4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This module implements an object we call a "RowSet".
15 ** The RowSet object is a collection of rowids. Rowids
16 ** are inserted into the RowSet in an arbitrary order. Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order. Once this extraction
22 ** process has started, no new elements may be inserted.
24 ** Hence, the primitive operations for a RowSet are:
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously. The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet. SMALLEST
35 ** extracts the least value from the RowSet.
37 ** The INSERT primitive might allocate additional memory. Memory is
38 ** allocated in chunks so most INSERTs do no allocation. There is an
39 ** upper bound on the size of allocated memory. No memory is freed
42 ** The TEST primitive includes a "batch" number. The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number. In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if
53 ** The cost of an INSERT is roughly constant. (Sometimes new memory
54 ** has to be allocated on an INSERT.) The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN). The cost
57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
58 ** primitives are constant time. The cost of DESTROY is O(N).
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
63 #include "sqliteInt.h"
67 ** Target size for allocation chunks.
69 #define ROWSET_ALLOCATION_SIZE 1024
72 ** The number of rowset entries per allocation chunk.
74 #define ROWSET_ENTRY_PER_CHUNK \
75 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
78 ** Each entry in a RowSet is an instance of the following object.
80 ** This same object is reused to store a linked list of trees of RowSetEntry
81 ** objects. In that alternative use, pRight points to the next entry
82 ** in the list, pLeft points to the tree, and v is unused. The
83 ** RowSet.pForest value points to the head of this forest list.
86 i64 v
; /* ROWID value for this entry */
87 struct RowSetEntry
*pRight
; /* Right subtree (larger entries) or list */
88 struct RowSetEntry
*pLeft
; /* Left subtree (smaller entries) */
92 ** RowSetEntry objects are allocated in large chunks (instances of the
93 ** following structure) to reduce memory allocation overhead. The
94 ** chunks are kept on a linked list so that they can be deallocated
95 ** when the RowSet is destroyed.
98 struct RowSetChunk
*pNextChunk
; /* Next chunk on list of them all */
99 struct RowSetEntry aEntry
[ROWSET_ENTRY_PER_CHUNK
]; /* Allocated entries */
103 ** A RowSet in an instance of the following structure.
105 ** A typedef of this structure if found in sqliteInt.h.
108 struct RowSetChunk
*pChunk
; /* List of all chunk allocations */
109 sqlite3
*db
; /* The database connection */
110 struct RowSetEntry
*pEntry
; /* List of entries using pRight */
111 struct RowSetEntry
*pLast
; /* Last entry on the pEntry list */
112 struct RowSetEntry
*pFresh
; /* Source of new entry objects */
113 struct RowSetEntry
*pForest
; /* List of binary trees of entries */
114 u16 nFresh
; /* Number of objects on pFresh */
115 u16 rsFlags
; /* Various flags */
116 int iBatch
; /* Current insert batch */
120 ** Allowed values for RowSet.rsFlags
122 #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
123 #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
126 ** Turn bulk memory into a RowSet object. N bytes of memory
127 ** are available at pSpace. The db pointer is used as a memory context
128 ** for any subsequent allocations that need to occur.
129 ** Return a pointer to the new RowSet object.
131 ** It must be the case that N is sufficient to make a Rowset. If not
132 ** an assertion fault occurs.
134 ** If N is larger than the minimum, use the surplus as an initial
135 ** allocation of entries available to be filled.
137 RowSet
*sqlite3RowSetInit(sqlite3
*db
, void *pSpace
, unsigned int N
){
139 assert( N
>= ROUND8(sizeof(*p
)) );
146 p
->pFresh
= (struct RowSetEntry
*)(ROUND8(sizeof(*p
)) + (char*)p
);
147 p
->nFresh
= (u16
)((N
- ROUND8(sizeof(*p
)))/sizeof(struct RowSetEntry
));
148 p
->rsFlags
= ROWSET_SORTED
;
154 ** Deallocate all chunks from a RowSet. This frees all memory that
155 ** the RowSet has allocated over its lifetime. This routine is
156 ** the destructor for the RowSet.
158 void sqlite3RowSetClear(RowSet
*p
){
159 struct RowSetChunk
*pChunk
, *pNextChunk
;
160 for(pChunk
=p
->pChunk
; pChunk
; pChunk
= pNextChunk
){
161 pNextChunk
= pChunk
->pNextChunk
;
162 sqlite3DbFree(p
->db
, pChunk
);
169 p
->rsFlags
= ROWSET_SORTED
;
173 ** Allocate a new RowSetEntry object that is associated with the
174 ** given RowSet. Return a pointer to the new and completely uninitialized
177 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
178 ** routine returns NULL.
180 static struct RowSetEntry
*rowSetEntryAlloc(RowSet
*p
){
183 struct RowSetChunk
*pNew
;
184 pNew
= sqlite3DbMallocRaw(p
->db
, sizeof(*pNew
));
188 pNew
->pNextChunk
= p
->pChunk
;
190 p
->pFresh
= pNew
->aEntry
;
191 p
->nFresh
= ROWSET_ENTRY_PER_CHUNK
;
198 ** Insert a new value into a RowSet.
200 ** The mallocFailed flag of the database connection is set if a
201 ** memory allocation fails.
203 void sqlite3RowSetInsert(RowSet
*p
, i64 rowid
){
204 struct RowSetEntry
*pEntry
; /* The new entry */
205 struct RowSetEntry
*pLast
; /* The last prior entry */
207 /* This routine is never called after sqlite3RowSetNext() */
208 assert( p
!=0 && (p
->rsFlags
& ROWSET_NEXT
)==0 );
210 pEntry
= rowSetEntryAlloc(p
);
211 if( pEntry
==0 ) return;
216 if( (p
->rsFlags
& ROWSET_SORTED
)!=0 && rowid
<=pLast
->v
){
217 p
->rsFlags
&= ~ROWSET_SORTED
;
219 pLast
->pRight
= pEntry
;
227 ** Merge two lists of RowSetEntry objects. Remove duplicates.
229 ** The input lists are connected via pRight pointers and are
230 ** assumed to each already be in sorted order.
232 static struct RowSetEntry
*rowSetEntryMerge(
233 struct RowSetEntry
*pA
, /* First sorted list to be merged */
234 struct RowSetEntry
*pB
/* Second sorted list to be merged */
236 struct RowSetEntry head
;
237 struct RowSetEntry
*pTail
;
241 assert( pA
->pRight
==0 || pA
->v
<=pA
->pRight
->v
);
242 assert( pB
->pRight
==0 || pB
->v
<=pB
->pRight
->v
);
246 pTail
= pTail
->pRight
;
247 }else if( pB
->v
<pA
->v
){
250 pTail
= pTail
->pRight
;
256 assert( pA
->pRight
==0 || pA
->v
<=pA
->pRight
->v
);
259 assert( pB
==0 || pB
->pRight
==0 || pB
->v
<=pB
->pRight
->v
);
266 ** Sort all elements on the list of RowSetEntry objects into order of
269 static struct RowSetEntry
*rowSetEntrySort(struct RowSetEntry
*pIn
){
271 struct RowSetEntry
*pNext
, *aBucket
[40];
273 memset(aBucket
, 0, sizeof(aBucket
));
277 for(i
=0; aBucket
[i
]; i
++){
278 pIn
= rowSetEntryMerge(aBucket
[i
], pIn
);
285 for(i
=0; i
<sizeof(aBucket
)/sizeof(aBucket
[0]); i
++){
286 pIn
= rowSetEntryMerge(pIn
, aBucket
[i
]);
293 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
294 ** Convert this tree into a linked list connected by the pRight pointers
295 ** and return pointers to the first and last elements of the new list.
297 static void rowSetTreeToList(
298 struct RowSetEntry
*pIn
, /* Root of the input tree */
299 struct RowSetEntry
**ppFirst
, /* Write head of the output list here */
300 struct RowSetEntry
**ppLast
/* Write tail of the output list here */
304 struct RowSetEntry
*p
;
305 rowSetTreeToList(pIn
->pLeft
, ppFirst
, &p
);
311 rowSetTreeToList(pIn
->pRight
, &pIn
->pRight
, ppLast
);
315 assert( (*ppLast
)->pRight
==0 );
320 ** Convert a sorted list of elements (connected by pRight) into a binary
321 ** tree with depth of iDepth. A depth of 1 means the tree contains a single
322 ** node taken from the head of *ppList. A depth of 2 means a tree with
323 ** three nodes. And so forth.
325 ** Use as many entries from the input list as required and update the
326 ** *ppList to point to the unused elements of the list. If the input
327 ** list contains too few elements, then construct an incomplete tree
328 ** and leave *ppList set to NULL.
330 ** Return a pointer to the root of the constructed binary tree.
332 static struct RowSetEntry
*rowSetNDeepTree(
333 struct RowSetEntry
**ppList
,
336 struct RowSetEntry
*p
; /* Root of the new tree */
337 struct RowSetEntry
*pLeft
; /* Left subtree */
344 p
->pLeft
= p
->pRight
= 0;
347 pLeft
= rowSetNDeepTree(ppList
, iDepth
-1);
354 p
->pRight
= rowSetNDeepTree(ppList
, iDepth
-1);
359 ** Convert a sorted list of elements into a binary tree. Make the tree
360 ** as deep as it needs to be in order to contain the entire list.
362 static struct RowSetEntry
*rowSetListToTree(struct RowSetEntry
*pList
){
363 int iDepth
; /* Depth of the tree so far */
364 struct RowSetEntry
*p
; /* Current tree root */
365 struct RowSetEntry
*pLeft
; /* Left subtree */
370 p
->pLeft
= p
->pRight
= 0;
371 for(iDepth
=1; pList
; iDepth
++){
376 p
->pRight
= rowSetNDeepTree(&pList
, iDepth
);
382 ** Take all the entries on p->pEntry and on the trees in p->pForest and
383 ** sort them all together into one big ordered list on p->pEntry.
385 ** This routine should only be called once in the life of a RowSet.
387 static void rowSetToList(RowSet
*p
){
389 /* This routine is called only once */
390 assert( p
!=0 && (p
->rsFlags
& ROWSET_NEXT
)==0 );
392 if( (p
->rsFlags
& ROWSET_SORTED
)==0 ){
393 p
->pEntry
= rowSetEntrySort(p
->pEntry
);
396 /* While this module could theoretically support it, sqlite3RowSetNext()
397 ** is never called after sqlite3RowSetText() for the same RowSet. So
398 ** there is never a forest to deal with. Should this change, simply
399 ** remove the assert() and the #if 0. */
400 assert( p
->pForest
==0 );
403 struct RowSetEntry
*pTree
= p
->pForest
->pLeft
;
405 struct RowSetEntry
*pHead
, *pTail
;
406 rowSetTreeToList(pTree
, &pHead
, &pTail
);
407 p
->pEntry
= rowSetEntryMerge(p
->pEntry
, pHead
);
409 p
->pForest
= p
->pForest
->pRight
;
412 p
->rsFlags
|= ROWSET_NEXT
; /* Verify this routine is never called again */
416 ** Extract the smallest element from the RowSet.
417 ** Write the element into *pRowid. Return 1 on success. Return
418 ** 0 if the RowSet is already empty.
420 ** After this routine has been called, the sqlite3RowSetInsert()
421 ** routine may not be called again.
423 int sqlite3RowSetNext(RowSet
*p
, i64
*pRowid
){
426 /* Merge the forest into a single sorted list on first call */
427 if( (p
->rsFlags
& ROWSET_NEXT
)==0 ) rowSetToList(p
);
429 /* Return the next entry on the list */
431 *pRowid
= p
->pEntry
->v
;
432 p
->pEntry
= p
->pEntry
->pRight
;
434 sqlite3RowSetClear(p
);
443 ** Check to see if element iRowid was inserted into the rowset as
444 ** part of any insert batch prior to iBatch. Return 1 or 0.
446 ** If this is the first test of a new batch and if there exist entries
447 ** on pRowSet->pEntry, then sort those entries into the forest at
448 ** pRowSet->pForest so that they can be tested.
450 int sqlite3RowSetTest(RowSet
*pRowSet
, int iBatch
, sqlite3_int64 iRowid
){
451 struct RowSetEntry
*p
, *pTree
;
453 /* This routine is never called after sqlite3RowSetNext() */
454 assert( pRowSet
!=0 && (pRowSet
->rsFlags
& ROWSET_NEXT
)==0 );
456 /* Sort entries into the forest on the first test of a new batch
458 if( iBatch
!=pRowSet
->iBatch
){
461 struct RowSetEntry
**ppPrevTree
= &pRowSet
->pForest
;
462 if( (pRowSet
->rsFlags
& ROWSET_SORTED
)==0 ){
463 p
= rowSetEntrySort(p
);
465 for(pTree
= pRowSet
->pForest
; pTree
; pTree
=pTree
->pRight
){
466 ppPrevTree
= &pTree
->pRight
;
467 if( pTree
->pLeft
==0 ){
468 pTree
->pLeft
= rowSetListToTree(p
);
471 struct RowSetEntry
*pAux
, *pTail
;
472 rowSetTreeToList(pTree
->pLeft
, &pAux
, &pTail
);
474 p
= rowSetEntryMerge(pAux
, p
);
478 *ppPrevTree
= pTree
= rowSetEntryAlloc(pRowSet
);
482 pTree
->pLeft
= rowSetListToTree(p
);
487 pRowSet
->rsFlags
|= ROWSET_SORTED
;
489 pRowSet
->iBatch
= iBatch
;
492 /* Test to see if the iRowid value appears anywhere in the forest.
493 ** Return 1 if it does and 0 if not.
495 for(pTree
= pRowSet
->pForest
; pTree
; pTree
=pTree
->pRight
){
500 }else if( p
->v
>iRowid
){