4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
20 #include "sqliteInt.h"
22 typedef struct PCache1 PCache1
;
23 typedef struct PgHdr1 PgHdr1
;
24 typedef struct PgFreeslot PgFreeslot
;
25 typedef struct PGroup PGroup
;
27 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
28 ** of one or more PCaches that are able to recycle each other's unpinned
29 ** pages when they are under memory pressure. A PGroup is an instance of
30 ** the following object.
32 ** This page cache implementation works in one of two modes:
34 ** (1) Every PCache is the sole member of its own PGroup. There is
35 ** one PGroup per PCache.
37 ** (2) There is a single global PGroup that all PCaches are a member
40 ** Mode 1 uses more memory (since PCache instances are not able to rob
41 ** unused pages from other PCaches) but it also operates without a mutex,
42 ** and is therefore often faster. Mode 2 requires a mutex in order to be
43 ** threadsafe, but recycles pages more efficiently.
45 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
46 ** PGroup which is the pcache1.grp global variable and its mutex is
47 ** SQLITE_MUTEX_STATIC_LRU.
50 sqlite3_mutex
*mutex
; /* MUTEX_STATIC_LRU or NULL */
51 unsigned int nMaxPage
; /* Sum of nMax for purgeable caches */
52 unsigned int nMinPage
; /* Sum of nMin for purgeable caches */
53 unsigned int mxPinned
; /* nMaxpage + 10 - nMinPage */
54 unsigned int nCurrentPage
; /* Number of purgeable pages allocated */
55 PgHdr1
*pLruHead
, *pLruTail
; /* LRU list of unpinned pages */
58 /* Each page cache is an instance of the following object. Every
59 ** open database file (including each in-memory database and each
60 ** temporary or transient database) has a single page cache which
61 ** is an instance of this object.
63 ** Pointers to structures of this type are cast and returned as
64 ** opaque sqlite3_pcache* handles.
67 /* Cache configuration parameters. Page size (szPage) and the purgeable
68 ** flag (bPurgeable) are set when the cache is created. nMax may be
69 ** modified at any time by a call to the pcache1Cachesize() method.
70 ** The PGroup mutex must be held when accessing nMax.
72 PGroup
*pGroup
; /* PGroup this cache belongs to */
73 int szPage
; /* Size of allocated pages in bytes */
74 int szExtra
; /* Size of extra space in bytes */
75 int bPurgeable
; /* True if cache is purgeable */
76 unsigned int nMin
; /* Minimum number of pages reserved */
77 unsigned int nMax
; /* Configured "cache_size" value */
78 unsigned int n90pct
; /* nMax*9/10 */
79 unsigned int iMaxKey
; /* Largest key seen since xTruncate() */
81 /* Hash table of all pages. The following variables may only be accessed
82 ** when the accessor is holding the PGroup mutex.
84 unsigned int nRecyclable
; /* Number of pages in the LRU list */
85 unsigned int nPage
; /* Total number of pages in apHash */
86 unsigned int nHash
; /* Number of slots in apHash[] */
87 PgHdr1
**apHash
; /* Hash table for fast lookup by key */
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
97 sqlite3_pcache_page page
;
98 unsigned int iKey
; /* Key value (page number) */
99 u8 isPinned
; /* Page in use, not on the LRU list */
100 PgHdr1
*pNext
; /* Next in hash table chain */
101 PCache1
*pCache
; /* Cache that currently owns this page */
102 PgHdr1
*pLruNext
; /* Next in LRU list of unpinned pages */
103 PgHdr1
*pLruPrev
; /* Previous in LRU list of unpinned pages */
107 ** Free slots in the allocator used to divide up the buffer provided using
108 ** the SQLITE_CONFIG_PAGECACHE mechanism.
111 PgFreeslot
*pNext
; /* Next free slot */
115 ** Global data used by this cache.
117 static SQLITE_WSD
struct PCacheGlobal
{
118 PGroup grp
; /* The global PGroup for mode (2) */
120 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
121 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
122 ** fixed at sqlite3_initialize() time and do not require mutex protection.
123 ** The nFreeSlot and pFree values do require mutex protection.
125 int isInit
; /* True if initialized */
126 int szSlot
; /* Size of each free slot */
127 int nSlot
; /* The number of pcache slots */
128 int nReserve
; /* Try to keep nFreeSlot above this */
129 void *pStart
, *pEnd
; /* Bounds of pagecache malloc range */
130 /* Above requires no mutex. Use mutex below for variable that follow. */
131 sqlite3_mutex
*mutex
; /* Mutex for accessing the following: */
132 PgFreeslot
*pFree
; /* Free page blocks */
133 int nFreeSlot
; /* Number of unused pcache slots */
134 /* The following value requires a mutex to change. We skip the mutex on
135 ** reading because (1) most platforms read a 32-bit integer atomically and
136 ** (2) even if an incorrect value is read, no great harm is done since this
137 ** is really just an optimization. */
138 int bUnderPressure
; /* True if low on PAGECACHE memory */
142 ** All code in this file should access the global structure above via the
143 ** alias "pcache1". This ensures that the WSD emulation is used when
144 ** compiling for systems that do not support real WSD.
146 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
149 ** Macros to enter and leave the PCache LRU mutex.
151 #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
152 #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
154 /******************************************************************************/
155 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
158 ** This function is called during initialization if a static buffer is
159 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
160 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
161 ** enough to contain 'n' buffers of 'sz' bytes each.
163 ** This routine is called from sqlite3_initialize() and so it is guaranteed
164 ** to be serialized already. There is no need for further mutexing.
166 void sqlite3PCacheBufferSetup(void *pBuf
, int sz
, int n
){
167 if( pcache1
.isInit
){
171 pcache1
.nSlot
= pcache1
.nFreeSlot
= n
;
172 pcache1
.nReserve
= n
>90 ? 10 : (n
/10 + 1);
173 pcache1
.pStart
= pBuf
;
175 pcache1
.bUnderPressure
= 0;
177 p
= (PgFreeslot
*)pBuf
;
178 p
->pNext
= pcache1
.pFree
;
180 pBuf
= (void*)&((char*)pBuf
)[sz
];
187 ** Malloc function used within this file to allocate space from the buffer
188 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
189 ** such buffer exists or there is no space left in it, this function falls
190 ** back to sqlite3Malloc().
192 ** Multiple threads can run this routine at the same time. Global variables
193 ** in pcache1 need to be protected via mutex.
195 static void *pcache1Alloc(int nByte
){
197 assert( sqlite3_mutex_notheld(pcache1
.grp
.mutex
) );
198 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE
, nByte
);
199 if( nByte
<=pcache1
.szSlot
){
200 sqlite3_mutex_enter(pcache1
.mutex
);
201 p
= (PgHdr1
*)pcache1
.pFree
;
203 pcache1
.pFree
= pcache1
.pFree
->pNext
;
205 pcache1
.bUnderPressure
= pcache1
.nFreeSlot
<pcache1
.nReserve
;
206 assert( pcache1
.nFreeSlot
>=0 );
207 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED
, 1);
209 sqlite3_mutex_leave(pcache1
.mutex
);
212 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
213 ** it from sqlite3Malloc instead.
215 p
= sqlite3Malloc(nByte
);
216 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
218 int sz
= sqlite3MallocSize(p
);
219 sqlite3_mutex_enter(pcache1
.mutex
);
220 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW
, sz
);
221 sqlite3_mutex_leave(pcache1
.mutex
);
224 sqlite3MemdebugSetType(p
, MEMTYPE_PCACHE
);
230 ** Free an allocated buffer obtained from pcache1Alloc().
232 static int pcache1Free(void *p
){
235 if( p
>=pcache1
.pStart
&& p
<pcache1
.pEnd
){
237 sqlite3_mutex_enter(pcache1
.mutex
);
238 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED
, -1);
239 pSlot
= (PgFreeslot
*)p
;
240 pSlot
->pNext
= pcache1
.pFree
;
241 pcache1
.pFree
= pSlot
;
243 pcache1
.bUnderPressure
= pcache1
.nFreeSlot
<pcache1
.nReserve
;
244 assert( pcache1
.nFreeSlot
<=pcache1
.nSlot
);
245 sqlite3_mutex_leave(pcache1
.mutex
);
247 assert( sqlite3MemdebugHasType(p
, MEMTYPE_PCACHE
) );
248 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
249 nFreed
= sqlite3MallocSize(p
);
250 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
251 sqlite3_mutex_enter(pcache1
.mutex
);
252 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW
, -nFreed
);
253 sqlite3_mutex_leave(pcache1
.mutex
);
260 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
262 ** Return the size of a pcache allocation
264 static int pcache1MemSize(void *p
){
265 if( p
>=pcache1
.pStart
&& p
<pcache1
.pEnd
){
266 return pcache1
.szSlot
;
269 assert( sqlite3MemdebugHasType(p
, MEMTYPE_PCACHE
) );
270 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
271 iSize
= sqlite3MallocSize(p
);
272 sqlite3MemdebugSetType(p
, MEMTYPE_PCACHE
);
276 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
279 ** Allocate a new page object initially associated with cache pCache.
281 static PgHdr1
*pcache1AllocPage(PCache1
*pCache
){
285 /* The group mutex must be released before pcache1Alloc() is called. This
286 ** is because it may call sqlite3_release_memory(), which assumes that
287 ** this mutex is not held. */
288 assert( sqlite3_mutex_held(pCache
->pGroup
->mutex
) );
289 pcache1LeaveMutex(pCache
->pGroup
);
290 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
291 pPg
= pcache1Alloc(pCache
->szPage
);
292 p
= sqlite3Malloc(sizeof(PgHdr1
) + pCache
->szExtra
);
299 pPg
= pcache1Alloc(sizeof(PgHdr1
) + pCache
->szPage
+ pCache
->szExtra
);
300 p
= (PgHdr1
*)&((u8
*)pPg
)[pCache
->szPage
];
302 pcache1EnterMutex(pCache
->pGroup
);
306 p
->page
.pExtra
= &p
[1];
307 if( pCache
->bPurgeable
){
308 pCache
->pGroup
->nCurrentPage
++;
316 ** Free a page object allocated by pcache1AllocPage().
318 ** The pointer is allowed to be NULL, which is prudent. But it turns out
319 ** that the current implementation happens to never call this routine
320 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
322 static void pcache1FreePage(PgHdr1
*p
){
324 PCache1
*pCache
= p
->pCache
;
325 assert( sqlite3_mutex_held(p
->pCache
->pGroup
->mutex
) );
326 pcache1Free(p
->page
.pBuf
);
327 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
330 if( pCache
->bPurgeable
){
331 pCache
->pGroup
->nCurrentPage
--;
337 ** Malloc function used by SQLite to obtain space from the buffer configured
338 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
339 ** exists, this function falls back to sqlite3Malloc().
341 void *sqlite3PageMalloc(int sz
){
342 return pcache1Alloc(sz
);
346 ** Free an allocated buffer obtained from sqlite3PageMalloc().
348 void sqlite3PageFree(void *p
){
354 ** Return true if it desirable to avoid allocating a new page cache
357 ** If memory was allocated specifically to the page cache using
358 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
359 ** it is desirable to avoid allocating a new page cache entry because
360 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
361 ** for all page cache needs and we should not need to spill the
362 ** allocation onto the heap.
364 ** Or, the heap is used for all page cache memory but the heap is
365 ** under memory pressure, then again it is desirable to avoid
366 ** allocating a new page cache entry in order to avoid stressing
367 ** the heap even further.
369 static int pcache1UnderMemoryPressure(PCache1
*pCache
){
370 if( pcache1
.nSlot
&& (pCache
->szPage
+pCache
->szExtra
)<=pcache1
.szSlot
){
371 return pcache1
.bUnderPressure
;
373 return sqlite3HeapNearlyFull();
377 /******************************************************************************/
378 /******** General Implementation Functions ************************************/
381 ** This function is used to resize the hash table used by the cache passed
382 ** as the first argument.
384 ** The PCache mutex must be held when this function is called.
386 static void pcache1ResizeHash(PCache1
*p
){
391 assert( sqlite3_mutex_held(p
->pGroup
->mutex
) );
398 pcache1LeaveMutex(p
->pGroup
);
399 if( p
->nHash
){ sqlite3BeginBenignMalloc(); }
400 apNew
= (PgHdr1
**)sqlite3MallocZero(sizeof(PgHdr1
*)*nNew
);
401 if( p
->nHash
){ sqlite3EndBenignMalloc(); }
402 pcache1EnterMutex(p
->pGroup
);
404 for(i
=0; i
<p
->nHash
; i
++){
406 PgHdr1
*pNext
= p
->apHash
[i
];
407 while( (pPage
= pNext
)!=0 ){
408 unsigned int h
= pPage
->iKey
% nNew
;
409 pNext
= pPage
->pNext
;
410 pPage
->pNext
= apNew
[h
];
414 sqlite3_free(p
->apHash
);
421 ** This function is used internally to remove the page pPage from the
422 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
423 ** LRU list, then this function is a no-op.
425 ** The PGroup mutex must be held when this function is called.
427 static void pcache1PinPage(PgHdr1
*pPage
){
432 assert( pPage
->isPinned
==0 );
433 pCache
= pPage
->pCache
;
434 pGroup
= pCache
->pGroup
;
435 assert( pPage
->pLruNext
|| pPage
==pGroup
->pLruTail
);
436 assert( pPage
->pLruPrev
|| pPage
==pGroup
->pLruHead
);
437 assert( sqlite3_mutex_held(pGroup
->mutex
) );
438 if( pPage
->pLruPrev
){
439 pPage
->pLruPrev
->pLruNext
= pPage
->pLruNext
;
441 pGroup
->pLruHead
= pPage
->pLruNext
;
443 if( pPage
->pLruNext
){
444 pPage
->pLruNext
->pLruPrev
= pPage
->pLruPrev
;
446 pGroup
->pLruTail
= pPage
->pLruPrev
;
451 pCache
->nRecyclable
--;
456 ** Remove the page supplied as an argument from the hash table
457 ** (PCache1.apHash structure) that it is currently stored in.
459 ** The PGroup mutex must be held when this function is called.
461 static void pcache1RemoveFromHash(PgHdr1
*pPage
){
463 PCache1
*pCache
= pPage
->pCache
;
466 assert( sqlite3_mutex_held(pCache
->pGroup
->mutex
) );
467 h
= pPage
->iKey
% pCache
->nHash
;
468 for(pp
=&pCache
->apHash
[h
]; (*pp
)!=pPage
; pp
=&(*pp
)->pNext
);
475 ** If there are currently more than nMaxPage pages allocated, try
476 ** to recycle pages to reduce the number allocated to nMaxPage.
478 static void pcache1EnforceMaxPage(PGroup
*pGroup
){
479 assert( sqlite3_mutex_held(pGroup
->mutex
) );
480 while( pGroup
->nCurrentPage
>pGroup
->nMaxPage
&& pGroup
->pLruTail
){
481 PgHdr1
*p
= pGroup
->pLruTail
;
482 assert( p
->pCache
->pGroup
==pGroup
);
483 assert( p
->isPinned
==0 );
485 pcache1RemoveFromHash(p
);
491 ** Discard all pages from cache pCache with a page number (key value)
492 ** greater than or equal to iLimit. Any pinned pages that meet this
493 ** criteria are unpinned before they are discarded.
495 ** The PCache mutex must be held when this function is called.
497 static void pcache1TruncateUnsafe(
498 PCache1
*pCache
, /* The cache to truncate */
499 unsigned int iLimit
/* Drop pages with this pgno or larger */
501 TESTONLY( unsigned int nPage
= 0; ) /* To assert pCache->nPage is correct */
503 assert( sqlite3_mutex_held(pCache
->pGroup
->mutex
) );
504 for(h
=0; h
<pCache
->nHash
; h
++){
505 PgHdr1
**pp
= &pCache
->apHash
[h
];
507 while( (pPage
= *pp
)!=0 ){
508 if( pPage
->iKey
>=iLimit
){
511 if( !pPage
->isPinned
) pcache1PinPage(pPage
);
512 pcache1FreePage(pPage
);
519 assert( pCache
->nPage
==nPage
);
522 /******************************************************************************/
523 /******** sqlite3_pcache Methods **********************************************/
526 ** Implementation of the sqlite3_pcache.xInit method.
528 static int pcache1Init(void *NotUsed
){
529 UNUSED_PARAMETER(NotUsed
);
530 assert( pcache1
.isInit
==0 );
531 memset(&pcache1
, 0, sizeof(pcache1
));
532 if( sqlite3GlobalConfig
.bCoreMutex
){
533 pcache1
.grp
.mutex
= sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU
);
534 pcache1
.mutex
= sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM
);
536 pcache1
.grp
.mxPinned
= 10;
542 ** Implementation of the sqlite3_pcache.xShutdown method.
543 ** Note that the static mutex allocated in xInit does
544 ** not need to be freed.
546 static void pcache1Shutdown(void *NotUsed
){
547 UNUSED_PARAMETER(NotUsed
);
548 assert( pcache1
.isInit
!=0 );
549 memset(&pcache1
, 0, sizeof(pcache1
));
552 /* forward declaration */
553 static void pcache1Destroy(sqlite3_pcache
*p
);
556 ** Implementation of the sqlite3_pcache.xCreate method.
558 ** Allocate a new cache.
560 static sqlite3_pcache
*pcache1Create(int szPage
, int szExtra
, int bPurgeable
){
561 PCache1
*pCache
; /* The newly created page cache */
562 PGroup
*pGroup
; /* The group the new page cache will belong to */
563 int sz
; /* Bytes of memory required to allocate the new cache */
566 ** The separateCache variable is true if each PCache has its own private
567 ** PGroup. In other words, separateCache is true for mode (1) where no
568 ** mutexing is required.
570 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
572 ** * Always use a unified cache in single-threaded applications
574 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
575 ** use separate caches (mode-1)
577 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
578 const int separateCache
= 0;
580 int separateCache
= sqlite3GlobalConfig
.bCoreMutex
>0;
583 assert( (szPage
& (szPage
-1))==0 && szPage
>=512 && szPage
<=65536 );
584 assert( szExtra
< 300 );
586 sz
= sizeof(PCache1
) + sizeof(PGroup
)*separateCache
;
587 pCache
= (PCache1
*)sqlite3MallocZero(sz
);
590 pGroup
= (PGroup
*)&pCache
[1];
591 pGroup
->mxPinned
= 10;
593 pGroup
= &pcache1
.grp
;
595 pCache
->pGroup
= pGroup
;
596 pCache
->szPage
= szPage
;
597 pCache
->szExtra
= szExtra
;
598 pCache
->bPurgeable
= (bPurgeable
? 1 : 0);
599 pcache1EnterMutex(pGroup
);
600 pcache1ResizeHash(pCache
);
603 pGroup
->nMinPage
+= pCache
->nMin
;
604 pGroup
->mxPinned
= pGroup
->nMaxPage
+ 10 - pGroup
->nMinPage
;
606 pcache1LeaveMutex(pGroup
);
607 if( pCache
->nHash
==0 ){
608 pcache1Destroy((sqlite3_pcache
*)pCache
);
612 return (sqlite3_pcache
*)pCache
;
616 ** Implementation of the sqlite3_pcache.xCachesize method.
618 ** Configure the cache_size limit for a cache.
620 static void pcache1Cachesize(sqlite3_pcache
*p
, int nMax
){
621 PCache1
*pCache
= (PCache1
*)p
;
622 if( pCache
->bPurgeable
){
623 PGroup
*pGroup
= pCache
->pGroup
;
624 pcache1EnterMutex(pGroup
);
625 pGroup
->nMaxPage
+= (nMax
- pCache
->nMax
);
626 pGroup
->mxPinned
= pGroup
->nMaxPage
+ 10 - pGroup
->nMinPage
;
628 pCache
->n90pct
= pCache
->nMax
*9/10;
629 pcache1EnforceMaxPage(pGroup
);
630 pcache1LeaveMutex(pGroup
);
635 ** Implementation of the sqlite3_pcache.xShrink method.
637 ** Free up as much memory as possible.
639 static void pcache1Shrink(sqlite3_pcache
*p
){
640 PCache1
*pCache
= (PCache1
*)p
;
641 if( pCache
->bPurgeable
){
642 PGroup
*pGroup
= pCache
->pGroup
;
644 pcache1EnterMutex(pGroup
);
645 savedMaxPage
= pGroup
->nMaxPage
;
646 pGroup
->nMaxPage
= 0;
647 pcache1EnforceMaxPage(pGroup
);
648 pGroup
->nMaxPage
= savedMaxPage
;
649 pcache1LeaveMutex(pGroup
);
654 ** Implementation of the sqlite3_pcache.xPagecount method.
656 static int pcache1Pagecount(sqlite3_pcache
*p
){
658 PCache1
*pCache
= (PCache1
*)p
;
659 pcache1EnterMutex(pCache
->pGroup
);
661 pcache1LeaveMutex(pCache
->pGroup
);
667 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
668 ** in the header of the pcache1Fetch() procedure.
670 ** This steps are broken out into a separate procedure because they are
671 ** usually not needed, and by avoiding the stack initialization required
672 ** for these steps, the main pcache1Fetch() procedure can run faster.
674 static SQLITE_NOINLINE PgHdr1
*pcache1FetchStage2(
679 unsigned int nPinned
;
680 PGroup
*pGroup
= pCache
->pGroup
;
683 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
684 assert( pCache
->nPage
>= pCache
->nRecyclable
);
685 nPinned
= pCache
->nPage
- pCache
->nRecyclable
;
686 assert( pGroup
->mxPinned
== pGroup
->nMaxPage
+ 10 - pGroup
->nMinPage
);
687 assert( pCache
->n90pct
== pCache
->nMax
*9/10 );
688 if( createFlag
==1 && (
689 nPinned
>=pGroup
->mxPinned
690 || nPinned
>=pCache
->n90pct
691 || (pcache1UnderMemoryPressure(pCache
) && pCache
->nRecyclable
<nPinned
)
696 if( pCache
->nPage
>=pCache
->nHash
) pcache1ResizeHash(pCache
);
697 assert( pCache
->nHash
>0 && pCache
->apHash
);
699 /* Step 4. Try to recycle a page. */
700 if( pCache
->bPurgeable
&& pGroup
->pLruTail
&& (
701 (pCache
->nPage
+1>=pCache
->nMax
)
702 || pGroup
->nCurrentPage
>=pGroup
->nMaxPage
703 || pcache1UnderMemoryPressure(pCache
)
706 pPage
= pGroup
->pLruTail
;
707 assert( pPage
->isPinned
==0 );
708 pcache1RemoveFromHash(pPage
);
709 pcache1PinPage(pPage
);
710 pOther
= pPage
->pCache
;
712 /* We want to verify that szPage and szExtra are the same for pOther
713 ** and pCache. Assert that we can verify this by comparing sums. */
714 assert( (pCache
->szPage
& (pCache
->szPage
-1))==0 && pCache
->szPage
>=512 );
715 assert( pCache
->szExtra
<512 );
716 assert( (pOther
->szPage
& (pOther
->szPage
-1))==0 && pOther
->szPage
>=512 );
717 assert( pOther
->szExtra
<512 );
719 if( pOther
->szPage
+pOther
->szExtra
!= pCache
->szPage
+pCache
->szExtra
){
720 pcache1FreePage(pPage
);
723 pGroup
->nCurrentPage
-= (pOther
->bPurgeable
- pCache
->bPurgeable
);
727 /* Step 5. If a usable page buffer has still not been found,
728 ** attempt to allocate a new one.
731 if( createFlag
==1 ) sqlite3BeginBenignMalloc();
732 pPage
= pcache1AllocPage(pCache
);
733 if( createFlag
==1 ) sqlite3EndBenignMalloc();
737 unsigned int h
= iKey
% pCache
->nHash
;
740 pPage
->pNext
= pCache
->apHash
[h
];
741 pPage
->pCache
= pCache
;
745 *(void **)pPage
->page
.pExtra
= 0;
746 pCache
->apHash
[h
] = pPage
;
747 if( iKey
>pCache
->iMaxKey
){
748 pCache
->iMaxKey
= iKey
;
755 ** Implementation of the sqlite3_pcache.xFetch method.
757 ** Fetch a page by key value.
759 ** Whether or not a new page may be allocated by this function depends on
760 ** the value of the createFlag argument. 0 means do not allocate a new
761 ** page. 1 means allocate a new page if space is easily available. 2
762 ** means to try really hard to allocate a new page.
764 ** For a non-purgeable cache (a cache used as the storage for an in-memory
765 ** database) there is really no difference between createFlag 1 and 2. So
766 ** the calling function (pcache.c) will never have a createFlag of 1 on
767 ** a non-purgeable cache.
769 ** There are three different approaches to obtaining space for a page,
770 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
772 ** 1. Regardless of the value of createFlag, the cache is searched for a
773 ** copy of the requested page. If one is found, it is returned.
775 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
778 ** 3. If createFlag is 1, and the page is not already in the cache, then
779 ** return NULL (do not allocate a new page) if any of the following
780 ** conditions are true:
782 ** (a) the number of pages pinned by the cache is greater than
785 ** (b) the number of pages pinned by the cache is greater than
786 ** the sum of nMax for all purgeable caches, less the sum of
787 ** nMin for all other purgeable caches, or
789 ** 4. If none of the first three conditions apply and the cache is marked
790 ** as purgeable, and if one of the following is true:
792 ** (a) The number of pages allocated for the cache is already
795 ** (b) The number of pages allocated for all purgeable caches is
796 ** already equal to or greater than the sum of nMax for all
799 ** (c) The system is under memory pressure and wants to avoid
800 ** unnecessary pages cache entry allocations
802 ** then attempt to recycle a page from the LRU list. If it is the right
803 ** size, return the recycled buffer. Otherwise, free the buffer and
804 ** proceed to step 5.
806 ** 5. Otherwise, allocate and return a new page buffer.
808 static sqlite3_pcache_page
*pcache1Fetch(
813 PCache1
*pCache
= (PCache1
*)p
;
816 assert( offsetof(PgHdr1
,page
)==0 );
817 assert( pCache
->bPurgeable
|| createFlag
!=1 );
818 assert( pCache
->bPurgeable
|| pCache
->nMin
==0 );
819 assert( pCache
->bPurgeable
==0 || pCache
->nMin
==10 );
820 assert( pCache
->nMin
==0 || pCache
->bPurgeable
);
821 assert( pCache
->nHash
>0 );
822 pcache1EnterMutex(pCache
->pGroup
);
824 /* Step 1: Search the hash table for an existing entry. */
825 pPage
= pCache
->apHash
[iKey
% pCache
->nHash
];
826 while( pPage
&& pPage
->iKey
!=iKey
){ pPage
= pPage
->pNext
; }
828 /* Step 2: Abort if no existing page is found and createFlag is 0 */
830 if( !pPage
->isPinned
) pcache1PinPage(pPage
);
831 }else if( createFlag
){
832 /* Steps 3, 4, and 5 implemented by this subroutine */
833 pPage
= pcache1FetchStage2(pCache
, iKey
, createFlag
);
835 assert( pPage
==0 || pCache
->iMaxKey
>=iKey
);
836 pcache1LeaveMutex(pCache
->pGroup
);
837 return (sqlite3_pcache_page
*)pPage
;
842 ** Implementation of the sqlite3_pcache.xUnpin method.
844 ** Mark a page as unpinned (eligible for asynchronous recycling).
846 static void pcache1Unpin(
848 sqlite3_pcache_page
*pPg
,
851 PCache1
*pCache
= (PCache1
*)p
;
852 PgHdr1
*pPage
= (PgHdr1
*)pPg
;
853 PGroup
*pGroup
= pCache
->pGroup
;
855 assert( pPage
->pCache
==pCache
);
856 pcache1EnterMutex(pGroup
);
858 /* It is an error to call this function if the page is already
859 ** part of the PGroup LRU list.
861 assert( pPage
->pLruPrev
==0 && pPage
->pLruNext
==0 );
862 assert( pGroup
->pLruHead
!=pPage
&& pGroup
->pLruTail
!=pPage
);
863 assert( pPage
->isPinned
==1 );
865 if( reuseUnlikely
|| pGroup
->nCurrentPage
>pGroup
->nMaxPage
){
866 pcache1RemoveFromHash(pPage
);
867 pcache1FreePage(pPage
);
869 /* Add the page to the PGroup LRU list. */
870 if( pGroup
->pLruHead
){
871 pGroup
->pLruHead
->pLruPrev
= pPage
;
872 pPage
->pLruNext
= pGroup
->pLruHead
;
873 pGroup
->pLruHead
= pPage
;
875 pGroup
->pLruTail
= pPage
;
876 pGroup
->pLruHead
= pPage
;
878 pCache
->nRecyclable
++;
882 pcache1LeaveMutex(pCache
->pGroup
);
886 ** Implementation of the sqlite3_pcache.xRekey method.
888 static void pcache1Rekey(
890 sqlite3_pcache_page
*pPg
,
894 PCache1
*pCache
= (PCache1
*)p
;
895 PgHdr1
*pPage
= (PgHdr1
*)pPg
;
898 assert( pPage
->iKey
==iOld
);
899 assert( pPage
->pCache
==pCache
);
901 pcache1EnterMutex(pCache
->pGroup
);
903 h
= iOld
%pCache
->nHash
;
904 pp
= &pCache
->apHash
[h
];
905 while( (*pp
)!=pPage
){
910 h
= iNew
%pCache
->nHash
;
912 pPage
->pNext
= pCache
->apHash
[h
];
913 pCache
->apHash
[h
] = pPage
;
914 if( iNew
>pCache
->iMaxKey
){
915 pCache
->iMaxKey
= iNew
;
918 pcache1LeaveMutex(pCache
->pGroup
);
922 ** Implementation of the sqlite3_pcache.xTruncate method.
924 ** Discard all unpinned pages in the cache with a page number equal to
925 ** or greater than parameter iLimit. Any pinned pages with a page number
926 ** equal to or greater than iLimit are implicitly unpinned.
928 static void pcache1Truncate(sqlite3_pcache
*p
, unsigned int iLimit
){
929 PCache1
*pCache
= (PCache1
*)p
;
930 pcache1EnterMutex(pCache
->pGroup
);
931 if( iLimit
<=pCache
->iMaxKey
){
932 pcache1TruncateUnsafe(pCache
, iLimit
);
933 pCache
->iMaxKey
= iLimit
-1;
935 pcache1LeaveMutex(pCache
->pGroup
);
939 ** Implementation of the sqlite3_pcache.xDestroy method.
941 ** Destroy a cache allocated using pcache1Create().
943 static void pcache1Destroy(sqlite3_pcache
*p
){
944 PCache1
*pCache
= (PCache1
*)p
;
945 PGroup
*pGroup
= pCache
->pGroup
;
946 assert( pCache
->bPurgeable
|| (pCache
->nMax
==0 && pCache
->nMin
==0) );
947 pcache1EnterMutex(pGroup
);
948 pcache1TruncateUnsafe(pCache
, 0);
949 assert( pGroup
->nMaxPage
>= pCache
->nMax
);
950 pGroup
->nMaxPage
-= pCache
->nMax
;
951 assert( pGroup
->nMinPage
>= pCache
->nMin
);
952 pGroup
->nMinPage
-= pCache
->nMin
;
953 pGroup
->mxPinned
= pGroup
->nMaxPage
+ 10 - pGroup
->nMinPage
;
954 pcache1EnforceMaxPage(pGroup
);
955 pcache1LeaveMutex(pGroup
);
956 sqlite3_free(pCache
->apHash
);
957 sqlite3_free(pCache
);
961 ** This function is called during initialization (sqlite3_initialize()) to
962 ** install the default pluggable cache module, assuming the user has not
963 ** already provided an alternative.
965 void sqlite3PCacheSetDefault(void){
966 static const sqlite3_pcache_methods2 defaultMethods
= {
969 pcache1Init
, /* xInit */
970 pcache1Shutdown
, /* xShutdown */
971 pcache1Create
, /* xCreate */
972 pcache1Cachesize
, /* xCachesize */
973 pcache1Pagecount
, /* xPagecount */
974 pcache1Fetch
, /* xFetch */
975 pcache1Unpin
, /* xUnpin */
976 pcache1Rekey
, /* xRekey */
977 pcache1Truncate
, /* xTruncate */
978 pcache1Destroy
, /* xDestroy */
979 pcache1Shrink
/* xShrink */
981 sqlite3_config(SQLITE_CONFIG_PCACHE2
, &defaultMethods
);
984 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
986 ** This function is called to free superfluous dynamically allocated memory
987 ** held by the pager system. Memory in use by any SQLite pager allocated
988 ** by the current thread may be sqlite3_free()ed.
990 ** nReq is the number of bytes of memory required. Once this much has
991 ** been released, the function returns. The return value is the total number
992 ** of bytes of memory released.
994 int sqlite3PcacheReleaseMemory(int nReq
){
996 assert( sqlite3_mutex_notheld(pcache1
.grp
.mutex
) );
997 assert( sqlite3_mutex_notheld(pcache1
.mutex
) );
998 if( pcache1
.pStart
==0 ){
1000 pcache1EnterMutex(&pcache1
.grp
);
1001 while( (nReq
<0 || nFree
<nReq
) && ((p
=pcache1
.grp
.pLruTail
)!=0) ){
1002 nFree
+= pcache1MemSize(p
->page
.pBuf
);
1003 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1004 nFree
+= sqlite3MemSize(p
);
1006 assert( p
->isPinned
==0 );
1008 pcache1RemoveFromHash(p
);
1011 pcache1LeaveMutex(&pcache1
.grp
);
1015 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1019 ** This function is used by test procedures to inspect the internal state
1020 ** of the global cache.
1022 void sqlite3PcacheStats(
1023 int *pnCurrent
, /* OUT: Total number of pages cached */
1024 int *pnMax
, /* OUT: Global maximum cache size */
1025 int *pnMin
, /* OUT: Sum of PCache1.nMin for purgeable caches */
1026 int *pnRecyclable
/* OUT: Total number of pages available for recycling */
1029 int nRecyclable
= 0;
1030 for(p
=pcache1
.grp
.pLruHead
; p
; p
=p
->pLruNext
){
1031 assert( p
->isPinned
==0 );
1034 *pnCurrent
= pcache1
.grp
.nCurrentPage
;
1035 *pnMax
= (int)pcache1
.grp
.nMaxPage
;
1036 *pnMin
= (int)pcache1
.grp
.nMinPage
;
1037 *pnRecyclable
= nRecyclable
;