Finish refactoring of DomCodeToUsLayoutKeyboardCode().
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / malloc.c
blob6fb9d53d1b6c054ca04af84a9d440c0100650aeb
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 #include "sqliteInt.h"
16 #include <stdarg.h>
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n);
26 #else
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30 UNUSED_PARAMETER(n);
31 return 0;
32 #endif
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
39 typedef struct ScratchFreeslot {
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
41 } ScratchFreeslot;
44 ** State information local to the memory allocation subsystem.
46 static SQLITE_WSD struct Mem0Global {
47 sqlite3_mutex *mutex; /* Mutex to serialize access */
50 ** The alarm callback and its arguments. The mem0.mutex lock will
51 ** be held while the callback is running. Recursive calls into
52 ** the memory subsystem are allowed, but no new callbacks will be
53 ** issued.
55 sqlite3_int64 alarmThreshold;
56 void (*alarmCallback)(void*, sqlite3_int64,int);
57 void *alarmArg;
60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
61 ** (so that a range test can be used to determine if an allocation
62 ** being freed came from pScratch) and a pointer to the list of
63 ** unused scratch allocations.
65 void *pScratchEnd;
66 ScratchFreeslot *pScratchFree;
67 u32 nScratchFree;
70 ** True if heap is nearly "full" where "full" is defined by the
71 ** sqlite3_soft_heap_limit() setting.
73 int nearlyFull;
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
76 #define mem0 GLOBAL(struct Mem0Global, mem0)
79 ** This routine runs when the memory allocator sees that the
80 ** total memory allocation is about to exceed the soft heap
81 ** limit.
83 static void softHeapLimitEnforcer(
84 void *NotUsed,
85 sqlite3_int64 NotUsed2,
86 int allocSize
88 UNUSED_PARAMETER2(NotUsed, NotUsed2);
89 sqlite3_release_memory(allocSize);
93 ** Change the alarm callback
95 static int sqlite3MemoryAlarm(
96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
97 void *pArg,
98 sqlite3_int64 iThreshold
100 int nUsed;
101 sqlite3_mutex_enter(mem0.mutex);
102 mem0.alarmCallback = xCallback;
103 mem0.alarmArg = pArg;
104 mem0.alarmThreshold = iThreshold;
105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
107 sqlite3_mutex_leave(mem0.mutex);
108 return SQLITE_OK;
111 #ifndef SQLITE_OMIT_DEPRECATED
113 ** Deprecated external interface. Internal/core SQLite code
114 ** should call sqlite3MemoryAlarm.
116 int sqlite3_memory_alarm(
117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
118 void *pArg,
119 sqlite3_int64 iThreshold
121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
123 #endif
126 ** Set the soft heap-size limit for the library. Passing a zero or
127 ** negative value indicates no limit.
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
130 sqlite3_int64 priorLimit;
131 sqlite3_int64 excess;
132 #ifndef SQLITE_OMIT_AUTOINIT
133 int rc = sqlite3_initialize();
134 if( rc ) return -1;
135 #endif
136 sqlite3_mutex_enter(mem0.mutex);
137 priorLimit = mem0.alarmThreshold;
138 sqlite3_mutex_leave(mem0.mutex);
139 if( n<0 ) return priorLimit;
140 if( n>0 ){
141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
142 }else{
143 sqlite3MemoryAlarm(0, 0, 0);
145 excess = sqlite3_memory_used() - n;
146 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
147 return priorLimit;
149 void sqlite3_soft_heap_limit(int n){
150 if( n<0 ) n = 0;
151 sqlite3_soft_heap_limit64(n);
155 ** Initialize the memory allocation subsystem.
157 int sqlite3MallocInit(void){
158 if( sqlite3GlobalConfig.m.xMalloc==0 ){
159 sqlite3MemSetDefault();
161 memset(&mem0, 0, sizeof(mem0));
162 if( sqlite3GlobalConfig.bCoreMutex ){
163 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
166 && sqlite3GlobalConfig.nScratch>0 ){
167 int i, n, sz;
168 ScratchFreeslot *pSlot;
169 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
170 sqlite3GlobalConfig.szScratch = sz;
171 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
172 n = sqlite3GlobalConfig.nScratch;
173 mem0.pScratchFree = pSlot;
174 mem0.nScratchFree = n;
175 for(i=0; i<n-1; i++){
176 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
177 pSlot = pSlot->pNext;
179 pSlot->pNext = 0;
180 mem0.pScratchEnd = (void*)&pSlot[1];
181 }else{
182 mem0.pScratchEnd = 0;
183 sqlite3GlobalConfig.pScratch = 0;
184 sqlite3GlobalConfig.szScratch = 0;
185 sqlite3GlobalConfig.nScratch = 0;
187 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
188 || sqlite3GlobalConfig.nPage<1 ){
189 sqlite3GlobalConfig.pPage = 0;
190 sqlite3GlobalConfig.szPage = 0;
191 sqlite3GlobalConfig.nPage = 0;
193 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
197 ** Return true if the heap is currently under memory pressure - in other
198 ** words if the amount of heap used is close to the limit set by
199 ** sqlite3_soft_heap_limit().
201 int sqlite3HeapNearlyFull(void){
202 return mem0.nearlyFull;
206 ** Deinitialize the memory allocation subsystem.
208 void sqlite3MallocEnd(void){
209 if( sqlite3GlobalConfig.m.xShutdown ){
210 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
212 memset(&mem0, 0, sizeof(mem0));
216 ** Return the amount of memory currently checked out.
218 sqlite3_int64 sqlite3_memory_used(void){
219 int n, mx;
220 sqlite3_int64 res;
221 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
222 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
223 return res;
227 ** Return the maximum amount of memory that has ever been
228 ** checked out since either the beginning of this process
229 ** or since the most recent reset.
231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
232 int n, mx;
233 sqlite3_int64 res;
234 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
235 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
236 return res;
240 ** Trigger the alarm
242 static void sqlite3MallocAlarm(int nByte){
243 void (*xCallback)(void*,sqlite3_int64,int);
244 sqlite3_int64 nowUsed;
245 void *pArg;
246 if( mem0.alarmCallback==0 ) return;
247 xCallback = mem0.alarmCallback;
248 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
249 pArg = mem0.alarmArg;
250 mem0.alarmCallback = 0;
251 sqlite3_mutex_leave(mem0.mutex);
252 xCallback(pArg, nowUsed, nByte);
253 sqlite3_mutex_enter(mem0.mutex);
254 mem0.alarmCallback = xCallback;
255 mem0.alarmArg = pArg;
259 ** Do a memory allocation with statistics and alarms. Assume the
260 ** lock is already held.
262 static int mallocWithAlarm(int n, void **pp){
263 int nFull;
264 void *p;
265 assert( sqlite3_mutex_held(mem0.mutex) );
266 nFull = sqlite3GlobalConfig.m.xRoundup(n);
267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
268 if( mem0.alarmCallback!=0 ){
269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
270 if( nUsed >= mem0.alarmThreshold - nFull ){
271 mem0.nearlyFull = 1;
272 sqlite3MallocAlarm(nFull);
273 }else{
274 mem0.nearlyFull = 0;
277 p = sqlite3GlobalConfig.m.xMalloc(nFull);
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
279 if( p==0 && mem0.alarmCallback ){
280 sqlite3MallocAlarm(nFull);
281 p = sqlite3GlobalConfig.m.xMalloc(nFull);
283 #endif
284 if( p ){
285 nFull = sqlite3MallocSize(p);
286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
289 *pp = p;
290 return nFull;
294 ** Allocate memory. This routine is like sqlite3_malloc() except that it
295 ** assumes the memory subsystem has already been initialized.
297 void *sqlite3Malloc(u64 n){
298 void *p;
299 if( n==0 || n>=0x7fffff00 ){
300 /* A memory allocation of a number of bytes which is near the maximum
301 ** signed integer value might cause an integer overflow inside of the
302 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
303 ** 255 bytes of overhead. SQLite itself will never use anything near
304 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
305 p = 0;
306 }else if( sqlite3GlobalConfig.bMemstat ){
307 sqlite3_mutex_enter(mem0.mutex);
308 mallocWithAlarm((int)n, &p);
309 sqlite3_mutex_leave(mem0.mutex);
310 }else{
311 p = sqlite3GlobalConfig.m.xMalloc((int)n);
313 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
314 return p;
318 ** This version of the memory allocation is for use by the application.
319 ** First make sure the memory subsystem is initialized, then do the
320 ** allocation.
322 void *sqlite3_malloc(int n){
323 #ifndef SQLITE_OMIT_AUTOINIT
324 if( sqlite3_initialize() ) return 0;
325 #endif
326 return n<=0 ? 0 : sqlite3Malloc(n);
328 void *sqlite3_malloc64(sqlite3_uint64 n){
329 #ifndef SQLITE_OMIT_AUTOINIT
330 if( sqlite3_initialize() ) return 0;
331 #endif
332 return sqlite3Malloc(n);
336 ** Each thread may only have a single outstanding allocation from
337 ** xScratchMalloc(). We verify this constraint in the single-threaded
338 ** case by setting scratchAllocOut to 1 when an allocation
339 ** is outstanding clearing it when the allocation is freed.
341 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
342 static int scratchAllocOut = 0;
343 #endif
347 ** Allocate memory that is to be used and released right away.
348 ** This routine is similar to alloca() in that it is not intended
349 ** for situations where the memory might be held long-term. This
350 ** routine is intended to get memory to old large transient data
351 ** structures that would not normally fit on the stack of an
352 ** embedded processor.
354 void *sqlite3ScratchMalloc(int n){
355 void *p;
356 assert( n>0 );
358 sqlite3_mutex_enter(mem0.mutex);
359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
360 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
361 p = mem0.pScratchFree;
362 mem0.pScratchFree = mem0.pScratchFree->pNext;
363 mem0.nScratchFree--;
364 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
365 sqlite3_mutex_leave(mem0.mutex);
366 }else{
367 sqlite3_mutex_leave(mem0.mutex);
368 p = sqlite3Malloc(n);
369 if( sqlite3GlobalConfig.bMemstat && p ){
370 sqlite3_mutex_enter(mem0.mutex);
371 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
372 sqlite3_mutex_leave(mem0.mutex);
374 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
376 assert( sqlite3_mutex_notheld(mem0.mutex) );
379 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
380 /* Verify that no more than two scratch allocations per thread
381 ** are outstanding at one time. (This is only checked in the
382 ** single-threaded case since checking in the multi-threaded case
383 ** would be much more complicated.) */
384 assert( scratchAllocOut<=1 );
385 if( p ) scratchAllocOut++;
386 #endif
388 return p;
390 void sqlite3ScratchFree(void *p){
391 if( p ){
393 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
394 /* Verify that no more than two scratch allocation per thread
395 ** is outstanding at one time. (This is only checked in the
396 ** single-threaded case since checking in the multi-threaded case
397 ** would be much more complicated.) */
398 assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
399 scratchAllocOut--;
400 #endif
402 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
403 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
404 ScratchFreeslot *pSlot;
405 pSlot = (ScratchFreeslot*)p;
406 sqlite3_mutex_enter(mem0.mutex);
407 pSlot->pNext = mem0.pScratchFree;
408 mem0.pScratchFree = pSlot;
409 mem0.nScratchFree++;
410 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
411 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
412 sqlite3_mutex_leave(mem0.mutex);
413 }else{
414 /* Release memory back to the heap */
415 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
416 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
417 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
418 if( sqlite3GlobalConfig.bMemstat ){
419 int iSize = sqlite3MallocSize(p);
420 sqlite3_mutex_enter(mem0.mutex);
421 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
422 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
423 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
424 sqlite3GlobalConfig.m.xFree(p);
425 sqlite3_mutex_leave(mem0.mutex);
426 }else{
427 sqlite3GlobalConfig.m.xFree(p);
434 ** TRUE if p is a lookaside memory allocation from db
436 #ifndef SQLITE_OMIT_LOOKASIDE
437 static int isLookaside(sqlite3 *db, void *p){
438 return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
440 #else
441 #define isLookaside(A,B) 0
442 #endif
445 ** Return the size of a memory allocation previously obtained from
446 ** sqlite3Malloc() or sqlite3_malloc().
448 int sqlite3MallocSize(void *p){
449 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
450 return sqlite3GlobalConfig.m.xSize(p);
452 int sqlite3DbMallocSize(sqlite3 *db, void *p){
453 if( db==0 ){
454 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
455 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
456 return sqlite3MallocSize(p);
457 }else{
458 assert( sqlite3_mutex_held(db->mutex) );
459 if( isLookaside(db, p) ){
460 return db->lookaside.sz;
461 }else{
462 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
463 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
464 return sqlite3GlobalConfig.m.xSize(p);
468 sqlite3_uint64 sqlite3_msize(void *p){
469 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
470 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
471 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
475 ** Free memory previously obtained from sqlite3Malloc().
477 void sqlite3_free(void *p){
478 if( p==0 ) return; /* IMP: R-49053-54554 */
479 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
480 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
481 if( sqlite3GlobalConfig.bMemstat ){
482 sqlite3_mutex_enter(mem0.mutex);
483 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
484 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
485 sqlite3GlobalConfig.m.xFree(p);
486 sqlite3_mutex_leave(mem0.mutex);
487 }else{
488 sqlite3GlobalConfig.m.xFree(p);
493 ** Add the size of memory allocation "p" to the count in
494 ** *db->pnBytesFreed.
496 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
497 *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
501 ** Free memory that might be associated with a particular database
502 ** connection.
504 void sqlite3DbFree(sqlite3 *db, void *p){
505 assert( db==0 || sqlite3_mutex_held(db->mutex) );
506 if( p==0 ) return;
507 if( db ){
508 if( db->pnBytesFreed ){
509 measureAllocationSize(db, p);
510 return;
512 if( isLookaside(db, p) ){
513 LookasideSlot *pBuf = (LookasideSlot*)p;
514 #if SQLITE_DEBUG
515 /* Trash all content in the buffer being freed */
516 memset(p, 0xaa, db->lookaside.sz);
517 #endif
518 pBuf->pNext = db->lookaside.pFree;
519 db->lookaside.pFree = pBuf;
520 db->lookaside.nOut--;
521 return;
524 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
525 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
526 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
527 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
528 sqlite3_free(p);
532 ** Change the size of an existing memory allocation
534 void *sqlite3Realloc(void *pOld, u64 nBytes){
535 int nOld, nNew, nDiff;
536 void *pNew;
537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
539 if( pOld==0 ){
540 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
542 if( nBytes==0 ){
543 sqlite3_free(pOld); /* IMP: R-26507-47431 */
544 return 0;
546 if( nBytes>=0x7fffff00 ){
547 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
548 return 0;
550 nOld = sqlite3MallocSize(pOld);
551 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
552 ** argument to xRealloc is always a value returned by a prior call to
553 ** xRoundup. */
554 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
555 if( nOld==nNew ){
556 pNew = pOld;
557 }else if( sqlite3GlobalConfig.bMemstat ){
558 sqlite3_mutex_enter(mem0.mutex);
559 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
560 nDiff = nNew - nOld;
561 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
562 mem0.alarmThreshold-nDiff ){
563 sqlite3MallocAlarm(nDiff);
565 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
566 if( pNew==0 && mem0.alarmCallback ){
567 sqlite3MallocAlarm((int)nBytes);
568 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
570 if( pNew ){
571 nNew = sqlite3MallocSize(pNew);
572 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
574 sqlite3_mutex_leave(mem0.mutex);
575 }else{
576 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
578 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
579 return pNew;
583 ** The public interface to sqlite3Realloc. Make sure that the memory
584 ** subsystem is initialized prior to invoking sqliteRealloc.
586 void *sqlite3_realloc(void *pOld, int n){
587 #ifndef SQLITE_OMIT_AUTOINIT
588 if( sqlite3_initialize() ) return 0;
589 #endif
590 if( n<0 ) n = 0; /* IMP: R-26507-47431 */
591 return sqlite3Realloc(pOld, n);
593 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
594 #ifndef SQLITE_OMIT_AUTOINIT
595 if( sqlite3_initialize() ) return 0;
596 #endif
597 return sqlite3Realloc(pOld, n);
602 ** Allocate and zero memory.
604 void *sqlite3MallocZero(u64 n){
605 void *p = sqlite3Malloc(n);
606 if( p ){
607 memset(p, 0, (size_t)n);
609 return p;
613 ** Allocate and zero memory. If the allocation fails, make
614 ** the mallocFailed flag in the connection pointer.
616 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
617 void *p = sqlite3DbMallocRaw(db, n);
618 if( p ){
619 memset(p, 0, (size_t)n);
621 return p;
625 ** Allocate and zero memory. If the allocation fails, make
626 ** the mallocFailed flag in the connection pointer.
628 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
629 ** failure on the same database connection) then always return 0.
630 ** Hence for a particular database connection, once malloc starts
631 ** failing, it fails consistently until mallocFailed is reset.
632 ** This is an important assumption. There are many places in the
633 ** code that do things like this:
635 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
636 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
637 ** if( b ) a[10] = 9;
639 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
640 ** that all prior mallocs (ex: "a") worked too.
642 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
643 void *p;
644 assert( db==0 || sqlite3_mutex_held(db->mutex) );
645 assert( db==0 || db->pnBytesFreed==0 );
646 #ifndef SQLITE_OMIT_LOOKASIDE
647 if( db ){
648 LookasideSlot *pBuf;
649 if( db->mallocFailed ){
650 return 0;
652 if( db->lookaside.bEnabled ){
653 if( n>db->lookaside.sz ){
654 db->lookaside.anStat[1]++;
655 }else if( (pBuf = db->lookaside.pFree)==0 ){
656 db->lookaside.anStat[2]++;
657 }else{
658 db->lookaside.pFree = pBuf->pNext;
659 db->lookaside.nOut++;
660 db->lookaside.anStat[0]++;
661 if( db->lookaside.nOut>db->lookaside.mxOut ){
662 db->lookaside.mxOut = db->lookaside.nOut;
664 return (void*)pBuf;
668 #else
669 if( db && db->mallocFailed ){
670 return 0;
672 #endif
673 p = sqlite3Malloc(n);
674 if( !p && db ){
675 db->mallocFailed = 1;
677 sqlite3MemdebugSetType(p,
678 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
679 return p;
683 ** Resize the block of memory pointed to by p to n bytes. If the
684 ** resize fails, set the mallocFailed flag in the connection object.
686 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
687 void *pNew = 0;
688 assert( db!=0 );
689 assert( sqlite3_mutex_held(db->mutex) );
690 if( db->mallocFailed==0 ){
691 if( p==0 ){
692 return sqlite3DbMallocRaw(db, n);
694 if( isLookaside(db, p) ){
695 if( n<=db->lookaside.sz ){
696 return p;
698 pNew = sqlite3DbMallocRaw(db, n);
699 if( pNew ){
700 memcpy(pNew, p, db->lookaside.sz);
701 sqlite3DbFree(db, p);
703 }else{
704 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
705 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
706 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
707 pNew = sqlite3_realloc64(p, n);
708 if( !pNew ){
709 db->mallocFailed = 1;
711 sqlite3MemdebugSetType(pNew,
712 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
715 return pNew;
719 ** Attempt to reallocate p. If the reallocation fails, then free p
720 ** and set the mallocFailed flag in the database connection.
722 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
723 void *pNew;
724 pNew = sqlite3DbRealloc(db, p, n);
725 if( !pNew ){
726 sqlite3DbFree(db, p);
728 return pNew;
732 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
733 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
734 ** is because when memory debugging is turned on, these two functions are
735 ** called via macros that record the current file and line number in the
736 ** ThreadData structure.
738 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
739 char *zNew;
740 size_t n;
741 if( z==0 ){
742 return 0;
744 n = sqlite3Strlen30(z) + 1;
745 assert( (n&0x7fffffff)==n );
746 zNew = sqlite3DbMallocRaw(db, (int)n);
747 if( zNew ){
748 memcpy(zNew, z, n);
750 return zNew;
752 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
753 char *zNew;
754 if( z==0 ){
755 return 0;
757 assert( (n&0x7fffffff)==n );
758 zNew = sqlite3DbMallocRaw(db, n+1);
759 if( zNew ){
760 memcpy(zNew, z, (size_t)n);
761 zNew[n] = 0;
763 return zNew;
767 ** Create a string from the zFromat argument and the va_list that follows.
768 ** Store the string in memory obtained from sqliteMalloc() and make *pz
769 ** point to that string.
771 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
772 va_list ap;
773 char *z;
775 va_start(ap, zFormat);
776 z = sqlite3VMPrintf(db, zFormat, ap);
777 va_end(ap);
778 sqlite3DbFree(db, *pz);
779 *pz = z;
783 ** Take actions at the end of an API call to indicate an OOM error
785 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
786 db->mallocFailed = 0;
787 sqlite3Error(db, SQLITE_NOMEM);
788 return SQLITE_NOMEM;
792 ** This function must be called before exiting any API function (i.e.
793 ** returning control to the user) that has called sqlite3_malloc or
794 ** sqlite3_realloc.
796 ** The returned value is normally a copy of the second argument to this
797 ** function. However, if a malloc() failure has occurred since the previous
798 ** invocation SQLITE_NOMEM is returned instead.
800 ** If the first argument, db, is not NULL and a malloc() error has occurred,
801 ** then the connection error-code (the value returned by sqlite3_errcode())
802 ** is set to SQLITE_NOMEM.
804 int sqlite3ApiExit(sqlite3* db, int rc){
805 /* If the db handle is not NULL, then we must hold the connection handle
806 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
807 ** is unsafe, as is the call to sqlite3Error().
809 assert( !db || sqlite3_mutex_held(db->mutex) );
810 if( db==0 ) return rc & 0xff;
811 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
812 return apiOomError(db);
814 return rc & db->errMask;