( idx
==BTREE_INCR_VACUUM
){
7820 assert( pBt
->autoVacuum
|| iMeta
==0 );
7821 assert( iMeta
==0 || iMeta
==1 );
7822 pBt
->incrVacuum
= (u8
)iMeta
;
7826 sqlite3BtreeLeave(p
);
7830 #ifndef SQLITE_OMIT_BTREECOUNT
7832 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
7833 ** number of entries in the b-tree and write the result to *pnEntry.
7835 ** SQLITE_OK is returned if the operation is successfully executed.
7836 ** Otherwise, if an error is encountered (i.e. an IO error or database
7837 ** corruption) an SQLite error code is returned.
7839 int sqlite3BtreeCount(BtCursor
*pCur
, i64
*pnEntry
){
7840 i64 nEntry
= 0; /* Value to return in *pnEntry */
7841 int rc
; /* Return code */
7843 if( pCur
->pgnoRoot
==0 ){
7847 rc
= moveToRoot(pCur
);
7849 /* Unless an error occurs, the following loop runs one iteration for each
7850 ** page in the B-Tree structure (not including overflow pages).
7852 while( rc
==SQLITE_OK
){
7853 int iIdx
; /* Index of child node in parent */
7854 MemPage
*pPage
; /* Current page of the b-tree */
7856 /* If this is a leaf page or the tree is not an int-key tree, then
7857 ** this page contains countable entries. Increment the entry counter
7860 pPage
= pCur
->apPage
[pCur
->iPage
];
7861 if( pPage
->leaf
|| !pPage
->intKey
){
7862 nEntry
+= pPage
->nCell
;
7865 /* pPage is a leaf node. This loop navigates the cursor so that it
7866 ** points to the first interior cell that it points to the parent of
7867 ** the next page in the tree that has not yet been visited. The
7868 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7869 ** of the page, or to the number of cells in the page if the next page
7870 ** to visit is the right-child of its parent.
7872 ** If all pages in the tree have been visited, return SQLITE_OK to the
7877 if( pCur
->iPage
==0 ){
7878 /* All pages of the b-tree have been visited. Return successfully. */
7883 }while ( pCur
->aiIdx
[pCur
->iPage
]>=pCur
->apPage
[pCur
->iPage
]->nCell
);
7885 pCur
->aiIdx
[pCur
->iPage
]++;
7886 pPage
= pCur
->apPage
[pCur
->iPage
];
7889 /* Descend to the child node of the cell that the cursor currently
7890 ** points at. This is the right-child if (iIdx==pPage->nCell).
7892 iIdx
= pCur
->aiIdx
[pCur
->iPage
];
7893 if( iIdx
==pPage
->nCell
){
7894 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
7896 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
7900 /* An error has occurred. Return an error code. */
7906 ** Return the pager associated with a BTree. This routine is used for
7907 ** testing and debugging only.
7909 Pager
*sqlite3BtreePager(Btree
*p
){
7910 return p
->pBt
->pPager
;
7913 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7915 ** Append a message to the error message string.
7917 static void checkAppendMsg(
7918 IntegrityCk
*pCheck
,
7919 const char *zFormat
,
7924 if( !pCheck
->mxErr
) return;
7927 va_start(ap
, zFormat
);
7928 if( pCheck
->errMsg
.nChar
){
7929 sqlite3StrAccumAppend(&pCheck
->errMsg
, "\n", 1);
7932 sqlite3_snprintf(sizeof(zBuf
), zBuf
, pCheck
->zPfx
, pCheck
->v1
, pCheck
->v2
);
7933 sqlite3StrAccumAppendAll(&pCheck
->errMsg
, zBuf
);
7935 sqlite3VXPrintf(&pCheck
->errMsg
, 1, zFormat
, ap
);
7937 if( pCheck
->errMsg
.accError
==STRACCUM_NOMEM
){
7938 pCheck
->mallocFailed
= 1;
7941 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7943 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7946 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7947 ** corresponds to page iPg is already set.
7949 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
7950 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
7951 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
7955 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7957 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
7958 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
7959 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
7964 ** Add 1 to the reference count for page iPage. If this is the second
7965 ** reference to the page, add an error message to pCheck->zErrMsg.
7966 ** Return 1 if there are 2 or more references to the page and 0 if
7967 ** if this is the first reference to the page.
7969 ** Also check that the page number is in bounds.
7971 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
7972 if( iPage
==0 ) return 1;
7973 if( iPage
>pCheck
->nPage
){
7974 checkAppendMsg(pCheck
, "invalid page number %d", iPage
);
7977 if( getPageReferenced(pCheck
, iPage
) ){
7978 checkAppendMsg(pCheck
, "2nd reference to page %d", iPage
);
7981 setPageReferenced(pCheck
, iPage
);
7985 #ifndef SQLITE_OMIT_AUTOVACUUM
7987 ** Check that the entry in the pointer-map for page iChild maps to
7988 ** page iParent, pointer type ptrType. If not, append an error message
7991 static void checkPtrmap(
7992 IntegrityCk
*pCheck
, /* Integrity check context */
7993 Pgno iChild
, /* Child page number */
7994 u8 eType
, /* Expected pointer map type */
7995 Pgno iParent
/* Expected pointer map parent page number */
8001 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
8002 if( rc
!=SQLITE_OK
){
8003 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) pCheck
->mallocFailed
= 1;
8004 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%d", iChild
);
8008 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
8009 checkAppendMsg(pCheck
,
8010 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8011 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
8017 ** Check the integrity of the freelist or of an overflow page list.
8018 ** Verify that the number of pages on the list is N.
8020 static void checkList(
8021 IntegrityCk
*pCheck
, /* Integrity checking context */
8022 int isFreeList
, /* True for a freelist. False for overflow page list */
8023 int iPage
, /* Page number for first page in the list */
8024 int N
/* Expected number of pages in the list */
8029 while( N
-- > 0 && pCheck
->mxErr
){
8031 unsigned char *pOvflData
;
8033 checkAppendMsg(pCheck
,
8034 "%d of %d pages missing from overflow list starting at %d",
8035 N
+1, expected
, iFirst
);
8038 if( checkRef(pCheck
, iPage
) ) break;
8039 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
) ){
8040 checkAppendMsg(pCheck
, "failed to get page %d", iPage
);
8043 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
8045 int n
= get4byte(&pOvflData
[4]);
8046 #ifndef SQLITE_OMIT_AUTOVACUUM
8047 if( pCheck
->pBt
->autoVacuum
){
8048 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
8051 if( n
>(int)pCheck
->pBt
->usableSize
/4-2 ){
8052 checkAppendMsg(pCheck
,
8053 "freelist leaf count too big on page %d", iPage
);
8057 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
8058 #ifndef SQLITE_OMIT_AUTOVACUUM
8059 if( pCheck
->pBt
->autoVacuum
){
8060 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
8063 checkRef(pCheck
, iFreePage
);
8068 #ifndef SQLITE_OMIT_AUTOVACUUM
8070 /* If this database supports auto-vacuum and iPage is not the last
8071 ** page in this overflow list, check that the pointer-map entry for
8072 ** the following page matches iPage.
8074 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
8075 i
= get4byte(pOvflData
);
8076 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
8080 iPage
= get4byte(pOvflData
);
8081 sqlite3PagerUnref(pOvflPage
);
8084 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8086 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8088 ** Do various sanity checks on a single page of a tree. Return
8089 ** the tree depth. Root pages return 0. Parents of root pages
8090 ** return 1, and so forth.
8092 ** These checks are done:
8094 ** 1. Make sure that cells and freeblocks do not overlap
8095 ** but combine to completely cover the page.
8096 ** NO 2. Make sure cell keys are in order.
8097 ** NO 3. Make sure no key is less than or equal to zLowerBound.
8098 ** NO 4. Make sure no key is greater than or equal to zUpperBound.
8099 ** 5. Check the integrity of overflow pages.
8100 ** 6. Recursively call checkTreePage on all children.
8101 ** 7. Verify that the depth of all children is the same.
8102 ** 8. Make sure this page is at least 33% full or else it is
8103 ** the root of the tree.
8105 static int checkTreePage(
8106 IntegrityCk
*pCheck
, /* Context for the sanity check */
8107 int iPage
, /* Page number of the page to check */
8108 i64
*pnParentMinKey
,
8112 int i
, rc
, depth
, d2
, pgno
, cnt
;
8121 const char *saved_zPfx
= pCheck
->zPfx
;
8122 int saved_v1
= pCheck
->v1
;
8123 int saved_v2
= pCheck
->v2
;
8125 /* Check that the page exists
8128 usableSize
= pBt
->usableSize
;
8129 if( iPage
==0 ) return 0;
8130 if( checkRef(pCheck
, iPage
) ) return 0;
8131 pCheck
->zPfx
= "Page %d: ";
8133 if( (rc
= btreeGetPage(pBt
, (Pgno
)iPage
, &pPage
, 0))!=0 ){
8134 checkAppendMsg(pCheck
,
8135 "unable to get the page. error code=%d", rc
);
8140 /* Clear MemPage.isInit to make sure the corruption detection code in
8141 ** btreeInitPage() is executed. */
8143 if( (rc
= btreeInitPage(pPage
))!=0 ){
8144 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
8145 checkAppendMsg(pCheck
,
8146 "btreeInitPage() returns error code %d", rc
);
8152 /* Check out all the cells.
8155 for(i
=0; i
<pPage
->nCell
&& pCheck
->mxErr
; i
++){
8160 /* Check payload overflow pages
8162 pCheck
->zPfx
= "On tree page %d cell %d: ";
8165 pCell
= findCell(pPage
,i
);
8166 btreeParseCellPtr(pPage
, pCell
, &info
);
8168 /* For intKey pages, check that the keys are in order.
8170 if( pPage
->intKey
){
8172 nMinKey
= nMaxKey
= info
.nKey
;
8173 }else if( info
.nKey
<= nMaxKey
){
8174 checkAppendMsg(pCheck
,
8175 "Rowid %lld out of order (previous was %lld)", info
.nKey
, nMaxKey
);
8177 nMaxKey
= info
.nKey
;
8179 if( (sz
>info
.nLocal
)
8180 && (&pCell
[info
.iOverflow
]<=&pPage
->aData
[pBt
->usableSize
])
8182 int nPage
= (sz
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
8183 Pgno pgnoOvfl
= get4byte(&pCell
[info
.iOverflow
]);
8184 #ifndef SQLITE_OMIT_AUTOVACUUM
8185 if( pBt
->autoVacuum
){
8186 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
8189 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
8192 /* Check sanity of left child page.
8195 pgno
= get4byte(pCell
);
8196 #ifndef SQLITE_OMIT_AUTOVACUUM
8197 if( pBt
->autoVacuum
){
8198 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
8201 d2
= checkTreePage(pCheck
, pgno
, &nMinKey
, i
==0?NULL
:&nMaxKey
);
8202 if( i
>0 && d2
!=depth
){
8203 checkAppendMsg(pCheck
, "Child page depth differs");
8210 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
8211 pCheck
->zPfx
= "On page %d at right child: ";
8213 #ifndef SQLITE_OMIT_AUTOVACUUM
8214 if( pBt
->autoVacuum
){
8215 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
8218 checkTreePage(pCheck
, pgno
, NULL
, !pPage
->nCell
?NULL
:&nMaxKey
);
8221 /* For intKey leaf pages, check that the min/max keys are in order
8222 ** with any left/parent/right pages.
8224 pCheck
->zPfx
= "Page %d: ";
8226 if( pPage
->leaf
&& pPage
->intKey
){
8227 /* if we are a left child page */
8228 if( pnParentMinKey
){
8229 /* if we are the left most child page */
8230 if( !pnParentMaxKey
){
8231 if( nMaxKey
> *pnParentMinKey
){
8232 checkAppendMsg(pCheck
,
8233 "Rowid %lld out of order (max larger than parent min of %lld)",
8234 nMaxKey
, *pnParentMinKey
);
8237 if( nMinKey
<= *pnParentMinKey
){
8238 checkAppendMsg(pCheck
,
8239 "Rowid %lld out of order (min less than parent min of %lld)",
8240 nMinKey
, *pnParentMinKey
);
8242 if( nMaxKey
> *pnParentMaxKey
){
8243 checkAppendMsg(pCheck
,
8244 "Rowid %lld out of order (max larger than parent max of %lld)",
8245 nMaxKey
, *pnParentMaxKey
);
8247 *pnParentMinKey
= nMaxKey
;
8249 /* else if we're a right child page */
8250 } else if( pnParentMaxKey
){
8251 if( nMinKey
<= *pnParentMaxKey
){
8252 checkAppendMsg(pCheck
,
8253 "Rowid %lld out of order (min less than parent max of %lld)",
8254 nMinKey
, *pnParentMaxKey
);
8259 /* Check for complete coverage of the page
8261 data
= pPage
->aData
;
8262 hdr
= pPage
->hdrOffset
;
8263 hit
= sqlite3PageMalloc( pBt
->pageSize
);
8266 pCheck
->mallocFailed
= 1;
8268 int contentOffset
= get2byteNotZero(&data
[hdr
+5]);
8269 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
8270 memset(hit
+contentOffset
, 0, usableSize
-contentOffset
);
8271 memset(hit
, 1, contentOffset
);
8272 nCell
= get2byte(&data
[hdr
+3]);
8273 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
8274 for(i
=0; i
<nCell
; i
++){
8275 int pc
= get2byte(&data
[cellStart
+i
*2]);
8278 if( pc
<=usableSize
-4 ){
8279 size
= cellSizePtr(pPage
, &data
[pc
]);
8281 if( (int)(pc
+size
-1)>=usableSize
){
8283 checkAppendMsg(pCheck
,
8284 "Corruption detected in cell %d on page %d",i
,iPage
);
8286 for(j
=pc
+size
-1; j
>=pc
; j
--) hit
[j
]++;
8289 i
= get2byte(&data
[hdr
+1]);
8292 assert( i
<=usableSize
-4 ); /* Enforced by btreeInitPage() */
8293 size
= get2byte(&data
[i
+2]);
8294 assert( i
+size
<=usableSize
); /* Enforced by btreeInitPage() */
8295 for(j
=i
+size
-1; j
>=i
; j
--) hit
[j
]++;
8296 j
= get2byte(&data
[i
]);
8297 assert( j
==0 || j
>i
+size
); /* Enforced by btreeInitPage() */
8298 assert( j
<=usableSize
-4 ); /* Enforced by btreeInitPage() */
8301 for(i
=cnt
=0; i
<usableSize
; i
++){
8304 }else if( hit
[i
]>1 ){
8305 checkAppendMsg(pCheck
,
8306 "Multiple uses for byte %d of page %d", i
, iPage
);
8310 if( cnt
!=data
[hdr
+7] ){
8311 checkAppendMsg(pCheck
,
8312 "Fragmentation of %d bytes reported as %d on page %d",
8313 cnt
, data
[hdr
+7], iPage
);
8316 sqlite3PageFree(hit
);
8320 pCheck
->zPfx
= saved_zPfx
;
8321 pCheck
->v1
= saved_v1
;
8322 pCheck
->v2
= saved_v2
;
8325 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8327 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8329 ** This routine does a complete check of the given BTree file. aRoot[] is
8330 ** an array of pages numbers were each page number is the root page of
8331 ** a table. nRoot is the number of entries in aRoot.
8333 ** A read-only or read-write transaction must be opened before calling
8336 ** Write the number of error seen in *pnErr. Except for some memory
8337 ** allocation errors, an error message held in memory obtained from
8338 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
8339 ** returned. If a memory allocation error occurs, NULL is returned.
8341 char *sqlite3BtreeIntegrityCheck(
8342 Btree
*p
, /* The btree to be checked */
8343 int *aRoot
, /* An array of root pages numbers for individual trees */
8344 int nRoot
, /* Number of entries in aRoot[] */
8345 int mxErr
, /* Stop reporting errors after this many */
8346 int *pnErr
/* Write number of errors seen to this variable */
8351 BtShared
*pBt
= p
->pBt
;
8354 sqlite3BtreeEnter(p
);
8355 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
8356 nRef
= sqlite3PagerRefcount(pBt
->pPager
);
8358 sCheck
.pPager
= pBt
->pPager
;
8359 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
8360 sCheck
.mxErr
= mxErr
;
8362 sCheck
.mallocFailed
= 0;
8367 if( sCheck
.nPage
==0 ){
8368 sqlite3BtreeLeave(p
);
8372 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
8373 if( !sCheck
.aPgRef
){
8375 sqlite3BtreeLeave(p
);
8378 i
= PENDING_BYTE_PAGE(pBt
);
8379 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
8380 sqlite3StrAccumInit(&sCheck
.errMsg
, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
8381 sCheck
.errMsg
.useMalloc
= 2;
8383 /* Check the integrity of the freelist
8385 sCheck
.zPfx
= "Main freelist: ";
8386 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
8387 get4byte(&pBt
->pPage1
->aData
[36]));
8390 /* Check all the tables.
8392 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
8393 if( aRoot
[i
]==0 ) continue;
8394 #ifndef SQLITE_OMIT_AUTOVACUUM
8395 if( pBt
->autoVacuum
&& aRoot
[i
]>1 ){
8396 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
8399 sCheck
.zPfx
= "List of tree roots: ";
8400 checkTreePage(&sCheck
, aRoot
[i
], NULL
, NULL
);
8404 /* Make sure every page in the file is referenced
8406 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
8407 #ifdef SQLITE_OMIT_AUTOVACUUM
8408 if( getPageReferenced(&sCheck
, i
)==0 ){
8409 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
8412 /* If the database supports auto-vacuum, make sure no tables contain
8413 ** references to pointer-map pages.
8415 if( getPageReferenced(&sCheck
, i
)==0 &&
8416 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
8417 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
8419 if( getPageReferenced(&sCheck
, i
)!=0 &&
8420 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
8421 checkAppendMsg(&sCheck
, "Pointer map page %d is referenced", i
);
8426 /* Make sure this analysis did not leave any unref() pages.
8427 ** This is an internal consistency check; an integrity check
8428 ** of the integrity check.
8430 if( NEVER(nRef
!= sqlite3PagerRefcount(pBt
->pPager
)) ){
8431 checkAppendMsg(&sCheck
,
8432 "Outstanding page count goes from %d to %d during this analysis",
8433 nRef
, sqlite3PagerRefcount(pBt
->pPager
)
8437 /* Clean up and report errors.
8439 sqlite3BtreeLeave(p
);
8440 sqlite3_free(sCheck
.aPgRef
);
8441 if( sCheck
.mallocFailed
){
8442 sqlite3StrAccumReset(&sCheck
.errMsg
);
8443 *pnErr
= sCheck
.nErr
+1;
8446 *pnErr
= sCheck
.nErr
;
8447 if( sCheck
.nErr
==0 ) sqlite3StrAccumReset(&sCheck
.errMsg
);
8448 return sqlite3StrAccumFinish(&sCheck
.errMsg
);
8450 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8453 ** Return the full pathname of the underlying database file. Return
8454 ** an empty string if the database is in-memory or a TEMP database.
8456 ** The pager filename is invariant as long as the pager is
8457 ** open so it is safe to access without the BtShared mutex.
8459 const char *sqlite3BtreeGetFilename(Btree
*p
){
8460 assert( p
->pBt
->pPager
!=0 );
8461 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
8465 ** Return the pathname of the journal file for this database. The return
8466 ** value of this routine is the same regardless of whether the journal file
8467 ** has been created or not.
8469 ** The pager journal filename is invariant as long as the pager is
8470 ** open so it is safe to access without the BtShared mutex.
8472 const char *sqlite3BtreeGetJournalname(Btree
*p
){
8473 assert( p
->pBt
->pPager
!=0 );
8474 return sqlite3PagerJournalname(p
->pBt
->pPager
);
8478 ** Return non-zero if a transaction is active.
8480 int sqlite3BtreeIsInTrans(Btree
*p
){
8481 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
8482 return (p
&& (p
->inTrans
==TRANS_WRITE
));
8485 #ifndef SQLITE_OMIT_WAL
8487 ** Run a checkpoint on the Btree passed as the first argument.
8489 ** Return SQLITE_LOCKED if this or any other connection has an open
8490 ** transaction on the shared-cache the argument Btree is connected to.
8492 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
8494 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
8497 BtShared
*pBt
= p
->pBt
;
8498 sqlite3BtreeEnter(p
);
8499 if( pBt
->inTransaction
!=TRANS_NONE
){
8502 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, eMode
, pnLog
, pnCkpt
);
8504 sqlite3BtreeLeave(p
);
8511 ** Return non-zero if a read (or write) transaction is active.
8513 int sqlite3BtreeIsInReadTrans(Btree
*p
){
8515 assert( sqlite3_mutex_held(p
->db
->mutex
) );
8516 return p
->inTrans
!=TRANS_NONE
;
8519 int sqlite3BtreeIsInBackup(Btree
*p
){
8521 assert( sqlite3_mutex_held(p
->db
->mutex
) );
8522 return p
->nBackup
!=0;
8526 ** This function returns a pointer to a blob of memory associated with
8527 ** a single shared-btree. The memory is used by client code for its own
8528 ** purposes (for example, to store a high-level schema associated with
8529 ** the shared-btree). The btree layer manages reference counting issues.
8531 ** The first time this is called on a shared-btree, nBytes bytes of memory
8532 ** are allocated, zeroed, and returned to the caller. For each subsequent
8533 ** call the nBytes parameter is ignored and a pointer to the same blob
8534 ** of memory returned.
8536 ** If the nBytes parameter is 0 and the blob of memory has not yet been
8537 ** allocated, a null pointer is returned. If the blob has already been
8538 ** allocated, it is returned as normal.
8540 ** Just before the shared-btree is closed, the function passed as the
8541 ** xFree argument when the memory allocation was made is invoked on the
8542 ** blob of allocated memory. The xFree function should not call sqlite3_free()
8543 ** on the memory, the btree layer does that.
8545 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
8546 BtShared
*pBt
= p
->pBt
;
8547 sqlite3BtreeEnter(p
);
8548 if( !pBt
->pSchema
&& nBytes
){
8549 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
8550 pBt
->xFreeSchema
= xFree
;
8552 sqlite3BtreeLeave(p
);
8553 return pBt
->pSchema
;
8557 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8558 ** btree as the argument handle holds an exclusive lock on the
8559 ** sqlite_master table. Otherwise SQLITE_OK.
8561 int sqlite3BtreeSchemaLocked(Btree
*p
){
8563 assert( sqlite3_mutex_held(p
->db
->mutex
) );
8564 sqlite3BtreeEnter(p
);
8565 rc
= querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
);
8566 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
8567 sqlite3BtreeLeave(p
);
8572 #ifndef SQLITE_OMIT_SHARED_CACHE
8574 ** Obtain a lock on the table whose root page is iTab. The
8575 ** lock is a write lock if isWritelock is true or a read lock
8578 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
8580 assert( p
->inTrans
!=TRANS_NONE
);
8582 u8 lockType
= READ_LOCK
+ isWriteLock
;
8583 assert( READ_LOCK
+1==WRITE_LOCK
);
8584 assert( isWriteLock
==0 || isWriteLock
==1 );
8586 sqlite3BtreeEnter(p
);
8587 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
8588 if( rc
==SQLITE_OK
){
8589 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
8591 sqlite3BtreeLeave(p
);
8597 #ifndef SQLITE_OMIT_INCRBLOB
8599 ** Argument pCsr must be a cursor opened for writing on an
8600 ** INTKEY table currently pointing at a valid table entry.
8601 ** This function modifies the data stored as part of that entry.
8603 ** Only the data content may only be modified, it is not possible to
8604 ** change the length of the data stored. If this function is called with
8605 ** parameters that attempt to write past the end of the existing data,
8606 ** no modifications are made and SQLITE_CORRUPT is returned.
8608 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
8610 assert( cursorHoldsMutex(pCsr
) );
8611 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
8612 assert( pCsr
->curFlags
& BTCF_Incrblob
);
8614 rc
= restoreCursorPosition(pCsr
);
8615 if( rc
!=SQLITE_OK
){
8618 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
8619 if( pCsr
->eState
!=CURSOR_VALID
){
8620 return SQLITE_ABORT
;
8623 /* Save the positions of all other cursors open on this table. This is
8624 ** required in case any of them are holding references to an xFetch
8625 ** version of the b-tree page modified by the accessPayload call below.
8627 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
8628 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8629 ** saveAllCursors can only return SQLITE_OK.
8631 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
8632 assert( rc
==SQLITE_OK
);
8634 /* Check some assumptions:
8635 ** (a) the cursor is open for writing,
8636 ** (b) there is a read/write transaction open,
8637 ** (c) the connection holds a write-lock on the table (if required),
8638 ** (d) there are no conflicting read-locks, and
8639 ** (e) the cursor points at a valid row of an intKey table.
8641 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
8642 return SQLITE_READONLY
;
8644 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
8645 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
8646 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
8647 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
8648 assert( pCsr
->apPage
[pCsr
->iPage
]->intKey
);
8650 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
8654 ** Mark this cursor as an incremental blob cursor.
8656 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
8657 pCur
->curFlags
|= BTCF_Incrblob
;
8662 ** Set both the "read version" (single byte at byte offset 18) and
8663 ** "write version" (single byte at byte offset 19) fields in the database
8664 ** header to iVersion.
8666 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
8667 BtShared
*pBt
= pBtree
->pBt
;
8668 int rc
; /* Return code */
8670 assert( iVersion
==1 || iVersion
==2 );
8672 /* If setting the version fields to 1, do not automatically open the
8673 ** WAL connection, even if the version fields are currently set to 2.
8675 pBt
->btsFlags
&= ~BTS_NO_WAL
;
8676 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
8678 rc
= sqlite3BtreeBeginTrans(pBtree
, 0);
8679 if( rc
==SQLITE_OK
){
8680 u8
*aData
= pBt
->pPage1
->aData
;
8681 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
8682 rc
= sqlite3BtreeBeginTrans(pBtree
, 2);
8683 if( rc
==SQLITE_OK
){
8684 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
8685 if( rc
==SQLITE_OK
){
8686 aData
[18] = (u8
)iVersion
;
8687 aData
[19] = (u8
)iVersion
;
8693 pBt
->btsFlags
&= ~BTS_NO_WAL
;
8698 ** set the mask of hint flags for cursor pCsr. Currently the only valid
8699 ** values are 0 and BTREE_BULKLOAD.
8701 void sqlite3BtreeCursorHints(BtCursor
*pCsr
, unsigned int mask
){
8702 assert( mask
==BTREE_BULKLOAD
|| mask
==0 );
8707 ** Return true if the given Btree is read-only.
8709 int sqlite3BtreeIsReadonly(Btree
*p
){
8710 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;