4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed. Initialize the pParse structure as needed.
31 void sqlite3BeginParse(Parse
*pParse
, int explainFlag
){
32 pParse
->explain
= (u8
)explainFlag
;
36 #ifndef SQLITE_OMIT_SHARED_CACHE
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
42 int iDb
; /* The database containing the table to be locked */
43 int iTab
; /* The root page of the table to be locked */
44 u8 isWriteLock
; /* True for write lock. False for a read lock */
45 const char *zName
; /* Name of the table */
49 ** Record the fact that we want to lock a table at run-time.
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
54 ** This routine just records the fact that the lock is desired. The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
58 void sqlite3TableLock(
59 Parse
*pParse
, /* Parsing context */
60 int iDb
, /* Index of the database containing the table to lock */
61 int iTab
, /* Root page number of the table to be locked */
62 u8 isWriteLock
, /* True for a write lock */
63 const char *zName
/* Name of the table to be locked */
65 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
71 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
72 p
= &pToplevel
->aTableLock
[i
];
73 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
74 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
79 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
80 pToplevel
->aTableLock
=
81 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
82 if( pToplevel
->aTableLock
){
83 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
86 p
->isWriteLock
= isWriteLock
;
89 pToplevel
->nTableLock
= 0;
90 pToplevel
->db
->mallocFailed
= 1;
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
98 static void codeTableLocks(Parse
*pParse
){
102 pVdbe
= sqlite3GetVdbe(pParse
);
103 assert( pVdbe
!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
105 for(i
=0; i
<pParse
->nTableLock
; i
++){
106 TableLock
*p
= &pParse
->aTableLock
[i
];
108 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
109 p
->zName
, P4_STATIC
);
113 #define codeTableLocks(x)
117 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
121 #if SQLITE_MAX_ATTACHED>30
122 int sqlite3DbMaskAllZero(yDbMask m
){
124 for(i
=0; i
<sizeof(yDbMask
); i
++) if( m
[i
] ) return 0;
130 ** This routine is called after a single SQL statement has been
131 ** parsed and a VDBE program to execute that statement has been
132 ** prepared. This routine puts the finishing touches on the
133 ** VDBE program and resets the pParse structure for the next
136 ** Note that if an error occurred, it might be the case that
137 ** no VDBE code was generated.
139 void sqlite3FinishCoding(Parse
*pParse
){
143 assert( pParse
->pToplevel
==0 );
145 if( db
->mallocFailed
) return;
146 if( pParse
->nested
) return;
147 if( pParse
->nErr
) return;
149 /* Begin by generating some termination code at the end of the
152 v
= sqlite3GetVdbe(pParse
);
153 assert( !pParse
->isMultiWrite
154 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
156 while( sqlite3VdbeDeletePriorOpcode(v
, OP_Close
) ){}
157 sqlite3VdbeAddOp0(v
, OP_Halt
);
159 #if SQLITE_USER_AUTHENTICATION
160 if( pParse
->nTableLock
>0 && db
->init
.busy
==0 ){
161 sqlite3UserAuthInit(db
);
162 if( db
->auth
.authLevel
<UAUTH_User
){
163 pParse
->rc
= SQLITE_AUTH_USER
;
164 sqlite3ErrorMsg(pParse
, "user not authenticated");
170 /* The cookie mask contains one bit for each database file open.
171 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
172 ** set for each database that is used. Generate code to start a
173 ** transaction on each used database and to verify the schema cookie
174 ** on each used database.
176 if( db
->mallocFailed
==0
177 && (DbMaskNonZero(pParse
->cookieMask
) || pParse
->pConstExpr
)
180 assert( sqlite3VdbeGetOp(v
, 0)->opcode
==OP_Init
);
181 sqlite3VdbeJumpHere(v
, 0);
182 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
183 if( DbMaskTest(pParse
->cookieMask
, iDb
)==0 ) continue;
184 sqlite3VdbeUsesBtree(v
, iDb
);
185 sqlite3VdbeAddOp4Int(v
,
186 OP_Transaction
, /* Opcode */
188 DbMaskTest(pParse
->writeMask
,iDb
), /* P2 */
189 pParse
->cookieValue
[iDb
], /* P3 */
190 db
->aDb
[iDb
].pSchema
->iGeneration
/* P4 */
192 if( db
->init
.busy
==0 ) sqlite3VdbeChangeP5(v
, 1);
194 #ifndef SQLITE_OMIT_VIRTUALTABLE
195 for(i
=0; i
<pParse
->nVtabLock
; i
++){
196 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
197 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
199 pParse
->nVtabLock
= 0;
202 /* Once all the cookies have been verified and transactions opened,
203 ** obtain the required table-locks. This is a no-op unless the
204 ** shared-cache feature is enabled.
206 codeTableLocks(pParse
);
208 /* Initialize any AUTOINCREMENT data structures required.
210 sqlite3AutoincrementBegin(pParse
);
212 /* Code constant expressions that where factored out of inner loops */
213 if( pParse
->pConstExpr
){
214 ExprList
*pEL
= pParse
->pConstExpr
;
215 pParse
->okConstFactor
= 0;
216 for(i
=0; i
<pEL
->nExpr
; i
++){
217 sqlite3ExprCode(pParse
, pEL
->a
[i
].pExpr
, pEL
->a
[i
].u
.iConstExprReg
);
221 /* Finally, jump back to the beginning of the executable code. */
222 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, 1);
227 /* Get the VDBE program ready for execution
229 if( v
&& ALWAYS(pParse
->nErr
==0) && !db
->mallocFailed
){
230 assert( pParse
->iCacheLevel
==0 ); /* Disables and re-enables match */
231 /* A minimum of one cursor is required if autoincrement is used
232 * See ticket [a696379c1f08866] */
233 if( pParse
->pAinc
!=0 && pParse
->nTab
==0 ) pParse
->nTab
= 1;
234 sqlite3VdbeMakeReady(v
, pParse
);
235 pParse
->rc
= SQLITE_DONE
;
236 pParse
->colNamesSet
= 0;
238 pParse
->rc
= SQLITE_ERROR
;
244 DbMaskZero(pParse
->cookieMask
);
248 ** Run the parser and code generator recursively in order to generate
249 ** code for the SQL statement given onto the end of the pParse context
250 ** currently under construction. When the parser is run recursively
251 ** this way, the final OP_Halt is not appended and other initialization
252 ** and finalization steps are omitted because those are handling by the
255 ** Not everything is nestable. This facility is designed to permit
256 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
257 ** care if you decide to try to use this routine for some other purposes.
259 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
263 sqlite3
*db
= pParse
->db
;
264 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
265 char saveBuf
[SAVE_SZ
];
267 if( pParse
->nErr
) return;
268 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
269 va_start(ap
, zFormat
);
270 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
273 return; /* A malloc must have failed */
276 memcpy(saveBuf
, &pParse
->nVar
, SAVE_SZ
);
277 memset(&pParse
->nVar
, 0, SAVE_SZ
);
278 sqlite3RunParser(pParse
, zSql
, &zErrMsg
);
279 sqlite3DbFree(db
, zErrMsg
);
280 sqlite3DbFree(db
, zSql
);
281 memcpy(&pParse
->nVar
, saveBuf
, SAVE_SZ
);
285 #if SQLITE_USER_AUTHENTICATION
287 ** Return TRUE if zTable is the name of the system table that stores the
288 ** list of users and their access credentials.
290 int sqlite3UserAuthTable(const char *zTable
){
291 return sqlite3_stricmp(zTable
, "sqlite_user")==0;
296 ** Locate the in-memory structure that describes a particular database
297 ** table given the name of that table and (optionally) the name of the
298 ** database containing the table. Return NULL if not found.
300 ** If zDatabase is 0, all databases are searched for the table and the
301 ** first matching table is returned. (No checking for duplicate table
302 ** names is done.) The search order is TEMP first, then MAIN, then any
303 ** auxiliary databases added using the ATTACH command.
305 ** See also sqlite3LocateTable().
307 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
311 /* All mutexes are required for schema access. Make sure we hold them. */
312 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
313 #if SQLITE_USER_AUTHENTICATION
314 /* Only the admin user is allowed to know that the sqlite_user table
316 if( db
->auth
.authLevel
<UAUTH_Admin
&& sqlite3UserAuthTable(zName
)!=0 ){
320 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
321 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
322 if( zDatabase
!=0 && sqlite3StrICmp(zDatabase
, db
->aDb
[j
].zName
) ) continue;
323 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
324 p
= sqlite3HashFind(&db
->aDb
[j
].pSchema
->tblHash
, zName
);
331 ** Locate the in-memory structure that describes a particular database
332 ** table given the name of that table and (optionally) the name of the
333 ** database containing the table. Return NULL if not found. Also leave an
334 ** error message in pParse->zErrMsg.
336 ** The difference between this routine and sqlite3FindTable() is that this
337 ** routine leaves an error message in pParse->zErrMsg where
338 ** sqlite3FindTable() does not.
340 Table
*sqlite3LocateTable(
341 Parse
*pParse
, /* context in which to report errors */
342 int isView
, /* True if looking for a VIEW rather than a TABLE */
343 const char *zName
, /* Name of the table we are looking for */
344 const char *zDbase
/* Name of the database. Might be NULL */
348 /* Read the database schema. If an error occurs, leave an error message
349 ** and code in pParse and return NULL. */
350 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
354 p
= sqlite3FindTable(pParse
->db
, zName
, zDbase
);
356 const char *zMsg
= isView
? "no such view" : "no such table";
358 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
360 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
362 pParse
->checkSchema
= 1;
364 #if SQLITE_USER_AUTHENICATION
365 else if( pParse
->db
->auth
.authLevel
<UAUTH_User
){
366 sqlite3ErrorMsg(pParse
, "user not authenticated");
374 ** Locate the table identified by *p.
376 ** This is a wrapper around sqlite3LocateTable(). The difference between
377 ** sqlite3LocateTable() and this function is that this function restricts
378 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
379 ** non-NULL if it is part of a view or trigger program definition. See
380 ** sqlite3FixSrcList() for details.
382 Table
*sqlite3LocateTableItem(
385 struct SrcList_item
*p
388 assert( p
->pSchema
==0 || p
->zDatabase
==0 );
390 int iDb
= sqlite3SchemaToIndex(pParse
->db
, p
->pSchema
);
391 zDb
= pParse
->db
->aDb
[iDb
].zName
;
395 return sqlite3LocateTable(pParse
, isView
, p
->zName
, zDb
);
399 ** Locate the in-memory structure that describes
400 ** a particular index given the name of that index
401 ** and the name of the database that contains the index.
402 ** Return NULL if not found.
404 ** If zDatabase is 0, all databases are searched for the
405 ** table and the first matching index is returned. (No checking
406 ** for duplicate index names is done.) The search order is
407 ** TEMP first, then MAIN, then any auxiliary databases added
408 ** using the ATTACH command.
410 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
413 /* All mutexes are required for schema access. Make sure we hold them. */
414 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
415 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
416 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
417 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
419 if( zDb
&& sqlite3StrICmp(zDb
, db
->aDb
[j
].zName
) ) continue;
420 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
421 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
);
428 ** Reclaim the memory used by an index
430 static void freeIndex(sqlite3
*db
, Index
*p
){
431 #ifndef SQLITE_OMIT_ANALYZE
432 sqlite3DeleteIndexSamples(db
, p
);
434 if( db
==0 || db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref(p
->pKeyInfo
);
435 sqlite3ExprDelete(db
, p
->pPartIdxWhere
);
436 sqlite3DbFree(db
, p
->zColAff
);
437 if( p
->isResized
) sqlite3DbFree(db
, p
->azColl
);
438 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
439 sqlite3_free(p
->aiRowEst
);
441 sqlite3DbFree(db
, p
);
445 ** For the index called zIdxName which is found in the database iDb,
446 ** unlike that index from its Table then remove the index from
447 ** the index hash table and free all memory structures associated
450 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
454 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
455 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
456 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, 0);
457 if( ALWAYS(pIndex
) ){
458 if( pIndex
->pTable
->pIndex
==pIndex
){
459 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
462 /* Justification of ALWAYS(); The index must be on the list of
464 p
= pIndex
->pTable
->pIndex
;
465 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
466 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
467 p
->pNext
= pIndex
->pNext
;
470 freeIndex(db
, pIndex
);
472 db
->flags
|= SQLITE_InternChanges
;
476 ** Look through the list of open database files in db->aDb[] and if
477 ** any have been closed, remove them from the list. Reallocate the
478 ** db->aDb[] structure to a smaller size, if possible.
480 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
481 ** are never candidates for being collapsed.
483 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
485 for(i
=j
=2; i
<db
->nDb
; i
++){
486 struct Db
*pDb
= &db
->aDb
[i
];
488 sqlite3DbFree(db
, pDb
->zName
);
493 db
->aDb
[j
] = db
->aDb
[i
];
497 memset(&db
->aDb
[j
], 0, (db
->nDb
-j
)*sizeof(db
->aDb
[j
]));
499 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
500 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
501 sqlite3DbFree(db
, db
->aDb
);
502 db
->aDb
= db
->aDbStatic
;
507 ** Reset the schema for the database at index iDb. Also reset the
510 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
512 assert( iDb
<db
->nDb
);
514 /* Case 1: Reset the single schema identified by iDb */
516 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
517 assert( pDb
->pSchema
!=0 );
518 sqlite3SchemaClear(pDb
->pSchema
);
520 /* If any database other than TEMP is reset, then also reset TEMP
521 ** since TEMP might be holding triggers that reference tables in the
526 assert( pDb
->pSchema
!=0 );
527 sqlite3SchemaClear(pDb
->pSchema
);
533 ** Erase all schema information from all attached databases (including
534 ** "main" and "temp") for a single database connection.
536 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
538 sqlite3BtreeEnterAll(db
);
539 for(i
=0; i
<db
->nDb
; i
++){
540 Db
*pDb
= &db
->aDb
[i
];
542 sqlite3SchemaClear(pDb
->pSchema
);
545 db
->flags
&= ~SQLITE_InternChanges
;
546 sqlite3VtabUnlockList(db
);
547 sqlite3BtreeLeaveAll(db
);
548 sqlite3CollapseDatabaseArray(db
);
552 ** This routine is called when a commit occurs.
554 void sqlite3CommitInternalChanges(sqlite3
*db
){
555 db
->flags
&= ~SQLITE_InternChanges
;
559 ** Delete memory allocated for the column names of a table or view (the
560 ** Table.aCol[] array).
562 static void sqliteDeleteColumnNames(sqlite3
*db
, Table
*pTable
){
566 if( (pCol
= pTable
->aCol
)!=0 ){
567 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
568 sqlite3DbFree(db
, pCol
->zName
);
569 sqlite3ExprDelete(db
, pCol
->pDflt
);
570 sqlite3DbFree(db
, pCol
->zDflt
);
571 sqlite3DbFree(db
, pCol
->zType
);
572 sqlite3DbFree(db
, pCol
->zColl
);
574 sqlite3DbFree(db
, pTable
->aCol
);
579 ** Remove the memory data structures associated with the given
580 ** Table. No changes are made to disk by this routine.
582 ** This routine just deletes the data structure. It does not unlink
583 ** the table data structure from the hash table. But it does destroy
584 ** memory structures of the indices and foreign keys associated with
587 ** The db parameter is optional. It is needed if the Table object
588 ** contains lookaside memory. (Table objects in the schema do not use
589 ** lookaside memory, but some ephemeral Table objects do.) Or the
590 ** db parameter can be used with db->pnBytesFreed to measure the memory
591 ** used by the Table object.
593 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
594 Index
*pIndex
, *pNext
;
595 TESTONLY( int nLookaside
; ) /* Used to verify lookaside not used for schema */
597 assert( !pTable
|| pTable
->nRef
>0 );
599 /* Do not delete the table until the reference count reaches zero. */
600 if( !pTable
) return;
601 if( ((!db
|| db
->pnBytesFreed
==0) && (--pTable
->nRef
)>0) ) return;
603 /* Record the number of outstanding lookaside allocations in schema Tables
604 ** prior to doing any free() operations. Since schema Tables do not use
605 ** lookaside, this number should not change. */
606 TESTONLY( nLookaside
= (db
&& (pTable
->tabFlags
& TF_Ephemeral
)==0) ?
607 db
->lookaside
.nOut
: 0 );
609 /* Delete all indices associated with this table. */
610 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
611 pNext
= pIndex
->pNext
;
612 assert( pIndex
->pSchema
==pTable
->pSchema
);
613 if( !db
|| db
->pnBytesFreed
==0 ){
614 char *zName
= pIndex
->zName
;
615 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
616 &pIndex
->pSchema
->idxHash
, zName
, 0
618 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
619 assert( pOld
==pIndex
|| pOld
==0 );
621 freeIndex(db
, pIndex
);
624 /* Delete any foreign keys attached to this table. */
625 sqlite3FkDelete(db
, pTable
);
627 /* Delete the Table structure itself.
629 sqliteDeleteColumnNames(db
, pTable
);
630 sqlite3DbFree(db
, pTable
->zName
);
631 sqlite3DbFree(db
, pTable
->zColAff
);
632 sqlite3SelectDelete(db
, pTable
->pSelect
);
633 #ifndef SQLITE_OMIT_CHECK
634 sqlite3ExprListDelete(db
, pTable
->pCheck
);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637 sqlite3VtabClear(db
, pTable
);
639 sqlite3DbFree(db
, pTable
);
641 /* Verify that no lookaside memory was used by schema tables */
642 assert( nLookaside
==0 || nLookaside
==db
->lookaside
.nOut
);
646 ** Unlink the given table from the hash tables and the delete the
647 ** table structure with all its indices and foreign keys.
649 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
654 assert( iDb
>=0 && iDb
<db
->nDb
);
656 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
657 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
659 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
, 0);
660 sqlite3DeleteTable(db
, p
);
661 db
->flags
|= SQLITE_InternChanges
;
665 ** Given a token, return a string that consists of the text of that
666 ** token. Space to hold the returned string
667 ** is obtained from sqliteMalloc() and must be freed by the calling
670 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
671 ** surround the body of the token are removed.
673 ** Tokens are often just pointers into the original SQL text and so
674 ** are not \000 terminated and are not persistent. The returned string
675 ** is \000 terminated and is persistent.
677 char *sqlite3NameFromToken(sqlite3
*db
, Token
*pName
){
680 zName
= sqlite3DbStrNDup(db
, (char*)pName
->z
, pName
->n
);
681 sqlite3Dequote(zName
);
689 ** Open the sqlite_master table stored in database number iDb for
690 ** writing. The table is opened using cursor 0.
692 void sqlite3OpenMasterTable(Parse
*p
, int iDb
){
693 Vdbe
*v
= sqlite3GetVdbe(p
);
694 sqlite3TableLock(p
, iDb
, MASTER_ROOT
, 1, SCHEMA_TABLE(iDb
));
695 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, 0, MASTER_ROOT
, iDb
, 5);
702 ** Parameter zName points to a nul-terminated buffer containing the name
703 ** of a database ("main", "temp" or the name of an attached db). This
704 ** function returns the index of the named database in db->aDb[], or
705 ** -1 if the named db cannot be found.
707 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
708 int i
= -1; /* Database number */
711 int n
= sqlite3Strlen30(zName
);
712 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
713 if( (!OMIT_TEMPDB
|| i
!=1 ) && n
==sqlite3Strlen30(pDb
->zName
) &&
714 0==sqlite3StrICmp(pDb
->zName
, zName
) ){
723 ** The token *pName contains the name of a database (either "main" or
724 ** "temp" or the name of an attached db). This routine returns the
725 ** index of the named database in db->aDb[], or -1 if the named db
728 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
729 int i
; /* Database number */
730 char *zName
; /* Name we are searching for */
731 zName
= sqlite3NameFromToken(db
, pName
);
732 i
= sqlite3FindDbName(db
, zName
);
733 sqlite3DbFree(db
, zName
);
737 /* The table or view or trigger name is passed to this routine via tokens
738 ** pName1 and pName2. If the table name was fully qualified, for example:
740 ** CREATE TABLE xxx.yyy (...);
742 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
743 ** the table name is not fully qualified, i.e.:
745 ** CREATE TABLE yyy(...);
747 ** Then pName1 is set to "yyy" and pName2 is "".
749 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
750 ** pName2) that stores the unqualified table name. The index of the
751 ** database "xxx" is returned.
753 int sqlite3TwoPartName(
754 Parse
*pParse
, /* Parsing and code generating context */
755 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
756 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
757 Token
**pUnqual
/* Write the unqualified object name here */
759 int iDb
; /* Database holding the object */
760 sqlite3
*db
= pParse
->db
;
762 if( ALWAYS(pName2
!=0) && pName2
->n
>0 ){
763 if( db
->init
.busy
) {
764 sqlite3ErrorMsg(pParse
, "corrupt database");
769 iDb
= sqlite3FindDb(db
, pName1
);
771 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
776 assert( db
->init
.iDb
==0 || db
->init
.busy
);
784 ** This routine is used to check if the UTF-8 string zName is a legal
785 ** unqualified name for a new schema object (table, index, view or
786 ** trigger). All names are legal except those that begin with the string
787 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
788 ** is reserved for internal use.
790 int sqlite3CheckObjectName(Parse
*pParse
, const char *zName
){
791 if( !pParse
->db
->init
.busy
&& pParse
->nested
==0
792 && (pParse
->db
->flags
& SQLITE_WriteSchema
)==0
793 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7) ){
794 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s", zName
);
801 ** Return the PRIMARY KEY index of a table
803 Index
*sqlite3PrimaryKeyIndex(Table
*pTab
){
805 for(p
=pTab
->pIndex
; p
&& !IsPrimaryKeyIndex(p
); p
=p
->pNext
){}
810 ** Return the column of index pIdx that corresponds to table
811 ** column iCol. Return -1 if not found.
813 i16
sqlite3ColumnOfIndex(Index
*pIdx
, i16 iCol
){
815 for(i
=0; i
<pIdx
->nColumn
; i
++){
816 if( iCol
==pIdx
->aiColumn
[i
] ) return i
;
822 ** Begin constructing a new table representation in memory. This is
823 ** the first of several action routines that get called in response
824 ** to a CREATE TABLE statement. In particular, this routine is called
825 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
826 ** flag is true if the table should be stored in the auxiliary database
827 ** file instead of in the main database file. This is normally the case
828 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
831 ** The new table record is initialized and put in pParse->pNewTable.
832 ** As more of the CREATE TABLE statement is parsed, additional action
833 ** routines will be called to add more information to this record.
834 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
835 ** is called to complete the construction of the new table record.
837 void sqlite3StartTable(
838 Parse
*pParse
, /* Parser context */
839 Token
*pName1
, /* First part of the name of the table or view */
840 Token
*pName2
, /* Second part of the name of the table or view */
841 int isTemp
, /* True if this is a TEMP table */
842 int isView
, /* True if this is a VIEW */
843 int isVirtual
, /* True if this is a VIRTUAL table */
844 int noErr
/* Do nothing if table already exists */
847 char *zName
= 0; /* The name of the new table */
848 sqlite3
*db
= pParse
->db
;
850 int iDb
; /* Database number to create the table in */
851 Token
*pName
; /* Unqualified name of the table to create */
853 /* The table or view name to create is passed to this routine via tokens
854 ** pName1 and pName2. If the table name was fully qualified, for example:
856 ** CREATE TABLE xxx.yyy (...);
858 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
859 ** the table name is not fully qualified, i.e.:
861 ** CREATE TABLE yyy(...);
863 ** Then pName1 is set to "yyy" and pName2 is "".
865 ** The call below sets the pName pointer to point at the token (pName1 or
866 ** pName2) that stores the unqualified table name. The variable iDb is
867 ** set to the index of the database that the table or view is to be
870 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
872 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
873 /* If creating a temp table, the name may not be qualified. Unless
874 ** the database name is "temp" anyway. */
875 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
878 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
880 pParse
->sNameToken
= *pName
;
881 zName
= sqlite3NameFromToken(db
, pName
);
882 if( zName
==0 ) return;
883 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
) ){
884 goto begin_table_error
;
886 if( db
->init
.iDb
==1 ) isTemp
= 1;
887 #ifndef SQLITE_OMIT_AUTHORIZATION
888 assert( (isTemp
& 1)==isTemp
);
891 char *zDb
= db
->aDb
[iDb
].zName
;
892 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
893 goto begin_table_error
;
896 if( !OMIT_TEMPDB
&& isTemp
){
897 code
= SQLITE_CREATE_TEMP_VIEW
;
899 code
= SQLITE_CREATE_VIEW
;
902 if( !OMIT_TEMPDB
&& isTemp
){
903 code
= SQLITE_CREATE_TEMP_TABLE
;
905 code
= SQLITE_CREATE_TABLE
;
908 if( !isVirtual
&& sqlite3AuthCheck(pParse
, code
, zName
, 0, zDb
) ){
909 goto begin_table_error
;
914 /* Make sure the new table name does not collide with an existing
915 ** index or table name in the same database. Issue an error message if
916 ** it does. The exception is if the statement being parsed was passed
917 ** to an sqlite3_declare_vtab() call. In that case only the column names
918 ** and types will be used, so there is no need to test for namespace
921 if( !IN_DECLARE_VTAB
){
922 char *zDb
= db
->aDb
[iDb
].zName
;
923 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
924 goto begin_table_error
;
926 pTable
= sqlite3FindTable(db
, zName
, zDb
);
929 sqlite3ErrorMsg(pParse
, "table %T already exists", pName
);
931 assert( !db
->init
.busy
);
932 sqlite3CodeVerifySchema(pParse
, iDb
);
934 goto begin_table_error
;
936 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
937 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
938 goto begin_table_error
;
942 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
944 db
->mallocFailed
= 1;
945 pParse
->rc
= SQLITE_NOMEM
;
947 goto begin_table_error
;
949 pTable
->zName
= zName
;
951 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
953 pTable
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
954 assert( pParse
->pNewTable
==0 );
955 pParse
->pNewTable
= pTable
;
957 /* If this is the magic sqlite_sequence table used by autoincrement,
958 ** then record a pointer to this table in the main database structure
959 ** so that INSERT can find the table easily.
961 #ifndef SQLITE_OMIT_AUTOINCREMENT
962 if( !pParse
->nested
&& strcmp(zName
, "sqlite_sequence")==0 ){
963 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
964 pTable
->pSchema
->pSeqTab
= pTable
;
968 /* Begin generating the code that will insert the table record into
969 ** the SQLITE_MASTER table. Note in particular that we must go ahead
970 ** and allocate the record number for the table entry now. Before any
971 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
972 ** indices to be created and the table record must come before the
973 ** indices. Hence, the record number for the table must be allocated
976 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
979 int reg1
, reg2
, reg3
;
980 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
982 #ifndef SQLITE_OMIT_VIRTUALTABLE
984 sqlite3VdbeAddOp0(v
, OP_VBegin
);
988 /* If the file format and encoding in the database have not been set,
991 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
992 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
993 reg3
= ++pParse
->nMem
;
994 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
995 sqlite3VdbeUsesBtree(v
, iDb
);
996 j1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
); VdbeCoverage(v
);
997 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
998 1 : SQLITE_MAX_FILE_FORMAT
;
999 sqlite3VdbeAddOp2(v
, OP_Integer
, fileFormat
, reg3
);
1000 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, reg3
);
1001 sqlite3VdbeAddOp2(v
, OP_Integer
, ENC(db
), reg3
);
1002 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, reg3
);
1003 sqlite3VdbeJumpHere(v
, j1
);
1005 /* This just creates a place-holder record in the sqlite_master table.
1006 ** The record created does not contain anything yet. It will be replaced
1007 ** by the real entry in code generated at sqlite3EndTable().
1009 ** The rowid for the new entry is left in register pParse->regRowid.
1010 ** The root page number of the new table is left in reg pParse->regRoot.
1011 ** The rowid and root page number values are needed by the code that
1012 ** sqlite3EndTable will generate.
1014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1015 if( isView
|| isVirtual
){
1016 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
1020 pParse
->addrCrTab
= sqlite3VdbeAddOp2(v
, OP_CreateTable
, iDb
, reg2
);
1022 sqlite3OpenMasterTable(pParse
, iDb
);
1023 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
1024 sqlite3VdbeAddOp2(v
, OP_Null
, 0, reg3
);
1025 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
1026 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1027 sqlite3VdbeAddOp0(v
, OP_Close
);
1030 /* Normal (non-error) return. */
1033 /* If an error occurs, we jump here */
1035 sqlite3DbFree(db
, zName
);
1040 ** This macro is used to compare two strings in a case-insensitive manner.
1041 ** It is slightly faster than calling sqlite3StrICmp() directly, but
1042 ** produces larger code.
1044 ** WARNING: This macro is not compatible with the strcmp() family. It
1045 ** returns true if the two strings are equal, otherwise false.
1047 #define STRICMP(x, y) (\
1048 sqlite3UpperToLower[*(unsigned char *)(x)]== \
1049 sqlite3UpperToLower[*(unsigned char *)(y)] \
1050 && sqlite3StrICmp((x)+1,(y)+1)==0 )
1053 ** Add a new column to the table currently being constructed.
1055 ** The parser calls this routine once for each column declaration
1056 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1057 ** first to get things going. Then this routine is called for each
1060 void sqlite3AddColumn(Parse
*pParse
, Token
*pName
){
1065 sqlite3
*db
= pParse
->db
;
1066 if( (p
= pParse
->pNewTable
)==0 ) return;
1067 #if SQLITE_MAX_COLUMN
1068 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
1069 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
1073 z
= sqlite3NameFromToken(db
, pName
);
1075 for(i
=0; i
<p
->nCol
; i
++){
1076 if( STRICMP(z
, p
->aCol
[i
].zName
) ){
1077 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
1078 sqlite3DbFree(db
, z
);
1082 if( (p
->nCol
& 0x7)==0 ){
1084 aNew
= sqlite3DbRealloc(db
,p
->aCol
,(p
->nCol
+8)*sizeof(p
->aCol
[0]));
1086 sqlite3DbFree(db
, z
);
1091 pCol
= &p
->aCol
[p
->nCol
];
1092 memset(pCol
, 0, sizeof(p
->aCol
[0]));
1095 /* If there is no type specified, columns have the default affinity
1096 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
1097 ** be called next to set pCol->affinity correctly.
1099 pCol
->affinity
= SQLITE_AFF_NONE
;
1105 ** This routine is called by the parser while in the middle of
1106 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1107 ** been seen on a column. This routine sets the notNull flag on
1108 ** the column currently under construction.
1110 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1112 p
= pParse
->pNewTable
;
1113 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1114 p
->aCol
[p
->nCol
-1].notNull
= (u8
)onError
;
1118 ** Scan the column type name zType (length nType) and return the
1119 ** associated affinity type.
1121 ** This routine does a case-independent search of zType for the
1122 ** substrings in the following table. If one of the substrings is
1123 ** found, the corresponding affinity is returned. If zType contains
1124 ** more than one of the substrings, entries toward the top of
1125 ** the table take priority. For example, if zType is 'BLOBINT',
1126 ** SQLITE_AFF_INTEGER is returned.
1128 ** Substring | Affinity
1129 ** --------------------------------
1130 ** 'INT' | SQLITE_AFF_INTEGER
1131 ** 'CHAR' | SQLITE_AFF_TEXT
1132 ** 'CLOB' | SQLITE_AFF_TEXT
1133 ** 'TEXT' | SQLITE_AFF_TEXT
1134 ** 'BLOB' | SQLITE_AFF_NONE
1135 ** 'REAL' | SQLITE_AFF_REAL
1136 ** 'FLOA' | SQLITE_AFF_REAL
1137 ** 'DOUB' | SQLITE_AFF_REAL
1139 ** If none of the substrings in the above table are found,
1140 ** SQLITE_AFF_NUMERIC is returned.
1142 char sqlite3AffinityType(const char *zIn
, u8
*pszEst
){
1144 char aff
= SQLITE_AFF_NUMERIC
;
1145 const char *zChar
= 0;
1147 if( zIn
==0 ) return aff
;
1149 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1151 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1152 aff
= SQLITE_AFF_TEXT
;
1154 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1155 aff
= SQLITE_AFF_TEXT
;
1156 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1157 aff
= SQLITE_AFF_TEXT
;
1158 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1159 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1160 aff
= SQLITE_AFF_NONE
;
1161 if( zIn
[0]=='(' ) zChar
= zIn
;
1162 #ifndef SQLITE_OMIT_FLOATING_POINT
1163 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1164 && aff
==SQLITE_AFF_NUMERIC
){
1165 aff
= SQLITE_AFF_REAL
;
1166 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1167 && aff
==SQLITE_AFF_NUMERIC
){
1168 aff
= SQLITE_AFF_REAL
;
1169 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1170 && aff
==SQLITE_AFF_NUMERIC
){
1171 aff
= SQLITE_AFF_REAL
;
1173 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1174 aff
= SQLITE_AFF_INTEGER
;
1179 /* If pszEst is not NULL, store an estimate of the field size. The
1180 ** estimate is scaled so that the size of an integer is 1. */
1182 *pszEst
= 1; /* default size is approx 4 bytes */
1183 if( aff
<SQLITE_AFF_NUMERIC
){
1186 if( sqlite3Isdigit(zChar
[0]) ){
1188 sqlite3GetInt32(zChar
, &v
);
1190 if( v
>255 ) v
= 255;
1191 *pszEst
= v
; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1197 *pszEst
= 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1205 ** This routine is called by the parser while in the middle of
1206 ** parsing a CREATE TABLE statement. The pFirst token is the first
1207 ** token in the sequence of tokens that describe the type of the
1208 ** column currently under construction. pLast is the last token
1209 ** in the sequence. Use this information to construct a string
1210 ** that contains the typename of the column and store that string
1213 void sqlite3AddColumnType(Parse
*pParse
, Token
*pType
){
1217 p
= pParse
->pNewTable
;
1218 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1219 pCol
= &p
->aCol
[p
->nCol
-1];
1220 assert( pCol
->zType
==0 );
1221 pCol
->zType
= sqlite3NameFromToken(pParse
->db
, pType
);
1222 pCol
->affinity
= sqlite3AffinityType(pCol
->zType
, &pCol
->szEst
);
1226 ** The expression is the default value for the most recently added column
1227 ** of the table currently under construction.
1229 ** Default value expressions must be constant. Raise an exception if this
1232 ** This routine is called by the parser while in the middle of
1233 ** parsing a CREATE TABLE statement.
1235 void sqlite3AddDefaultValue(Parse
*pParse
, ExprSpan
*pSpan
){
1238 sqlite3
*db
= pParse
->db
;
1239 p
= pParse
->pNewTable
;
1241 pCol
= &(p
->aCol
[p
->nCol
-1]);
1242 if( !sqlite3ExprIsConstantOrFunction(pSpan
->pExpr
, db
->init
.busy
) ){
1243 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1246 /* A copy of pExpr is used instead of the original, as pExpr contains
1247 ** tokens that point to volatile memory. The 'span' of the expression
1248 ** is required by pragma table_info.
1250 sqlite3ExprDelete(db
, pCol
->pDflt
);
1251 pCol
->pDflt
= sqlite3ExprDup(db
, pSpan
->pExpr
, EXPRDUP_REDUCE
);
1252 sqlite3DbFree(db
, pCol
->zDflt
);
1253 pCol
->zDflt
= sqlite3DbStrNDup(db
, (char*)pSpan
->zStart
,
1254 (int)(pSpan
->zEnd
- pSpan
->zStart
));
1257 sqlite3ExprDelete(db
, pSpan
->pExpr
);
1261 ** Designate the PRIMARY KEY for the table. pList is a list of names
1262 ** of columns that form the primary key. If pList is NULL, then the
1263 ** most recently added column of the table is the primary key.
1265 ** A table can have at most one primary key. If the table already has
1266 ** a primary key (and this is the second primary key) then create an
1269 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1270 ** then we will try to use that column as the rowid. Set the Table.iPKey
1271 ** field of the table under construction to be the index of the
1272 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1273 ** no INTEGER PRIMARY KEY.
1275 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1276 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1278 void sqlite3AddPrimaryKey(
1279 Parse
*pParse
, /* Parsing context */
1280 ExprList
*pList
, /* List of field names to be indexed */
1281 int onError
, /* What to do with a uniqueness conflict */
1282 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1283 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1285 Table
*pTab
= pParse
->pNewTable
;
1289 if( pTab
==0 || IN_DECLARE_VTAB
) goto primary_key_exit
;
1290 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1291 sqlite3ErrorMsg(pParse
,
1292 "table \"%s\" has more than one primary key", pTab
->zName
);
1293 goto primary_key_exit
;
1295 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1297 iCol
= pTab
->nCol
- 1;
1298 pTab
->aCol
[iCol
].colFlags
|= COLFLAG_PRIMKEY
;
1299 zType
= pTab
->aCol
[iCol
].zType
;
1302 nTerm
= pList
->nExpr
;
1303 for(i
=0; i
<nTerm
; i
++){
1304 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1305 if( sqlite3StrICmp(pList
->a
[i
].zName
, pTab
->aCol
[iCol
].zName
)==0 ){
1306 pTab
->aCol
[iCol
].colFlags
|= COLFLAG_PRIMKEY
;
1307 zType
= pTab
->aCol
[iCol
].zType
;
1314 && zType
&& sqlite3StrICmp(zType
, "INTEGER")==0
1315 && sortOrder
==SQLITE_SO_ASC
1318 pTab
->keyConf
= (u8
)onError
;
1319 assert( autoInc
==0 || autoInc
==1 );
1320 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1321 if( pList
) pParse
->iPkSortOrder
= pList
->a
[0].sortOrder
;
1322 }else if( autoInc
){
1323 #ifndef SQLITE_OMIT_AUTOINCREMENT
1324 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1325 "INTEGER PRIMARY KEY");
1328 Vdbe
*v
= pParse
->pVdbe
;
1330 if( v
) pParse
->addrSkipPK
= sqlite3VdbeAddOp0(v
, OP_Noop
);
1331 p
= sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0,
1334 p
->idxType
= SQLITE_IDXTYPE_PRIMARYKEY
;
1335 if( v
) sqlite3VdbeJumpHere(v
, pParse
->addrSkipPK
);
1341 sqlite3ExprListDelete(pParse
->db
, pList
);
1346 ** Add a new CHECK constraint to the table currently under construction.
1348 void sqlite3AddCheckConstraint(
1349 Parse
*pParse
, /* Parsing context */
1350 Expr
*pCheckExpr
/* The check expression */
1352 #ifndef SQLITE_OMIT_CHECK
1353 Table
*pTab
= pParse
->pNewTable
;
1354 sqlite3
*db
= pParse
->db
;
1355 if( pTab
&& !IN_DECLARE_VTAB
1356 && !sqlite3BtreeIsReadonly(db
->aDb
[db
->init
.iDb
].pBt
)
1358 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1359 if( pParse
->constraintName
.n
){
1360 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1365 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1370 ** Set the collation function of the most recently parsed table column
1371 ** to the CollSeq given.
1373 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1376 char *zColl
; /* Dequoted name of collation sequence */
1379 if( (p
= pParse
->pNewTable
)==0 ) return;
1382 zColl
= sqlite3NameFromToken(db
, pToken
);
1383 if( !zColl
) return;
1385 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1387 sqlite3DbFree(db
, p
->aCol
[i
].zColl
);
1388 p
->aCol
[i
].zColl
= zColl
;
1390 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1391 ** then an index may have been created on this column before the
1392 ** collation type was added. Correct this if it is the case.
1394 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1395 assert( pIdx
->nKeyCol
==1 );
1396 if( pIdx
->aiColumn
[0]==i
){
1397 pIdx
->azColl
[0] = p
->aCol
[i
].zColl
;
1401 sqlite3DbFree(db
, zColl
);
1406 ** This function returns the collation sequence for database native text
1407 ** encoding identified by the string zName, length nName.
1409 ** If the requested collation sequence is not available, or not available
1410 ** in the database native encoding, the collation factory is invoked to
1411 ** request it. If the collation factory does not supply such a sequence,
1412 ** and the sequence is available in another text encoding, then that is
1413 ** returned instead.
1415 ** If no versions of the requested collations sequence are available, or
1416 ** another error occurs, NULL is returned and an error message written into
1419 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1420 ** invokes the collation factory if the named collation cannot be found
1421 ** and generates an error message.
1423 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1425 CollSeq
*sqlite3LocateCollSeq(Parse
*pParse
, const char *zName
){
1426 sqlite3
*db
= pParse
->db
;
1428 u8 initbusy
= db
->init
.busy
;
1431 pColl
= sqlite3FindCollSeq(db
, enc
, zName
, initbusy
);
1432 if( !initbusy
&& (!pColl
|| !pColl
->xCmp
) ){
1433 pColl
= sqlite3GetCollSeq(pParse
, enc
, pColl
, zName
);
1441 ** Generate code that will increment the schema cookie.
1443 ** The schema cookie is used to determine when the schema for the
1444 ** database changes. After each schema change, the cookie value
1445 ** changes. When a process first reads the schema it records the
1446 ** cookie. Thereafter, whenever it goes to access the database,
1447 ** it checks the cookie to make sure the schema has not changed
1448 ** since it was last read.
1450 ** This plan is not completely bullet-proof. It is possible for
1451 ** the schema to change multiple times and for the cookie to be
1452 ** set back to prior value. But schema changes are infrequent
1453 ** and the probability of hitting the same cookie value is only
1454 ** 1 chance in 2^32. So we're safe enough.
1456 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
1457 int r1
= sqlite3GetTempReg(pParse
);
1458 sqlite3
*db
= pParse
->db
;
1459 Vdbe
*v
= pParse
->pVdbe
;
1460 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1461 sqlite3VdbeAddOp2(v
, OP_Integer
, db
->aDb
[iDb
].pSchema
->schema_cookie
+1, r1
);
1462 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
, r1
);
1463 sqlite3ReleaseTempReg(pParse
, r1
);
1467 ** Measure the number of characters needed to output the given
1468 ** identifier. The number returned includes any quotes used
1469 ** but does not include the null terminator.
1471 ** The estimate is conservative. It might be larger that what is
1474 static int identLength(const char *z
){
1476 for(n
=0; *z
; n
++, z
++){
1477 if( *z
=='"' ){ n
++; }
1483 ** The first parameter is a pointer to an output buffer. The second
1484 ** parameter is a pointer to an integer that contains the offset at
1485 ** which to write into the output buffer. This function copies the
1486 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1487 ** to the specified offset in the buffer and updates *pIdx to refer
1488 ** to the first byte after the last byte written before returning.
1490 ** If the string zSignedIdent consists entirely of alpha-numeric
1491 ** characters, does not begin with a digit and is not an SQL keyword,
1492 ** then it is copied to the output buffer exactly as it is. Otherwise,
1493 ** it is quoted using double-quotes.
1495 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
1496 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
1497 int i
, j
, needQuote
;
1500 for(j
=0; zIdent
[j
]; j
++){
1501 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
1503 needQuote
= sqlite3Isdigit(zIdent
[0])
1504 || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
1508 if( needQuote
) z
[i
++] = '"';
1509 for(j
=0; zIdent
[j
]; j
++){
1511 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
1513 if( needQuote
) z
[i
++] = '"';
1519 ** Generate a CREATE TABLE statement appropriate for the given
1520 ** table. Memory to hold the text of the statement is obtained
1521 ** from sqliteMalloc() and must be freed by the calling function.
1523 static char *createTableStmt(sqlite3
*db
, Table
*p
){
1526 char *zSep
, *zSep2
, *zEnd
;
1529 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1530 n
+= identLength(pCol
->zName
) + 5;
1532 n
+= identLength(p
->zName
);
1542 n
+= 35 + 6*p
->nCol
;
1543 zStmt
= sqlite3DbMallocRaw(0, n
);
1545 db
->mallocFailed
= 1;
1548 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
1549 k
= sqlite3Strlen30(zStmt
);
1550 identPut(zStmt
, &k
, p
->zName
);
1552 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1553 static const char * const azType
[] = {
1554 /* SQLITE_AFF_NONE */ "",
1555 /* SQLITE_AFF_TEXT */ " TEXT",
1556 /* SQLITE_AFF_NUMERIC */ " NUM",
1557 /* SQLITE_AFF_INTEGER */ " INT",
1558 /* SQLITE_AFF_REAL */ " REAL"
1563 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
1564 k
+= sqlite3Strlen30(&zStmt
[k
]);
1566 identPut(zStmt
, &k
, pCol
->zName
);
1567 assert( pCol
->affinity
-SQLITE_AFF_NONE
>= 0 );
1568 assert( pCol
->affinity
-SQLITE_AFF_NONE
< ArraySize(azType
) );
1569 testcase( pCol
->affinity
==SQLITE_AFF_NONE
);
1570 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
1571 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
1572 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
1573 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
1575 zType
= azType
[pCol
->affinity
- SQLITE_AFF_NONE
];
1576 len
= sqlite3Strlen30(zType
);
1577 assert( pCol
->affinity
==SQLITE_AFF_NONE
1578 || pCol
->affinity
==sqlite3AffinityType(zType
, 0) );
1579 memcpy(&zStmt
[k
], zType
, len
);
1583 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
1588 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1589 ** on success and SQLITE_NOMEM on an OOM error.
1591 static int resizeIndexObject(sqlite3
*db
, Index
*pIdx
, int N
){
1594 if( pIdx
->nColumn
>=N
) return SQLITE_OK
;
1595 assert( pIdx
->isResized
==0 );
1596 nByte
= (sizeof(char*) + sizeof(i16
) + 1)*N
;
1597 zExtra
= sqlite3DbMallocZero(db
, nByte
);
1598 if( zExtra
==0 ) return SQLITE_NOMEM
;
1599 memcpy(zExtra
, pIdx
->azColl
, sizeof(char*)*pIdx
->nColumn
);
1600 pIdx
->azColl
= (char**)zExtra
;
1601 zExtra
+= sizeof(char*)*N
;
1602 memcpy(zExtra
, pIdx
->aiColumn
, sizeof(i16
)*pIdx
->nColumn
);
1603 pIdx
->aiColumn
= (i16
*)zExtra
;
1604 zExtra
+= sizeof(i16
)*N
;
1605 memcpy(zExtra
, pIdx
->aSortOrder
, pIdx
->nColumn
);
1606 pIdx
->aSortOrder
= (u8
*)zExtra
;
1608 pIdx
->isResized
= 1;
1613 ** Estimate the total row width for a table.
1615 static void estimateTableWidth(Table
*pTab
){
1616 unsigned wTable
= 0;
1617 const Column
*pTabCol
;
1619 for(i
=pTab
->nCol
, pTabCol
=pTab
->aCol
; i
>0; i
--, pTabCol
++){
1620 wTable
+= pTabCol
->szEst
;
1622 if( pTab
->iPKey
<0 ) wTable
++;
1623 pTab
->szTabRow
= sqlite3LogEst(wTable
*4);
1627 ** Estimate the average size of a row for an index.
1629 static void estimateIndexWidth(Index
*pIdx
){
1630 unsigned wIndex
= 0;
1632 const Column
*aCol
= pIdx
->pTable
->aCol
;
1633 for(i
=0; i
<pIdx
->nColumn
; i
++){
1634 i16 x
= pIdx
->aiColumn
[i
];
1635 assert( x
<pIdx
->pTable
->nCol
);
1636 wIndex
+= x
<0 ? 1 : aCol
[pIdx
->aiColumn
[i
]].szEst
;
1638 pIdx
->szIdxRow
= sqlite3LogEst(wIndex
*4);
1641 /* Return true if value x is found any of the first nCol entries of aiCol[]
1643 static int hasColumn(const i16
*aiCol
, int nCol
, int x
){
1644 while( nCol
-- > 0 ) if( x
==*(aiCol
++) ) return 1;
1649 ** This routine runs at the end of parsing a CREATE TABLE statement that
1650 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1651 ** internal schema data structures and the generated VDBE code so that they
1652 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1655 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is
1656 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1657 ** data storage is a covering index btree.
1658 ** (2) Bypass the creation of the sqlite_master table entry
1659 ** for the PRIMARY KEY as the primary key index is now
1660 ** identified by the sqlite_master table entry of the table itself.
1661 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the
1662 ** schema to the rootpage from the main table.
1663 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1664 ** (5) Add all table columns to the PRIMARY KEY Index object
1665 ** so that the PRIMARY KEY is a covering index. The surplus
1666 ** columns are part of KeyInfo.nXField and are not used for
1667 ** sorting or lookup or uniqueness checks.
1668 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1669 ** indices with the PRIMARY KEY columns.
1671 static void convertToWithoutRowidTable(Parse
*pParse
, Table
*pTab
){
1676 sqlite3
*db
= pParse
->db
;
1677 Vdbe
*v
= pParse
->pVdbe
;
1679 /* Convert the OP_CreateTable opcode that would normally create the
1680 ** root-page for the table into an OP_CreateIndex opcode. The index
1681 ** created will become the PRIMARY KEY index.
1683 if( pParse
->addrCrTab
){
1685 sqlite3VdbeGetOp(v
, pParse
->addrCrTab
)->opcode
= OP_CreateIndex
;
1688 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1691 if( pParse
->addrSkipPK
){
1693 sqlite3VdbeGetOp(v
, pParse
->addrSkipPK
)->opcode
= OP_Goto
;
1696 /* Locate the PRIMARY KEY index. Or, if this table was originally
1697 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1699 if( pTab
->iPKey
>=0 ){
1701 pList
= sqlite3ExprListAppend(pParse
, 0, 0);
1702 if( pList
==0 ) return;
1703 pList
->a
[0].zName
= sqlite3DbStrDup(pParse
->db
,
1704 pTab
->aCol
[pTab
->iPKey
].zName
);
1705 pList
->a
[0].sortOrder
= pParse
->iPkSortOrder
;
1706 assert( pParse
->pNewTable
==pTab
);
1707 pPk
= sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, pTab
->keyConf
, 0, 0, 0, 0);
1708 if( pPk
==0 ) return;
1709 pPk
->idxType
= SQLITE_IDXTYPE_PRIMARYKEY
;
1712 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1714 pPk
->isCovering
= 1;
1718 /* Make sure every column of the PRIMARY KEY is NOT NULL */
1719 for(i
=0; i
<nPk
; i
++){
1720 pTab
->aCol
[pPk
->aiColumn
[i
]].notNull
= 1;
1722 pPk
->uniqNotNull
= 1;
1724 /* The root page of the PRIMARY KEY is the table root page */
1725 pPk
->tnum
= pTab
->tnum
;
1727 /* Update the in-memory representation of all UNIQUE indices by converting
1728 ** the final rowid column into one or more columns of the PRIMARY KEY.
1730 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1732 if( IsPrimaryKeyIndex(pIdx
) ) continue;
1733 for(i
=n
=0; i
<nPk
; i
++){
1734 if( !hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) ) n
++;
1737 /* This index is a superset of the primary key */
1738 pIdx
->nColumn
= pIdx
->nKeyCol
;
1741 if( resizeIndexObject(db
, pIdx
, pIdx
->nKeyCol
+n
) ) return;
1742 for(i
=0, j
=pIdx
->nKeyCol
; i
<nPk
; i
++){
1743 if( !hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) ){
1744 pIdx
->aiColumn
[j
] = pPk
->aiColumn
[i
];
1745 pIdx
->azColl
[j
] = pPk
->azColl
[i
];
1749 assert( pIdx
->nColumn
>=pIdx
->nKeyCol
+n
);
1750 assert( pIdx
->nColumn
>=j
);
1753 /* Add all table columns to the PRIMARY KEY index
1755 if( nPk
<pTab
->nCol
){
1756 if( resizeIndexObject(db
, pPk
, pTab
->nCol
) ) return;
1757 for(i
=0, j
=nPk
; i
<pTab
->nCol
; i
++){
1758 if( !hasColumn(pPk
->aiColumn
, j
, i
) ){
1759 assert( j
<pPk
->nColumn
);
1760 pPk
->aiColumn
[j
] = i
;
1761 pPk
->azColl
[j
] = "BINARY";
1765 assert( pPk
->nColumn
==j
);
1766 assert( pTab
->nCol
==j
);
1768 pPk
->nColumn
= pTab
->nCol
;
1773 ** This routine is called to report the final ")" that terminates
1774 ** a CREATE TABLE statement.
1776 ** The table structure that other action routines have been building
1777 ** is added to the internal hash tables, assuming no errors have
1780 ** An entry for the table is made in the master table on disk, unless
1781 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1782 ** it means we are reading the sqlite_master table because we just
1783 ** connected to the database or because the sqlite_master table has
1784 ** recently changed, so the entry for this table already exists in
1785 ** the sqlite_master table. We do not want to create it again.
1787 ** If the pSelect argument is not NULL, it means that this routine
1788 ** was called to create a table generated from a
1789 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1790 ** the new table will match the result set of the SELECT.
1792 void sqlite3EndTable(
1793 Parse
*pParse
, /* Parse context */
1794 Token
*pCons
, /* The ',' token after the last column defn. */
1795 Token
*pEnd
, /* The ')' before options in the CREATE TABLE */
1796 u8 tabOpts
, /* Extra table options. Usually 0. */
1797 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
1799 Table
*p
; /* The new table */
1800 sqlite3
*db
= pParse
->db
; /* The database connection */
1801 int iDb
; /* Database in which the table lives */
1802 Index
*pIdx
; /* An implied index of the table */
1804 if( (pEnd
==0 && pSelect
==0) || db
->mallocFailed
){
1807 p
= pParse
->pNewTable
;
1810 assert( !db
->init
.busy
|| !pSelect
);
1812 /* If the db->init.busy is 1 it means we are reading the SQL off the
1813 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1814 ** So do not write to the disk again. Extract the root page number
1815 ** for the table from the db->init.newTnum field. (The page number
1816 ** should have been put there by the sqliteOpenCb routine.)
1818 if( db
->init
.busy
){
1819 p
->tnum
= db
->init
.newTnum
;
1822 /* Special processing for WITHOUT ROWID Tables */
1823 if( tabOpts
& TF_WithoutRowid
){
1824 if( (p
->tabFlags
& TF_Autoincrement
) ){
1825 sqlite3ErrorMsg(pParse
,
1826 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1829 if( (p
->tabFlags
& TF_HasPrimaryKey
)==0 ){
1830 sqlite3ErrorMsg(pParse
, "PRIMARY KEY missing on table %s", p
->zName
);
1832 p
->tabFlags
|= TF_WithoutRowid
;
1833 convertToWithoutRowidTable(pParse
, p
);
1837 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
1839 #ifndef SQLITE_OMIT_CHECK
1840 /* Resolve names in all CHECK constraint expressions.
1843 sqlite3ResolveSelfReference(pParse
, p
, NC_IsCheck
, 0, p
->pCheck
);
1845 #endif /* !defined(SQLITE_OMIT_CHECK) */
1847 /* Estimate the average row size for the table and for all implied indices */
1848 estimateTableWidth(p
);
1849 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1850 estimateIndexWidth(pIdx
);
1853 /* If not initializing, then create a record for the new table
1854 ** in the SQLITE_MASTER table of the database.
1856 ** If this is a TEMPORARY table, write the entry into the auxiliary
1857 ** file instead of into the main database file.
1859 if( !db
->init
.busy
){
1862 char *zType
; /* "view" or "table" */
1863 char *zType2
; /* "VIEW" or "TABLE" */
1864 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
1866 v
= sqlite3GetVdbe(pParse
);
1867 if( NEVER(v
==0) ) return;
1869 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
1872 ** Initialize zType for the new view or table.
1874 if( p
->pSelect
==0 ){
1875 /* A regular table */
1878 #ifndef SQLITE_OMIT_VIEW
1886 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1887 ** statement to populate the new table. The root-page number for the
1888 ** new table is in register pParse->regRoot.
1890 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1891 ** suitable state to query for the column names and types to be used
1892 ** by the new table.
1894 ** A shared-cache write-lock is not required to write to the new table,
1895 ** as a schema-lock must have already been obtained to create it. Since
1896 ** a schema-lock excludes all other database users, the write-lock would
1903 assert(pParse
->nTab
==1);
1904 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
1905 sqlite3VdbeChangeP5(v
, OPFLAG_P2ISREG
);
1907 sqlite3SelectDestInit(&dest
, SRT_Table
, 1);
1908 sqlite3Select(pParse
, pSelect
, &dest
);
1909 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
1910 if( pParse
->nErr
==0 ){
1911 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
);
1912 if( pSelTab
==0 ) return;
1913 assert( p
->aCol
==0 );
1914 p
->nCol
= pSelTab
->nCol
;
1915 p
->aCol
= pSelTab
->aCol
;
1918 sqlite3DeleteTable(db
, pSelTab
);
1922 /* Compute the complete text of the CREATE statement */
1924 zStmt
= createTableStmt(db
, p
);
1926 Token
*pEnd2
= tabOpts
? &pParse
->sLastToken
: pEnd
;
1927 n
= (int)(pEnd2
->z
- pParse
->sNameToken
.z
);
1928 if( pEnd2
->z
[0]!=';' ) n
+= pEnd2
->n
;
1929 zStmt
= sqlite3MPrintf(db
,
1930 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
1934 /* A slot for the record has already been allocated in the
1935 ** SQLITE_MASTER table. We just need to update that slot with all
1936 ** the information we've collected.
1938 sqlite3NestedParse(pParse
,
1940 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1942 db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
),
1950 sqlite3DbFree(db
, zStmt
);
1951 sqlite3ChangeCookie(pParse
, iDb
);
1953 #ifndef SQLITE_OMIT_AUTOINCREMENT
1954 /* Check to see if we need to create an sqlite_sequence table for
1955 ** keeping track of autoincrement keys.
1957 if( p
->tabFlags
& TF_Autoincrement
){
1958 Db
*pDb
= &db
->aDb
[iDb
];
1959 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1960 if( pDb
->pSchema
->pSeqTab
==0 ){
1961 sqlite3NestedParse(pParse
,
1962 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1969 /* Reparse everything to update our internal data structures */
1970 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
1971 sqlite3MPrintf(db
, "tbl_name='%q' AND type!='trigger'", p
->zName
));
1975 /* Add the table to the in-memory representation of the database.
1977 if( db
->init
.busy
){
1979 Schema
*pSchema
= p
->pSchema
;
1980 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1981 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
, p
);
1983 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
1984 db
->mallocFailed
= 1;
1987 pParse
->pNewTable
= 0;
1988 db
->flags
|= SQLITE_InternChanges
;
1990 #ifndef SQLITE_OMIT_ALTERTABLE
1992 const char *zName
= (const char *)pParse
->sNameToken
.z
;
1994 assert( !pSelect
&& pCons
&& pEnd
);
1998 nName
= (int)((const char *)pCons
->z
- zName
);
1999 p
->addColOffset
= 13 + sqlite3Utf8CharLen(zName
, nName
);
2005 #ifndef SQLITE_OMIT_VIEW
2007 ** The parser calls this routine in order to create a new VIEW
2009 void sqlite3CreateView(
2010 Parse
*pParse
, /* The parsing context */
2011 Token
*pBegin
, /* The CREATE token that begins the statement */
2012 Token
*pName1
, /* The token that holds the name of the view */
2013 Token
*pName2
, /* The token that holds the name of the view */
2014 Select
*pSelect
, /* A SELECT statement that will become the new view */
2015 int isTemp
, /* TRUE for a TEMPORARY view */
2016 int noErr
/* Suppress error messages if VIEW already exists */
2025 sqlite3
*db
= pParse
->db
;
2027 if( pParse
->nVar
>0 ){
2028 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
2029 sqlite3SelectDelete(db
, pSelect
);
2032 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
2033 p
= pParse
->pNewTable
;
2034 if( p
==0 || pParse
->nErr
){
2035 sqlite3SelectDelete(db
, pSelect
);
2038 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2039 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2040 sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
);
2041 if( sqlite3FixSelect(&sFix
, pSelect
) ){
2042 sqlite3SelectDelete(db
, pSelect
);
2046 /* Make a copy of the entire SELECT statement that defines the view.
2047 ** This will force all the Expr.token.z values to be dynamically
2048 ** allocated rather than point to the input string - which means that
2049 ** they will persist after the current sqlite3_exec() call returns.
2051 p
->pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
2052 sqlite3SelectDelete(db
, pSelect
);
2053 if( db
->mallocFailed
){
2056 if( !db
->init
.busy
){
2057 sqlite3ViewGetColumnNames(pParse
, p
);
2060 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2063 sEnd
= pParse
->sLastToken
;
2064 if( ALWAYS(sEnd
.z
[0]!=0) && sEnd
.z
[0]!=';' ){
2068 n
= (int)(sEnd
.z
- pBegin
->z
);
2070 while( ALWAYS(n
>0) && sqlite3Isspace(z
[n
-1]) ){ n
--; }
2074 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2075 sqlite3EndTable(pParse
, 0, &sEnd
, 0, 0);
2078 #endif /* SQLITE_OMIT_VIEW */
2080 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2082 ** The Table structure pTable is really a VIEW. Fill in the names of
2083 ** the columns of the view in the pTable structure. Return the number
2084 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2086 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
2087 Table
*pSelTab
; /* A fake table from which we get the result set */
2088 Select
*pSel
; /* Copy of the SELECT that implements the view */
2089 int nErr
= 0; /* Number of errors encountered */
2090 int n
; /* Temporarily holds the number of cursors assigned */
2091 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
2092 sqlite3_xauth xAuth
; /* Saved xAuth pointer */
2096 #ifndef SQLITE_OMIT_VIRTUALTABLE
2097 if( sqlite3VtabCallConnect(pParse
, pTable
) ){
2098 return SQLITE_ERROR
;
2100 if( IsVirtual(pTable
) ) return 0;
2103 #ifndef SQLITE_OMIT_VIEW
2104 /* A positive nCol means the columns names for this view are
2107 if( pTable
->nCol
>0 ) return 0;
2109 /* A negative nCol is a special marker meaning that we are currently
2110 ** trying to compute the column names. If we enter this routine with
2111 ** a negative nCol, it means two or more views form a loop, like this:
2113 ** CREATE VIEW one AS SELECT * FROM two;
2114 ** CREATE VIEW two AS SELECT * FROM one;
2116 ** Actually, the error above is now caught prior to reaching this point.
2117 ** But the following test is still important as it does come up
2118 ** in the following:
2120 ** CREATE TABLE main.ex1(a);
2121 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2122 ** SELECT * FROM temp.ex1;
2124 if( pTable
->nCol
<0 ){
2125 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
2128 assert( pTable
->nCol
>=0 );
2130 /* If we get this far, it means we need to compute the table names.
2131 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2132 ** "*" elements in the results set of the view and will assign cursors
2133 ** to the elements of the FROM clause. But we do not want these changes
2134 ** to be permanent. So the computation is done on a copy of the SELECT
2135 ** statement that defines the view.
2137 assert( pTable
->pSelect
);
2138 pSel
= sqlite3SelectDup(db
, pTable
->pSelect
, 0);
2140 u8 enableLookaside
= db
->lookaside
.bEnabled
;
2142 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
2144 db
->lookaside
.bEnabled
= 0;
2145 #ifndef SQLITE_OMIT_AUTHORIZATION
2148 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
);
2151 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
);
2153 db
->lookaside
.bEnabled
= enableLookaside
;
2156 assert( pTable
->aCol
==0 );
2157 pTable
->nCol
= pSelTab
->nCol
;
2158 pTable
->aCol
= pSelTab
->aCol
;
2161 sqlite3DeleteTable(db
, pSelTab
);
2162 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
2163 pTable
->pSchema
->schemaFlags
|= DB_UnresetViews
;
2168 sqlite3SelectDelete(db
, pSel
);
2172 #endif /* SQLITE_OMIT_VIEW */
2175 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2177 #ifndef SQLITE_OMIT_VIEW
2179 ** Clear the column names from every VIEW in database idx.
2181 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
2183 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
2184 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
2185 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
2186 Table
*pTab
= sqliteHashData(i
);
2187 if( pTab
->pSelect
){
2188 sqliteDeleteColumnNames(db
, pTab
);
2193 DbClearProperty(db
, idx
, DB_UnresetViews
);
2196 # define sqliteViewResetAll(A,B)
2197 #endif /* SQLITE_OMIT_VIEW */
2200 ** This function is called by the VDBE to adjust the internal schema
2201 ** used by SQLite when the btree layer moves a table root page. The
2202 ** root-page of a table or index in database iDb has changed from iFrom
2205 ** Ticket #1728: The symbol table might still contain information
2206 ** on tables and/or indices that are the process of being deleted.
2207 ** If you are unlucky, one of those deleted indices or tables might
2208 ** have the same rootpage number as the real table or index that is
2209 ** being moved. So we cannot stop searching after the first match
2210 ** because the first match might be for one of the deleted indices
2211 ** or tables and not the table/index that is actually being moved.
2212 ** We must continue looping until all tables and indices with
2213 ** rootpage==iFrom have been converted to have a rootpage of iTo
2214 ** in order to be certain that we got the right one.
2216 #ifndef SQLITE_OMIT_AUTOVACUUM
2217 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, int iFrom
, int iTo
){
2222 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2223 pDb
= &db
->aDb
[iDb
];
2224 pHash
= &pDb
->pSchema
->tblHash
;
2225 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
2226 Table
*pTab
= sqliteHashData(pElem
);
2227 if( pTab
->tnum
==iFrom
){
2231 pHash
= &pDb
->pSchema
->idxHash
;
2232 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
2233 Index
*pIdx
= sqliteHashData(pElem
);
2234 if( pIdx
->tnum
==iFrom
){
2242 ** Write code to erase the table with root-page iTable from database iDb.
2243 ** Also write code to modify the sqlite_master table and internal schema
2244 ** if a root-page of another table is moved by the btree-layer whilst
2245 ** erasing iTable (this can happen with an auto-vacuum database).
2247 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
2248 Vdbe
*v
= sqlite3GetVdbe(pParse
);
2249 int r1
= sqlite3GetTempReg(pParse
);
2250 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
2251 sqlite3MayAbort(pParse
);
2252 #ifndef SQLITE_OMIT_AUTOVACUUM
2253 /* OP_Destroy stores an in integer r1. If this integer
2254 ** is non-zero, then it is the root page number of a table moved to
2255 ** location iTable. The following code modifies the sqlite_master table to
2258 ** The "#NNN" in the SQL is a special constant that means whatever value
2259 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2260 ** token for additional information.
2262 sqlite3NestedParse(pParse
,
2263 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2264 pParse
->db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
), iTable
, r1
, r1
);
2266 sqlite3ReleaseTempReg(pParse
, r1
);
2270 ** Write VDBE code to erase table pTab and all associated indices on disk.
2271 ** Code to update the sqlite_master tables and internal schema definitions
2272 ** in case a root-page belonging to another table is moved by the btree layer
2273 ** is also added (this can happen with an auto-vacuum database).
2275 static void destroyTable(Parse
*pParse
, Table
*pTab
){
2276 #ifdef SQLITE_OMIT_AUTOVACUUM
2278 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2279 destroyRootPage(pParse
, pTab
->tnum
, iDb
);
2280 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2281 destroyRootPage(pParse
, pIdx
->tnum
, iDb
);
2284 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2285 ** is not defined), then it is important to call OP_Destroy on the
2286 ** table and index root-pages in order, starting with the numerically
2287 ** largest root-page number. This guarantees that none of the root-pages
2288 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2289 ** following were coded:
2295 ** and root page 5 happened to be the largest root-page number in the
2296 ** database, then root page 5 would be moved to page 4 by the
2297 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2298 ** a free-list page.
2300 int iTab
= pTab
->tnum
;
2307 if( iDestroyed
==0 || iTab
<iDestroyed
){
2310 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2311 int iIdx
= pIdx
->tnum
;
2312 assert( pIdx
->pSchema
==pTab
->pSchema
);
2313 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
2320 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2321 assert( iDb
>=0 && iDb
<pParse
->db
->nDb
);
2322 destroyRootPage(pParse
, iLargest
, iDb
);
2323 iDestroyed
= iLargest
;
2330 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2331 ** after a DROP INDEX or DROP TABLE command.
2333 static void sqlite3ClearStatTables(
2334 Parse
*pParse
, /* The parsing context */
2335 int iDb
, /* The database number */
2336 const char *zType
, /* "idx" or "tbl" */
2337 const char *zName
/* Name of index or table */
2340 const char *zDbName
= pParse
->db
->aDb
[iDb
].zName
;
2341 for(i
=1; i
<=4; i
++){
2343 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
2344 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
2345 sqlite3NestedParse(pParse
,
2346 "DELETE FROM %Q.%s WHERE %s=%Q",
2347 zDbName
, zTab
, zType
, zName
2354 ** Generate code to drop a table.
2356 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
2358 sqlite3
*db
= pParse
->db
;
2360 Db
*pDb
= &db
->aDb
[iDb
];
2362 v
= sqlite3GetVdbe(pParse
);
2364 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
2366 #ifndef SQLITE_OMIT_VIRTUALTABLE
2367 if( IsVirtual(pTab
) ){
2368 sqlite3VdbeAddOp0(v
, OP_VBegin
);
2372 /* Drop all triggers associated with the table being dropped. Code
2373 ** is generated to remove entries from sqlite_master and/or
2374 ** sqlite_temp_master if required.
2376 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
2378 assert( pTrigger
->pSchema
==pTab
->pSchema
||
2379 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
2380 sqlite3DropTriggerPtr(pParse
, pTrigger
);
2381 pTrigger
= pTrigger
->pNext
;
2384 #ifndef SQLITE_OMIT_AUTOINCREMENT
2385 /* Remove any entries of the sqlite_sequence table associated with
2386 ** the table being dropped. This is done before the table is dropped
2387 ** at the btree level, in case the sqlite_sequence table needs to
2388 ** move as a result of the drop (can happen in auto-vacuum mode).
2390 if( pTab
->tabFlags
& TF_Autoincrement
){
2391 sqlite3NestedParse(pParse
,
2392 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2393 pDb
->zName
, pTab
->zName
2398 /* Drop all SQLITE_MASTER table and index entries that refer to the
2399 ** table. The program name loops through the master table and deletes
2400 ** every row that refers to a table of the same name as the one being
2401 ** dropped. Triggers are handled separately because a trigger can be
2402 ** created in the temp database that refers to a table in another
2405 sqlite3NestedParse(pParse
,
2406 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2407 pDb
->zName
, SCHEMA_TABLE(iDb
), pTab
->zName
);
2408 if( !isView
&& !IsVirtual(pTab
) ){
2409 destroyTable(pParse
, pTab
);
2412 /* Remove the table entry from SQLite's internal schema and modify
2413 ** the schema cookie.
2415 if( IsVirtual(pTab
) ){
2416 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
2418 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
2419 sqlite3ChangeCookie(pParse
, iDb
);
2420 sqliteViewResetAll(db
, iDb
);
2424 ** This routine is called to do the work of a DROP TABLE statement.
2425 ** pName is the name of the table to be dropped.
2427 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
2430 sqlite3
*db
= pParse
->db
;
2433 if( db
->mallocFailed
){
2434 goto exit_drop_table
;
2436 assert( pParse
->nErr
==0 );
2437 assert( pName
->nSrc
==1 );
2438 if( noErr
) db
->suppressErr
++;
2439 pTab
= sqlite3LocateTableItem(pParse
, isView
, &pName
->a
[0]);
2440 if( noErr
) db
->suppressErr
--;
2443 if( noErr
) sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
2444 goto exit_drop_table
;
2446 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2447 assert( iDb
>=0 && iDb
<db
->nDb
);
2449 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2450 ** it is initialized.
2452 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
2453 goto exit_drop_table
;
2455 #ifndef SQLITE_OMIT_AUTHORIZATION
2458 const char *zTab
= SCHEMA_TABLE(iDb
);
2459 const char *zDb
= db
->aDb
[iDb
].zName
;
2460 const char *zArg2
= 0;
2461 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
2462 goto exit_drop_table
;
2465 if( !OMIT_TEMPDB
&& iDb
==1 ){
2466 code
= SQLITE_DROP_TEMP_VIEW
;
2468 code
= SQLITE_DROP_VIEW
;
2470 #ifndef SQLITE_OMIT_VIRTUALTABLE
2471 }else if( IsVirtual(pTab
) ){
2472 code
= SQLITE_DROP_VTABLE
;
2473 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
2476 if( !OMIT_TEMPDB
&& iDb
==1 ){
2477 code
= SQLITE_DROP_TEMP_TABLE
;
2479 code
= SQLITE_DROP_TABLE
;
2482 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
2483 goto exit_drop_table
;
2485 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
2486 goto exit_drop_table
;
2490 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
2491 && sqlite3StrNICmp(pTab
->zName
, "sqlite_stat", 11)!=0 ){
2492 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
2493 goto exit_drop_table
;
2496 #ifndef SQLITE_OMIT_VIEW
2497 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2500 if( isView
&& pTab
->pSelect
==0 ){
2501 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
2502 goto exit_drop_table
;
2504 if( !isView
&& pTab
->pSelect
){
2505 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
2506 goto exit_drop_table
;
2510 /* Generate code to remove the table from the master table
2513 v
= sqlite3GetVdbe(pParse
);
2515 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
2516 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
2517 sqlite3FkDropTable(pParse
, pName
, pTab
);
2518 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
2522 sqlite3SrcListDelete(db
, pName
);
2526 ** This routine is called to create a new foreign key on the table
2527 ** currently under construction. pFromCol determines which columns
2528 ** in the current table point to the foreign key. If pFromCol==0 then
2529 ** connect the key to the last column inserted. pTo is the name of
2530 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2531 ** of tables in the parent pTo table. flags contains all
2532 ** information about the conflict resolution algorithms specified
2533 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2535 ** An FKey structure is created and added to the table currently
2536 ** under construction in the pParse->pNewTable field.
2538 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2539 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2541 void sqlite3CreateForeignKey(
2542 Parse
*pParse
, /* Parsing context */
2543 ExprList
*pFromCol
, /* Columns in this table that point to other table */
2544 Token
*pTo
, /* Name of the other table */
2545 ExprList
*pToCol
, /* Columns in the other table */
2546 int flags
/* Conflict resolution algorithms. */
2548 sqlite3
*db
= pParse
->db
;
2549 #ifndef SQLITE_OMIT_FOREIGN_KEY
2552 Table
*p
= pParse
->pNewTable
;
2559 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
2561 int iCol
= p
->nCol
-1;
2562 if( NEVER(iCol
<0) ) goto fk_end
;
2563 if( pToCol
&& pToCol
->nExpr
!=1 ){
2564 sqlite3ErrorMsg(pParse
, "foreign key on %s"
2565 " should reference only one column of table %T",
2566 p
->aCol
[iCol
].zName
, pTo
);
2570 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
2571 sqlite3ErrorMsg(pParse
,
2572 "number of columns in foreign key does not match the number of "
2573 "columns in the referenced table");
2576 nCol
= pFromCol
->nExpr
;
2578 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
2580 for(i
=0; i
<pToCol
->nExpr
; i
++){
2581 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zName
) + 1;
2584 pFKey
= sqlite3DbMallocZero(db
, nByte
);
2589 pFKey
->pNextFrom
= p
->pFKey
;
2590 z
= (char*)&pFKey
->aCol
[nCol
];
2592 memcpy(z
, pTo
->z
, pTo
->n
);
2598 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
2600 for(i
=0; i
<nCol
; i
++){
2602 for(j
=0; j
<p
->nCol
; j
++){
2603 if( sqlite3StrICmp(p
->aCol
[j
].zName
, pFromCol
->a
[i
].zName
)==0 ){
2604 pFKey
->aCol
[i
].iFrom
= j
;
2609 sqlite3ErrorMsg(pParse
,
2610 "unknown column \"%s\" in foreign key definition",
2611 pFromCol
->a
[i
].zName
);
2617 for(i
=0; i
<nCol
; i
++){
2618 int n
= sqlite3Strlen30(pToCol
->a
[i
].zName
);
2619 pFKey
->aCol
[i
].zCol
= z
;
2620 memcpy(z
, pToCol
->a
[i
].zName
, n
);
2625 pFKey
->isDeferred
= 0;
2626 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
2627 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
2629 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
2630 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
2631 pFKey
->zTo
, (void *)pFKey
2633 if( pNextTo
==pFKey
){
2634 db
->mallocFailed
= 1;
2638 assert( pNextTo
->pPrevTo
==0 );
2639 pFKey
->pNextTo
= pNextTo
;
2640 pNextTo
->pPrevTo
= pFKey
;
2643 /* Link the foreign key to the table as the last step.
2649 sqlite3DbFree(db
, pFKey
);
2650 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2651 sqlite3ExprListDelete(db
, pFromCol
);
2652 sqlite3ExprListDelete(db
, pToCol
);
2656 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2657 ** clause is seen as part of a foreign key definition. The isDeferred
2658 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2659 ** The behavior of the most recently created foreign key is adjusted
2662 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
2663 #ifndef SQLITE_OMIT_FOREIGN_KEY
2666 if( (pTab
= pParse
->pNewTable
)==0 || (pFKey
= pTab
->pFKey
)==0 ) return;
2667 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
2668 pFKey
->isDeferred
= (u8
)isDeferred
;
2673 ** Generate code that will erase and refill index *pIdx. This is
2674 ** used to initialize a newly created index or to recompute the
2675 ** content of an index in response to a REINDEX command.
2677 ** if memRootPage is not negative, it means that the index is newly
2678 ** created. The register specified by memRootPage contains the
2679 ** root page number of the index. If memRootPage is negative, then
2680 ** the index already exists and must be cleared before being refilled and
2681 ** the root page number of the index is taken from pIndex->tnum.
2683 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
2684 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
2685 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
2686 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
2687 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
2688 int addr1
; /* Address of top of loop */
2689 int addr2
; /* Address to jump to for next iteration */
2690 int tnum
; /* Root page of index */
2691 int iPartIdxLabel
; /* Jump to this label to skip a row */
2692 Vdbe
*v
; /* Generate code into this virtual machine */
2693 KeyInfo
*pKey
; /* KeyInfo for index */
2694 int regRecord
; /* Register holding assembled index record */
2695 sqlite3
*db
= pParse
->db
; /* The database connection */
2696 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
2698 #ifndef SQLITE_OMIT_AUTHORIZATION
2699 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
2700 db
->aDb
[iDb
].zName
) ){
2705 /* Require a write-lock on the table to perform this operation */
2706 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
2708 v
= sqlite3GetVdbe(pParse
);
2710 if( memRootPage
>=0 ){
2713 tnum
= pIndex
->tnum
;
2715 pKey
= sqlite3KeyInfoOfIndex(pParse
, pIndex
);
2717 /* Open the sorter cursor if we are to use one. */
2718 iSorter
= pParse
->nTab
++;
2719 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, pIndex
->nKeyCol
, (char*)
2720 sqlite3KeyInfoRef(pKey
), P4_KEYINFO
);
2722 /* Open the table. Loop through all rows of the table, inserting index
2723 ** records into the sorter. */
2724 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
2725 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0); VdbeCoverage(v
);
2726 regRecord
= sqlite3GetTempReg(pParse
);
2728 sqlite3GenerateIndexKey(pParse
,pIndex
,iTab
,regRecord
,0,&iPartIdxLabel
,0,0);
2729 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
2730 sqlite3ResolvePartIdxLabel(pParse
, iPartIdxLabel
);
2731 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1); VdbeCoverage(v
);
2732 sqlite3VdbeJumpHere(v
, addr1
);
2733 if( memRootPage
<0 ) sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
2734 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, tnum
, iDb
,
2735 (char *)pKey
, P4_KEYINFO
);
2736 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
|((memRootPage
>=0)?OPFLAG_P2ISREG
:0));
2738 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0); VdbeCoverage(v
);
2739 assert( pKey
!=0 || db
->mallocFailed
|| pParse
->nErr
);
2740 if( IsUniqueIndex(pIndex
) && pKey
!=0 ){
2741 int j2
= sqlite3VdbeCurrentAddr(v
) + 3;
2742 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, j2
);
2743 addr2
= sqlite3VdbeCurrentAddr(v
);
2744 sqlite3VdbeAddOp4Int(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
,
2745 pIndex
->nKeyCol
); VdbeCoverage(v
);
2746 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIndex
);
2748 addr2
= sqlite3VdbeCurrentAddr(v
);
2750 sqlite3VdbeAddOp3(v
, OP_SorterData
, iSorter
, regRecord
, iIdx
);
2751 sqlite3VdbeAddOp3(v
, OP_IdxInsert
, iIdx
, regRecord
, 1);
2752 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2753 sqlite3ReleaseTempReg(pParse
, regRecord
);
2754 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
); VdbeCoverage(v
);
2755 sqlite3VdbeJumpHere(v
, addr1
);
2757 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
2758 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
2759 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
2763 ** Allocate heap space to hold an Index object with nCol columns.
2765 ** Increase the allocation size to provide an extra nExtra bytes
2766 ** of 8-byte aligned space after the Index object and return a
2767 ** pointer to this extra space in *ppExtra.
2769 Index
*sqlite3AllocateIndexObject(
2770 sqlite3
*db
, /* Database connection */
2771 i16 nCol
, /* Total number of columns in the index */
2772 int nExtra
, /* Number of bytes of extra space to alloc */
2773 char **ppExtra
/* Pointer to the "extra" space */
2775 Index
*p
; /* Allocated index object */
2776 int nByte
; /* Bytes of space for Index object + arrays */
2778 nByte
= ROUND8(sizeof(Index
)) + /* Index structure */
2779 ROUND8(sizeof(char*)*nCol
) + /* Index.azColl */
2780 ROUND8(sizeof(LogEst
)*(nCol
+1) + /* Index.aiRowLogEst */
2781 sizeof(i16
)*nCol
+ /* Index.aiColumn */
2782 sizeof(u8
)*nCol
); /* Index.aSortOrder */
2783 p
= sqlite3DbMallocZero(db
, nByte
+ nExtra
);
2785 char *pExtra
= ((char*)p
)+ROUND8(sizeof(Index
));
2786 p
->azColl
= (char**)pExtra
; pExtra
+= ROUND8(sizeof(char*)*nCol
);
2787 p
->aiRowLogEst
= (LogEst
*)pExtra
; pExtra
+= sizeof(LogEst
)*(nCol
+1);
2788 p
->aiColumn
= (i16
*)pExtra
; pExtra
+= sizeof(i16
)*nCol
;
2789 p
->aSortOrder
= (u8
*)pExtra
;
2791 p
->nKeyCol
= nCol
- 1;
2792 *ppExtra
= ((char*)p
) + nByte
;
2798 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2799 ** and pTblList is the name of the table that is to be indexed. Both will
2800 ** be NULL for a primary key or an index that is created to satisfy a
2801 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2802 ** as the table to be indexed. pParse->pNewTable is a table that is
2803 ** currently being constructed by a CREATE TABLE statement.
2805 ** pList is a list of columns to be indexed. pList will be NULL if this
2806 ** is a primary key or unique-constraint on the most recent column added
2807 ** to the table currently under construction.
2809 ** If the index is created successfully, return a pointer to the new Index
2810 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2811 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2813 Index
*sqlite3CreateIndex(
2814 Parse
*pParse
, /* All information about this parse */
2815 Token
*pName1
, /* First part of index name. May be NULL */
2816 Token
*pName2
, /* Second part of index name. May be NULL */
2817 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
2818 ExprList
*pList
, /* A list of columns to be indexed */
2819 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2820 Token
*pStart
, /* The CREATE token that begins this statement */
2821 Expr
*pPIWhere
, /* WHERE clause for partial indices */
2822 int sortOrder
, /* Sort order of primary key when pList==NULL */
2823 int ifNotExist
/* Omit error if index already exists */
2825 Index
*pRet
= 0; /* Pointer to return */
2826 Table
*pTab
= 0; /* Table to be indexed */
2827 Index
*pIndex
= 0; /* The index to be created */
2828 char *zName
= 0; /* Name of the index */
2829 int nName
; /* Number of characters in zName */
2831 DbFixer sFix
; /* For assigning database names to pTable */
2832 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
2833 sqlite3
*db
= pParse
->db
;
2834 Db
*pDb
; /* The specific table containing the indexed database */
2835 int iDb
; /* Index of the database that is being written */
2836 Token
*pName
= 0; /* Unqualified name of the index to create */
2837 struct ExprList_item
*pListItem
; /* For looping over pList */
2838 const Column
*pTabCol
; /* A column in the table */
2839 int nExtra
= 0; /* Space allocated for zExtra[] */
2840 int nExtraCol
; /* Number of extra columns needed */
2841 char *zExtra
= 0; /* Extra space after the Index object */
2842 Index
*pPk
= 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2844 assert( pParse
->nErr
==0 ); /* Never called with prior errors */
2845 if( db
->mallocFailed
|| IN_DECLARE_VTAB
){
2846 goto exit_create_index
;
2848 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
2849 goto exit_create_index
;
2853 ** Find the table that is to be indexed. Return early if not found.
2857 /* Use the two-part index name to determine the database
2858 ** to search for the table. 'Fix' the table name to this db
2859 ** before looking up the table.
2861 assert( pName1
&& pName2
);
2862 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2863 if( iDb
<0 ) goto exit_create_index
;
2864 assert( pName
&& pName
->z
);
2866 #ifndef SQLITE_OMIT_TEMPDB
2867 /* If the index name was unqualified, check if the table
2868 ** is a temp table. If so, set the database to 1. Do not do this
2869 ** if initialising a database schema.
2871 if( !db
->init
.busy
){
2872 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
2873 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
2879 sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
);
2880 if( sqlite3FixSrcList(&sFix
, pTblName
) ){
2881 /* Because the parser constructs pTblName from a single identifier,
2882 ** sqlite3FixSrcList can never fail. */
2885 pTab
= sqlite3LocateTableItem(pParse
, 0, &pTblName
->a
[0]);
2886 assert( db
->mallocFailed
==0 || pTab
==0 );
2887 if( pTab
==0 ) goto exit_create_index
;
2888 if( iDb
==1 && db
->aDb
[iDb
].pSchema
!=pTab
->pSchema
){
2889 sqlite3ErrorMsg(pParse
,
2890 "cannot create a TEMP index on non-TEMP table \"%s\"",
2892 goto exit_create_index
;
2894 if( !HasRowid(pTab
) ) pPk
= sqlite3PrimaryKeyIndex(pTab
);
2897 assert( pStart
==0 );
2898 pTab
= pParse
->pNewTable
;
2899 if( !pTab
) goto exit_create_index
;
2900 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2902 pDb
= &db
->aDb
[iDb
];
2905 assert( pParse
->nErr
==0 );
2906 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
2908 #if SQLITE_USER_AUTHENTICATION
2909 && sqlite3UserAuthTable(pTab
->zName
)==0
2911 && sqlite3StrNICmp(&pTab
->zName
[7],"altertab_",9)!=0 ){
2912 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
2913 goto exit_create_index
;
2915 #ifndef SQLITE_OMIT_VIEW
2916 if( pTab
->pSelect
){
2917 sqlite3ErrorMsg(pParse
, "views may not be indexed");
2918 goto exit_create_index
;
2921 #ifndef SQLITE_OMIT_VIRTUALTABLE
2922 if( IsVirtual(pTab
) ){
2923 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
2924 goto exit_create_index
;
2929 ** Find the name of the index. Make sure there is not already another
2930 ** index or table with the same name.
2932 ** Exception: If we are reading the names of permanent indices from the
2933 ** sqlite_master table (because some other process changed the schema) and
2934 ** one of the index names collides with the name of a temporary table or
2935 ** index, then we will continue to process this index.
2937 ** If pName==0 it means that we are
2938 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2942 zName
= sqlite3NameFromToken(db
, pName
);
2943 if( zName
==0 ) goto exit_create_index
;
2944 assert( pName
->z
!=0 );
2945 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
) ){
2946 goto exit_create_index
;
2948 if( !db
->init
.busy
){
2949 if( sqlite3FindTable(db
, zName
, 0)!=0 ){
2950 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
2951 goto exit_create_index
;
2954 if( sqlite3FindIndex(db
, zName
, pDb
->zName
)!=0 ){
2956 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
2958 assert( !db
->init
.busy
);
2959 sqlite3CodeVerifySchema(pParse
, iDb
);
2961 goto exit_create_index
;
2966 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
2967 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
2969 goto exit_create_index
;
2973 /* Check for authorization to create an index.
2975 #ifndef SQLITE_OMIT_AUTHORIZATION
2977 const char *zDb
= pDb
->zName
;
2978 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
2979 goto exit_create_index
;
2981 i
= SQLITE_CREATE_INDEX
;
2982 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
2983 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
2984 goto exit_create_index
;
2989 /* If pList==0, it means this routine was called to make a primary
2990 ** key out of the last column added to the table under construction.
2991 ** So create a fake list to simulate this.
2994 pList
= sqlite3ExprListAppend(pParse
, 0, 0);
2995 if( pList
==0 ) goto exit_create_index
;
2996 pList
->a
[0].zName
= sqlite3DbStrDup(pParse
->db
,
2997 pTab
->aCol
[pTab
->nCol
-1].zName
);
2998 pList
->a
[0].sortOrder
= (u8
)sortOrder
;
3001 /* Figure out how many bytes of space are required to store explicitly
3002 ** specified collation sequence names.
3004 for(i
=0; i
<pList
->nExpr
; i
++){
3005 Expr
*pExpr
= pList
->a
[i
].pExpr
;
3007 assert( pExpr
->op
==TK_COLLATE
);
3008 nExtra
+= (1 + sqlite3Strlen30(pExpr
->u
.zToken
));
3013 ** Allocate the index structure.
3015 nName
= sqlite3Strlen30(zName
);
3016 nExtraCol
= pPk
? pPk
->nKeyCol
: 1;
3017 pIndex
= sqlite3AllocateIndexObject(db
, pList
->nExpr
+ nExtraCol
,
3018 nName
+ nExtra
+ 1, &zExtra
);
3019 if( db
->mallocFailed
){
3020 goto exit_create_index
;
3022 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowLogEst
) );
3023 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
3024 pIndex
->zName
= zExtra
;
3025 zExtra
+= nName
+ 1;
3026 memcpy(pIndex
->zName
, zName
, nName
+1);
3027 pIndex
->pTable
= pTab
;
3028 pIndex
->onError
= (u8
)onError
;
3029 pIndex
->uniqNotNull
= onError
!=OE_None
;
3030 pIndex
->idxType
= pName
? SQLITE_IDXTYPE_APPDEF
: SQLITE_IDXTYPE_UNIQUE
;
3031 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
3032 pIndex
->nKeyCol
= pList
->nExpr
;
3034 sqlite3ResolveSelfReference(pParse
, pTab
, NC_PartIdx
, pPIWhere
, 0);
3035 pIndex
->pPartIdxWhere
= pPIWhere
;
3038 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3040 /* Check to see if we should honor DESC requests on index columns
3042 if( pDb
->pSchema
->file_format
>=4 ){
3043 sortOrderMask
= -1; /* Honor DESC */
3045 sortOrderMask
= 0; /* Ignore DESC */
3048 /* Scan the names of the columns of the table to be indexed and
3049 ** load the column indices into the Index structure. Report an error
3050 ** if any column is not found.
3052 ** TODO: Add a test to make sure that the same column is not named
3053 ** more than once within the same index. Only the first instance of
3054 ** the column will ever be used by the optimizer. Note that using the
3055 ** same column more than once cannot be an error because that would
3056 ** break backwards compatibility - it needs to be a warning.
3058 for(i
=0, pListItem
=pList
->a
; i
<pList
->nExpr
; i
++, pListItem
++){
3059 const char *zColName
= pListItem
->zName
;
3060 int requestedSortOrder
;
3061 char *zColl
; /* Collation sequence name */
3063 for(j
=0, pTabCol
=pTab
->aCol
; j
<pTab
->nCol
; j
++, pTabCol
++){
3064 if( sqlite3StrICmp(zColName
, pTabCol
->zName
)==0 ) break;
3066 if( j
>=pTab
->nCol
){
3067 sqlite3ErrorMsg(pParse
, "table %s has no column named %s",
3068 pTab
->zName
, zColName
);
3069 pParse
->checkSchema
= 1;
3070 goto exit_create_index
;
3072 assert( j
<=0x7fff );
3073 pIndex
->aiColumn
[i
] = (i16
)j
;
3074 if( pListItem
->pExpr
){
3076 assert( pListItem
->pExpr
->op
==TK_COLLATE
);
3077 zColl
= pListItem
->pExpr
->u
.zToken
;
3078 nColl
= sqlite3Strlen30(zColl
) + 1;
3079 assert( nExtra
>=nColl
);
3080 memcpy(zExtra
, zColl
, nColl
);
3085 zColl
= pTab
->aCol
[j
].zColl
;
3086 if( !zColl
) zColl
= "BINARY";
3088 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
3089 goto exit_create_index
;
3091 pIndex
->azColl
[i
] = zColl
;
3092 requestedSortOrder
= pListItem
->sortOrder
& sortOrderMask
;
3093 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
3094 if( pTab
->aCol
[j
].notNull
==0 ) pIndex
->uniqNotNull
= 0;
3097 for(j
=0; j
<pPk
->nKeyCol
; j
++){
3098 int x
= pPk
->aiColumn
[j
];
3099 if( hasColumn(pIndex
->aiColumn
, pIndex
->nKeyCol
, x
) ){
3102 pIndex
->aiColumn
[i
] = x
;
3103 pIndex
->azColl
[i
] = pPk
->azColl
[j
];
3104 pIndex
->aSortOrder
[i
] = pPk
->aSortOrder
[j
];
3108 assert( i
==pIndex
->nColumn
);
3110 pIndex
->aiColumn
[i
] = -1;
3111 pIndex
->azColl
[i
] = "BINARY";
3113 sqlite3DefaultRowEst(pIndex
);
3114 if( pParse
->pNewTable
==0 ) estimateIndexWidth(pIndex
);
3116 if( pTab
==pParse
->pNewTable
){
3117 /* This routine has been called to create an automatic index as a
3118 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3119 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3122 ** CREATE TABLE t(x PRIMARY KEY, y);
3123 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3125 ** Either way, check to see if the table already has such an index. If
3126 ** so, don't bother creating this one. This only applies to
3127 ** automatically created indices. Users can do as they wish with
3128 ** explicit indices.
3130 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3131 ** (and thus suppressing the second one) even if they have different
3134 ** If there are different collating sequences or if the columns of
3135 ** the constraint occur in different orders, then the constraints are
3136 ** considered distinct and both result in separate indices.
3139 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
3141 assert( IsUniqueIndex(pIdx
) );
3142 assert( pIdx
->idxType
!=SQLITE_IDXTYPE_APPDEF
);
3143 assert( IsUniqueIndex(pIndex
) );
3145 if( pIdx
->nKeyCol
!=pIndex
->nKeyCol
) continue;
3146 for(k
=0; k
<pIdx
->nKeyCol
; k
++){
3149 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
3150 z1
= pIdx
->azColl
[k
];
3151 z2
= pIndex
->azColl
[k
];
3152 if( z1
!=z2
&& sqlite3StrICmp(z1
, z2
) ) break;
3154 if( k
==pIdx
->nKeyCol
){
3155 if( pIdx
->onError
!=pIndex
->onError
){
3156 /* This constraint creates the same index as a previous
3157 ** constraint specified somewhere in the CREATE TABLE statement.
3158 ** However the ON CONFLICT clauses are different. If both this
3159 ** constraint and the previous equivalent constraint have explicit
3160 ** ON CONFLICT clauses this is an error. Otherwise, use the
3161 ** explicitly specified behavior for the index.
3163 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
3164 sqlite3ErrorMsg(pParse
,
3165 "conflicting ON CONFLICT clauses specified", 0);
3167 if( pIdx
->onError
==OE_Default
){
3168 pIdx
->onError
= pIndex
->onError
;
3171 goto exit_create_index
;
3176 /* Link the new Index structure to its table and to the other
3177 ** in-memory database structures.
3179 if( db
->init
.busy
){
3181 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
3182 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
3183 pIndex
->zName
, pIndex
);
3185 assert( p
==pIndex
); /* Malloc must have failed */
3186 db
->mallocFailed
= 1;
3187 goto exit_create_index
;
3189 db
->flags
|= SQLITE_InternChanges
;
3191 pIndex
->tnum
= db
->init
.newTnum
;
3195 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3196 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3197 ** emit code to allocate the index rootpage on disk and make an entry for
3198 ** the index in the sqlite_master table and populate the index with
3199 ** content. But, do not do this if we are simply reading the sqlite_master
3200 ** table to parse the schema, or if this index is the PRIMARY KEY index
3201 ** of a WITHOUT ROWID table.
3203 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3204 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3205 ** has just been created, it contains no data and the index initialization
3206 ** step can be skipped.
3208 else if( pParse
->nErr
==0 && (HasRowid(pTab
) || pTblName
!=0) ){
3211 int iMem
= ++pParse
->nMem
;
3213 v
= sqlite3GetVdbe(pParse
);
3214 if( v
==0 ) goto exit_create_index
;
3217 /* Create the rootpage for the index
3219 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3220 sqlite3VdbeAddOp2(v
, OP_CreateIndex
, iDb
, iMem
);
3222 /* Gather the complete text of the CREATE INDEX statement into
3223 ** the zStmt variable
3226 int n
= (int)(pParse
->sLastToken
.z
- pName
->z
) + pParse
->sLastToken
.n
;
3227 if( pName
->z
[n
-1]==';' ) n
--;
3228 /* A named index with an explicit CREATE INDEX statement */
3229 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
3230 onError
==OE_None
? "" : " UNIQUE", n
, pName
->z
);
3232 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3233 /* zStmt = sqlite3MPrintf(""); */
3237 /* Add an entry in sqlite_master for this index
3239 sqlite3NestedParse(pParse
,
3240 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3241 db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
),
3247 sqlite3DbFree(db
, zStmt
);
3249 /* Fill the index with data and reparse the schema. Code an OP_Expire
3250 ** to invalidate all pre-compiled statements.
3253 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
3254 sqlite3ChangeCookie(pParse
, iDb
);
3255 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
3256 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
));
3257 sqlite3VdbeAddOp1(v
, OP_Expire
, 0);
3261 /* When adding an index to the list of indices for a table, make
3262 ** sure all indices labeled OE_Replace come after all those labeled
3263 ** OE_Ignore. This is necessary for the correct constraint check
3264 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3265 ** UPDATE and INSERT statements.
3267 if( db
->init
.busy
|| pTblName
==0 ){
3268 if( onError
!=OE_Replace
|| pTab
->pIndex
==0
3269 || pTab
->pIndex
->onError
==OE_Replace
){
3270 pIndex
->pNext
= pTab
->pIndex
;
3271 pTab
->pIndex
= pIndex
;
3273 Index
*pOther
= pTab
->pIndex
;
3274 while( pOther
->pNext
&& pOther
->pNext
->onError
!=OE_Replace
){
3275 pOther
= pOther
->pNext
;
3277 pIndex
->pNext
= pOther
->pNext
;
3278 pOther
->pNext
= pIndex
;
3284 /* Clean up before exiting */
3286 if( pIndex
) freeIndex(db
, pIndex
);
3287 sqlite3ExprDelete(db
, pPIWhere
);
3288 sqlite3ExprListDelete(db
, pList
);
3289 sqlite3SrcListDelete(db
, pTblName
);
3290 sqlite3DbFree(db
, zName
);
3295 ** Fill the Index.aiRowEst[] array with default information - information
3296 ** to be used when we have not run the ANALYZE command.
3298 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3299 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3300 ** number of rows in the table that match any particular value of the
3301 ** first column of the index. aiRowEst[2] is an estimate of the number
3302 ** of rows that match any particular combination of the first 2 columns
3303 ** of the index. And so forth. It must always be the case that
3305 ** aiRowEst[N]<=aiRowEst[N-1]
3308 ** Apart from that, we have little to go on besides intuition as to
3309 ** how aiRowEst[] should be initialized. The numbers generated here
3310 ** are based on typical values found in actual indices.
3312 void sqlite3DefaultRowEst(Index
*pIdx
){
3313 /* 10, 9, 8, 7, 6 */
3314 LogEst aVal
[] = { 33, 32, 30, 28, 26 };
3315 LogEst
*a
= pIdx
->aiRowLogEst
;
3316 int nCopy
= MIN(ArraySize(aVal
), pIdx
->nKeyCol
);
3319 /* Set the first entry (number of rows in the index) to the estimated
3320 ** number of rows in the table. Or 10, if the estimated number of rows
3321 ** in the table is less than that. */
3322 a
[0] = pIdx
->pTable
->nRowLogEst
;
3323 if( a
[0]<33 ) a
[0] = 33; assert( 33==sqlite3LogEst(10) );
3325 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3326 ** 6 and each subsequent value (if any) is 5. */
3327 memcpy(&a
[1], aVal
, nCopy
*sizeof(LogEst
));
3328 for(i
=nCopy
+1; i
<=pIdx
->nKeyCol
; i
++){
3329 a
[i
] = 23; assert( 23==sqlite3LogEst(5) );
3332 assert( 0==sqlite3LogEst(1) );
3333 if( IsUniqueIndex(pIdx
) ) a
[pIdx
->nKeyCol
] = 0;
3337 ** This routine will drop an existing named index. This routine
3338 ** implements the DROP INDEX statement.
3340 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
3343 sqlite3
*db
= pParse
->db
;
3346 assert( pParse
->nErr
==0 ); /* Never called with prior errors */
3347 if( db
->mallocFailed
){
3348 goto exit_drop_index
;
3350 assert( pName
->nSrc
==1 );
3351 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3352 goto exit_drop_index
;
3354 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
3357 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
, 0);
3359 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3361 pParse
->checkSchema
= 1;
3362 goto exit_drop_index
;
3364 if( pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
){
3365 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
3366 "or PRIMARY KEY constraint cannot be dropped", 0);
3367 goto exit_drop_index
;
3369 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3370 #ifndef SQLITE_OMIT_AUTHORIZATION
3372 int code
= SQLITE_DROP_INDEX
;
3373 Table
*pTab
= pIndex
->pTable
;
3374 const char *zDb
= db
->aDb
[iDb
].zName
;
3375 const char *zTab
= SCHEMA_TABLE(iDb
);
3376 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
3377 goto exit_drop_index
;
3379 if( !OMIT_TEMPDB
&& iDb
) code
= SQLITE_DROP_TEMP_INDEX
;
3380 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
3381 goto exit_drop_index
;
3386 /* Generate code to remove the index and from the master table */
3387 v
= sqlite3GetVdbe(pParse
);
3389 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3390 sqlite3NestedParse(pParse
,
3391 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3392 db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
), pIndex
->zName
3394 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
3395 sqlite3ChangeCookie(pParse
, iDb
);
3396 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
3397 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
3401 sqlite3SrcListDelete(db
, pName
);
3405 ** pArray is a pointer to an array of objects. Each object in the
3406 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3407 ** to extend the array so that there is space for a new object at the end.
3409 ** When this function is called, *pnEntry contains the current size of
3410 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3413 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3414 ** space allocated for the new object is zeroed, *pnEntry updated to
3415 ** reflect the new size of the array and a pointer to the new allocation
3416 ** returned. *pIdx is set to the index of the new array entry in this case.
3418 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3419 ** unchanged and a copy of pArray returned.
3421 void *sqlite3ArrayAllocate(
3422 sqlite3
*db
, /* Connection to notify of malloc failures */
3423 void *pArray
, /* Array of objects. Might be reallocated */
3424 int szEntry
, /* Size of each object in the array */
3425 int *pnEntry
, /* Number of objects currently in use */
3426 int *pIdx
/* Write the index of a new slot here */
3430 if( (n
& (n
-1))==0 ){
3431 int sz
= (n
==0) ? 1 : 2*n
;
3432 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
3440 memset(&z
[n
* szEntry
], 0, szEntry
);
3447 ** Append a new element to the given IdList. Create a new IdList if
3450 ** A new IdList is returned, or NULL if malloc() fails.
3452 IdList
*sqlite3IdListAppend(sqlite3
*db
, IdList
*pList
, Token
*pToken
){
3455 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
3456 if( pList
==0 ) return 0;
3458 pList
->a
= sqlite3ArrayAllocate(
3461 sizeof(pList
->a
[0]),
3466 sqlite3IdListDelete(db
, pList
);
3469 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
3474 ** Delete an IdList.
3476 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
3478 if( pList
==0 ) return;
3479 for(i
=0; i
<pList
->nId
; i
++){
3480 sqlite3DbFree(db
, pList
->a
[i
].zName
);
3482 sqlite3DbFree(db
, pList
->a
);
3483 sqlite3DbFree(db
, pList
);
3487 ** Return the index in pList of the identifier named zId. Return -1
3490 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
3492 if( pList
==0 ) return -1;
3493 for(i
=0; i
<pList
->nId
; i
++){
3494 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
3500 ** Expand the space allocated for the given SrcList object by
3501 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3502 ** New slots are zeroed.
3504 ** For example, suppose a SrcList initially contains two entries: A,B.
3505 ** To append 3 new entries onto the end, do this:
3507 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3509 ** After the call above it would contain: A, B, nil, nil, nil.
3510 ** If the iStart argument had been 1 instead of 2, then the result
3511 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3512 ** the iStart value would be 0. The result then would
3513 ** be: nil, nil, nil, A, B.
3515 ** If a memory allocation fails the SrcList is unchanged. The
3516 ** db->mallocFailed flag will be set to true.
3518 SrcList
*sqlite3SrcListEnlarge(
3519 sqlite3
*db
, /* Database connection to notify of OOM errors */
3520 SrcList
*pSrc
, /* The SrcList to be enlarged */
3521 int nExtra
, /* Number of new slots to add to pSrc->a[] */
3522 int iStart
/* Index in pSrc->a[] of first new slot */
3526 /* Sanity checking on calling parameters */
3527 assert( iStart
>=0 );
3528 assert( nExtra
>=1 );
3530 assert( iStart
<=pSrc
->nSrc
);
3532 /* Allocate additional space if needed */
3533 if( (u32
)pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
3535 int nAlloc
= pSrc
->nSrc
+nExtra
;
3537 pNew
= sqlite3DbRealloc(db
, pSrc
,
3538 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
3540 assert( db
->mallocFailed
);
3544 nGot
= (sqlite3DbMallocSize(db
, pNew
) - sizeof(*pSrc
))/sizeof(pSrc
->a
[0])+1;
3545 pSrc
->nAlloc
= nGot
;
3548 /* Move existing slots that come after the newly inserted slots
3549 ** out of the way */
3550 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
3551 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
3553 pSrc
->nSrc
+= nExtra
;
3555 /* Zero the newly allocated slots */
3556 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
3557 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
3558 pSrc
->a
[i
].iCursor
= -1;
3561 /* Return a pointer to the enlarged SrcList */
3567 ** Append a new table name to the given SrcList. Create a new SrcList if
3568 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3570 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3571 ** SrcList might be the same as the SrcList that was input or it might be
3572 ** a new one. If an OOM error does occurs, then the prior value of pList
3573 ** that is input to this routine is automatically freed.
3575 ** If pDatabase is not null, it means that the table has an optional
3576 ** database name prefix. Like this: "database.table". The pDatabase
3577 ** points to the table name and the pTable points to the database name.
3578 ** The SrcList.a[].zName field is filled with the table name which might
3579 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3580 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3581 ** or with NULL if no database is specified.
3583 ** In other words, if call like this:
3585 ** sqlite3SrcListAppend(D,A,B,0);
3587 ** Then B is a table name and the database name is unspecified. If called
3590 ** sqlite3SrcListAppend(D,A,B,C);
3592 ** Then C is the table name and B is the database name. If C is defined
3593 ** then so is B. In other words, we never have a case where:
3595 ** sqlite3SrcListAppend(D,A,0,C);
3597 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3598 ** before being added to the SrcList.
3600 SrcList
*sqlite3SrcListAppend(
3601 sqlite3
*db
, /* Connection to notify of malloc failures */
3602 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
3603 Token
*pTable
, /* Table to append */
3604 Token
*pDatabase
/* Database of the table */
3606 struct SrcList_item
*pItem
;
3607 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
3609 pList
= sqlite3DbMallocZero(db
, sizeof(SrcList
) );
3610 if( pList
==0 ) return 0;
3613 pList
= sqlite3SrcListEnlarge(db
, pList
, 1, pList
->nSrc
);
3614 if( db
->mallocFailed
){
3615 sqlite3SrcListDelete(db
, pList
);
3618 pItem
= &pList
->a
[pList
->nSrc
-1];
3619 if( pDatabase
&& pDatabase
->z
==0 ){
3623 Token
*pTemp
= pDatabase
;
3627 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
3628 pItem
->zDatabase
= sqlite3NameFromToken(db
, pDatabase
);
3633 ** Assign VdbeCursor index numbers to all tables in a SrcList
3635 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
3637 struct SrcList_item
*pItem
;
3638 assert(pList
|| pParse
->db
->mallocFailed
);
3640 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
3641 if( pItem
->iCursor
>=0 ) break;
3642 pItem
->iCursor
= pParse
->nTab
++;
3643 if( pItem
->pSelect
){
3644 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
3651 ** Delete an entire SrcList including all its substructure.
3653 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
3655 struct SrcList_item
*pItem
;
3656 if( pList
==0 ) return;
3657 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
3658 sqlite3DbFree(db
, pItem
->zDatabase
);
3659 sqlite3DbFree(db
, pItem
->zName
);
3660 sqlite3DbFree(db
, pItem
->zAlias
);
3661 sqlite3DbFree(db
, pItem
->zIndex
);
3662 sqlite3DeleteTable(db
, pItem
->pTab
);
3663 sqlite3SelectDelete(db
, pItem
->pSelect
);
3664 sqlite3ExprDelete(db
, pItem
->pOn
);
3665 sqlite3IdListDelete(db
, pItem
->pUsing
);
3667 sqlite3DbFree(db
, pList
);
3671 ** This routine is called by the parser to add a new term to the
3672 ** end of a growing FROM clause. The "p" parameter is the part of
3673 ** the FROM clause that has already been constructed. "p" is NULL
3674 ** if this is the first term of the FROM clause. pTable and pDatabase
3675 ** are the name of the table and database named in the FROM clause term.
3676 ** pDatabase is NULL if the database name qualifier is missing - the
3677 ** usual case. If the term has an alias, then pAlias points to the
3678 ** alias token. If the term is a subquery, then pSubquery is the
3679 ** SELECT statement that the subquery encodes. The pTable and
3680 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3681 ** parameters are the content of the ON and USING clauses.
3683 ** Return a new SrcList which encodes is the FROM with the new
3686 SrcList
*sqlite3SrcListAppendFromTerm(
3687 Parse
*pParse
, /* Parsing context */
3688 SrcList
*p
, /* The left part of the FROM clause already seen */
3689 Token
*pTable
, /* Name of the table to add to the FROM clause */
3690 Token
*pDatabase
, /* Name of the database containing pTable */
3691 Token
*pAlias
, /* The right-hand side of the AS subexpression */
3692 Select
*pSubquery
, /* A subquery used in place of a table name */
3693 Expr
*pOn
, /* The ON clause of a join */
3694 IdList
*pUsing
/* The USING clause of a join */
3696 struct SrcList_item
*pItem
;
3697 sqlite3
*db
= pParse
->db
;
3698 if( !p
&& (pOn
|| pUsing
) ){
3699 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
3700 (pOn
? "ON" : "USING")
3702 goto append_from_error
;
3704 p
= sqlite3SrcListAppend(db
, p
, pTable
, pDatabase
);
3705 if( p
==0 || NEVER(p
->nSrc
==0) ){
3706 goto append_from_error
;
3708 pItem
= &p
->a
[p
->nSrc
-1];
3709 assert( pAlias
!=0 );
3711 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
3713 pItem
->pSelect
= pSubquery
;
3715 pItem
->pUsing
= pUsing
;
3720 sqlite3ExprDelete(db
, pOn
);
3721 sqlite3IdListDelete(db
, pUsing
);
3722 sqlite3SelectDelete(db
, pSubquery
);
3727 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3728 ** element of the source-list passed as the second argument.
3730 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
3731 assert( pIndexedBy
!=0 );
3732 if( p
&& ALWAYS(p
->nSrc
>0) ){
3733 struct SrcList_item
*pItem
= &p
->a
[p
->nSrc
-1];
3734 assert( pItem
->notIndexed
==0 && pItem
->zIndex
==0 );
3735 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
3736 /* A "NOT INDEXED" clause was supplied. See parse.y
3737 ** construct "indexed_opt" for details. */
3738 pItem
->notIndexed
= 1;
3740 pItem
->zIndex
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
3746 ** When building up a FROM clause in the parser, the join operator
3747 ** is initially attached to the left operand. But the code generator
3748 ** expects the join operator to be on the right operand. This routine
3749 ** Shifts all join operators from left to right for an entire FROM
3752 ** Example: Suppose the join is like this:
3754 ** A natural cross join B
3756 ** The operator is "natural cross join". The A and B operands are stored
3757 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3758 ** operator with A. This routine shifts that operator over to B.
3760 void sqlite3SrcListShiftJoinType(SrcList
*p
){
3763 assert( p
->a
|| p
->nSrc
==0 );
3764 for(i
=p
->nSrc
-1; i
>0; i
--){
3765 p
->a
[i
].jointype
= p
->a
[i
-1].jointype
;
3767 p
->a
[0].jointype
= 0;
3772 ** Begin a transaction
3774 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
3779 assert( pParse
!=0 );
3782 /* if( db->aDb[0].pBt==0 ) return; */
3783 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
3786 v
= sqlite3GetVdbe(pParse
);
3788 if( type
!=TK_DEFERRED
){
3789 for(i
=0; i
<db
->nDb
; i
++){
3790 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, (type
==TK_EXCLUSIVE
)+1);
3791 sqlite3VdbeUsesBtree(v
, i
);
3794 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 0, 0);
3798 ** Commit a transaction
3800 void sqlite3CommitTransaction(Parse
*pParse
){
3803 assert( pParse
!=0 );
3804 assert( pParse
->db
!=0 );
3805 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "COMMIT", 0, 0) ){
3808 v
= sqlite3GetVdbe(pParse
);
3810 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, 0);
3815 ** Rollback a transaction
3817 void sqlite3RollbackTransaction(Parse
*pParse
){
3820 assert( pParse
!=0 );
3821 assert( pParse
->db
!=0 );
3822 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "ROLLBACK", 0, 0) ){
3825 v
= sqlite3GetVdbe(pParse
);
3827 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, 1);
3832 ** This function is called by the parser when it parses a command to create,
3833 ** release or rollback an SQL savepoint.
3835 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
3836 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
3838 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3839 #ifndef SQLITE_OMIT_AUTHORIZATION
3840 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3841 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
3843 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
3844 sqlite3DbFree(pParse
->db
, zName
);
3847 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
3852 ** Make sure the TEMP database is open and available for use. Return
3853 ** the number of errors. Leave any error messages in the pParse structure.
3855 int sqlite3OpenTempDatabase(Parse
*pParse
){
3856 sqlite3
*db
= pParse
->db
;
3857 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
3860 static const int flags
=
3861 SQLITE_OPEN_READWRITE
|
3862 SQLITE_OPEN_CREATE
|
3863 SQLITE_OPEN_EXCLUSIVE
|
3864 SQLITE_OPEN_DELETEONCLOSE
|
3865 SQLITE_OPEN_TEMP_DB
;
3867 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
3868 if( rc
!=SQLITE_OK
){
3869 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
3870 "file for storing temporary tables");
3874 db
->aDb
[1].pBt
= pBt
;
3875 assert( db
->aDb
[1].pSchema
);
3876 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, -1, 0) ){
3877 db
->mallocFailed
= 1;
3885 ** Record the fact that the schema cookie will need to be verified
3886 ** for database iDb. The code to actually verify the schema cookie
3887 ** will occur at the end of the top-level VDBE and will be generated
3888 ** later, by sqlite3FinishCoding().
3890 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
3891 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3892 sqlite3
*db
= pToplevel
->db
;
3894 assert( iDb
>=0 && iDb
<db
->nDb
);
3895 assert( db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
3896 assert( iDb
<SQLITE_MAX_ATTACHED
+2 );
3897 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3898 if( DbMaskTest(pToplevel
->cookieMask
, iDb
)==0 ){
3899 DbMaskSet(pToplevel
->cookieMask
, iDb
);
3900 pToplevel
->cookieValue
[iDb
] = db
->aDb
[iDb
].pSchema
->schema_cookie
;
3901 if( !OMIT_TEMPDB
&& iDb
==1 ){
3902 sqlite3OpenTempDatabase(pToplevel
);
3908 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3909 ** attached database. Otherwise, invoke it for the database named zDb only.
3911 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
3912 sqlite3
*db
= pParse
->db
;
3914 for(i
=0; i
<db
->nDb
; i
++){
3915 Db
*pDb
= &db
->aDb
[i
];
3916 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zName
)) ){
3917 sqlite3CodeVerifySchema(pParse
, i
);
3923 ** Generate VDBE code that prepares for doing an operation that
3924 ** might change the database.
3926 ** This routine starts a new transaction if we are not already within
3927 ** a transaction. If we are already within a transaction, then a checkpoint
3928 ** is set if the setStatement parameter is true. A checkpoint should
3929 ** be set for operations that might fail (due to a constraint) part of
3930 ** the way through and which will need to undo some writes without having to
3931 ** rollback the whole transaction. For operations where all constraints
3932 ** can be checked before any changes are made to the database, it is never
3933 ** necessary to undo a write and the checkpoint should not be set.
3935 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
3936 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3937 sqlite3CodeVerifySchema(pParse
, iDb
);
3938 DbMaskSet(pToplevel
->writeMask
, iDb
);
3939 pToplevel
->isMultiWrite
|= setStatement
;
3943 ** Indicate that the statement currently under construction might write
3944 ** more than one entry (example: deleting one row then inserting another,
3945 ** inserting multiple rows in a table, or inserting a row and index entries.)
3946 ** If an abort occurs after some of these writes have completed, then it will
3947 ** be necessary to undo the completed writes.
3949 void sqlite3MultiWrite(Parse
*pParse
){
3950 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3951 pToplevel
->isMultiWrite
= 1;
3955 ** The code generator calls this routine if is discovers that it is
3956 ** possible to abort a statement prior to completion. In order to
3957 ** perform this abort without corrupting the database, we need to make
3958 ** sure that the statement is protected by a statement transaction.
3960 ** Technically, we only need to set the mayAbort flag if the
3961 ** isMultiWrite flag was previously set. There is a time dependency
3962 ** such that the abort must occur after the multiwrite. This makes
3963 ** some statements involving the REPLACE conflict resolution algorithm
3964 ** go a little faster. But taking advantage of this time dependency
3965 ** makes it more difficult to prove that the code is correct (in
3966 ** particular, it prevents us from writing an effective
3967 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3968 ** to take the safe route and skip the optimization.
3970 void sqlite3MayAbort(Parse
*pParse
){
3971 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3972 pToplevel
->mayAbort
= 1;
3976 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3977 ** error. The onError parameter determines which (if any) of the statement
3978 ** and/or current transaction is rolled back.
3980 void sqlite3HaltConstraint(
3981 Parse
*pParse
, /* Parsing context */
3982 int errCode
, /* extended error code */
3983 int onError
, /* Constraint type */
3984 char *p4
, /* Error message */
3985 i8 p4type
, /* P4_STATIC or P4_TRANSIENT */
3986 u8 p5Errmsg
/* P5_ErrMsg type */
3988 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3989 assert( (errCode
&0xff)==SQLITE_CONSTRAINT
);
3990 if( onError
==OE_Abort
){
3991 sqlite3MayAbort(pParse
);
3993 sqlite3VdbeAddOp4(v
, OP_Halt
, errCode
, onError
, 0, p4
, p4type
);
3994 if( p5Errmsg
) sqlite3VdbeChangeP5(v
, p5Errmsg
);
3998 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4000 void sqlite3UniqueConstraint(
4001 Parse
*pParse
, /* Parsing context */
4002 int onError
, /* Constraint type */
4003 Index
*pIdx
/* The index that triggers the constraint */
4008 Table
*pTab
= pIdx
->pTable
;
4010 sqlite3StrAccumInit(&errMsg
, 0, 0, 200);
4011 errMsg
.db
= pParse
->db
;
4012 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
4013 char *zCol
= pTab
->aCol
[pIdx
->aiColumn
[j
]].zName
;
4014 if( j
) sqlite3StrAccumAppend(&errMsg
, ", ", 2);
4015 sqlite3StrAccumAppendAll(&errMsg
, pTab
->zName
);
4016 sqlite3StrAccumAppend(&errMsg
, ".", 1);
4017 sqlite3StrAccumAppendAll(&errMsg
, zCol
);
4019 zErr
= sqlite3StrAccumFinish(&errMsg
);
4020 sqlite3HaltConstraint(pParse
,
4021 IsPrimaryKeyIndex(pIdx
) ? SQLITE_CONSTRAINT_PRIMARYKEY
4022 : SQLITE_CONSTRAINT_UNIQUE
,
4023 onError
, zErr
, P4_DYNAMIC
, P5_ConstraintUnique
);
4028 ** Code an OP_Halt due to non-unique rowid.
4030 void sqlite3RowidConstraint(
4031 Parse
*pParse
, /* Parsing context */
4032 int onError
, /* Conflict resolution algorithm */
4033 Table
*pTab
/* The table with the non-unique rowid */
4037 if( pTab
->iPKey
>=0 ){
4038 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.%s", pTab
->zName
,
4039 pTab
->aCol
[pTab
->iPKey
].zName
);
4040 rc
= SQLITE_CONSTRAINT_PRIMARYKEY
;
4042 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.rowid", pTab
->zName
);
4043 rc
= SQLITE_CONSTRAINT_ROWID
;
4045 sqlite3HaltConstraint(pParse
, rc
, onError
, zMsg
, P4_DYNAMIC
,
4046 P5_ConstraintUnique
);
4050 ** Check to see if pIndex uses the collating sequence pColl. Return
4051 ** true if it does and false if it does not.
4053 #ifndef SQLITE_OMIT_REINDEX
4054 static int collationMatch(const char *zColl
, Index
*pIndex
){
4057 for(i
=0; i
<pIndex
->nColumn
; i
++){
4058 const char *z
= pIndex
->azColl
[i
];
4059 assert( z
!=0 || pIndex
->aiColumn
[i
]<0 );
4060 if( pIndex
->aiColumn
[i
]>=0 && 0==sqlite3StrICmp(z
, zColl
) ){
4069 ** Recompute all indices of pTab that use the collating sequence pColl.
4070 ** If pColl==0 then recompute all indices of pTab.
4072 #ifndef SQLITE_OMIT_REINDEX
4073 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
4074 Index
*pIndex
; /* An index associated with pTab */
4076 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
4077 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
4078 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
4079 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
4080 sqlite3RefillIndex(pParse
, pIndex
, -1);
4087 ** Recompute all indices of all tables in all databases where the
4088 ** indices use the collating sequence pColl. If pColl==0 then recompute
4089 ** all indices everywhere.
4091 #ifndef SQLITE_OMIT_REINDEX
4092 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
4093 Db
*pDb
; /* A single database */
4094 int iDb
; /* The database index number */
4095 sqlite3
*db
= pParse
->db
; /* The database connection */
4096 HashElem
*k
; /* For looping over tables in pDb */
4097 Table
*pTab
; /* A table in the database */
4099 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
4100 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
4102 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
4103 pTab
= (Table
*)sqliteHashData(k
);
4104 reindexTable(pParse
, pTab
, zColl
);
4111 ** Generate code for the REINDEX command.
4114 ** REINDEX <collation> -- 2
4115 ** REINDEX ?<database>.?<tablename> -- 3
4116 ** REINDEX ?<database>.?<indexname> -- 4
4118 ** Form 1 causes all indices in all attached databases to be rebuilt.
4119 ** Form 2 rebuilds all indices in all databases that use the named
4120 ** collating function. Forms 3 and 4 rebuild the named index or all
4121 ** indices associated with the named table.
4123 #ifndef SQLITE_OMIT_REINDEX
4124 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
4125 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
4126 char *z
; /* Name of a table or index */
4127 const char *zDb
; /* Name of the database */
4128 Table
*pTab
; /* A table in the database */
4129 Index
*pIndex
; /* An index associated with pTab */
4130 int iDb
; /* The database index number */
4131 sqlite3
*db
= pParse
->db
; /* The database connection */
4132 Token
*pObjName
; /* Name of the table or index to be reindexed */
4134 /* Read the database schema. If an error occurs, leave an error message
4135 ** and code in pParse and return NULL. */
4136 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
4141 reindexDatabases(pParse
, 0);
4143 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
4145 assert( pName1
->z
);
4146 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
4147 if( !zColl
) return;
4148 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
4150 reindexDatabases(pParse
, zColl
);
4151 sqlite3DbFree(db
, zColl
);
4154 sqlite3DbFree(db
, zColl
);
4156 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
4158 z
= sqlite3NameFromToken(db
, pObjName
);
4160 zDb
= db
->aDb
[iDb
].zName
;
4161 pTab
= sqlite3FindTable(db
, z
, zDb
);
4163 reindexTable(pParse
, pTab
, 0);
4164 sqlite3DbFree(db
, z
);
4167 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
4168 sqlite3DbFree(db
, z
);
4170 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
4171 sqlite3RefillIndex(pParse
, pIndex
, -1);
4174 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
4179 ** Return a KeyInfo structure that is appropriate for the given Index.
4181 ** The KeyInfo structure for an index is cached in the Index object.
4182 ** So there might be multiple references to the returned pointer. The
4183 ** caller should not try to modify the KeyInfo object.
4185 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4186 ** when it has finished using it.
4188 KeyInfo
*sqlite3KeyInfoOfIndex(Parse
*pParse
, Index
*pIdx
){
4189 if( pParse
->nErr
) return 0;
4190 #ifndef SQLITE_OMIT_SHARED_CACHE
4191 if( pIdx
->pKeyInfo
&& pIdx
->pKeyInfo
->db
!=pParse
->db
){
4192 sqlite3KeyInfoUnref(pIdx
->pKeyInfo
);
4196 if( pIdx
->pKeyInfo
==0 ){
4198 int nCol
= pIdx
->nColumn
;
4199 int nKey
= pIdx
->nKeyCol
;
4201 if( pIdx
->uniqNotNull
){
4202 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nKey
, nCol
-nKey
);
4204 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nCol
, 0);
4207 assert( sqlite3KeyInfoIsWriteable(pKey
) );
4208 for(i
=0; i
<nCol
; i
++){
4209 char *zColl
= pIdx
->azColl
[i
];
4211 pKey
->aColl
[i
] = strcmp(zColl
,"BINARY")==0 ? 0 :
4212 sqlite3LocateCollSeq(pParse
, zColl
);
4213 pKey
->aSortOrder
[i
] = pIdx
->aSortOrder
[i
];
4216 sqlite3KeyInfoUnref(pKey
);
4218 pIdx
->pKeyInfo
= pKey
;
4222 return sqlite3KeyInfoRef(pIdx
->pKeyInfo
);
4225 #ifndef SQLITE_OMIT_CTE
4227 ** This routine is invoked once per CTE by the parser while parsing a
4230 With
*sqlite3WithAdd(
4231 Parse
*pParse
, /* Parsing context */
4232 With
*pWith
, /* Existing WITH clause, or NULL */
4233 Token
*pName
, /* Name of the common-table */
4234 ExprList
*pArglist
, /* Optional column name list for the table */
4235 Select
*pQuery
/* Query used to initialize the table */
4237 sqlite3
*db
= pParse
->db
;
4241 /* Check that the CTE name is unique within this WITH clause. If
4242 ** not, store an error in the Parse structure. */
4243 zName
= sqlite3NameFromToken(pParse
->db
, pName
);
4244 if( zName
&& pWith
){
4246 for(i
=0; i
<pWith
->nCte
; i
++){
4247 if( sqlite3StrICmp(zName
, pWith
->a
[i
].zName
)==0 ){
4248 sqlite3ErrorMsg(pParse
, "duplicate WITH table name: %s", zName
);
4254 int nByte
= sizeof(*pWith
) + (sizeof(pWith
->a
[1]) * pWith
->nCte
);
4255 pNew
= sqlite3DbRealloc(db
, pWith
, nByte
);
4257 pNew
= sqlite3DbMallocZero(db
, sizeof(*pWith
));
4259 assert( zName
!=0 || pNew
==0 );
4260 assert( db
->mallocFailed
==0 || pNew
==0 );
4263 sqlite3ExprListDelete(db
, pArglist
);
4264 sqlite3SelectDelete(db
, pQuery
);
4265 sqlite3DbFree(db
, zName
);
4268 pNew
->a
[pNew
->nCte
].pSelect
= pQuery
;
4269 pNew
->a
[pNew
->nCte
].pCols
= pArglist
;
4270 pNew
->a
[pNew
->nCte
].zName
= zName
;
4271 pNew
->a
[pNew
->nCte
].zErr
= 0;
4279 ** Free the contents of the With object passed as the second argument.
4281 void sqlite3WithDelete(sqlite3
*db
, With
*pWith
){
4284 for(i
=0; i
<pWith
->nCte
; i
++){
4285 struct Cte
*pCte
= &pWith
->a
[i
];
4286 sqlite3ExprListDelete(db
, pCte
->pCols
);
4287 sqlite3SelectDelete(db
, pCte
->pSelect
);
4288 sqlite3DbFree(db
, pCte
->zName
);
4290 sqlite3DbFree(db
, pWith
);
4293 #endif /* !defined(SQLITE_OMIT_CTE) */