4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse
*pParse
, /* Generate code into this VDBE */
28 int iCur
, /* The cursor number of the table */
29 int iDb
, /* The database index in sqlite3.aDb[] */
30 Table
*pTab
, /* The table to be opened */
31 int opcode
/* OP_OpenRead or OP_OpenWrite */
34 assert( !IsVirtual(pTab
) );
35 v
= sqlite3GetVdbe(pParse
);
36 assert( opcode
==OP_OpenWrite
|| opcode
==OP_OpenRead
);
37 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
,
38 (opcode
==OP_OpenWrite
)?1:0, pTab
->zName
);
40 sqlite3VdbeAddOp4Int(v
, opcode
, iCur
, pTab
->tnum
, iDb
, pTab
->nCol
);
41 VdbeComment((v
, "%s", pTab
->zName
));
43 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
45 assert( pPk
->tnum
=pTab
->tnum
);
46 sqlite3VdbeAddOp3(v
, opcode
, iCur
, pPk
->tnum
, iDb
);
47 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
48 VdbeComment((v
, "%s", pTab
->zName
));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(Vdbe
*v
, Index
*pIdx
){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
83 Table
*pTab
= pIdx
->pTable
;
84 sqlite3
*db
= sqlite3VdbeDb(v
);
85 pIdx
->zColAff
= (char *)sqlite3DbMallocRaw(0, pIdx
->nColumn
+1);
90 for(n
=0; n
<pIdx
->nColumn
; n
++){
91 i16 x
= pIdx
->aiColumn
[n
];
92 pIdx
->zColAff
[n
] = x
<0 ? SQLITE_AFF_INTEGER
: pTab
->aCol
[x
].affinity
;
101 ** Compute the affinity string for table pTab, if it has not already been
102 ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities.
104 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and
105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
106 ** for register iReg and following. Or if affinities exists and iReg==0,
107 ** then just set the P4 operand of the previous opcode (which should be
108 ** an OP_MakeRecord) to the affinity string.
110 ** A column affinity string has one character per column:
112 ** Character Column affinity
113 ** ------------------------------
120 void sqlite3TableAffinity(Vdbe
*v
, Table
*pTab
, int iReg
){
122 char *zColAff
= pTab
->zColAff
;
124 sqlite3
*db
= sqlite3VdbeDb(v
);
125 zColAff
= (char *)sqlite3DbMallocRaw(0, pTab
->nCol
+1);
127 db
->mallocFailed
= 1;
131 for(i
=0; i
<pTab
->nCol
; i
++){
132 zColAff
[i
] = pTab
->aCol
[i
].affinity
;
136 }while( i
>=0 && zColAff
[i
]==SQLITE_AFF_NONE
);
137 pTab
->zColAff
= zColAff
;
139 i
= sqlite3Strlen30(zColAff
);
142 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, i
, 0, zColAff
, i
);
144 sqlite3VdbeChangeP4(v
, -1, zColAff
, i
);
150 ** Return non-zero if the table pTab in database iDb or any of its indices
151 ** have been opened at any point in the VDBE program. This is used to see if
152 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
153 ** run without using a temporary table for the results of the SELECT.
155 static int readsTable(Parse
*p
, int iDb
, Table
*pTab
){
156 Vdbe
*v
= sqlite3GetVdbe(p
);
158 int iEnd
= sqlite3VdbeCurrentAddr(v
);
159 #ifndef SQLITE_OMIT_VIRTUALTABLE
160 VTable
*pVTab
= IsVirtual(pTab
) ? sqlite3GetVTable(p
->db
, pTab
) : 0;
163 for(i
=1; i
<iEnd
; i
++){
164 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, i
);
166 if( pOp
->opcode
==OP_OpenRead
&& pOp
->p3
==iDb
){
169 if( tnum
==pTab
->tnum
){
172 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
173 if( tnum
==pIndex
->tnum
){
178 #ifndef SQLITE_OMIT_VIRTUALTABLE
179 if( pOp
->opcode
==OP_VOpen
&& pOp
->p4
.pVtab
==pVTab
){
180 assert( pOp
->p4
.pVtab
!=0 );
181 assert( pOp
->p4type
==P4_VTAB
);
189 #ifndef SQLITE_OMIT_AUTOINCREMENT
191 ** Locate or create an AutoincInfo structure associated with table pTab
192 ** which is in database iDb. Return the register number for the register
193 ** that holds the maximum rowid.
195 ** There is at most one AutoincInfo structure per table even if the
196 ** same table is autoincremented multiple times due to inserts within
197 ** triggers. A new AutoincInfo structure is created if this is the
198 ** first use of table pTab. On 2nd and subsequent uses, the original
199 ** AutoincInfo structure is used.
201 ** Three memory locations are allocated:
203 ** (1) Register to hold the name of the pTab table.
204 ** (2) Register to hold the maximum ROWID of pTab.
205 ** (3) Register to hold the rowid in sqlite_sequence of pTab
207 ** The 2nd register is the one that is returned. That is all the
208 ** insert routine needs to know about.
210 static int autoIncBegin(
211 Parse
*pParse
, /* Parsing context */
212 int iDb
, /* Index of the database holding pTab */
213 Table
*pTab
/* The table we are writing to */
215 int memId
= 0; /* Register holding maximum rowid */
216 if( pTab
->tabFlags
& TF_Autoincrement
){
217 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
220 pInfo
= pToplevel
->pAinc
;
221 while( pInfo
&& pInfo
->pTab
!=pTab
){ pInfo
= pInfo
->pNext
; }
223 pInfo
= sqlite3DbMallocRaw(pParse
->db
, sizeof(*pInfo
));
224 if( pInfo
==0 ) return 0;
225 pInfo
->pNext
= pToplevel
->pAinc
;
226 pToplevel
->pAinc
= pInfo
;
229 pToplevel
->nMem
++; /* Register to hold name of table */
230 pInfo
->regCtr
= ++pToplevel
->nMem
; /* Max rowid register */
231 pToplevel
->nMem
++; /* Rowid in sqlite_sequence */
233 memId
= pInfo
->regCtr
;
239 ** This routine generates code that will initialize all of the
240 ** register used by the autoincrement tracker.
242 void sqlite3AutoincrementBegin(Parse
*pParse
){
243 AutoincInfo
*p
; /* Information about an AUTOINCREMENT */
244 sqlite3
*db
= pParse
->db
; /* The database connection */
245 Db
*pDb
; /* Database only autoinc table */
246 int memId
; /* Register holding max rowid */
247 int addr
; /* A VDBE address */
248 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
250 /* This routine is never called during trigger-generation. It is
251 ** only called from the top-level */
252 assert( pParse
->pTriggerTab
==0 );
253 assert( pParse
==sqlite3ParseToplevel(pParse
) );
255 assert( v
); /* We failed long ago if this is not so */
256 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
257 pDb
= &db
->aDb
[p
->iDb
];
259 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
260 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenRead
);
261 sqlite3VdbeAddOp3(v
, OP_Null
, 0, memId
, memId
+1);
262 addr
= sqlite3VdbeCurrentAddr(v
);
263 sqlite3VdbeAddOp4(v
, OP_String8
, 0, memId
-1, 0, p
->pTab
->zName
, 0);
264 sqlite3VdbeAddOp2(v
, OP_Rewind
, 0, addr
+9); VdbeCoverage(v
);
265 sqlite3VdbeAddOp3(v
, OP_Column
, 0, 0, memId
);
266 sqlite3VdbeAddOp3(v
, OP_Ne
, memId
-1, addr
+7, memId
); VdbeCoverage(v
);
267 sqlite3VdbeChangeP5(v
, SQLITE_JUMPIFNULL
);
268 sqlite3VdbeAddOp2(v
, OP_Rowid
, 0, memId
+1);
269 sqlite3VdbeAddOp3(v
, OP_Column
, 0, 1, memId
);
270 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addr
+9);
271 sqlite3VdbeAddOp2(v
, OP_Next
, 0, addr
+2); VdbeCoverage(v
);
272 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, memId
);
273 sqlite3VdbeAddOp0(v
, OP_Close
);
278 ** Update the maximum rowid for an autoincrement calculation.
280 ** This routine should be called when the top of the stack holds a
281 ** new rowid that is about to be inserted. If that new rowid is
282 ** larger than the maximum rowid in the memId memory cell, then the
283 ** memory cell is updated. The stack is unchanged.
285 static void autoIncStep(Parse
*pParse
, int memId
, int regRowid
){
287 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_MemMax
, memId
, regRowid
);
292 ** This routine generates the code needed to write autoincrement
293 ** maximum rowid values back into the sqlite_sequence register.
294 ** Every statement that might do an INSERT into an autoincrement
295 ** table (either directly or through triggers) needs to call this
296 ** routine just before the "exit" code.
298 void sqlite3AutoincrementEnd(Parse
*pParse
){
300 Vdbe
*v
= pParse
->pVdbe
;
301 sqlite3
*db
= pParse
->db
;
304 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
305 Db
*pDb
= &db
->aDb
[p
->iDb
];
308 int memId
= p
->regCtr
;
310 iRec
= sqlite3GetTempReg(pParse
);
311 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
312 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenWrite
);
313 j1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, memId
+1); VdbeCoverage(v
);
314 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, memId
+1);
315 sqlite3VdbeJumpHere(v
, j1
);
316 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, memId
-1, 2, iRec
);
317 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, iRec
, memId
+1);
318 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
319 sqlite3VdbeAddOp0(v
, OP_Close
);
320 sqlite3ReleaseTempReg(pParse
, iRec
);
325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
326 ** above are all no-ops
328 # define autoIncBegin(A,B,C) (0)
329 # define autoIncStep(A,B,C)
330 #endif /* SQLITE_OMIT_AUTOINCREMENT */
333 /* Forward declaration */
334 static int xferOptimization(
335 Parse
*pParse
, /* Parser context */
336 Table
*pDest
, /* The table we are inserting into */
337 Select
*pSelect
, /* A SELECT statement to use as the data source */
338 int onError
, /* How to handle constraint errors */
339 int iDbDest
/* The database of pDest */
343 ** This routine is called to handle SQL of the following forms:
345 ** insert into TABLE (IDLIST) values(EXPRLIST)
346 ** insert into TABLE (IDLIST) select
348 ** The IDLIST following the table name is always optional. If omitted,
349 ** then a list of all columns for the table is substituted. The IDLIST
350 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
352 ** The pList parameter holds EXPRLIST in the first form of the INSERT
353 ** statement above, and pSelect is NULL. For the second form, pList is
354 ** NULL and pSelect is a pointer to the select statement used to generate
355 ** data for the insert.
357 ** The code generated follows one of four templates. For a simple
358 ** insert with data coming from a VALUES clause, the code executes
359 ** once straight down through. Pseudo-code follows (we call this
360 ** the "1st template"):
362 ** open write cursor to <table> and its indices
363 ** put VALUES clause expressions into registers
364 ** write the resulting record into <table>
367 ** The three remaining templates assume the statement is of the form
369 ** INSERT INTO <table> SELECT ...
371 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
372 ** in other words if the SELECT pulls all columns from a single table
373 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
374 ** if <table2> and <table1> are distinct tables but have identical
375 ** schemas, including all the same indices, then a special optimization
376 ** is invoked that copies raw records from <table2> over to <table1>.
377 ** See the xferOptimization() function for the implementation of this
378 ** template. This is the 2nd template.
380 ** open a write cursor to <table>
381 ** open read cursor on <table2>
382 ** transfer all records in <table2> over to <table>
384 ** foreach index on <table>
385 ** open a write cursor on the <table> index
386 ** open a read cursor on the corresponding <table2> index
387 ** transfer all records from the read to the write cursors
391 ** The 3rd template is for when the second template does not apply
392 ** and the SELECT clause does not read from <table> at any time.
393 ** The generated code follows this template:
397 ** A: setup for the SELECT
398 ** loop over the rows in the SELECT
399 ** load values into registers R..R+n
402 ** cleanup after the SELECT
404 ** B: open write cursor to <table> and its indices
405 ** C: yield X, at EOF goto D
406 ** insert the select result into <table> from R..R+n
410 ** The 4th template is used if the insert statement takes its
411 ** values from a SELECT but the data is being inserted into a table
412 ** that is also read as part of the SELECT. In the third form,
413 ** we have to use an intermediate table to store the results of
414 ** the select. The template is like this:
418 ** A: setup for the SELECT
419 ** loop over the tables in the SELECT
420 ** load value into register R..R+n
423 ** cleanup after the SELECT
425 ** B: open temp table
426 ** L: yield X, at EOF goto M
427 ** insert row from R..R+n into temp table
429 ** M: open write cursor to <table> and its indices
431 ** C: loop over rows of intermediate table
432 ** transfer values form intermediate table into <table>
437 Parse
*pParse
, /* Parser context */
438 SrcList
*pTabList
, /* Name of table into which we are inserting */
439 Select
*pSelect
, /* A SELECT statement to use as the data source */
440 IdList
*pColumn
, /* Column names corresponding to IDLIST. */
441 int onError
/* How to handle constraint errors */
443 sqlite3
*db
; /* The main database structure */
444 Table
*pTab
; /* The table to insert into. aka TABLE */
445 char *zTab
; /* Name of the table into which we are inserting */
446 const char *zDb
; /* Name of the database holding this table */
447 int i
, j
, idx
; /* Loop counters */
448 Vdbe
*v
; /* Generate code into this virtual machine */
449 Index
*pIdx
; /* For looping over indices of the table */
450 int nColumn
; /* Number of columns in the data */
451 int nHidden
= 0; /* Number of hidden columns if TABLE is virtual */
452 int iDataCur
= 0; /* VDBE cursor that is the main data repository */
453 int iIdxCur
= 0; /* First index cursor */
454 int ipkColumn
= -1; /* Column that is the INTEGER PRIMARY KEY */
455 int endOfLoop
; /* Label for the end of the insertion loop */
456 int srcTab
= 0; /* Data comes from this temporary cursor if >=0 */
457 int addrInsTop
= 0; /* Jump to label "D" */
458 int addrCont
= 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
459 SelectDest dest
; /* Destination for SELECT on rhs of INSERT */
460 int iDb
; /* Index of database holding TABLE */
461 Db
*pDb
; /* The database containing table being inserted into */
462 u8 useTempTable
= 0; /* Store SELECT results in intermediate table */
463 u8 appendFlag
= 0; /* True if the insert is likely to be an append */
464 u8 withoutRowid
; /* 0 for normal table. 1 for WITHOUT ROWID table */
465 u8 bIdListInOrder
= 1; /* True if IDLIST is in table order */
466 ExprList
*pList
= 0; /* List of VALUES() to be inserted */
468 /* Register allocations */
469 int regFromSelect
= 0;/* Base register for data coming from SELECT */
470 int regAutoinc
= 0; /* Register holding the AUTOINCREMENT counter */
471 int regRowCount
= 0; /* Memory cell used for the row counter */
472 int regIns
; /* Block of regs holding rowid+data being inserted */
473 int regRowid
; /* registers holding insert rowid */
474 int regData
; /* register holding first column to insert */
475 int *aRegIdx
= 0; /* One register allocated to each index */
477 #ifndef SQLITE_OMIT_TRIGGER
478 int isView
; /* True if attempting to insert into a view */
479 Trigger
*pTrigger
; /* List of triggers on pTab, if required */
480 int tmask
; /* Mask of trigger times */
484 memset(&dest
, 0, sizeof(dest
));
485 if( pParse
->nErr
|| db
->mallocFailed
){
489 /* If the Select object is really just a simple VALUES() list with a
490 ** single row values (the common case) then keep that one row of values
491 ** and go ahead and discard the Select object
493 if( pSelect
&& (pSelect
->selFlags
& SF_Values
)!=0 && pSelect
->pPrior
==0 ){
494 pList
= pSelect
->pEList
;
496 sqlite3SelectDelete(db
, pSelect
);
500 /* Locate the table into which we will be inserting new information.
502 assert( pTabList
->nSrc
==1 );
503 zTab
= pTabList
->a
[0].zName
;
504 if( NEVER(zTab
==0) ) goto insert_cleanup
;
505 pTab
= sqlite3SrcListLookup(pParse
, pTabList
);
509 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
510 assert( iDb
<db
->nDb
);
513 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, pTab
->zName
, 0, zDb
) ){
516 withoutRowid
= !HasRowid(pTab
);
518 /* Figure out if we have any triggers and if the table being
519 ** inserted into is a view
521 #ifndef SQLITE_OMIT_TRIGGER
522 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_INSERT
, 0, &tmask
);
523 isView
= pTab
->pSelect
!=0;
529 #ifdef SQLITE_OMIT_VIEW
533 assert( (pTrigger
&& tmask
) || (pTrigger
==0 && tmask
==0) );
535 /* If pTab is really a view, make sure it has been initialized.
536 ** ViewGetColumnNames() is a no-op if pTab is not a view.
538 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ){
542 /* Cannot insert into a read-only table.
544 if( sqlite3IsReadOnly(pParse
, pTab
, tmask
) ){
550 v
= sqlite3GetVdbe(pParse
);
551 if( v
==0 ) goto insert_cleanup
;
552 if( pParse
->nested
==0 ) sqlite3VdbeCountChanges(v
);
553 sqlite3BeginWriteOperation(pParse
, pSelect
|| pTrigger
, iDb
);
555 #ifndef SQLITE_OMIT_XFER_OPT
556 /* If the statement is of the form
558 ** INSERT INTO <table1> SELECT * FROM <table2>;
560 ** Then special optimizations can be applied that make the transfer
561 ** very fast and which reduce fragmentation of indices.
563 ** This is the 2nd template.
565 if( pColumn
==0 && xferOptimization(pParse
, pTab
, pSelect
, onError
, iDb
) ){
570 #endif /* SQLITE_OMIT_XFER_OPT */
572 /* If this is an AUTOINCREMENT table, look up the sequence number in the
573 ** sqlite_sequence table and store it in memory cell regAutoinc.
575 regAutoinc
= autoIncBegin(pParse
, iDb
, pTab
);
577 /* Allocate registers for holding the rowid of the new row,
578 ** the content of the new row, and the assembled row record.
580 regRowid
= regIns
= pParse
->nMem
+1;
581 pParse
->nMem
+= pTab
->nCol
+ 1;
582 if( IsVirtual(pTab
) ){
586 regData
= regRowid
+1;
588 /* If the INSERT statement included an IDLIST term, then make sure
589 ** all elements of the IDLIST really are columns of the table and
590 ** remember the column indices.
592 ** If the table has an INTEGER PRIMARY KEY column and that column
593 ** is named in the IDLIST, then record in the ipkColumn variable
594 ** the index into IDLIST of the primary key column. ipkColumn is
595 ** the index of the primary key as it appears in IDLIST, not as
596 ** is appears in the original table. (The index of the INTEGER
597 ** PRIMARY KEY in the original table is pTab->iPKey.)
600 for(i
=0; i
<pColumn
->nId
; i
++){
601 pColumn
->a
[i
].idx
= -1;
603 for(i
=0; i
<pColumn
->nId
; i
++){
604 for(j
=0; j
<pTab
->nCol
; j
++){
605 if( sqlite3StrICmp(pColumn
->a
[i
].zName
, pTab
->aCol
[j
].zName
)==0 ){
606 pColumn
->a
[i
].idx
= j
;
607 if( i
!=j
) bIdListInOrder
= 0;
608 if( j
==pTab
->iPKey
){
609 ipkColumn
= i
; assert( !withoutRowid
);
615 if( sqlite3IsRowid(pColumn
->a
[i
].zName
) && !withoutRowid
){
619 sqlite3ErrorMsg(pParse
, "table %S has no column named %s",
620 pTabList
, 0, pColumn
->a
[i
].zName
);
621 pParse
->checkSchema
= 1;
628 /* Figure out how many columns of data are supplied. If the data
629 ** is coming from a SELECT statement, then generate a co-routine that
630 ** produces a single row of the SELECT on each invocation. The
631 ** co-routine is the common header to the 3rd and 4th templates.
634 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */
635 int regYield
; /* Register holding co-routine entry-point */
636 int addrTop
; /* Top of the co-routine */
637 int rc
; /* Result code */
639 regYield
= ++pParse
->nMem
;
640 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
641 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
642 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
643 dest
.iSdst
= bIdListInOrder
? regData
: 0;
644 dest
.nSdst
= pTab
->nCol
;
645 rc
= sqlite3Select(pParse
, pSelect
, &dest
);
646 regFromSelect
= dest
.iSdst
;
647 assert( pParse
->nErr
==0 || rc
);
648 if( rc
|| db
->mallocFailed
) goto insert_cleanup
;
649 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
650 sqlite3VdbeJumpHere(v
, addrTop
- 1); /* label B: */
651 assert( pSelect
->pEList
);
652 nColumn
= pSelect
->pEList
->nExpr
;
654 /* Set useTempTable to TRUE if the result of the SELECT statement
655 ** should be written into a temporary table (template 4). Set to
656 ** FALSE if each output row of the SELECT can be written directly into
657 ** the destination table (template 3).
659 ** A temp table must be used if the table being updated is also one
660 ** of the tables being read by the SELECT statement. Also use a
661 ** temp table in the case of row triggers.
663 if( pTrigger
|| readsTable(pParse
, iDb
, pTab
) ){
668 /* Invoke the coroutine to extract information from the SELECT
669 ** and add it to a transient table srcTab. The code generated
670 ** here is from the 4th template:
672 ** B: open temp table
673 ** L: yield X, goto M at EOF
674 ** insert row from R..R+n into temp table
678 int regRec
; /* Register to hold packed record */
679 int regTempRowid
; /* Register to hold temp table ROWID */
680 int addrL
; /* Label "L" */
682 srcTab
= pParse
->nTab
++;
683 regRec
= sqlite3GetTempReg(pParse
);
684 regTempRowid
= sqlite3GetTempReg(pParse
);
685 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, srcTab
, nColumn
);
686 addrL
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
); VdbeCoverage(v
);
687 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regFromSelect
, nColumn
, regRec
);
688 sqlite3VdbeAddOp2(v
, OP_NewRowid
, srcTab
, regTempRowid
);
689 sqlite3VdbeAddOp3(v
, OP_Insert
, srcTab
, regRec
, regTempRowid
);
690 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrL
);
691 sqlite3VdbeJumpHere(v
, addrL
);
692 sqlite3ReleaseTempReg(pParse
, regRec
);
693 sqlite3ReleaseTempReg(pParse
, regTempRowid
);
696 /* This is the case if the data for the INSERT is coming from a VALUES
700 memset(&sNC
, 0, sizeof(sNC
));
703 assert( useTempTable
==0 );
704 nColumn
= pList
? pList
->nExpr
: 0;
705 for(i
=0; i
<nColumn
; i
++){
706 if( sqlite3ResolveExprNames(&sNC
, pList
->a
[i
].pExpr
) ){
712 /* If there is no IDLIST term but the table has an integer primary
713 ** key, the set the ipkColumn variable to the integer primary key
714 ** column index in the original table definition.
716 if( pColumn
==0 && nColumn
>0 ){
717 ipkColumn
= pTab
->iPKey
;
720 /* Make sure the number of columns in the source data matches the number
721 ** of columns to be inserted into the table.
723 if( IsVirtual(pTab
) ){
724 for(i
=0; i
<pTab
->nCol
; i
++){
725 nHidden
+= (IsHiddenColumn(&pTab
->aCol
[i
]) ? 1 : 0);
728 if( pColumn
==0 && nColumn
&& nColumn
!=(pTab
->nCol
-nHidden
) ){
729 sqlite3ErrorMsg(pParse
,
730 "table %S has %d columns but %d values were supplied",
731 pTabList
, 0, pTab
->nCol
-nHidden
, nColumn
);
734 if( pColumn
!=0 && nColumn
!=pColumn
->nId
){
735 sqlite3ErrorMsg(pParse
, "%d values for %d columns", nColumn
, pColumn
->nId
);
739 /* Initialize the count of rows to be inserted
741 if( db
->flags
& SQLITE_CountRows
){
742 regRowCount
= ++pParse
->nMem
;
743 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regRowCount
);
746 /* If this is not a view, open the table and and all indices */
749 nIdx
= sqlite3OpenTableAndIndices(pParse
, pTab
, OP_OpenWrite
, -1, 0,
750 &iDataCur
, &iIdxCur
);
751 aRegIdx
= sqlite3DbMallocRaw(db
, sizeof(int)*(nIdx
+1));
755 for(i
=0; i
<nIdx
; i
++){
756 aRegIdx
[i
] = ++pParse
->nMem
;
760 /* This is the top of the main insertion loop */
762 /* This block codes the top of loop only. The complete loop is the
763 ** following pseudocode (template 4):
765 ** rewind temp table, if empty goto D
766 ** C: loop over rows of intermediate table
767 ** transfer values form intermediate table into <table>
771 addrInsTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, srcTab
); VdbeCoverage(v
);
772 addrCont
= sqlite3VdbeCurrentAddr(v
);
774 /* This block codes the top of loop only. The complete loop is the
775 ** following pseudocode (template 3):
777 ** C: yield X, at EOF goto D
778 ** insert the select result into <table> from R..R+n
782 addrInsTop
= addrCont
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
786 /* Run the BEFORE and INSTEAD OF triggers, if there are any
788 endOfLoop
= sqlite3VdbeMakeLabel(v
);
789 if( tmask
& TRIGGER_BEFORE
){
790 int regCols
= sqlite3GetTempRange(pParse
, pTab
->nCol
+1);
792 /* build the NEW.* reference row. Note that if there is an INTEGER
793 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
794 ** translated into a unique ID for the row. But on a BEFORE trigger,
795 ** we do not know what the unique ID will be (because the insert has
796 ** not happened yet) so we substitute a rowid of -1
799 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
802 assert( !withoutRowid
);
804 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regCols
);
806 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
807 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regCols
);
809 j1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regCols
); VdbeCoverage(v
);
810 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
811 sqlite3VdbeJumpHere(v
, j1
);
812 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regCols
); VdbeCoverage(v
);
815 /* Cannot have triggers on a virtual table. If it were possible,
816 ** this block would have to account for hidden column.
818 assert( !IsVirtual(pTab
) );
820 /* Create the new column data
822 for(i
=0; i
<pTab
->nCol
; i
++){
826 for(j
=0; j
<pColumn
->nId
; j
++){
827 if( pColumn
->a
[j
].idx
==i
) break;
830 if( (!useTempTable
&& !pList
) || (pColumn
&& j
>=pColumn
->nId
) ){
831 sqlite3ExprCode(pParse
, pTab
->aCol
[i
].pDflt
, regCols
+i
+1);
832 }else if( useTempTable
){
833 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, j
, regCols
+i
+1);
835 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
836 sqlite3ExprCodeAndCache(pParse
, pList
->a
[j
].pExpr
, regCols
+i
+1);
840 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
841 ** do not attempt any conversions before assembling the record.
842 ** If this is a real table, attempt conversions as required by the
843 ** table column affinities.
846 sqlite3TableAffinity(v
, pTab
, regCols
+1);
849 /* Fire BEFORE or INSTEAD OF triggers */
850 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_BEFORE
,
851 pTab
, regCols
-pTab
->nCol
-1, onError
, endOfLoop
);
853 sqlite3ReleaseTempRange(pParse
, regCols
, pTab
->nCol
+1);
856 /* Compute the content of the next row to insert into a range of
857 ** registers beginning at regIns.
860 if( IsVirtual(pTab
) ){
861 /* The row that the VUpdate opcode will delete: none */
862 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIns
);
866 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regRowid
);
868 sqlite3VdbeAddOp2(v
, OP_Copy
, regFromSelect
+ipkColumn
, regRowid
);
871 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regRowid
);
872 pOp
= sqlite3VdbeGetOp(v
, -1);
873 if( ALWAYS(pOp
) && pOp
->opcode
==OP_Null
&& !IsVirtual(pTab
) ){
875 pOp
->opcode
= OP_NewRowid
;
878 pOp
->p3
= regAutoinc
;
881 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
882 ** to generate a unique primary key value.
886 if( !IsVirtual(pTab
) ){
887 j1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regRowid
); VdbeCoverage(v
);
888 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
889 sqlite3VdbeJumpHere(v
, j1
);
891 j1
= sqlite3VdbeCurrentAddr(v
);
892 sqlite3VdbeAddOp2(v
, OP_IsNull
, regRowid
, j1
+2); VdbeCoverage(v
);
894 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regRowid
); VdbeCoverage(v
);
896 }else if( IsVirtual(pTab
) || withoutRowid
){
897 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowid
);
899 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
902 autoIncStep(pParse
, regAutoinc
, regRowid
);
904 /* Compute data for all columns of the new entry, beginning
905 ** with the first column.
908 for(i
=0; i
<pTab
->nCol
; i
++){
909 int iRegStore
= regRowid
+1+i
;
910 if( i
==pTab
->iPKey
){
911 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
912 ** Whenever this column is read, the rowid will be substituted
913 ** in its place. Hence, fill this column with a NULL to avoid
914 ** taking up data space with information that will never be used.
915 ** As there may be shallow copies of this value, make it a soft-NULL */
916 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
920 if( IsHiddenColumn(&pTab
->aCol
[i
]) ){
921 assert( IsVirtual(pTab
) );
928 for(j
=0; j
<pColumn
->nId
; j
++){
929 if( pColumn
->a
[j
].idx
==i
) break;
932 if( j
<0 || nColumn
==0 || (pColumn
&& j
>=pColumn
->nId
) ){
933 sqlite3ExprCodeFactorable(pParse
, pTab
->aCol
[i
].pDflt
, iRegStore
);
934 }else if( useTempTable
){
935 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, j
, iRegStore
);
937 if( regFromSelect
!=regData
){
938 sqlite3VdbeAddOp2(v
, OP_SCopy
, regFromSelect
+j
, iRegStore
);
941 sqlite3ExprCode(pParse
, pList
->a
[j
].pExpr
, iRegStore
);
945 /* Generate code to check constraints and generate index keys and
948 #ifndef SQLITE_OMIT_VIRTUALTABLE
949 if( IsVirtual(pTab
) ){
950 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
951 sqlite3VtabMakeWritable(pParse
, pTab
);
952 sqlite3VdbeAddOp4(v
, OP_VUpdate
, 1, pTab
->nCol
+2, regIns
, pVTab
, P4_VTAB
);
953 sqlite3VdbeChangeP5(v
, onError
==OE_Default
? OE_Abort
: onError
);
954 sqlite3MayAbort(pParse
);
958 int isReplace
; /* Set to true if constraints may cause a replace */
959 sqlite3GenerateConstraintChecks(pParse
, pTab
, aRegIdx
, iDataCur
, iIdxCur
,
960 regIns
, 0, ipkColumn
>=0, onError
, endOfLoop
, &isReplace
962 sqlite3FkCheck(pParse
, pTab
, 0, regIns
, 0, 0);
963 sqlite3CompleteInsertion(pParse
, pTab
, iDataCur
, iIdxCur
,
964 regIns
, aRegIdx
, 0, appendFlag
, isReplace
==0);
968 /* Update the count of rows that are inserted
970 if( (db
->flags
& SQLITE_CountRows
)!=0 ){
971 sqlite3VdbeAddOp2(v
, OP_AddImm
, regRowCount
, 1);
975 /* Code AFTER triggers */
976 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_AFTER
,
977 pTab
, regData
-2-pTab
->nCol
, onError
, endOfLoop
);
980 /* The bottom of the main insertion loop, if the data source
981 ** is a SELECT statement.
983 sqlite3VdbeResolveLabel(v
, endOfLoop
);
985 sqlite3VdbeAddOp2(v
, OP_Next
, srcTab
, addrCont
); VdbeCoverage(v
);
986 sqlite3VdbeJumpHere(v
, addrInsTop
);
987 sqlite3VdbeAddOp1(v
, OP_Close
, srcTab
);
989 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrCont
);
990 sqlite3VdbeJumpHere(v
, addrInsTop
);
993 if( !IsVirtual(pTab
) && !isView
){
994 /* Close all tables opened */
995 if( iDataCur
<iIdxCur
) sqlite3VdbeAddOp1(v
, OP_Close
, iDataCur
);
996 for(idx
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, idx
++){
997 sqlite3VdbeAddOp1(v
, OP_Close
, idx
+iIdxCur
);
1002 /* Update the sqlite_sequence table by storing the content of the
1003 ** maximum rowid counter values recorded while inserting into
1004 ** autoincrement tables.
1006 if( pParse
->nested
==0 && pParse
->pTriggerTab
==0 ){
1007 sqlite3AutoincrementEnd(pParse
);
1011 ** Return the number of rows inserted. If this routine is
1012 ** generating code because of a call to sqlite3NestedParse(), do not
1013 ** invoke the callback function.
1015 if( (db
->flags
&SQLITE_CountRows
) && !pParse
->nested
&& !pParse
->pTriggerTab
){
1016 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regRowCount
, 1);
1017 sqlite3VdbeSetNumCols(v
, 1);
1018 sqlite3VdbeSetColName(v
, 0, COLNAME_NAME
, "rows inserted", SQLITE_STATIC
);
1022 sqlite3SrcListDelete(db
, pTabList
);
1023 sqlite3ExprListDelete(db
, pList
);
1024 sqlite3SelectDelete(db
, pSelect
);
1025 sqlite3IdListDelete(db
, pColumn
);
1026 sqlite3DbFree(db
, aRegIdx
);
1029 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1030 ** they may interfere with compilation of other functions in this file
1031 ** (or in another file, if this file becomes part of the amalgamation). */
1043 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1046 ** The regNewData parameter is the first register in a range that contains
1047 ** the data to be inserted or the data after the update. There will be
1048 ** pTab->nCol+1 registers in this range. The first register (the one
1049 ** that regNewData points to) will contain the new rowid, or NULL in the
1050 ** case of a WITHOUT ROWID table. The second register in the range will
1051 ** contain the content of the first table column. The third register will
1052 ** contain the content of the second table column. And so forth.
1054 ** The regOldData parameter is similar to regNewData except that it contains
1055 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1056 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1057 ** checking regOldData for zero.
1059 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1060 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1061 ** might be modified by the UPDATE. If pkChng is false, then the key of
1062 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1064 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1065 ** was explicitly specified as part of the INSERT statement. If pkChng
1066 ** is zero, it means that the either rowid is computed automatically or
1067 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1068 ** pkChng will only be true if the INSERT statement provides an integer
1069 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1071 ** The code generated by this routine will store new index entries into
1072 ** registers identified by aRegIdx[]. No index entry is created for
1073 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1074 ** the same as the order of indices on the linked list of indices
1077 ** The caller must have already opened writeable cursors on the main
1078 ** table and all applicable indices (that is to say, all indices for which
1079 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1080 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1081 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1082 ** for the first index in the pTab->pIndex list. Cursors for other indices
1083 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1085 ** This routine also generates code to check constraints. NOT NULL,
1086 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1087 ** then the appropriate action is performed. There are five possible
1088 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1090 ** Constraint type Action What Happens
1091 ** --------------- ---------- ----------------------------------------
1092 ** any ROLLBACK The current transaction is rolled back and
1093 ** sqlite3_step() returns immediately with a
1094 ** return code of SQLITE_CONSTRAINT.
1096 ** any ABORT Back out changes from the current command
1097 ** only (do not do a complete rollback) then
1098 ** cause sqlite3_step() to return immediately
1099 ** with SQLITE_CONSTRAINT.
1101 ** any FAIL Sqlite3_step() returns immediately with a
1102 ** return code of SQLITE_CONSTRAINT. The
1103 ** transaction is not rolled back and any
1104 ** changes to prior rows are retained.
1106 ** any IGNORE The attempt in insert or update the current
1107 ** row is skipped, without throwing an error.
1108 ** Processing continues with the next row.
1109 ** (There is an immediate jump to ignoreDest.)
1111 ** NOT NULL REPLACE The NULL value is replace by the default
1112 ** value for that column. If the default value
1113 ** is NULL, the action is the same as ABORT.
1115 ** UNIQUE REPLACE The other row that conflicts with the row
1116 ** being inserted is removed.
1118 ** CHECK REPLACE Illegal. The results in an exception.
1120 ** Which action to take is determined by the overrideError parameter.
1121 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1122 ** is used. Or if pParse->onError==OE_Default then the onError value
1123 ** for the constraint is used.
1125 void sqlite3GenerateConstraintChecks(
1126 Parse
*pParse
, /* The parser context */
1127 Table
*pTab
, /* The table being inserted or updated */
1128 int *aRegIdx
, /* Use register aRegIdx[i] for index i. 0 for unused */
1129 int iDataCur
, /* Canonical data cursor (main table or PK index) */
1130 int iIdxCur
, /* First index cursor */
1131 int regNewData
, /* First register in a range holding values to insert */
1132 int regOldData
, /* Previous content. 0 for INSERTs */
1133 u8 pkChng
, /* Non-zero if the rowid or PRIMARY KEY changed */
1134 u8 overrideError
, /* Override onError to this if not OE_Default */
1135 int ignoreDest
, /* Jump to this label on an OE_Ignore resolution */
1136 int *pbMayReplace
/* OUT: Set to true if constraint may cause a replace */
1138 Vdbe
*v
; /* VDBE under constrution */
1139 Index
*pIdx
; /* Pointer to one of the indices */
1140 Index
*pPk
= 0; /* The PRIMARY KEY index */
1141 sqlite3
*db
; /* Database connection */
1142 int i
; /* loop counter */
1143 int ix
; /* Index loop counter */
1144 int nCol
; /* Number of columns */
1145 int onError
; /* Conflict resolution strategy */
1146 int j1
; /* Address of jump instruction */
1147 int seenReplace
= 0; /* True if REPLACE is used to resolve INT PK conflict */
1148 int nPkField
; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1149 int ipkTop
= 0; /* Top of the rowid change constraint check */
1150 int ipkBottom
= 0; /* Bottom of the rowid change constraint check */
1151 u8 isUpdate
; /* True if this is an UPDATE operation */
1152 u8 bAffinityDone
= 0; /* True if the OP_Affinity operation has been run */
1153 int regRowid
= -1; /* Register holding ROWID value */
1155 isUpdate
= regOldData
!=0;
1157 v
= sqlite3GetVdbe(pParse
);
1159 assert( pTab
->pSelect
==0 ); /* This table is not a VIEW */
1162 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1163 ** normal rowid tables. nPkField is the number of key fields in the
1164 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1165 ** number of fields in the true primary key of the table. */
1166 if( HasRowid(pTab
) ){
1170 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1171 nPkField
= pPk
->nKeyCol
;
1174 /* Record that this module has started */
1175 VdbeModuleComment((v
, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1176 iDataCur
, iIdxCur
, regNewData
, regOldData
, pkChng
));
1178 /* Test all NOT NULL constraints.
1180 for(i
=0; i
<nCol
; i
++){
1181 if( i
==pTab
->iPKey
){
1184 onError
= pTab
->aCol
[i
].notNull
;
1185 if( onError
==OE_None
) continue;
1186 if( overrideError
!=OE_Default
){
1187 onError
= overrideError
;
1188 }else if( onError
==OE_Default
){
1191 if( onError
==OE_Replace
&& pTab
->aCol
[i
].pDflt
==0 ){
1194 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1195 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1198 sqlite3MayAbort(pParse
);
1202 char *zMsg
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
,
1203 pTab
->aCol
[i
].zName
);
1204 sqlite3VdbeAddOp4(v
, OP_HaltIfNull
, SQLITE_CONSTRAINT_NOTNULL
, onError
,
1205 regNewData
+1+i
, zMsg
, P4_DYNAMIC
);
1206 sqlite3VdbeChangeP5(v
, P5_ConstraintNotNull
);
1211 sqlite3VdbeAddOp2(v
, OP_IsNull
, regNewData
+1+i
, ignoreDest
);
1216 assert( onError
==OE_Replace
);
1217 j1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regNewData
+1+i
); VdbeCoverage(v
);
1218 sqlite3ExprCode(pParse
, pTab
->aCol
[i
].pDflt
, regNewData
+1+i
);
1219 sqlite3VdbeJumpHere(v
, j1
);
1225 /* Test all CHECK constraints
1227 #ifndef SQLITE_OMIT_CHECK
1228 if( pTab
->pCheck
&& (db
->flags
& SQLITE_IgnoreChecks
)==0 ){
1229 ExprList
*pCheck
= pTab
->pCheck
;
1230 pParse
->ckBase
= regNewData
+1;
1231 onError
= overrideError
!=OE_Default
? overrideError
: OE_Abort
;
1232 for(i
=0; i
<pCheck
->nExpr
; i
++){
1233 int allOk
= sqlite3VdbeMakeLabel(v
);
1234 sqlite3ExprIfTrue(pParse
, pCheck
->a
[i
].pExpr
, allOk
, SQLITE_JUMPIFNULL
);
1235 if( onError
==OE_Ignore
){
1236 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, ignoreDest
);
1238 char *zName
= pCheck
->a
[i
].zName
;
1239 if( zName
==0 ) zName
= pTab
->zName
;
1240 if( onError
==OE_Replace
) onError
= OE_Abort
; /* IMP: R-15569-63625 */
1241 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_CHECK
,
1242 onError
, zName
, P4_TRANSIENT
,
1243 P5_ConstraintCheck
);
1245 sqlite3VdbeResolveLabel(v
, allOk
);
1248 #endif /* !defined(SQLITE_OMIT_CHECK) */
1250 /* If rowid is changing, make sure the new rowid does not previously
1251 ** exist in the table.
1253 if( pkChng
&& pPk
==0 ){
1254 int addrRowidOk
= sqlite3VdbeMakeLabel(v
);
1256 /* Figure out what action to take in case of a rowid collision */
1257 onError
= pTab
->keyConf
;
1258 if( overrideError
!=OE_Default
){
1259 onError
= overrideError
;
1260 }else if( onError
==OE_Default
){
1265 /* pkChng!=0 does not mean that the rowid has change, only that
1266 ** it might have changed. Skip the conflict logic below if the rowid
1268 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRowidOk
, regOldData
);
1269 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
1273 /* If the response to a rowid conflict is REPLACE but the response
1274 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1275 ** to defer the running of the rowid conflict checking until after
1276 ** the UNIQUE constraints have run.
1278 if( onError
==OE_Replace
&& overrideError
!=OE_Replace
){
1279 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1280 if( pIdx
->onError
==OE_Ignore
|| pIdx
->onError
==OE_Fail
){
1281 ipkTop
= sqlite3VdbeAddOp0(v
, OP_Goto
);
1287 /* Check to see if the new rowid already exists in the table. Skip
1288 ** the following conflict logic if it does not. */
1289 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRowidOk
, regNewData
);
1292 /* Generate code that deals with a rowid collision */
1296 /* Fall thru into the next case */
1301 sqlite3RowidConstraint(pParse
, onError
, pTab
);
1305 /* If there are DELETE triggers on this table and the
1306 ** recursive-triggers flag is set, call GenerateRowDelete() to
1307 ** remove the conflicting row from the table. This will fire
1308 ** the triggers and remove both the table and index b-tree entries.
1310 ** Otherwise, if there are no triggers or the recursive-triggers
1311 ** flag is not set, but the table has one or more indexes, call
1312 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1313 ** only. The table b-tree entry will be replaced by the new entry
1314 ** when it is inserted.
1316 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1317 ** also invoke MultiWrite() to indicate that this VDBE may require
1318 ** statement rollback (if the statement is aborted after the delete
1319 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1320 ** but being more selective here allows statements like:
1322 ** REPLACE INTO t(rowid) VALUES($newrowid)
1324 ** to run without a statement journal if there are no indexes on the
1327 Trigger
*pTrigger
= 0;
1328 if( db
->flags
&SQLITE_RecTriggers
){
1329 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
1331 if( pTrigger
|| sqlite3FkRequired(pParse
, pTab
, 0, 0) ){
1332 sqlite3MultiWrite(pParse
);
1333 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
1334 regNewData
, 1, 0, OE_Replace
, 1);
1335 }else if( pTab
->pIndex
){
1336 sqlite3MultiWrite(pParse
);
1337 sqlite3GenerateRowIndexDelete(pParse
, pTab
, iDataCur
, iIdxCur
, 0);
1343 /*assert( seenReplace==0 );*/
1344 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, ignoreDest
);
1348 sqlite3VdbeResolveLabel(v
, addrRowidOk
);
1350 ipkBottom
= sqlite3VdbeAddOp0(v
, OP_Goto
);
1351 sqlite3VdbeJumpHere(v
, ipkTop
);
1355 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1356 ** index and making sure that duplicate entries do not already exist.
1357 ** Compute the revised record entries for indices as we go.
1359 ** This loop also handles the case of the PRIMARY KEY index for a
1360 ** WITHOUT ROWID table.
1362 for(ix
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, ix
++){
1363 int regIdx
; /* Range of registers hold conent for pIdx */
1364 int regR
; /* Range of registers holding conflicting PK */
1365 int iThisCur
; /* Cursor for this UNIQUE index */
1366 int addrUniqueOk
; /* Jump here if the UNIQUE constraint is satisfied */
1368 if( aRegIdx
[ix
]==0 ) continue; /* Skip indices that do not change */
1369 if( bAffinityDone
==0 ){
1370 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
1373 iThisCur
= iIdxCur
+ix
;
1374 addrUniqueOk
= sqlite3VdbeMakeLabel(v
);
1376 /* Skip partial indices for which the WHERE clause is not true */
1377 if( pIdx
->pPartIdxWhere
){
1378 sqlite3VdbeAddOp2(v
, OP_Null
, 0, aRegIdx
[ix
]);
1379 pParse
->ckBase
= regNewData
+1;
1380 sqlite3ExprIfFalse(pParse
, pIdx
->pPartIdxWhere
, addrUniqueOk
,
1385 /* Create a record for this index entry as it should appear after
1386 ** the insert or update. Store that record in the aRegIdx[ix] register
1388 regIdx
= sqlite3GetTempRange(pParse
, pIdx
->nColumn
);
1389 for(i
=0; i
<pIdx
->nColumn
; i
++){
1390 int iField
= pIdx
->aiColumn
[i
];
1392 if( iField
<0 || iField
==pTab
->iPKey
){
1393 if( regRowid
==regIdx
+i
) continue; /* ROWID already in regIdx+i */
1395 regRowid
= pIdx
->pPartIdxWhere
? -1 : regIdx
+i
;
1397 x
= iField
+ regNewData
+ 1;
1399 sqlite3VdbeAddOp2(v
, OP_SCopy
, x
, regIdx
+i
);
1400 VdbeComment((v
, "%s", iField
<0 ? "rowid" : pTab
->aCol
[iField
].zName
));
1402 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regIdx
, pIdx
->nColumn
, aRegIdx
[ix
]);
1403 VdbeComment((v
, "for %s", pIdx
->zName
));
1404 sqlite3ExprCacheAffinityChange(pParse
, regIdx
, pIdx
->nColumn
);
1406 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1407 ** of a WITHOUT ROWID table and there has been no change the
1408 ** primary key, then no collision is possible. The collision detection
1409 ** logic below can all be skipped. */
1410 if( isUpdate
&& pPk
==pIdx
&& pkChng
==0 ){
1411 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
1415 /* Find out what action to take in case there is a uniqueness conflict */
1416 onError
= pIdx
->onError
;
1417 if( onError
==OE_None
){
1418 sqlite3ReleaseTempRange(pParse
, regIdx
, pIdx
->nColumn
);
1419 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
1420 continue; /* pIdx is not a UNIQUE index */
1422 if( overrideError
!=OE_Default
){
1423 onError
= overrideError
;
1424 }else if( onError
==OE_Default
){
1428 /* Check to see if the new index entry will be unique */
1429 sqlite3VdbeAddOp4Int(v
, OP_NoConflict
, iThisCur
, addrUniqueOk
,
1430 regIdx
, pIdx
->nKeyCol
); VdbeCoverage(v
);
1432 /* Generate code to handle collisions */
1433 regR
= (pIdx
==pPk
) ? regIdx
: sqlite3GetTempRange(pParse
, nPkField
);
1434 if( isUpdate
|| onError
==OE_Replace
){
1435 if( HasRowid(pTab
) ){
1436 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iThisCur
, regR
);
1437 /* Conflict only if the rowid of the existing index entry
1438 ** is different from old-rowid */
1440 sqlite3VdbeAddOp3(v
, OP_Eq
, regR
, addrUniqueOk
, regOldData
);
1441 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
1446 /* Extract the PRIMARY KEY from the end of the index entry and
1447 ** store it in registers regR..regR+nPk-1 */
1449 for(i
=0; i
<pPk
->nKeyCol
; i
++){
1450 x
= sqlite3ColumnOfIndex(pIdx
, pPk
->aiColumn
[i
]);
1451 sqlite3VdbeAddOp3(v
, OP_Column
, iThisCur
, x
, regR
+i
);
1452 VdbeComment((v
, "%s.%s", pTab
->zName
,
1453 pTab
->aCol
[pPk
->aiColumn
[i
]].zName
));
1457 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1458 ** table, only conflict if the new PRIMARY KEY values are actually
1459 ** different from the old.
1461 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1462 ** of the matched index row are different from the original PRIMARY
1463 ** KEY values of this row before the update. */
1464 int addrJump
= sqlite3VdbeCurrentAddr(v
)+pPk
->nKeyCol
;
1466 int regCmp
= (IsPrimaryKeyIndex(pIdx
) ? regIdx
: regR
);
1468 for(i
=0; i
<pPk
->nKeyCol
; i
++){
1469 char *p4
= (char*)sqlite3LocateCollSeq(pParse
, pPk
->azColl
[i
]);
1470 x
= pPk
->aiColumn
[i
];
1471 if( i
==(pPk
->nKeyCol
-1) ){
1472 addrJump
= addrUniqueOk
;
1475 sqlite3VdbeAddOp4(v
, op
,
1476 regOldData
+1+x
, addrJump
, regCmp
+i
, p4
, P4_COLLSEQ
1478 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
1479 VdbeCoverageIf(v
, op
==OP_Eq
);
1480 VdbeCoverageIf(v
, op
==OP_Ne
);
1486 /* Generate code that executes if the new index entry is not unique */
1487 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1488 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1493 sqlite3UniqueConstraint(pParse
, onError
, pIdx
);
1497 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, ignoreDest
);
1501 Trigger
*pTrigger
= 0;
1502 assert( onError
==OE_Replace
);
1503 sqlite3MultiWrite(pParse
);
1504 if( db
->flags
&SQLITE_RecTriggers
){
1505 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
1507 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
1508 regR
, nPkField
, 0, OE_Replace
, pIdx
==pPk
);
1513 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
1514 sqlite3ReleaseTempRange(pParse
, regIdx
, pIdx
->nColumn
);
1515 if( regR
!=regIdx
) sqlite3ReleaseTempRange(pParse
, regR
, nPkField
);
1518 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, ipkTop
+1);
1519 sqlite3VdbeJumpHere(v
, ipkBottom
);
1522 *pbMayReplace
= seenReplace
;
1523 VdbeModuleComment((v
, "END: GenCnstCks(%d)", seenReplace
));
1527 ** This routine generates code to finish the INSERT or UPDATE operation
1528 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1529 ** A consecutive range of registers starting at regNewData contains the
1530 ** rowid and the content to be inserted.
1532 ** The arguments to this routine should be the same as the first six
1533 ** arguments to sqlite3GenerateConstraintChecks.
1535 void sqlite3CompleteInsertion(
1536 Parse
*pParse
, /* The parser context */
1537 Table
*pTab
, /* the table into which we are inserting */
1538 int iDataCur
, /* Cursor of the canonical data source */
1539 int iIdxCur
, /* First index cursor */
1540 int regNewData
, /* Range of content */
1541 int *aRegIdx
, /* Register used by each index. 0 for unused indices */
1542 int isUpdate
, /* True for UPDATE, False for INSERT */
1543 int appendBias
, /* True if this is likely to be an append */
1544 int useSeekResult
/* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1546 Vdbe
*v
; /* Prepared statements under construction */
1547 Index
*pIdx
; /* An index being inserted or updated */
1548 u8 pik_flags
; /* flag values passed to the btree insert */
1549 int regData
; /* Content registers (after the rowid) */
1550 int regRec
; /* Register holding assembled record for the table */
1551 int i
; /* Loop counter */
1552 u8 bAffinityDone
= 0; /* True if OP_Affinity has been run already */
1554 v
= sqlite3GetVdbe(pParse
);
1556 assert( pTab
->pSelect
==0 ); /* This table is not a VIEW */
1557 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
1558 if( aRegIdx
[i
]==0 ) continue;
1560 if( pIdx
->pPartIdxWhere
){
1561 sqlite3VdbeAddOp2(v
, OP_IsNull
, aRegIdx
[i
], sqlite3VdbeCurrentAddr(v
)+2);
1564 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iIdxCur
+i
, aRegIdx
[i
]);
1566 if( useSeekResult
) pik_flags
= OPFLAG_USESEEKRESULT
;
1567 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
1568 assert( pParse
->nested
==0 );
1569 pik_flags
|= OPFLAG_NCHANGE
;
1571 if( pik_flags
) sqlite3VdbeChangeP5(v
, pik_flags
);
1573 if( !HasRowid(pTab
) ) return;
1574 regData
= regNewData
+ 1;
1575 regRec
= sqlite3GetTempReg(pParse
);
1576 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regData
, pTab
->nCol
, regRec
);
1577 if( !bAffinityDone
) sqlite3TableAffinity(v
, pTab
, 0);
1578 sqlite3ExprCacheAffinityChange(pParse
, regData
, pTab
->nCol
);
1579 if( pParse
->nested
){
1582 pik_flags
= OPFLAG_NCHANGE
;
1583 pik_flags
|= (isUpdate
?OPFLAG_ISUPDATE
:OPFLAG_LASTROWID
);
1586 pik_flags
|= OPFLAG_APPEND
;
1588 if( useSeekResult
){
1589 pik_flags
|= OPFLAG_USESEEKRESULT
;
1591 sqlite3VdbeAddOp3(v
, OP_Insert
, iDataCur
, regRec
, regNewData
);
1592 if( !pParse
->nested
){
1593 sqlite3VdbeChangeP4(v
, -1, pTab
->zName
, P4_TRANSIENT
);
1595 sqlite3VdbeChangeP5(v
, pik_flags
);
1599 ** Allocate cursors for the pTab table and all its indices and generate
1600 ** code to open and initialized those cursors.
1602 ** The cursor for the object that contains the complete data (normally
1603 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1604 ** ROWID table) is returned in *piDataCur. The first index cursor is
1605 ** returned in *piIdxCur. The number of indices is returned.
1607 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1608 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1609 ** If iBase is negative, then allocate the next available cursor.
1611 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1612 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1613 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1614 ** pTab->pIndex list.
1616 ** If pTab is a virtual table, then this routine is a no-op and the
1617 ** *piDataCur and *piIdxCur values are left uninitialized.
1619 int sqlite3OpenTableAndIndices(
1620 Parse
*pParse
, /* Parsing context */
1621 Table
*pTab
, /* Table to be opened */
1622 int op
, /* OP_OpenRead or OP_OpenWrite */
1623 int iBase
, /* Use this for the table cursor, if there is one */
1624 u8
*aToOpen
, /* If not NULL: boolean for each table and index */
1625 int *piDataCur
, /* Write the database source cursor number here */
1626 int *piIdxCur
/* Write the first index cursor number here */
1634 assert( op
==OP_OpenRead
|| op
==OP_OpenWrite
);
1635 if( IsVirtual(pTab
) ){
1636 /* This routine is a no-op for virtual tables. Leave the output
1637 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1638 ** can detect if they are used by mistake in the caller. */
1641 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1642 v
= sqlite3GetVdbe(pParse
);
1644 if( iBase
<0 ) iBase
= pParse
->nTab
;
1646 if( piDataCur
) *piDataCur
= iDataCur
;
1647 if( HasRowid(pTab
) && (aToOpen
==0 || aToOpen
[0]) ){
1648 sqlite3OpenTable(pParse
, iDataCur
, iDb
, pTab
, op
);
1650 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, op
==OP_OpenWrite
, pTab
->zName
);
1652 if( piIdxCur
) *piIdxCur
= iBase
;
1653 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
1654 int iIdxCur
= iBase
++;
1655 assert( pIdx
->pSchema
==pTab
->pSchema
);
1656 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) && piDataCur
){
1657 *piDataCur
= iIdxCur
;
1659 if( aToOpen
==0 || aToOpen
[i
+1] ){
1660 sqlite3VdbeAddOp3(v
, op
, iIdxCur
, pIdx
->tnum
, iDb
);
1661 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1662 VdbeComment((v
, "%s", pIdx
->zName
));
1665 if( iBase
>pParse
->nTab
) pParse
->nTab
= iBase
;
1672 ** The following global variable is incremented whenever the
1673 ** transfer optimization is used. This is used for testing
1674 ** purposes only - to make sure the transfer optimization really
1675 ** is happening when it is supposed to.
1677 int sqlite3_xferopt_count
;
1678 #endif /* SQLITE_TEST */
1681 #ifndef SQLITE_OMIT_XFER_OPT
1683 ** Check to collation names to see if they are compatible.
1685 static int xferCompatibleCollation(const char *z1
, const char *z2
){
1692 return sqlite3StrICmp(z1
, z2
)==0;
1697 ** Check to see if index pSrc is compatible as a source of data
1698 ** for index pDest in an insert transfer optimization. The rules
1699 ** for a compatible index:
1701 ** * The index is over the same set of columns
1702 ** * The same DESC and ASC markings occurs on all columns
1703 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1704 ** * The same collating sequence on each column
1705 ** * The index has the exact same WHERE clause
1707 static int xferCompatibleIndex(Index
*pDest
, Index
*pSrc
){
1709 assert( pDest
&& pSrc
);
1710 assert( pDest
->pTable
!=pSrc
->pTable
);
1711 if( pDest
->nKeyCol
!=pSrc
->nKeyCol
){
1712 return 0; /* Different number of columns */
1714 if( pDest
->onError
!=pSrc
->onError
){
1715 return 0; /* Different conflict resolution strategies */
1717 for(i
=0; i
<pSrc
->nKeyCol
; i
++){
1718 if( pSrc
->aiColumn
[i
]!=pDest
->aiColumn
[i
] ){
1719 return 0; /* Different columns indexed */
1721 if( pSrc
->aSortOrder
[i
]!=pDest
->aSortOrder
[i
] ){
1722 return 0; /* Different sort orders */
1724 if( !xferCompatibleCollation(pSrc
->azColl
[i
],pDest
->azColl
[i
]) ){
1725 return 0; /* Different collating sequences */
1728 if( sqlite3ExprCompare(pSrc
->pPartIdxWhere
, pDest
->pPartIdxWhere
, -1) ){
1729 return 0; /* Different WHERE clauses */
1732 /* If no test above fails then the indices must be compatible */
1737 ** Attempt the transfer optimization on INSERTs of the form
1739 ** INSERT INTO tab1 SELECT * FROM tab2;
1741 ** The xfer optimization transfers raw records from tab2 over to tab1.
1742 ** Columns are not decoded and reassembled, which greatly improves
1743 ** performance. Raw index records are transferred in the same way.
1745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1746 ** There are lots of rules for determining compatibility - see comments
1747 ** embedded in the code for details.
1749 ** This routine returns TRUE if the optimization is guaranteed to be used.
1750 ** Sometimes the xfer optimization will only work if the destination table
1751 ** is empty - a factor that can only be determined at run-time. In that
1752 ** case, this routine generates code for the xfer optimization but also
1753 ** does a test to see if the destination table is empty and jumps over the
1754 ** xfer optimization code if the test fails. In that case, this routine
1755 ** returns FALSE so that the caller will know to go ahead and generate
1756 ** an unoptimized transfer. This routine also returns FALSE if there
1757 ** is no chance that the xfer optimization can be applied.
1759 ** This optimization is particularly useful at making VACUUM run faster.
1761 static int xferOptimization(
1762 Parse
*pParse
, /* Parser context */
1763 Table
*pDest
, /* The table we are inserting into */
1764 Select
*pSelect
, /* A SELECT statement to use as the data source */
1765 int onError
, /* How to handle constraint errors */
1766 int iDbDest
/* The database of pDest */
1768 ExprList
*pEList
; /* The result set of the SELECT */
1769 Table
*pSrc
; /* The table in the FROM clause of SELECT */
1770 Index
*pSrcIdx
, *pDestIdx
; /* Source and destination indices */
1771 struct SrcList_item
*pItem
; /* An element of pSelect->pSrc */
1772 int i
; /* Loop counter */
1773 int iDbSrc
; /* The database of pSrc */
1774 int iSrc
, iDest
; /* Cursors from source and destination */
1775 int addr1
, addr2
; /* Loop addresses */
1776 int emptyDestTest
= 0; /* Address of test for empty pDest */
1777 int emptySrcTest
= 0; /* Address of test for empty pSrc */
1778 Vdbe
*v
; /* The VDBE we are building */
1779 int regAutoinc
; /* Memory register used by AUTOINC */
1780 int destHasUniqueIdx
= 0; /* True if pDest has a UNIQUE index */
1781 int regData
, regRowid
; /* Registers holding data and rowid */
1784 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1786 if( pParse
->pWith
|| pSelect
->pWith
){
1787 /* Do not attempt to process this query if there are an WITH clauses
1788 ** attached to it. Proceeding may generate a false "no such table: xxx"
1789 ** error if pSelect reads from a CTE named "xxx". */
1792 if( sqlite3TriggerList(pParse
, pDest
) ){
1793 return 0; /* tab1 must not have triggers */
1795 #ifndef SQLITE_OMIT_VIRTUALTABLE
1796 if( pDest
->tabFlags
& TF_Virtual
){
1797 return 0; /* tab1 must not be a virtual table */
1800 if( onError
==OE_Default
){
1801 if( pDest
->iPKey
>=0 ) onError
= pDest
->keyConf
;
1802 if( onError
==OE_Default
) onError
= OE_Abort
;
1804 assert(pSelect
->pSrc
); /* allocated even if there is no FROM clause */
1805 if( pSelect
->pSrc
->nSrc
!=1 ){
1806 return 0; /* FROM clause must have exactly one term */
1808 if( pSelect
->pSrc
->a
[0].pSelect
){
1809 return 0; /* FROM clause cannot contain a subquery */
1811 if( pSelect
->pWhere
){
1812 return 0; /* SELECT may not have a WHERE clause */
1814 if( pSelect
->pOrderBy
){
1815 return 0; /* SELECT may not have an ORDER BY clause */
1817 /* Do not need to test for a HAVING clause. If HAVING is present but
1818 ** there is no ORDER BY, we will get an error. */
1819 if( pSelect
->pGroupBy
){
1820 return 0; /* SELECT may not have a GROUP BY clause */
1822 if( pSelect
->pLimit
){
1823 return 0; /* SELECT may not have a LIMIT clause */
1825 assert( pSelect
->pOffset
==0 ); /* Must be so if pLimit==0 */
1826 if( pSelect
->pPrior
){
1827 return 0; /* SELECT may not be a compound query */
1829 if( pSelect
->selFlags
& SF_Distinct
){
1830 return 0; /* SELECT may not be DISTINCT */
1832 pEList
= pSelect
->pEList
;
1833 assert( pEList
!=0 );
1834 if( pEList
->nExpr
!=1 ){
1835 return 0; /* The result set must have exactly one column */
1837 assert( pEList
->a
[0].pExpr
);
1838 if( pEList
->a
[0].pExpr
->op
!=TK_ALL
){
1839 return 0; /* The result set must be the special operator "*" */
1842 /* At this point we have established that the statement is of the
1843 ** correct syntactic form to participate in this optimization. Now
1844 ** we have to check the semantics.
1846 pItem
= pSelect
->pSrc
->a
;
1847 pSrc
= sqlite3LocateTableItem(pParse
, 0, pItem
);
1849 return 0; /* FROM clause does not contain a real table */
1852 return 0; /* tab1 and tab2 may not be the same table */
1854 if( HasRowid(pDest
)!=HasRowid(pSrc
) ){
1855 return 0; /* source and destination must both be WITHOUT ROWID or not */
1857 #ifndef SQLITE_OMIT_VIRTUALTABLE
1858 if( pSrc
->tabFlags
& TF_Virtual
){
1859 return 0; /* tab2 must not be a virtual table */
1862 if( pSrc
->pSelect
){
1863 return 0; /* tab2 may not be a view */
1865 if( pDest
->nCol
!=pSrc
->nCol
){
1866 return 0; /* Number of columns must be the same in tab1 and tab2 */
1868 if( pDest
->iPKey
!=pSrc
->iPKey
){
1869 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
1871 for(i
=0; i
<pDest
->nCol
; i
++){
1872 Column
*pDestCol
= &pDest
->aCol
[i
];
1873 Column
*pSrcCol
= &pSrc
->aCol
[i
];
1874 if( pDestCol
->affinity
!=pSrcCol
->affinity
){
1875 return 0; /* Affinity must be the same on all columns */
1877 if( !xferCompatibleCollation(pDestCol
->zColl
, pSrcCol
->zColl
) ){
1878 return 0; /* Collating sequence must be the same on all columns */
1880 if( pDestCol
->notNull
&& !pSrcCol
->notNull
){
1881 return 0; /* tab2 must be NOT NULL if tab1 is */
1883 /* Default values for second and subsequent columns need to match. */
1885 && ((pDestCol
->zDflt
==0)!=(pSrcCol
->zDflt
==0)
1886 || (pDestCol
->zDflt
&& strcmp(pDestCol
->zDflt
, pSrcCol
->zDflt
)!=0))
1888 return 0; /* Default values must be the same for all columns */
1891 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
1892 if( IsUniqueIndex(pDestIdx
) ){
1893 destHasUniqueIdx
= 1;
1895 for(pSrcIdx
=pSrc
->pIndex
; pSrcIdx
; pSrcIdx
=pSrcIdx
->pNext
){
1896 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
1899 return 0; /* pDestIdx has no corresponding index in pSrc */
1902 #ifndef SQLITE_OMIT_CHECK
1903 if( pDest
->pCheck
&& sqlite3ExprListCompare(pSrc
->pCheck
,pDest
->pCheck
,-1) ){
1904 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
1907 #ifndef SQLITE_OMIT_FOREIGN_KEY
1908 /* Disallow the transfer optimization if the destination table constains
1909 ** any foreign key constraints. This is more restrictive than necessary.
1910 ** But the main beneficiary of the transfer optimization is the VACUUM
1911 ** command, and the VACUUM command disables foreign key constraints. So
1912 ** the extra complication to make this rule less restrictive is probably
1913 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1915 if( (pParse
->db
->flags
& SQLITE_ForeignKeys
)!=0 && pDest
->pFKey
!=0 ){
1919 if( (pParse
->db
->flags
& SQLITE_CountRows
)!=0 ){
1920 return 0; /* xfer opt does not play well with PRAGMA count_changes */
1923 /* If we get this far, it means that the xfer optimization is at
1924 ** least a possibility, though it might only work if the destination
1925 ** table (tab1) is initially empty.
1928 sqlite3_xferopt_count
++;
1930 iDbSrc
= sqlite3SchemaToIndex(pParse
->db
, pSrc
->pSchema
);
1931 v
= sqlite3GetVdbe(pParse
);
1932 sqlite3CodeVerifySchema(pParse
, iDbSrc
);
1933 iSrc
= pParse
->nTab
++;
1934 iDest
= pParse
->nTab
++;
1935 regAutoinc
= autoIncBegin(pParse
, iDbDest
, pDest
);
1936 regData
= sqlite3GetTempReg(pParse
);
1937 regRowid
= sqlite3GetTempReg(pParse
);
1938 sqlite3OpenTable(pParse
, iDest
, iDbDest
, pDest
, OP_OpenWrite
);
1939 assert( HasRowid(pDest
) || destHasUniqueIdx
);
1940 if( (pDest
->iPKey
<0 && pDest
->pIndex
!=0) /* (1) */
1941 || destHasUniqueIdx
/* (2) */
1942 || (onError
!=OE_Abort
&& onError
!=OE_Rollback
) /* (3) */
1944 /* In some circumstances, we are able to run the xfer optimization
1945 ** only if the destination table is initially empty. This code makes
1946 ** that determination. Conditions under which the destination must
1949 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1950 ** (If the destination is not initially empty, the rowid fields
1951 ** of index entries might need to change.)
1953 ** (2) The destination has a unique index. (The xfer optimization
1954 ** is unable to test uniqueness.)
1956 ** (3) onError is something other than OE_Abort and OE_Rollback.
1958 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iDest
, 0); VdbeCoverage(v
);
1959 emptyDestTest
= sqlite3VdbeAddOp2(v
, OP_Goto
, 0, 0);
1960 sqlite3VdbeJumpHere(v
, addr1
);
1962 if( HasRowid(pSrc
) ){
1963 sqlite3OpenTable(pParse
, iSrc
, iDbSrc
, pSrc
, OP_OpenRead
);
1964 emptySrcTest
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
1965 if( pDest
->iPKey
>=0 ){
1966 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
1967 addr2
= sqlite3VdbeAddOp3(v
, OP_NotExists
, iDest
, 0, regRowid
);
1969 sqlite3RowidConstraint(pParse
, onError
, pDest
);
1970 sqlite3VdbeJumpHere(v
, addr2
);
1971 autoIncStep(pParse
, regAutoinc
, regRowid
);
1972 }else if( pDest
->pIndex
==0 ){
1973 addr1
= sqlite3VdbeAddOp2(v
, OP_NewRowid
, iDest
, regRowid
);
1975 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
1976 assert( (pDest
->tabFlags
& TF_Autoincrement
)==0 );
1978 sqlite3VdbeAddOp2(v
, OP_RowData
, iSrc
, regData
);
1979 sqlite3VdbeAddOp3(v
, OP_Insert
, iDest
, regData
, regRowid
);
1980 sqlite3VdbeChangeP5(v
, OPFLAG_NCHANGE
|OPFLAG_LASTROWID
|OPFLAG_APPEND
);
1981 sqlite3VdbeChangeP4(v
, -1, pDest
->zName
, 0);
1982 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
); VdbeCoverage(v
);
1983 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
1984 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
1986 sqlite3TableLock(pParse
, iDbDest
, pDest
->tnum
, 1, pDest
->zName
);
1987 sqlite3TableLock(pParse
, iDbSrc
, pSrc
->tnum
, 0, pSrc
->zName
);
1989 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
1990 for(pSrcIdx
=pSrc
->pIndex
; ALWAYS(pSrcIdx
); pSrcIdx
=pSrcIdx
->pNext
){
1991 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
1994 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iSrc
, pSrcIdx
->tnum
, iDbSrc
);
1995 sqlite3VdbeSetP4KeyInfo(pParse
, pSrcIdx
);
1996 VdbeComment((v
, "%s", pSrcIdx
->zName
));
1997 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, iDest
, pDestIdx
->tnum
, iDbDest
);
1998 sqlite3VdbeSetP4KeyInfo(pParse
, pDestIdx
);
1999 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
);
2000 VdbeComment((v
, "%s", pDestIdx
->zName
));
2001 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
2002 sqlite3VdbeAddOp2(v
, OP_RowKey
, iSrc
, regData
);
2003 sqlite3VdbeAddOp3(v
, OP_IdxInsert
, iDest
, regData
, 1);
2004 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
+1); VdbeCoverage(v
);
2005 sqlite3VdbeJumpHere(v
, addr1
);
2006 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
2007 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
2009 if( emptySrcTest
) sqlite3VdbeJumpHere(v
, emptySrcTest
);
2010 sqlite3ReleaseTempReg(pParse
, regRowid
);
2011 sqlite3ReleaseTempReg(pParse
, regData
);
2012 if( emptyDestTest
){
2013 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, 0);
2014 sqlite3VdbeJumpHere(v
, emptyDestTest
);
2015 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
2021 #endif /* SQLITE_OMIT_XFER_OPT */