Finish refactoring of DomCodeToUsLayoutKeyboardCode().
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / insert.c
bloba5c3f3e92d437dcb0bd349017afae3e5e4c00843
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum=pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' NONE
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
82 int n;
83 Table *pTab = pIdx->pTable;
84 sqlite3 *db = sqlite3VdbeDb(v);
85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86 if( !pIdx->zColAff ){
87 db->mallocFailed = 1;
88 return 0;
90 for(n=0; n<pIdx->nColumn; n++){
91 i16 x = pIdx->aiColumn[n];
92 pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
94 pIdx->zColAff[n] = 0;
97 return pIdx->zColAff;
101 ** Compute the affinity string for table pTab, if it has not already been
102 ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities.
104 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and
105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
106 ** for register iReg and following. Or if affinities exists and iReg==0,
107 ** then just set the P4 operand of the previous opcode (which should be
108 ** an OP_MakeRecord) to the affinity string.
110 ** A column affinity string has one character per column:
112 ** Character Column affinity
113 ** ------------------------------
114 ** 'A' NONE
115 ** 'B' TEXT
116 ** 'C' NUMERIC
117 ** 'D' INTEGER
118 ** 'E' REAL
120 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
121 int i;
122 char *zColAff = pTab->zColAff;
123 if( zColAff==0 ){
124 sqlite3 *db = sqlite3VdbeDb(v);
125 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
126 if( !zColAff ){
127 db->mallocFailed = 1;
128 return;
131 for(i=0; i<pTab->nCol; i++){
132 zColAff[i] = pTab->aCol[i].affinity;
135 zColAff[i--] = 0;
136 }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE );
137 pTab->zColAff = zColAff;
139 i = sqlite3Strlen30(zColAff);
140 if( i ){
141 if( iReg ){
142 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
143 }else{
144 sqlite3VdbeChangeP4(v, -1, zColAff, i);
150 ** Return non-zero if the table pTab in database iDb or any of its indices
151 ** have been opened at any point in the VDBE program. This is used to see if
152 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
153 ** run without using a temporary table for the results of the SELECT.
155 static int readsTable(Parse *p, int iDb, Table *pTab){
156 Vdbe *v = sqlite3GetVdbe(p);
157 int i;
158 int iEnd = sqlite3VdbeCurrentAddr(v);
159 #ifndef SQLITE_OMIT_VIRTUALTABLE
160 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
161 #endif
163 for(i=1; i<iEnd; i++){
164 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
165 assert( pOp!=0 );
166 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
167 Index *pIndex;
168 int tnum = pOp->p2;
169 if( tnum==pTab->tnum ){
170 return 1;
172 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
173 if( tnum==pIndex->tnum ){
174 return 1;
178 #ifndef SQLITE_OMIT_VIRTUALTABLE
179 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
180 assert( pOp->p4.pVtab!=0 );
181 assert( pOp->p4type==P4_VTAB );
182 return 1;
184 #endif
186 return 0;
189 #ifndef SQLITE_OMIT_AUTOINCREMENT
191 ** Locate or create an AutoincInfo structure associated with table pTab
192 ** which is in database iDb. Return the register number for the register
193 ** that holds the maximum rowid.
195 ** There is at most one AutoincInfo structure per table even if the
196 ** same table is autoincremented multiple times due to inserts within
197 ** triggers. A new AutoincInfo structure is created if this is the
198 ** first use of table pTab. On 2nd and subsequent uses, the original
199 ** AutoincInfo structure is used.
201 ** Three memory locations are allocated:
203 ** (1) Register to hold the name of the pTab table.
204 ** (2) Register to hold the maximum ROWID of pTab.
205 ** (3) Register to hold the rowid in sqlite_sequence of pTab
207 ** The 2nd register is the one that is returned. That is all the
208 ** insert routine needs to know about.
210 static int autoIncBegin(
211 Parse *pParse, /* Parsing context */
212 int iDb, /* Index of the database holding pTab */
213 Table *pTab /* The table we are writing to */
215 int memId = 0; /* Register holding maximum rowid */
216 if( pTab->tabFlags & TF_Autoincrement ){
217 Parse *pToplevel = sqlite3ParseToplevel(pParse);
218 AutoincInfo *pInfo;
220 pInfo = pToplevel->pAinc;
221 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
222 if( pInfo==0 ){
223 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
224 if( pInfo==0 ) return 0;
225 pInfo->pNext = pToplevel->pAinc;
226 pToplevel->pAinc = pInfo;
227 pInfo->pTab = pTab;
228 pInfo->iDb = iDb;
229 pToplevel->nMem++; /* Register to hold name of table */
230 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
231 pToplevel->nMem++; /* Rowid in sqlite_sequence */
233 memId = pInfo->regCtr;
235 return memId;
239 ** This routine generates code that will initialize all of the
240 ** register used by the autoincrement tracker.
242 void sqlite3AutoincrementBegin(Parse *pParse){
243 AutoincInfo *p; /* Information about an AUTOINCREMENT */
244 sqlite3 *db = pParse->db; /* The database connection */
245 Db *pDb; /* Database only autoinc table */
246 int memId; /* Register holding max rowid */
247 int addr; /* A VDBE address */
248 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
250 /* This routine is never called during trigger-generation. It is
251 ** only called from the top-level */
252 assert( pParse->pTriggerTab==0 );
253 assert( pParse==sqlite3ParseToplevel(pParse) );
255 assert( v ); /* We failed long ago if this is not so */
256 for(p = pParse->pAinc; p; p = p->pNext){
257 pDb = &db->aDb[p->iDb];
258 memId = p->regCtr;
259 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
260 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
261 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
262 addr = sqlite3VdbeCurrentAddr(v);
263 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
264 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
265 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
266 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
267 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
268 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
269 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
270 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
271 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
272 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
273 sqlite3VdbeAddOp0(v, OP_Close);
278 ** Update the maximum rowid for an autoincrement calculation.
280 ** This routine should be called when the top of the stack holds a
281 ** new rowid that is about to be inserted. If that new rowid is
282 ** larger than the maximum rowid in the memId memory cell, then the
283 ** memory cell is updated. The stack is unchanged.
285 static void autoIncStep(Parse *pParse, int memId, int regRowid){
286 if( memId>0 ){
287 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
292 ** This routine generates the code needed to write autoincrement
293 ** maximum rowid values back into the sqlite_sequence register.
294 ** Every statement that might do an INSERT into an autoincrement
295 ** table (either directly or through triggers) needs to call this
296 ** routine just before the "exit" code.
298 void sqlite3AutoincrementEnd(Parse *pParse){
299 AutoincInfo *p;
300 Vdbe *v = pParse->pVdbe;
301 sqlite3 *db = pParse->db;
303 assert( v );
304 for(p = pParse->pAinc; p; p = p->pNext){
305 Db *pDb = &db->aDb[p->iDb];
306 int j1;
307 int iRec;
308 int memId = p->regCtr;
310 iRec = sqlite3GetTempReg(pParse);
311 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
312 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
313 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
314 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
315 sqlite3VdbeJumpHere(v, j1);
316 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
317 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
318 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
319 sqlite3VdbeAddOp0(v, OP_Close);
320 sqlite3ReleaseTempReg(pParse, iRec);
323 #else
325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
326 ** above are all no-ops
328 # define autoIncBegin(A,B,C) (0)
329 # define autoIncStep(A,B,C)
330 #endif /* SQLITE_OMIT_AUTOINCREMENT */
333 /* Forward declaration */
334 static int xferOptimization(
335 Parse *pParse, /* Parser context */
336 Table *pDest, /* The table we are inserting into */
337 Select *pSelect, /* A SELECT statement to use as the data source */
338 int onError, /* How to handle constraint errors */
339 int iDbDest /* The database of pDest */
343 ** This routine is called to handle SQL of the following forms:
345 ** insert into TABLE (IDLIST) values(EXPRLIST)
346 ** insert into TABLE (IDLIST) select
348 ** The IDLIST following the table name is always optional. If omitted,
349 ** then a list of all columns for the table is substituted. The IDLIST
350 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
352 ** The pList parameter holds EXPRLIST in the first form of the INSERT
353 ** statement above, and pSelect is NULL. For the second form, pList is
354 ** NULL and pSelect is a pointer to the select statement used to generate
355 ** data for the insert.
357 ** The code generated follows one of four templates. For a simple
358 ** insert with data coming from a VALUES clause, the code executes
359 ** once straight down through. Pseudo-code follows (we call this
360 ** the "1st template"):
362 ** open write cursor to <table> and its indices
363 ** put VALUES clause expressions into registers
364 ** write the resulting record into <table>
365 ** cleanup
367 ** The three remaining templates assume the statement is of the form
369 ** INSERT INTO <table> SELECT ...
371 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
372 ** in other words if the SELECT pulls all columns from a single table
373 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
374 ** if <table2> and <table1> are distinct tables but have identical
375 ** schemas, including all the same indices, then a special optimization
376 ** is invoked that copies raw records from <table2> over to <table1>.
377 ** See the xferOptimization() function for the implementation of this
378 ** template. This is the 2nd template.
380 ** open a write cursor to <table>
381 ** open read cursor on <table2>
382 ** transfer all records in <table2> over to <table>
383 ** close cursors
384 ** foreach index on <table>
385 ** open a write cursor on the <table> index
386 ** open a read cursor on the corresponding <table2> index
387 ** transfer all records from the read to the write cursors
388 ** close cursors
389 ** end foreach
391 ** The 3rd template is for when the second template does not apply
392 ** and the SELECT clause does not read from <table> at any time.
393 ** The generated code follows this template:
395 ** X <- A
396 ** goto B
397 ** A: setup for the SELECT
398 ** loop over the rows in the SELECT
399 ** load values into registers R..R+n
400 ** yield X
401 ** end loop
402 ** cleanup after the SELECT
403 ** end-coroutine X
404 ** B: open write cursor to <table> and its indices
405 ** C: yield X, at EOF goto D
406 ** insert the select result into <table> from R..R+n
407 ** goto C
408 ** D: cleanup
410 ** The 4th template is used if the insert statement takes its
411 ** values from a SELECT but the data is being inserted into a table
412 ** that is also read as part of the SELECT. In the third form,
413 ** we have to use an intermediate table to store the results of
414 ** the select. The template is like this:
416 ** X <- A
417 ** goto B
418 ** A: setup for the SELECT
419 ** loop over the tables in the SELECT
420 ** load value into register R..R+n
421 ** yield X
422 ** end loop
423 ** cleanup after the SELECT
424 ** end co-routine R
425 ** B: open temp table
426 ** L: yield X, at EOF goto M
427 ** insert row from R..R+n into temp table
428 ** goto L
429 ** M: open write cursor to <table> and its indices
430 ** rewind temp table
431 ** C: loop over rows of intermediate table
432 ** transfer values form intermediate table into <table>
433 ** end loop
434 ** D: cleanup
436 void sqlite3Insert(
437 Parse *pParse, /* Parser context */
438 SrcList *pTabList, /* Name of table into which we are inserting */
439 Select *pSelect, /* A SELECT statement to use as the data source */
440 IdList *pColumn, /* Column names corresponding to IDLIST. */
441 int onError /* How to handle constraint errors */
443 sqlite3 *db; /* The main database structure */
444 Table *pTab; /* The table to insert into. aka TABLE */
445 char *zTab; /* Name of the table into which we are inserting */
446 const char *zDb; /* Name of the database holding this table */
447 int i, j, idx; /* Loop counters */
448 Vdbe *v; /* Generate code into this virtual machine */
449 Index *pIdx; /* For looping over indices of the table */
450 int nColumn; /* Number of columns in the data */
451 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
452 int iDataCur = 0; /* VDBE cursor that is the main data repository */
453 int iIdxCur = 0; /* First index cursor */
454 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
455 int endOfLoop; /* Label for the end of the insertion loop */
456 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
457 int addrInsTop = 0; /* Jump to label "D" */
458 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
459 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
460 int iDb; /* Index of database holding TABLE */
461 Db *pDb; /* The database containing table being inserted into */
462 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
463 u8 appendFlag = 0; /* True if the insert is likely to be an append */
464 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
465 u8 bIdListInOrder = 1; /* True if IDLIST is in table order */
466 ExprList *pList = 0; /* List of VALUES() to be inserted */
468 /* Register allocations */
469 int regFromSelect = 0;/* Base register for data coming from SELECT */
470 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
471 int regRowCount = 0; /* Memory cell used for the row counter */
472 int regIns; /* Block of regs holding rowid+data being inserted */
473 int regRowid; /* registers holding insert rowid */
474 int regData; /* register holding first column to insert */
475 int *aRegIdx = 0; /* One register allocated to each index */
477 #ifndef SQLITE_OMIT_TRIGGER
478 int isView; /* True if attempting to insert into a view */
479 Trigger *pTrigger; /* List of triggers on pTab, if required */
480 int tmask; /* Mask of trigger times */
481 #endif
483 db = pParse->db;
484 memset(&dest, 0, sizeof(dest));
485 if( pParse->nErr || db->mallocFailed ){
486 goto insert_cleanup;
489 /* If the Select object is really just a simple VALUES() list with a
490 ** single row values (the common case) then keep that one row of values
491 ** and go ahead and discard the Select object
493 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
494 pList = pSelect->pEList;
495 pSelect->pEList = 0;
496 sqlite3SelectDelete(db, pSelect);
497 pSelect = 0;
500 /* Locate the table into which we will be inserting new information.
502 assert( pTabList->nSrc==1 );
503 zTab = pTabList->a[0].zName;
504 if( NEVER(zTab==0) ) goto insert_cleanup;
505 pTab = sqlite3SrcListLookup(pParse, pTabList);
506 if( pTab==0 ){
507 goto insert_cleanup;
509 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
510 assert( iDb<db->nDb );
511 pDb = &db->aDb[iDb];
512 zDb = pDb->zName;
513 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
514 goto insert_cleanup;
516 withoutRowid = !HasRowid(pTab);
518 /* Figure out if we have any triggers and if the table being
519 ** inserted into is a view
521 #ifndef SQLITE_OMIT_TRIGGER
522 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
523 isView = pTab->pSelect!=0;
524 #else
525 # define pTrigger 0
526 # define tmask 0
527 # define isView 0
528 #endif
529 #ifdef SQLITE_OMIT_VIEW
530 # undef isView
531 # define isView 0
532 #endif
533 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
535 /* If pTab is really a view, make sure it has been initialized.
536 ** ViewGetColumnNames() is a no-op if pTab is not a view.
538 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
539 goto insert_cleanup;
542 /* Cannot insert into a read-only table.
544 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
545 goto insert_cleanup;
548 /* Allocate a VDBE
550 v = sqlite3GetVdbe(pParse);
551 if( v==0 ) goto insert_cleanup;
552 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
553 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
555 #ifndef SQLITE_OMIT_XFER_OPT
556 /* If the statement is of the form
558 ** INSERT INTO <table1> SELECT * FROM <table2>;
560 ** Then special optimizations can be applied that make the transfer
561 ** very fast and which reduce fragmentation of indices.
563 ** This is the 2nd template.
565 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
566 assert( !pTrigger );
567 assert( pList==0 );
568 goto insert_end;
570 #endif /* SQLITE_OMIT_XFER_OPT */
572 /* If this is an AUTOINCREMENT table, look up the sequence number in the
573 ** sqlite_sequence table and store it in memory cell regAutoinc.
575 regAutoinc = autoIncBegin(pParse, iDb, pTab);
577 /* Allocate registers for holding the rowid of the new row,
578 ** the content of the new row, and the assembled row record.
580 regRowid = regIns = pParse->nMem+1;
581 pParse->nMem += pTab->nCol + 1;
582 if( IsVirtual(pTab) ){
583 regRowid++;
584 pParse->nMem++;
586 regData = regRowid+1;
588 /* If the INSERT statement included an IDLIST term, then make sure
589 ** all elements of the IDLIST really are columns of the table and
590 ** remember the column indices.
592 ** If the table has an INTEGER PRIMARY KEY column and that column
593 ** is named in the IDLIST, then record in the ipkColumn variable
594 ** the index into IDLIST of the primary key column. ipkColumn is
595 ** the index of the primary key as it appears in IDLIST, not as
596 ** is appears in the original table. (The index of the INTEGER
597 ** PRIMARY KEY in the original table is pTab->iPKey.)
599 if( pColumn ){
600 for(i=0; i<pColumn->nId; i++){
601 pColumn->a[i].idx = -1;
603 for(i=0; i<pColumn->nId; i++){
604 for(j=0; j<pTab->nCol; j++){
605 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
606 pColumn->a[i].idx = j;
607 if( i!=j ) bIdListInOrder = 0;
608 if( j==pTab->iPKey ){
609 ipkColumn = i; assert( !withoutRowid );
611 break;
614 if( j>=pTab->nCol ){
615 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
616 ipkColumn = i;
617 bIdListInOrder = 0;
618 }else{
619 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
620 pTabList, 0, pColumn->a[i].zName);
621 pParse->checkSchema = 1;
622 goto insert_cleanup;
628 /* Figure out how many columns of data are supplied. If the data
629 ** is coming from a SELECT statement, then generate a co-routine that
630 ** produces a single row of the SELECT on each invocation. The
631 ** co-routine is the common header to the 3rd and 4th templates.
633 if( pSelect ){
634 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */
635 int regYield; /* Register holding co-routine entry-point */
636 int addrTop; /* Top of the co-routine */
637 int rc; /* Result code */
639 regYield = ++pParse->nMem;
640 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
641 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
642 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
643 dest.iSdst = bIdListInOrder ? regData : 0;
644 dest.nSdst = pTab->nCol;
645 rc = sqlite3Select(pParse, pSelect, &dest);
646 regFromSelect = dest.iSdst;
647 assert( pParse->nErr==0 || rc );
648 if( rc || db->mallocFailed ) goto insert_cleanup;
649 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
650 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
651 assert( pSelect->pEList );
652 nColumn = pSelect->pEList->nExpr;
654 /* Set useTempTable to TRUE if the result of the SELECT statement
655 ** should be written into a temporary table (template 4). Set to
656 ** FALSE if each output row of the SELECT can be written directly into
657 ** the destination table (template 3).
659 ** A temp table must be used if the table being updated is also one
660 ** of the tables being read by the SELECT statement. Also use a
661 ** temp table in the case of row triggers.
663 if( pTrigger || readsTable(pParse, iDb, pTab) ){
664 useTempTable = 1;
667 if( useTempTable ){
668 /* Invoke the coroutine to extract information from the SELECT
669 ** and add it to a transient table srcTab. The code generated
670 ** here is from the 4th template:
672 ** B: open temp table
673 ** L: yield X, goto M at EOF
674 ** insert row from R..R+n into temp table
675 ** goto L
676 ** M: ...
678 int regRec; /* Register to hold packed record */
679 int regTempRowid; /* Register to hold temp table ROWID */
680 int addrL; /* Label "L" */
682 srcTab = pParse->nTab++;
683 regRec = sqlite3GetTempReg(pParse);
684 regTempRowid = sqlite3GetTempReg(pParse);
685 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
686 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
688 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
689 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
690 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL);
691 sqlite3VdbeJumpHere(v, addrL);
692 sqlite3ReleaseTempReg(pParse, regRec);
693 sqlite3ReleaseTempReg(pParse, regTempRowid);
695 }else{
696 /* This is the case if the data for the INSERT is coming from a VALUES
697 ** clause
699 NameContext sNC;
700 memset(&sNC, 0, sizeof(sNC));
701 sNC.pParse = pParse;
702 srcTab = -1;
703 assert( useTempTable==0 );
704 nColumn = pList ? pList->nExpr : 0;
705 for(i=0; i<nColumn; i++){
706 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
707 goto insert_cleanup;
712 /* If there is no IDLIST term but the table has an integer primary
713 ** key, the set the ipkColumn variable to the integer primary key
714 ** column index in the original table definition.
716 if( pColumn==0 && nColumn>0 ){
717 ipkColumn = pTab->iPKey;
720 /* Make sure the number of columns in the source data matches the number
721 ** of columns to be inserted into the table.
723 if( IsVirtual(pTab) ){
724 for(i=0; i<pTab->nCol; i++){
725 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
728 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
729 sqlite3ErrorMsg(pParse,
730 "table %S has %d columns but %d values were supplied",
731 pTabList, 0, pTab->nCol-nHidden, nColumn);
732 goto insert_cleanup;
734 if( pColumn!=0 && nColumn!=pColumn->nId ){
735 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
736 goto insert_cleanup;
739 /* Initialize the count of rows to be inserted
741 if( db->flags & SQLITE_CountRows ){
742 regRowCount = ++pParse->nMem;
743 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
746 /* If this is not a view, open the table and and all indices */
747 if( !isView ){
748 int nIdx;
749 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
750 &iDataCur, &iIdxCur);
751 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
752 if( aRegIdx==0 ){
753 goto insert_cleanup;
755 for(i=0; i<nIdx; i++){
756 aRegIdx[i] = ++pParse->nMem;
760 /* This is the top of the main insertion loop */
761 if( useTempTable ){
762 /* This block codes the top of loop only. The complete loop is the
763 ** following pseudocode (template 4):
765 ** rewind temp table, if empty goto D
766 ** C: loop over rows of intermediate table
767 ** transfer values form intermediate table into <table>
768 ** end loop
769 ** D: ...
771 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
772 addrCont = sqlite3VdbeCurrentAddr(v);
773 }else if( pSelect ){
774 /* This block codes the top of loop only. The complete loop is the
775 ** following pseudocode (template 3):
777 ** C: yield X, at EOF goto D
778 ** insert the select result into <table> from R..R+n
779 ** goto C
780 ** D: ...
782 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
783 VdbeCoverage(v);
786 /* Run the BEFORE and INSTEAD OF triggers, if there are any
788 endOfLoop = sqlite3VdbeMakeLabel(v);
789 if( tmask & TRIGGER_BEFORE ){
790 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
792 /* build the NEW.* reference row. Note that if there is an INTEGER
793 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
794 ** translated into a unique ID for the row. But on a BEFORE trigger,
795 ** we do not know what the unique ID will be (because the insert has
796 ** not happened yet) so we substitute a rowid of -1
798 if( ipkColumn<0 ){
799 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
800 }else{
801 int j1;
802 assert( !withoutRowid );
803 if( useTempTable ){
804 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
805 }else{
806 assert( pSelect==0 ); /* Otherwise useTempTable is true */
807 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
809 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
810 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
811 sqlite3VdbeJumpHere(v, j1);
812 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
815 /* Cannot have triggers on a virtual table. If it were possible,
816 ** this block would have to account for hidden column.
818 assert( !IsVirtual(pTab) );
820 /* Create the new column data
822 for(i=0; i<pTab->nCol; i++){
823 if( pColumn==0 ){
824 j = i;
825 }else{
826 for(j=0; j<pColumn->nId; j++){
827 if( pColumn->a[j].idx==i ) break;
830 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
831 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
832 }else if( useTempTable ){
833 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
834 }else{
835 assert( pSelect==0 ); /* Otherwise useTempTable is true */
836 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
840 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
841 ** do not attempt any conversions before assembling the record.
842 ** If this is a real table, attempt conversions as required by the
843 ** table column affinities.
845 if( !isView ){
846 sqlite3TableAffinity(v, pTab, regCols+1);
849 /* Fire BEFORE or INSTEAD OF triggers */
850 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
851 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
853 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
856 /* Compute the content of the next row to insert into a range of
857 ** registers beginning at regIns.
859 if( !isView ){
860 if( IsVirtual(pTab) ){
861 /* The row that the VUpdate opcode will delete: none */
862 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
864 if( ipkColumn>=0 ){
865 if( useTempTable ){
866 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
867 }else if( pSelect ){
868 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
869 }else{
870 VdbeOp *pOp;
871 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
872 pOp = sqlite3VdbeGetOp(v, -1);
873 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
874 appendFlag = 1;
875 pOp->opcode = OP_NewRowid;
876 pOp->p1 = iDataCur;
877 pOp->p2 = regRowid;
878 pOp->p3 = regAutoinc;
881 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
882 ** to generate a unique primary key value.
884 if( !appendFlag ){
885 int j1;
886 if( !IsVirtual(pTab) ){
887 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
888 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
889 sqlite3VdbeJumpHere(v, j1);
890 }else{
891 j1 = sqlite3VdbeCurrentAddr(v);
892 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
894 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
896 }else if( IsVirtual(pTab) || withoutRowid ){
897 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
898 }else{
899 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
900 appendFlag = 1;
902 autoIncStep(pParse, regAutoinc, regRowid);
904 /* Compute data for all columns of the new entry, beginning
905 ** with the first column.
907 nHidden = 0;
908 for(i=0; i<pTab->nCol; i++){
909 int iRegStore = regRowid+1+i;
910 if( i==pTab->iPKey ){
911 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
912 ** Whenever this column is read, the rowid will be substituted
913 ** in its place. Hence, fill this column with a NULL to avoid
914 ** taking up data space with information that will never be used.
915 ** As there may be shallow copies of this value, make it a soft-NULL */
916 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
917 continue;
919 if( pColumn==0 ){
920 if( IsHiddenColumn(&pTab->aCol[i]) ){
921 assert( IsVirtual(pTab) );
922 j = -1;
923 nHidden++;
924 }else{
925 j = i - nHidden;
927 }else{
928 for(j=0; j<pColumn->nId; j++){
929 if( pColumn->a[j].idx==i ) break;
932 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
933 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
934 }else if( useTempTable ){
935 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
936 }else if( pSelect ){
937 if( regFromSelect!=regData ){
938 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
940 }else{
941 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
945 /* Generate code to check constraints and generate index keys and
946 ** do the insertion.
948 #ifndef SQLITE_OMIT_VIRTUALTABLE
949 if( IsVirtual(pTab) ){
950 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
951 sqlite3VtabMakeWritable(pParse, pTab);
952 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
953 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
954 sqlite3MayAbort(pParse);
955 }else
956 #endif
958 int isReplace; /* Set to true if constraints may cause a replace */
959 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
960 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
962 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
963 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
964 regIns, aRegIdx, 0, appendFlag, isReplace==0);
968 /* Update the count of rows that are inserted
970 if( (db->flags & SQLITE_CountRows)!=0 ){
971 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
974 if( pTrigger ){
975 /* Code AFTER triggers */
976 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
977 pTab, regData-2-pTab->nCol, onError, endOfLoop);
980 /* The bottom of the main insertion loop, if the data source
981 ** is a SELECT statement.
983 sqlite3VdbeResolveLabel(v, endOfLoop);
984 if( useTempTable ){
985 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
986 sqlite3VdbeJumpHere(v, addrInsTop);
987 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
988 }else if( pSelect ){
989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
990 sqlite3VdbeJumpHere(v, addrInsTop);
993 if( !IsVirtual(pTab) && !isView ){
994 /* Close all tables opened */
995 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
996 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
997 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1001 insert_end:
1002 /* Update the sqlite_sequence table by storing the content of the
1003 ** maximum rowid counter values recorded while inserting into
1004 ** autoincrement tables.
1006 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1007 sqlite3AutoincrementEnd(pParse);
1011 ** Return the number of rows inserted. If this routine is
1012 ** generating code because of a call to sqlite3NestedParse(), do not
1013 ** invoke the callback function.
1015 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1016 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1017 sqlite3VdbeSetNumCols(v, 1);
1018 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1021 insert_cleanup:
1022 sqlite3SrcListDelete(db, pTabList);
1023 sqlite3ExprListDelete(db, pList);
1024 sqlite3SelectDelete(db, pSelect);
1025 sqlite3IdListDelete(db, pColumn);
1026 sqlite3DbFree(db, aRegIdx);
1029 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1030 ** they may interfere with compilation of other functions in this file
1031 ** (or in another file, if this file becomes part of the amalgamation). */
1032 #ifdef isView
1033 #undef isView
1034 #endif
1035 #ifdef pTrigger
1036 #undef pTrigger
1037 #endif
1038 #ifdef tmask
1039 #undef tmask
1040 #endif
1043 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1044 ** on table pTab.
1046 ** The regNewData parameter is the first register in a range that contains
1047 ** the data to be inserted or the data after the update. There will be
1048 ** pTab->nCol+1 registers in this range. The first register (the one
1049 ** that regNewData points to) will contain the new rowid, or NULL in the
1050 ** case of a WITHOUT ROWID table. The second register in the range will
1051 ** contain the content of the first table column. The third register will
1052 ** contain the content of the second table column. And so forth.
1054 ** The regOldData parameter is similar to regNewData except that it contains
1055 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1056 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1057 ** checking regOldData for zero.
1059 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1060 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1061 ** might be modified by the UPDATE. If pkChng is false, then the key of
1062 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1064 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1065 ** was explicitly specified as part of the INSERT statement. If pkChng
1066 ** is zero, it means that the either rowid is computed automatically or
1067 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1068 ** pkChng will only be true if the INSERT statement provides an integer
1069 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1071 ** The code generated by this routine will store new index entries into
1072 ** registers identified by aRegIdx[]. No index entry is created for
1073 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1074 ** the same as the order of indices on the linked list of indices
1075 ** at pTab->pIndex.
1077 ** The caller must have already opened writeable cursors on the main
1078 ** table and all applicable indices (that is to say, all indices for which
1079 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1080 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1081 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1082 ** for the first index in the pTab->pIndex list. Cursors for other indices
1083 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1085 ** This routine also generates code to check constraints. NOT NULL,
1086 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1087 ** then the appropriate action is performed. There are five possible
1088 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1090 ** Constraint type Action What Happens
1091 ** --------------- ---------- ----------------------------------------
1092 ** any ROLLBACK The current transaction is rolled back and
1093 ** sqlite3_step() returns immediately with a
1094 ** return code of SQLITE_CONSTRAINT.
1096 ** any ABORT Back out changes from the current command
1097 ** only (do not do a complete rollback) then
1098 ** cause sqlite3_step() to return immediately
1099 ** with SQLITE_CONSTRAINT.
1101 ** any FAIL Sqlite3_step() returns immediately with a
1102 ** return code of SQLITE_CONSTRAINT. The
1103 ** transaction is not rolled back and any
1104 ** changes to prior rows are retained.
1106 ** any IGNORE The attempt in insert or update the current
1107 ** row is skipped, without throwing an error.
1108 ** Processing continues with the next row.
1109 ** (There is an immediate jump to ignoreDest.)
1111 ** NOT NULL REPLACE The NULL value is replace by the default
1112 ** value for that column. If the default value
1113 ** is NULL, the action is the same as ABORT.
1115 ** UNIQUE REPLACE The other row that conflicts with the row
1116 ** being inserted is removed.
1118 ** CHECK REPLACE Illegal. The results in an exception.
1120 ** Which action to take is determined by the overrideError parameter.
1121 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1122 ** is used. Or if pParse->onError==OE_Default then the onError value
1123 ** for the constraint is used.
1125 void sqlite3GenerateConstraintChecks(
1126 Parse *pParse, /* The parser context */
1127 Table *pTab, /* The table being inserted or updated */
1128 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1129 int iDataCur, /* Canonical data cursor (main table or PK index) */
1130 int iIdxCur, /* First index cursor */
1131 int regNewData, /* First register in a range holding values to insert */
1132 int regOldData, /* Previous content. 0 for INSERTs */
1133 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1134 u8 overrideError, /* Override onError to this if not OE_Default */
1135 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1136 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */
1138 Vdbe *v; /* VDBE under constrution */
1139 Index *pIdx; /* Pointer to one of the indices */
1140 Index *pPk = 0; /* The PRIMARY KEY index */
1141 sqlite3 *db; /* Database connection */
1142 int i; /* loop counter */
1143 int ix; /* Index loop counter */
1144 int nCol; /* Number of columns */
1145 int onError; /* Conflict resolution strategy */
1146 int j1; /* Address of jump instruction */
1147 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1148 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1149 int ipkTop = 0; /* Top of the rowid change constraint check */
1150 int ipkBottom = 0; /* Bottom of the rowid change constraint check */
1151 u8 isUpdate; /* True if this is an UPDATE operation */
1152 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1153 int regRowid = -1; /* Register holding ROWID value */
1155 isUpdate = regOldData!=0;
1156 db = pParse->db;
1157 v = sqlite3GetVdbe(pParse);
1158 assert( v!=0 );
1159 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1160 nCol = pTab->nCol;
1162 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1163 ** normal rowid tables. nPkField is the number of key fields in the
1164 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1165 ** number of fields in the true primary key of the table. */
1166 if( HasRowid(pTab) ){
1167 pPk = 0;
1168 nPkField = 1;
1169 }else{
1170 pPk = sqlite3PrimaryKeyIndex(pTab);
1171 nPkField = pPk->nKeyCol;
1174 /* Record that this module has started */
1175 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1176 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1178 /* Test all NOT NULL constraints.
1180 for(i=0; i<nCol; i++){
1181 if( i==pTab->iPKey ){
1182 continue;
1184 onError = pTab->aCol[i].notNull;
1185 if( onError==OE_None ) continue;
1186 if( overrideError!=OE_Default ){
1187 onError = overrideError;
1188 }else if( onError==OE_Default ){
1189 onError = OE_Abort;
1191 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1192 onError = OE_Abort;
1194 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1195 || onError==OE_Ignore || onError==OE_Replace );
1196 switch( onError ){
1197 case OE_Abort:
1198 sqlite3MayAbort(pParse);
1199 /* Fall through */
1200 case OE_Rollback:
1201 case OE_Fail: {
1202 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1203 pTab->aCol[i].zName);
1204 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1205 regNewData+1+i, zMsg, P4_DYNAMIC);
1206 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1207 VdbeCoverage(v);
1208 break;
1210 case OE_Ignore: {
1211 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1212 VdbeCoverage(v);
1213 break;
1215 default: {
1216 assert( onError==OE_Replace );
1217 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
1218 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1219 sqlite3VdbeJumpHere(v, j1);
1220 break;
1225 /* Test all CHECK constraints
1227 #ifndef SQLITE_OMIT_CHECK
1228 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1229 ExprList *pCheck = pTab->pCheck;
1230 pParse->ckBase = regNewData+1;
1231 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1232 for(i=0; i<pCheck->nExpr; i++){
1233 int allOk = sqlite3VdbeMakeLabel(v);
1234 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1235 if( onError==OE_Ignore ){
1236 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1237 }else{
1238 char *zName = pCheck->a[i].zName;
1239 if( zName==0 ) zName = pTab->zName;
1240 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1241 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1242 onError, zName, P4_TRANSIENT,
1243 P5_ConstraintCheck);
1245 sqlite3VdbeResolveLabel(v, allOk);
1248 #endif /* !defined(SQLITE_OMIT_CHECK) */
1250 /* If rowid is changing, make sure the new rowid does not previously
1251 ** exist in the table.
1253 if( pkChng && pPk==0 ){
1254 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1256 /* Figure out what action to take in case of a rowid collision */
1257 onError = pTab->keyConf;
1258 if( overrideError!=OE_Default ){
1259 onError = overrideError;
1260 }else if( onError==OE_Default ){
1261 onError = OE_Abort;
1264 if( isUpdate ){
1265 /* pkChng!=0 does not mean that the rowid has change, only that
1266 ** it might have changed. Skip the conflict logic below if the rowid
1267 ** is unchanged. */
1268 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1269 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1270 VdbeCoverage(v);
1273 /* If the response to a rowid conflict is REPLACE but the response
1274 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1275 ** to defer the running of the rowid conflict checking until after
1276 ** the UNIQUE constraints have run.
1278 if( onError==OE_Replace && overrideError!=OE_Replace ){
1279 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1280 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1281 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1282 break;
1287 /* Check to see if the new rowid already exists in the table. Skip
1288 ** the following conflict logic if it does not. */
1289 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1290 VdbeCoverage(v);
1292 /* Generate code that deals with a rowid collision */
1293 switch( onError ){
1294 default: {
1295 onError = OE_Abort;
1296 /* Fall thru into the next case */
1298 case OE_Rollback:
1299 case OE_Abort:
1300 case OE_Fail: {
1301 sqlite3RowidConstraint(pParse, onError, pTab);
1302 break;
1304 case OE_Replace: {
1305 /* If there are DELETE triggers on this table and the
1306 ** recursive-triggers flag is set, call GenerateRowDelete() to
1307 ** remove the conflicting row from the table. This will fire
1308 ** the triggers and remove both the table and index b-tree entries.
1310 ** Otherwise, if there are no triggers or the recursive-triggers
1311 ** flag is not set, but the table has one or more indexes, call
1312 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1313 ** only. The table b-tree entry will be replaced by the new entry
1314 ** when it is inserted.
1316 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1317 ** also invoke MultiWrite() to indicate that this VDBE may require
1318 ** statement rollback (if the statement is aborted after the delete
1319 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1320 ** but being more selective here allows statements like:
1322 ** REPLACE INTO t(rowid) VALUES($newrowid)
1324 ** to run without a statement journal if there are no indexes on the
1325 ** table.
1327 Trigger *pTrigger = 0;
1328 if( db->flags&SQLITE_RecTriggers ){
1329 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1331 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1332 sqlite3MultiWrite(pParse);
1333 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1334 regNewData, 1, 0, OE_Replace, 1);
1335 }else if( pTab->pIndex ){
1336 sqlite3MultiWrite(pParse);
1337 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1339 seenReplace = 1;
1340 break;
1342 case OE_Ignore: {
1343 /*assert( seenReplace==0 );*/
1344 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1345 break;
1348 sqlite3VdbeResolveLabel(v, addrRowidOk);
1349 if( ipkTop ){
1350 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1351 sqlite3VdbeJumpHere(v, ipkTop);
1355 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1356 ** index and making sure that duplicate entries do not already exist.
1357 ** Compute the revised record entries for indices as we go.
1359 ** This loop also handles the case of the PRIMARY KEY index for a
1360 ** WITHOUT ROWID table.
1362 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1363 int regIdx; /* Range of registers hold conent for pIdx */
1364 int regR; /* Range of registers holding conflicting PK */
1365 int iThisCur; /* Cursor for this UNIQUE index */
1366 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1368 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1369 if( bAffinityDone==0 ){
1370 sqlite3TableAffinity(v, pTab, regNewData+1);
1371 bAffinityDone = 1;
1373 iThisCur = iIdxCur+ix;
1374 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1376 /* Skip partial indices for which the WHERE clause is not true */
1377 if( pIdx->pPartIdxWhere ){
1378 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1379 pParse->ckBase = regNewData+1;
1380 sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1381 SQLITE_JUMPIFNULL);
1382 pParse->ckBase = 0;
1385 /* Create a record for this index entry as it should appear after
1386 ** the insert or update. Store that record in the aRegIdx[ix] register
1388 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1389 for(i=0; i<pIdx->nColumn; i++){
1390 int iField = pIdx->aiColumn[i];
1391 int x;
1392 if( iField<0 || iField==pTab->iPKey ){
1393 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1394 x = regNewData;
1395 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i;
1396 }else{
1397 x = iField + regNewData + 1;
1399 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1400 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1402 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1403 VdbeComment((v, "for %s", pIdx->zName));
1404 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1406 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1407 ** of a WITHOUT ROWID table and there has been no change the
1408 ** primary key, then no collision is possible. The collision detection
1409 ** logic below can all be skipped. */
1410 if( isUpdate && pPk==pIdx && pkChng==0 ){
1411 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1412 continue;
1415 /* Find out what action to take in case there is a uniqueness conflict */
1416 onError = pIdx->onError;
1417 if( onError==OE_None ){
1418 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1419 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1420 continue; /* pIdx is not a UNIQUE index */
1422 if( overrideError!=OE_Default ){
1423 onError = overrideError;
1424 }else if( onError==OE_Default ){
1425 onError = OE_Abort;
1428 /* Check to see if the new index entry will be unique */
1429 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1430 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1432 /* Generate code to handle collisions */
1433 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1434 if( isUpdate || onError==OE_Replace ){
1435 if( HasRowid(pTab) ){
1436 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1437 /* Conflict only if the rowid of the existing index entry
1438 ** is different from old-rowid */
1439 if( isUpdate ){
1440 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1441 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1442 VdbeCoverage(v);
1444 }else{
1445 int x;
1446 /* Extract the PRIMARY KEY from the end of the index entry and
1447 ** store it in registers regR..regR+nPk-1 */
1448 if( pIdx!=pPk ){
1449 for(i=0; i<pPk->nKeyCol; i++){
1450 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1451 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1452 VdbeComment((v, "%s.%s", pTab->zName,
1453 pTab->aCol[pPk->aiColumn[i]].zName));
1456 if( isUpdate ){
1457 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1458 ** table, only conflict if the new PRIMARY KEY values are actually
1459 ** different from the old.
1461 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1462 ** of the matched index row are different from the original PRIMARY
1463 ** KEY values of this row before the update. */
1464 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1465 int op = OP_Ne;
1466 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1468 for(i=0; i<pPk->nKeyCol; i++){
1469 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1470 x = pPk->aiColumn[i];
1471 if( i==(pPk->nKeyCol-1) ){
1472 addrJump = addrUniqueOk;
1473 op = OP_Eq;
1475 sqlite3VdbeAddOp4(v, op,
1476 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1478 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1479 VdbeCoverageIf(v, op==OP_Eq);
1480 VdbeCoverageIf(v, op==OP_Ne);
1486 /* Generate code that executes if the new index entry is not unique */
1487 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1488 || onError==OE_Ignore || onError==OE_Replace );
1489 switch( onError ){
1490 case OE_Rollback:
1491 case OE_Abort:
1492 case OE_Fail: {
1493 sqlite3UniqueConstraint(pParse, onError, pIdx);
1494 break;
1496 case OE_Ignore: {
1497 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1498 break;
1500 default: {
1501 Trigger *pTrigger = 0;
1502 assert( onError==OE_Replace );
1503 sqlite3MultiWrite(pParse);
1504 if( db->flags&SQLITE_RecTriggers ){
1505 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1507 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1508 regR, nPkField, 0, OE_Replace, pIdx==pPk);
1509 seenReplace = 1;
1510 break;
1513 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1514 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1515 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1517 if( ipkTop ){
1518 sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
1519 sqlite3VdbeJumpHere(v, ipkBottom);
1522 *pbMayReplace = seenReplace;
1523 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1527 ** This routine generates code to finish the INSERT or UPDATE operation
1528 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1529 ** A consecutive range of registers starting at regNewData contains the
1530 ** rowid and the content to be inserted.
1532 ** The arguments to this routine should be the same as the first six
1533 ** arguments to sqlite3GenerateConstraintChecks.
1535 void sqlite3CompleteInsertion(
1536 Parse *pParse, /* The parser context */
1537 Table *pTab, /* the table into which we are inserting */
1538 int iDataCur, /* Cursor of the canonical data source */
1539 int iIdxCur, /* First index cursor */
1540 int regNewData, /* Range of content */
1541 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1542 int isUpdate, /* True for UPDATE, False for INSERT */
1543 int appendBias, /* True if this is likely to be an append */
1544 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1546 Vdbe *v; /* Prepared statements under construction */
1547 Index *pIdx; /* An index being inserted or updated */
1548 u8 pik_flags; /* flag values passed to the btree insert */
1549 int regData; /* Content registers (after the rowid) */
1550 int regRec; /* Register holding assembled record for the table */
1551 int i; /* Loop counter */
1552 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1554 v = sqlite3GetVdbe(pParse);
1555 assert( v!=0 );
1556 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1557 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1558 if( aRegIdx[i]==0 ) continue;
1559 bAffinityDone = 1;
1560 if( pIdx->pPartIdxWhere ){
1561 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1562 VdbeCoverage(v);
1564 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1565 pik_flags = 0;
1566 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1567 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1568 assert( pParse->nested==0 );
1569 pik_flags |= OPFLAG_NCHANGE;
1571 if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags);
1573 if( !HasRowid(pTab) ) return;
1574 regData = regNewData + 1;
1575 regRec = sqlite3GetTempReg(pParse);
1576 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1577 if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
1578 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1579 if( pParse->nested ){
1580 pik_flags = 0;
1581 }else{
1582 pik_flags = OPFLAG_NCHANGE;
1583 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1585 if( appendBias ){
1586 pik_flags |= OPFLAG_APPEND;
1588 if( useSeekResult ){
1589 pik_flags |= OPFLAG_USESEEKRESULT;
1591 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1592 if( !pParse->nested ){
1593 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1595 sqlite3VdbeChangeP5(v, pik_flags);
1599 ** Allocate cursors for the pTab table and all its indices and generate
1600 ** code to open and initialized those cursors.
1602 ** The cursor for the object that contains the complete data (normally
1603 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1604 ** ROWID table) is returned in *piDataCur. The first index cursor is
1605 ** returned in *piIdxCur. The number of indices is returned.
1607 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1608 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1609 ** If iBase is negative, then allocate the next available cursor.
1611 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1612 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1613 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1614 ** pTab->pIndex list.
1616 ** If pTab is a virtual table, then this routine is a no-op and the
1617 ** *piDataCur and *piIdxCur values are left uninitialized.
1619 int sqlite3OpenTableAndIndices(
1620 Parse *pParse, /* Parsing context */
1621 Table *pTab, /* Table to be opened */
1622 int op, /* OP_OpenRead or OP_OpenWrite */
1623 int iBase, /* Use this for the table cursor, if there is one */
1624 u8 *aToOpen, /* If not NULL: boolean for each table and index */
1625 int *piDataCur, /* Write the database source cursor number here */
1626 int *piIdxCur /* Write the first index cursor number here */
1628 int i;
1629 int iDb;
1630 int iDataCur;
1631 Index *pIdx;
1632 Vdbe *v;
1634 assert( op==OP_OpenRead || op==OP_OpenWrite );
1635 if( IsVirtual(pTab) ){
1636 /* This routine is a no-op for virtual tables. Leave the output
1637 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1638 ** can detect if they are used by mistake in the caller. */
1639 return 0;
1641 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1642 v = sqlite3GetVdbe(pParse);
1643 assert( v!=0 );
1644 if( iBase<0 ) iBase = pParse->nTab;
1645 iDataCur = iBase++;
1646 if( piDataCur ) *piDataCur = iDataCur;
1647 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1648 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1649 }else{
1650 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1652 if( piIdxCur ) *piIdxCur = iBase;
1653 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1654 int iIdxCur = iBase++;
1655 assert( pIdx->pSchema==pTab->pSchema );
1656 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
1657 *piDataCur = iIdxCur;
1659 if( aToOpen==0 || aToOpen[i+1] ){
1660 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1661 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1662 VdbeComment((v, "%s", pIdx->zName));
1665 if( iBase>pParse->nTab ) pParse->nTab = iBase;
1666 return i;
1670 #ifdef SQLITE_TEST
1672 ** The following global variable is incremented whenever the
1673 ** transfer optimization is used. This is used for testing
1674 ** purposes only - to make sure the transfer optimization really
1675 ** is happening when it is supposed to.
1677 int sqlite3_xferopt_count;
1678 #endif /* SQLITE_TEST */
1681 #ifndef SQLITE_OMIT_XFER_OPT
1683 ** Check to collation names to see if they are compatible.
1685 static int xferCompatibleCollation(const char *z1, const char *z2){
1686 if( z1==0 ){
1687 return z2==0;
1689 if( z2==0 ){
1690 return 0;
1692 return sqlite3StrICmp(z1, z2)==0;
1697 ** Check to see if index pSrc is compatible as a source of data
1698 ** for index pDest in an insert transfer optimization. The rules
1699 ** for a compatible index:
1701 ** * The index is over the same set of columns
1702 ** * The same DESC and ASC markings occurs on all columns
1703 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1704 ** * The same collating sequence on each column
1705 ** * The index has the exact same WHERE clause
1707 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1708 int i;
1709 assert( pDest && pSrc );
1710 assert( pDest->pTable!=pSrc->pTable );
1711 if( pDest->nKeyCol!=pSrc->nKeyCol ){
1712 return 0; /* Different number of columns */
1714 if( pDest->onError!=pSrc->onError ){
1715 return 0; /* Different conflict resolution strategies */
1717 for(i=0; i<pSrc->nKeyCol; i++){
1718 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1719 return 0; /* Different columns indexed */
1721 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1722 return 0; /* Different sort orders */
1724 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1725 return 0; /* Different collating sequences */
1728 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1729 return 0; /* Different WHERE clauses */
1732 /* If no test above fails then the indices must be compatible */
1733 return 1;
1737 ** Attempt the transfer optimization on INSERTs of the form
1739 ** INSERT INTO tab1 SELECT * FROM tab2;
1741 ** The xfer optimization transfers raw records from tab2 over to tab1.
1742 ** Columns are not decoded and reassembled, which greatly improves
1743 ** performance. Raw index records are transferred in the same way.
1745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1746 ** There are lots of rules for determining compatibility - see comments
1747 ** embedded in the code for details.
1749 ** This routine returns TRUE if the optimization is guaranteed to be used.
1750 ** Sometimes the xfer optimization will only work if the destination table
1751 ** is empty - a factor that can only be determined at run-time. In that
1752 ** case, this routine generates code for the xfer optimization but also
1753 ** does a test to see if the destination table is empty and jumps over the
1754 ** xfer optimization code if the test fails. In that case, this routine
1755 ** returns FALSE so that the caller will know to go ahead and generate
1756 ** an unoptimized transfer. This routine also returns FALSE if there
1757 ** is no chance that the xfer optimization can be applied.
1759 ** This optimization is particularly useful at making VACUUM run faster.
1761 static int xferOptimization(
1762 Parse *pParse, /* Parser context */
1763 Table *pDest, /* The table we are inserting into */
1764 Select *pSelect, /* A SELECT statement to use as the data source */
1765 int onError, /* How to handle constraint errors */
1766 int iDbDest /* The database of pDest */
1768 ExprList *pEList; /* The result set of the SELECT */
1769 Table *pSrc; /* The table in the FROM clause of SELECT */
1770 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1771 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1772 int i; /* Loop counter */
1773 int iDbSrc; /* The database of pSrc */
1774 int iSrc, iDest; /* Cursors from source and destination */
1775 int addr1, addr2; /* Loop addresses */
1776 int emptyDestTest = 0; /* Address of test for empty pDest */
1777 int emptySrcTest = 0; /* Address of test for empty pSrc */
1778 Vdbe *v; /* The VDBE we are building */
1779 int regAutoinc; /* Memory register used by AUTOINC */
1780 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1781 int regData, regRowid; /* Registers holding data and rowid */
1783 if( pSelect==0 ){
1784 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1786 if( pParse->pWith || pSelect->pWith ){
1787 /* Do not attempt to process this query if there are an WITH clauses
1788 ** attached to it. Proceeding may generate a false "no such table: xxx"
1789 ** error if pSelect reads from a CTE named "xxx". */
1790 return 0;
1792 if( sqlite3TriggerList(pParse, pDest) ){
1793 return 0; /* tab1 must not have triggers */
1795 #ifndef SQLITE_OMIT_VIRTUALTABLE
1796 if( pDest->tabFlags & TF_Virtual ){
1797 return 0; /* tab1 must not be a virtual table */
1799 #endif
1800 if( onError==OE_Default ){
1801 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1802 if( onError==OE_Default ) onError = OE_Abort;
1804 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
1805 if( pSelect->pSrc->nSrc!=1 ){
1806 return 0; /* FROM clause must have exactly one term */
1808 if( pSelect->pSrc->a[0].pSelect ){
1809 return 0; /* FROM clause cannot contain a subquery */
1811 if( pSelect->pWhere ){
1812 return 0; /* SELECT may not have a WHERE clause */
1814 if( pSelect->pOrderBy ){
1815 return 0; /* SELECT may not have an ORDER BY clause */
1817 /* Do not need to test for a HAVING clause. If HAVING is present but
1818 ** there is no ORDER BY, we will get an error. */
1819 if( pSelect->pGroupBy ){
1820 return 0; /* SELECT may not have a GROUP BY clause */
1822 if( pSelect->pLimit ){
1823 return 0; /* SELECT may not have a LIMIT clause */
1825 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
1826 if( pSelect->pPrior ){
1827 return 0; /* SELECT may not be a compound query */
1829 if( pSelect->selFlags & SF_Distinct ){
1830 return 0; /* SELECT may not be DISTINCT */
1832 pEList = pSelect->pEList;
1833 assert( pEList!=0 );
1834 if( pEList->nExpr!=1 ){
1835 return 0; /* The result set must have exactly one column */
1837 assert( pEList->a[0].pExpr );
1838 if( pEList->a[0].pExpr->op!=TK_ALL ){
1839 return 0; /* The result set must be the special operator "*" */
1842 /* At this point we have established that the statement is of the
1843 ** correct syntactic form to participate in this optimization. Now
1844 ** we have to check the semantics.
1846 pItem = pSelect->pSrc->a;
1847 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1848 if( pSrc==0 ){
1849 return 0; /* FROM clause does not contain a real table */
1851 if( pSrc==pDest ){
1852 return 0; /* tab1 and tab2 may not be the same table */
1854 if( HasRowid(pDest)!=HasRowid(pSrc) ){
1855 return 0; /* source and destination must both be WITHOUT ROWID or not */
1857 #ifndef SQLITE_OMIT_VIRTUALTABLE
1858 if( pSrc->tabFlags & TF_Virtual ){
1859 return 0; /* tab2 must not be a virtual table */
1861 #endif
1862 if( pSrc->pSelect ){
1863 return 0; /* tab2 may not be a view */
1865 if( pDest->nCol!=pSrc->nCol ){
1866 return 0; /* Number of columns must be the same in tab1 and tab2 */
1868 if( pDest->iPKey!=pSrc->iPKey ){
1869 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
1871 for(i=0; i<pDest->nCol; i++){
1872 Column *pDestCol = &pDest->aCol[i];
1873 Column *pSrcCol = &pSrc->aCol[i];
1874 if( pDestCol->affinity!=pSrcCol->affinity ){
1875 return 0; /* Affinity must be the same on all columns */
1877 if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
1878 return 0; /* Collating sequence must be the same on all columns */
1880 if( pDestCol->notNull && !pSrcCol->notNull ){
1881 return 0; /* tab2 must be NOT NULL if tab1 is */
1883 /* Default values for second and subsequent columns need to match. */
1884 if( i>0
1885 && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0)
1886 || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
1888 return 0; /* Default values must be the same for all columns */
1891 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1892 if( IsUniqueIndex(pDestIdx) ){
1893 destHasUniqueIdx = 1;
1895 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1896 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1898 if( pSrcIdx==0 ){
1899 return 0; /* pDestIdx has no corresponding index in pSrc */
1902 #ifndef SQLITE_OMIT_CHECK
1903 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1904 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
1906 #endif
1907 #ifndef SQLITE_OMIT_FOREIGN_KEY
1908 /* Disallow the transfer optimization if the destination table constains
1909 ** any foreign key constraints. This is more restrictive than necessary.
1910 ** But the main beneficiary of the transfer optimization is the VACUUM
1911 ** command, and the VACUUM command disables foreign key constraints. So
1912 ** the extra complication to make this rule less restrictive is probably
1913 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1915 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1916 return 0;
1918 #endif
1919 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
1920 return 0; /* xfer opt does not play well with PRAGMA count_changes */
1923 /* If we get this far, it means that the xfer optimization is at
1924 ** least a possibility, though it might only work if the destination
1925 ** table (tab1) is initially empty.
1927 #ifdef SQLITE_TEST
1928 sqlite3_xferopt_count++;
1929 #endif
1930 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1931 v = sqlite3GetVdbe(pParse);
1932 sqlite3CodeVerifySchema(pParse, iDbSrc);
1933 iSrc = pParse->nTab++;
1934 iDest = pParse->nTab++;
1935 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1936 regData = sqlite3GetTempReg(pParse);
1937 regRowid = sqlite3GetTempReg(pParse);
1938 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1939 assert( HasRowid(pDest) || destHasUniqueIdx );
1940 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
1941 || destHasUniqueIdx /* (2) */
1942 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
1944 /* In some circumstances, we are able to run the xfer optimization
1945 ** only if the destination table is initially empty. This code makes
1946 ** that determination. Conditions under which the destination must
1947 ** be empty:
1949 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1950 ** (If the destination is not initially empty, the rowid fields
1951 ** of index entries might need to change.)
1953 ** (2) The destination has a unique index. (The xfer optimization
1954 ** is unable to test uniqueness.)
1956 ** (3) onError is something other than OE_Abort and OE_Rollback.
1958 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
1959 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1960 sqlite3VdbeJumpHere(v, addr1);
1962 if( HasRowid(pSrc) ){
1963 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1964 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
1965 if( pDest->iPKey>=0 ){
1966 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1967 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1968 VdbeCoverage(v);
1969 sqlite3RowidConstraint(pParse, onError, pDest);
1970 sqlite3VdbeJumpHere(v, addr2);
1971 autoIncStep(pParse, regAutoinc, regRowid);
1972 }else if( pDest->pIndex==0 ){
1973 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1974 }else{
1975 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1976 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1978 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1979 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1980 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1981 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1982 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
1983 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1984 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1985 }else{
1986 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
1987 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
1989 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1990 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
1991 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1993 assert( pSrcIdx );
1994 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
1995 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
1996 VdbeComment((v, "%s", pSrcIdx->zName));
1997 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
1998 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
1999 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2000 VdbeComment((v, "%s", pDestIdx->zName));
2001 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2002 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2003 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2004 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2005 sqlite3VdbeJumpHere(v, addr1);
2006 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2007 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2009 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2010 sqlite3ReleaseTempReg(pParse, regRowid);
2011 sqlite3ReleaseTempReg(pParse, regData);
2012 if( emptyDestTest ){
2013 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2014 sqlite3VdbeJumpHere(v, emptyDestTest);
2015 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2016 return 0;
2017 }else{
2018 return 1;
2021 #endif /* SQLITE_OMIT_XFER_OPT */