4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
20 #ifdef SQLITE_HAVE_ISNAN
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x
){
29 static unsigned dummy
= 0;
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest
){
47 int (*xCallback
)(int) = sqlite3GlobalConfig
.xTestCallback
;
48 return xCallback
? xCallback(iTest
) : SQLITE_OK
;
52 #ifndef SQLITE_OMIT_FLOATING_POINT
54 ** Return true if the floating point value is Not a Number (NaN).
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
59 int sqlite3IsNaN(double x
){
60 int rc
; /* The value return */
61 #if !defined(SQLITE_HAVE_ISNAN)
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
88 volatile double y
= x
;
89 volatile double z
= y
;
91 #else /* if defined(SQLITE_HAVE_ISNAN) */
93 #endif /* SQLITE_HAVE_ISNAN */
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
103 ** The value returned will never be negative. Nor will it ever be greater
104 ** than the actual length of the string. For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
107 int sqlite3Strlen30(const char *z
){
110 while( *z2
){ z2
++; }
111 return 0x3fffffff & (int)(z2
- z
);
115 ** Set the current error code to err_code and clear any prior error message.
117 void sqlite3Error(sqlite3
*db
, int err_code
){
119 db
->errCode
= err_code
;
120 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
124 ** Set the most recent error code and error string for the sqlite
125 ** handle "db". The error code is set to "err_code".
127 ** If it is not NULL, string zFormat specifies the format of the
128 ** error string in the style of the printf functions: The following
129 ** format characters are allowed:
131 ** %s Insert a string
132 ** %z A string that should be freed after use
133 ** %d Insert an integer
135 ** %S Insert the first element of a SrcList
137 ** zFormat and any string tokens that follow it are assumed to be
140 ** To clear the most recent error for sqlite handle "db", sqlite3Error
141 ** should be called with err_code set to SQLITE_OK and zFormat set
144 void sqlite3ErrorWithMsg(sqlite3
*db
, int err_code
, const char *zFormat
, ...){
146 db
->errCode
= err_code
;
148 sqlite3Error(db
, err_code
);
149 }else if( db
->pErr
|| (db
->pErr
= sqlite3ValueNew(db
))!=0 ){
152 va_start(ap
, zFormat
);
153 z
= sqlite3VMPrintf(db
, zFormat
, ap
);
155 sqlite3ValueSetStr(db
->pErr
, -1, z
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
161 ** The following formatting characters are allowed:
163 ** %s Insert a string
164 ** %z A string that should be freed after use
165 ** %d Insert an integer
167 ** %S Insert the first element of a SrcList
169 ** This function should be used to report any error that occurs while
170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
171 ** last thing the sqlite3_prepare() function does is copy the error
172 ** stored by this function into the database handle using sqlite3Error().
173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
174 ** during statement execution (sqlite3_step() etc.).
176 void sqlite3ErrorMsg(Parse
*pParse
, const char *zFormat
, ...){
179 sqlite3
*db
= pParse
->db
;
180 va_start(ap
, zFormat
);
181 zMsg
= sqlite3VMPrintf(db
, zFormat
, ap
);
183 if( db
->suppressErr
){
184 sqlite3DbFree(db
, zMsg
);
187 sqlite3DbFree(db
, pParse
->zErrMsg
);
188 pParse
->zErrMsg
= zMsg
;
189 pParse
->rc
= SQLITE_ERROR
;
194 ** Convert an SQL-style quoted string into a normal string by removing
195 ** the quote characters. The conversion is done in-place. If the
196 ** input does not begin with a quote character, then this routine
199 ** The input string must be zero-terminated. A new zero-terminator
200 ** is added to the dequoted string.
202 ** The return value is -1 if no dequoting occurs or the length of the
203 ** dequoted string, exclusive of the zero terminator, if dequoting does
206 ** 2002-Feb-14: This routine is extended to remove MS-Access style
207 ** brackets from around identifiers. For example: "[a-b-c]" becomes
210 int sqlite3Dequote(char *z
){
213 if( z
==0 ) return -1;
218 case '`': break; /* For MySQL compatibility */
219 case '[': quote
= ']'; break; /* For MS SqlServer compatibility */
239 /* Convenient short-hand */
240 #define UpperToLower sqlite3UpperToLower
243 ** Some systems have stricmp(). Others have strcasecmp(). Because
244 ** there is no consistency, we will define our own.
246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
248 ** the contents of two buffers containing UTF-8 strings in a
249 ** case-independent fashion, using the same definition of "case
250 ** independence" that SQLite uses internally when comparing identifiers.
252 int sqlite3_stricmp(const char *zLeft
, const char *zRight
){
253 register unsigned char *a
, *b
;
254 a
= (unsigned char *)zLeft
;
255 b
= (unsigned char *)zRight
;
256 while( *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
257 return UpperToLower
[*a
] - UpperToLower
[*b
];
259 int sqlite3_strnicmp(const char *zLeft
, const char *zRight
, int N
){
260 register unsigned char *a
, *b
;
261 a
= (unsigned char *)zLeft
;
262 b
= (unsigned char *)zRight
;
263 while( N
-- > 0 && *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
264 return N
<0 ? 0 : UpperToLower
[*a
] - UpperToLower
[*b
];
268 ** The string z[] is an text representation of a real number.
269 ** Convert this string to a double and write it into *pResult.
271 ** The string z[] is length bytes in length (bytes, not characters) and
272 ** uses the encoding enc. The string is not necessarily zero-terminated.
274 ** Return TRUE if the result is a valid real number (or integer) and FALSE
275 ** if the string is empty or contains extraneous text. Valid numbers
276 ** are in one of these formats:
278 ** [+-]digits[E[+-]digits]
279 ** [+-]digits.[digits][E[+-]digits]
280 ** [+-].digits[E[+-]digits]
282 ** Leading and trailing whitespace is ignored for the purpose of determining
285 ** If some prefix of the input string is a valid number, this routine
286 ** returns FALSE but it still converts the prefix and writes the result
289 int sqlite3AtoF(const char *z
, double *pResult
, int length
, u8 enc
){
290 #ifndef SQLITE_OMIT_FLOATING_POINT
292 const char *zEnd
= z
+ length
;
293 /* sign * significand * (10 ^ (esign * exponent)) */
294 int sign
= 1; /* sign of significand */
295 i64 s
= 0; /* significand */
296 int d
= 0; /* adjust exponent for shifting decimal point */
297 int esign
= 1; /* sign of exponent */
298 int e
= 0; /* exponent */
299 int eValid
= 1; /* True exponent is either not used or is well-formed */
304 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
305 *pResult
= 0.0; /* Default return value, in case of an error */
307 if( enc
==SQLITE_UTF8
){
312 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
313 for(i
=3-enc
; i
<length
&& z
[i
]==0; i
+=2){}
319 /* skip leading spaces */
320 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
321 if( z
>=zEnd
) return 0;
323 /* get sign of significand */
331 /* skip leading zeroes */
332 while( z
<zEnd
&& z
[0]=='0' ) z
+=incr
, nDigits
++;
334 /* copy max significant digits to significand */
335 while( z
<zEnd
&& sqlite3Isdigit(*z
) && s
<((LARGEST_INT64
-9)/10) ){
336 s
= s
*10 + (*z
- '0');
340 /* skip non-significant significand digits
341 ** (increase exponent by d to shift decimal left) */
342 while( z
<zEnd
&& sqlite3Isdigit(*z
) ) z
+=incr
, nDigits
++, d
++;
343 if( z
>=zEnd
) goto do_atof_calc
;
345 /* if decimal point is present */
348 /* copy digits from after decimal to significand
349 ** (decrease exponent by d to shift decimal right) */
350 while( z
<zEnd
&& sqlite3Isdigit(*z
) && s
<((LARGEST_INT64
-9)/10) ){
351 s
= s
*10 + (*z
- '0');
352 z
+=incr
, nDigits
++, d
--;
354 /* skip non-significant digits */
355 while( z
<zEnd
&& sqlite3Isdigit(*z
) ) z
+=incr
, nDigits
++;
357 if( z
>=zEnd
) goto do_atof_calc
;
359 /* if exponent is present */
360 if( *z
=='e' || *z
=='E' ){
363 if( z
>=zEnd
) goto do_atof_calc
;
364 /* get sign of exponent */
371 /* copy digits to exponent */
372 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
373 e
= e
<10000 ? (e
*10 + (*z
- '0')) : 10000;
379 /* skip trailing spaces */
380 if( nDigits
&& eValid
){
381 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
385 /* adjust exponent by d, and update sign */
394 /* if 0 significand */
396 /* In the IEEE 754 standard, zero is signed.
397 ** Add the sign if we've seen at least one digit */
398 result
= (sign
<0 && nDigits
) ? -(double)0 : (double)0;
400 /* attempt to reduce exponent */
402 while( s
<(LARGEST_INT64
/10) && e
>0 ) e
--,s
*=10;
404 while( !(s
%10) && e
>0 ) e
--,s
/=10;
407 /* adjust the sign of significand */
410 /* if exponent, scale significand as appropriate
411 ** and store in result. */
413 LONGDOUBLE_TYPE scale
= 1.0;
414 /* attempt to handle extremely small/large numbers better */
415 if( e
>307 && e
<342 ){
416 while( e
%308 ) { scale
*= 1.0e+1; e
-= 1; }
428 result
= 1e308
*1e308
*s
; /* Infinity */
431 /* 1.0e+22 is the largest power of 10 than can be
432 ** represented exactly. */
433 while( e
%22 ) { scale
*= 1.0e+1; e
-= 1; }
434 while( e
>0 ) { scale
*= 1.0e+22; e
-= 22; }
446 /* store the result */
449 /* return true if number and no extra non-whitespace chracters after */
450 return z
>=zEnd
&& nDigits
>0 && eValid
&& nonNum
==0;
452 return !sqlite3Atoi64(z
, pResult
, length
, enc
);
453 #endif /* SQLITE_OMIT_FLOATING_POINT */
457 ** Compare the 19-character string zNum against the text representation
458 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
459 ** if zNum is less than, equal to, or greater than the string.
460 ** Note that zNum must contain exactly 19 characters.
462 ** Unlike memcmp() this routine is guaranteed to return the difference
463 ** in the values of the last digit if the only difference is in the
464 ** last digit. So, for example,
466 ** compare2pow63("9223372036854775800", 1)
470 static int compare2pow63(const char *zNum
, int incr
){
473 /* 012345678901234567 */
474 const char *pow63
= "922337203685477580";
475 for(i
=0; c
==0 && i
<18; i
++){
476 c
= (zNum
[i
*incr
]-pow63
[i
])*10;
479 c
= zNum
[18*incr
] - '8';
488 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
489 ** routine does *not* accept hexadecimal notation.
491 ** If the zNum value is representable as a 64-bit twos-complement
492 ** integer, then write that value into *pNum and return 0.
494 ** If zNum is exactly 9223372036854775808, return 2. This special
495 ** case is broken out because while 9223372036854775808 cannot be a
496 ** signed 64-bit integer, its negative -9223372036854775808 can be.
498 ** If zNum is too big for a 64-bit integer and is not
499 ** 9223372036854775808 or if zNum contains any non-numeric text,
502 ** length is the number of bytes in the string (bytes, not characters).
503 ** The string is not necessarily zero-terminated. The encoding is
506 int sqlite3Atoi64(const char *zNum
, i64
*pNum
, int length
, u8 enc
){
509 int neg
= 0; /* assume positive */
514 const char *zEnd
= zNum
+ length
;
515 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
516 if( enc
==SQLITE_UTF8
){
520 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
521 for(i
=3-enc
; i
<length
&& zNum
[i
]==0; i
+=2){}
526 while( zNum
<zEnd
&& sqlite3Isspace(*zNum
) ) zNum
+=incr
;
531 }else if( *zNum
=='+' ){
536 while( zNum
<zEnd
&& zNum
[0]=='0' ){ zNum
+=incr
; } /* Skip leading zeros. */
537 for(i
=0; &zNum
[i
]<zEnd
&& (c
=zNum
[i
])>='0' && c
<='9'; i
+=incr
){
540 if( u
>LARGEST_INT64
){
541 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
550 if( (c
!=0 && &zNum
[i
]<zEnd
) || (i
==0 && zStart
==zNum
) || i
>19*incr
|| nonNum
){
551 /* zNum is empty or contains non-numeric text or is longer
552 ** than 19 digits (thus guaranteeing that it is too large) */
554 }else if( i
<19*incr
){
555 /* Less than 19 digits, so we know that it fits in 64 bits */
556 assert( u
<=LARGEST_INT64
);
559 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
560 c
= compare2pow63(zNum
, incr
);
562 /* zNum is less than 9223372036854775808 so it fits */
563 assert( u
<=LARGEST_INT64
);
566 /* zNum is greater than 9223372036854775808 so it overflows */
569 /* zNum is exactly 9223372036854775808. Fits if negative. The
570 ** special case 2 overflow if positive */
571 assert( u
-1==LARGEST_INT64
);
578 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
579 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
580 ** whereas sqlite3Atoi64() does not.
584 ** 0 Successful transformation. Fits in a 64-bit signed integer.
585 ** 1 Integer too large for a 64-bit signed integer or is malformed
586 ** 2 Special case of 9223372036854775808
588 int sqlite3DecOrHexToI64(const char *z
, i64
*pOut
){
589 #ifndef SQLITE_OMIT_HEX_INTEGER
591 && (z
[1]=='x' || z
[1]=='X')
592 && sqlite3Isxdigit(z
[2])
596 for(i
=2; z
[i
]=='0'; i
++){}
597 for(k
=i
; sqlite3Isxdigit(z
[k
]); k
++){
598 u
= u
*16 + sqlite3HexToInt(z
[k
]);
601 return (z
[k
]==0 && k
-i
<=16) ? 0 : 1;
603 #endif /* SQLITE_OMIT_HEX_INTEGER */
605 return sqlite3Atoi64(z
, pOut
, sqlite3Strlen30(z
), SQLITE_UTF8
);
610 ** If zNum represents an integer that will fit in 32-bits, then set
611 ** *pValue to that integer and return true. Otherwise return false.
613 ** This routine accepts both decimal and hexadecimal notation for integers.
615 ** Any non-numeric characters that following zNum are ignored.
616 ** This is different from sqlite3Atoi64() which requires the
617 ** input number to be zero-terminated.
619 int sqlite3GetInt32(const char *zNum
, int *pValue
){
626 }else if( zNum
[0]=='+' ){
629 #ifndef SQLITE_OMIT_HEX_INTEGER
630 else if( zNum
[0]=='0'
631 && (zNum
[1]=='x' || zNum
[1]=='X')
632 && sqlite3Isxdigit(zNum
[2])
636 while( zNum
[0]=='0' ) zNum
++;
637 for(i
=0; sqlite3Isxdigit(zNum
[i
]) && i
<8; i
++){
638 u
= u
*16 + sqlite3HexToInt(zNum
[i
]);
640 if( (u
&0x80000000)==0 && sqlite3Isxdigit(zNum
[i
])==0 ){
641 memcpy(pValue
, &u
, 4);
648 for(i
=0; i
<11 && (c
= zNum
[i
] - '0')>=0 && c
<=9; i
++){
652 /* The longest decimal representation of a 32 bit integer is 10 digits:
655 ** 2^31 -> 2147483648
661 testcase( v
-neg
==2147483647 );
662 if( v
-neg
>2147483647 ){
673 ** Return a 32-bit integer value extracted from a string. If the
674 ** string is not an integer, just return 0.
676 int sqlite3Atoi(const char *z
){
678 if( z
) sqlite3GetInt32(z
, &x
);
683 ** The variable-length integer encoding is as follows:
686 ** A = 0xxxxxxx 7 bits of data and one flag bit
687 ** B = 1xxxxxxx 7 bits of data and one flag bit
688 ** C = xxxxxxxx 8 bits of data
697 ** 56 bits - BBBBBBBA
698 ** 64 bits - BBBBBBBBC
702 ** Write a 64-bit variable-length integer to memory starting at p[0].
703 ** The length of data write will be between 1 and 9 bytes. The number
704 ** of bytes written is returned.
706 ** A variable-length integer consists of the lower 7 bits of each byte
707 ** for all bytes that have the 8th bit set and one byte with the 8th
708 ** bit clear. Except, if we get to the 9th byte, it stores the full
709 ** 8 bits and is the last byte.
711 static int SQLITE_NOINLINE
putVarint64(unsigned char *p
, u64 v
){
714 if( v
& (((u64
)0xff000000)<<32) ){
718 p
[i
] = (u8
)((v
& 0x7f) | 0x80);
725 buf
[n
++] = (u8
)((v
& 0x7f) | 0x80);
730 for(i
=0, j
=n
-1; j
>=0; j
--, i
++){
735 int sqlite3PutVarint(unsigned char *p
, u64 v
){
741 p
[0] = ((v
>>7)&0x7f)|0x80;
745 return putVarint64(p
,v
);
749 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
750 ** are defined here rather than simply putting the constant expressions
751 ** inline in order to work around bugs in the RVT compiler.
753 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
755 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
757 #define SLOT_2_0 0x001fc07f
758 #define SLOT_4_2_0 0xf01fc07f
762 ** Read a 64-bit variable-length integer from memory starting at p[0].
763 ** Return the number of bytes read. The value is stored in *v.
765 u8
sqlite3GetVarint(const unsigned char *p
, u64
*v
){
769 /* a: p0 (unmasked) */
778 /* b: p1 (unmasked) */
788 /* Verify that constants are precomputed correctly */
789 assert( SLOT_2_0
== ((0x7f<<14) | (0x7f)) );
790 assert( SLOT_4_2_0
== ((0xfU
<<28) | (0x7f<<14) | (0x7f)) );
795 /* a: p0<<14 | p2 (unmasked) */
806 /* CSE1 from below */
811 /* b: p1<<14 | p3 (unmasked) */
816 /* a &= (0x7f<<14)|(0x7f); */
823 /* a: p0<<14 | p2 (masked) */
824 /* b: p1<<14 | p3 (unmasked) */
825 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
827 /* a &= (0x7f<<14)|(0x7f); */
830 /* s: p0<<14 | p2 (masked) */
835 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
838 /* we can skip these cause they were (effectively) done above in calc'ing s */
839 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
840 /* b &= (0x7f<<14)|(0x7f); */
844 *v
= ((u64
)s
)<<32 | a
;
848 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
851 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
856 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
859 /* we can skip this cause it was (effectively) done above in calc'ing s */
860 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
865 *v
= ((u64
)s
)<<32 | a
;
872 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
880 *v
= ((u64
)s
)<<32 | a
;
884 /* CSE2 from below */
889 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
894 /* a &= (0x7f<<14)|(0x7f); */
898 *v
= ((u64
)s
)<<32 | a
;
905 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
908 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
919 *v
= ((u64
)s
)<<32 | a
;
925 ** Read a 32-bit variable-length integer from memory starting at p[0].
926 ** Return the number of bytes read. The value is stored in *v.
928 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
929 ** integer, then set *v to 0xffffffff.
931 ** A MACRO version, getVarint32, is provided which inlines the
932 ** single-byte case. All code should use the MACRO version as
933 ** this function assumes the single-byte case has already been handled.
935 u8
sqlite3GetVarint32(const unsigned char *p
, u32
*v
){
938 /* The 1-byte case. Overwhelmingly the most common. Handled inline
939 ** by the getVarin32() macro */
941 /* a: p0 (unmasked) */
945 /* Values between 0 and 127 */
951 /* The 2-byte case */
954 /* b: p1 (unmasked) */
957 /* Values between 128 and 16383 */
964 /* The 3-byte case */
968 /* a: p0<<14 | p2 (unmasked) */
971 /* Values between 16384 and 2097151 */
972 a
&= (0x7f<<14)|(0x7f);
979 /* A 32-bit varint is used to store size information in btrees.
980 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
981 ** A 3-byte varint is sufficient, for example, to record the size
982 ** of a 1048569-byte BLOB or string.
984 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
985 ** rare larger cases can be handled by the slower 64-bit varint
994 n
= sqlite3GetVarint(p
, &v64
);
995 assert( n
>3 && n
<=9 );
996 if( (v64
& SQLITE_MAX_U32
)!=v64
){
1005 /* For following code (kept for historical record only) shows an
1006 ** unrolling for the 3- and 4-byte varint cases. This code is
1007 ** slightly faster, but it is also larger and much harder to test.
1012 /* b: p1<<14 | p3 (unmasked) */
1015 /* Values between 2097152 and 268435455 */
1016 b
&= (0x7f<<14)|(0x7f);
1017 a
&= (0x7f<<14)|(0x7f);
1026 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1029 /* Values between 268435456 and 34359738367 */
1037 /* We can only reach this point when reading a corrupt database
1038 ** file. In that case we are not in any hurry. Use the (relatively
1039 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1046 n
= sqlite3GetVarint(p
, &v64
);
1047 assert( n
>5 && n
<=9 );
1055 ** Return the number of bytes that will be needed to store the given
1058 int sqlite3VarintLen(u64 v
){
1063 }while( v
!=0 && ALWAYS(i
<9) );
1069 ** Read or write a four-byte big-endian integer value.
1071 u32
sqlite3Get4byte(const u8
*p
){
1072 testcase( p
[0]&0x80 );
1073 return ((unsigned)p
[0]<<24) | (p
[1]<<16) | (p
[2]<<8) | p
[3];
1075 void sqlite3Put4byte(unsigned char *p
, u32 v
){
1085 ** Translate a single byte of Hex into an integer.
1086 ** This routine only works if h really is a valid hexadecimal
1087 ** character: 0..9a..fA..F
1089 u8
sqlite3HexToInt(int h
){
1090 assert( (h
>='0' && h
<='9') || (h
>='a' && h
<='f') || (h
>='A' && h
<='F') );
1094 #ifdef SQLITE_EBCDIC
1097 return (u8
)(h
& 0xf);
1100 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1102 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1103 ** value. Return a pointer to its binary value. Space to hold the
1104 ** binary value has been obtained from malloc and must be freed by
1105 ** the calling routine.
1107 void *sqlite3HexToBlob(sqlite3
*db
, const char *z
, int n
){
1111 zBlob
= (char *)sqlite3DbMallocRaw(db
, n
/2 + 1);
1114 for(i
=0; i
<n
; i
+=2){
1115 zBlob
[i
/2] = (sqlite3HexToInt(z
[i
])<<4) | sqlite3HexToInt(z
[i
+1]);
1121 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1124 ** Log an error that is an API call on a connection pointer that should
1125 ** not have been used. The "type" of connection pointer is given as the
1126 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1128 static void logBadConnection(const char *zType
){
1129 sqlite3_log(SQLITE_MISUSE
,
1130 "API call with %s database connection pointer",
1136 ** Check to make sure we have a valid db pointer. This test is not
1137 ** foolproof but it does provide some measure of protection against
1138 ** misuse of the interface such as passing in db pointers that are
1139 ** NULL or which have been previously closed. If this routine returns
1140 ** 1 it means that the db pointer is valid and 0 if it should not be
1141 ** dereferenced for any reason. The calling function should invoke
1142 ** SQLITE_MISUSE immediately.
1144 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1145 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1146 ** open properly and is not fit for general use but which can be
1147 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1149 int sqlite3SafetyCheckOk(sqlite3
*db
){
1152 logBadConnection("NULL");
1156 if( magic
!=SQLITE_MAGIC_OPEN
){
1157 if( sqlite3SafetyCheckSickOrOk(db
) ){
1158 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1159 logBadConnection("unopened");
1166 int sqlite3SafetyCheckSickOrOk(sqlite3
*db
){
1169 if( magic
!=SQLITE_MAGIC_SICK
&&
1170 magic
!=SQLITE_MAGIC_OPEN
&&
1171 magic
!=SQLITE_MAGIC_BUSY
){
1172 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1173 logBadConnection("invalid");
1181 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1182 ** the other 64-bit signed integer at *pA and store the result in *pA.
1183 ** Return 0 on success. Or if the operation would have resulted in an
1184 ** overflow, leave *pA unchanged and return 1.
1186 int sqlite3AddInt64(i64
*pA
, i64 iB
){
1188 testcase( iA
==0 ); testcase( iA
==1 );
1189 testcase( iB
==-1 ); testcase( iB
==0 );
1191 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
);
1192 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
- 1 );
1193 if( iA
>0 && LARGEST_INT64
- iA
< iB
) return 1;
1195 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 1 );
1196 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 2 );
1197 if( iA
<0 && -(iA
+ LARGEST_INT64
) > iB
+ 1 ) return 1;
1202 int sqlite3SubInt64(i64
*pA
, i64 iB
){
1203 testcase( iB
==SMALLEST_INT64
+1 );
1204 if( iB
==SMALLEST_INT64
){
1205 testcase( (*pA
)==(-1) ); testcase( (*pA
)==0 );
1206 if( (*pA
)>=0 ) return 1;
1210 return sqlite3AddInt64(pA
, -iB
);
1213 #define TWOPOWER32 (((i64)1)<<32)
1214 #define TWOPOWER31 (((i64)1)<<31)
1215 int sqlite3MulInt64(i64
*pA
, i64 iB
){
1217 i64 iA1
, iA0
, iB1
, iB0
, r
;
1219 iA1
= iA
/TWOPOWER32
;
1220 iA0
= iA
% TWOPOWER32
;
1221 iB1
= iB
/TWOPOWER32
;
1222 iB0
= iB
% TWOPOWER32
;
1232 /* If both iA1 and iB1 are non-zero, overflow will result */
1235 testcase( r
==(-TWOPOWER31
)-1 );
1236 testcase( r
==(-TWOPOWER31
) );
1237 testcase( r
==TWOPOWER31
);
1238 testcase( r
==TWOPOWER31
-1 );
1239 if( r
<(-TWOPOWER31
) || r
>=TWOPOWER31
) return 1;
1241 if( sqlite3AddInt64(&r
, iA0
*iB0
) ) return 1;
1247 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1248 ** if the integer has a value of -2147483648, return +2147483647
1250 int sqlite3AbsInt32(int x
){
1251 if( x
>=0 ) return x
;
1252 if( x
==(int)0x80000000 ) return 0x7fffffff;
1256 #ifdef SQLITE_ENABLE_8_3_NAMES
1258 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1259 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1260 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1261 ** three characters, then shorten the suffix on z[] to be the last three
1262 ** characters of the original suffix.
1264 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1265 ** do the suffix shortening regardless of URI parameter.
1269 ** test.db-journal => test.nal
1270 ** test.db-wal => test.wal
1271 ** test.db-shm => test.shm
1272 ** test.db-mj7f3319fa => test.9fa
1274 void sqlite3FileSuffix3(const char *zBaseFilename
, char *z
){
1275 #if SQLITE_ENABLE_8_3_NAMES<2
1276 if( sqlite3_uri_boolean(zBaseFilename
, "8_3_names", 0) )
1280 sz
= sqlite3Strlen30(z
);
1281 for(i
=sz
-1; i
>0 && z
[i
]!='/' && z
[i
]!='.'; i
--){}
1282 if( z
[i
]=='.' && ALWAYS(sz
>i
+4) ) memmove(&z
[i
+1], &z
[sz
-3], 4);
1288 ** Find (an approximate) sum of two LogEst values. This computation is
1289 ** not a simple "+" operator because LogEst is stored as a logarithmic
1293 LogEst
sqlite3LogEstAdd(LogEst a
, LogEst b
){
1294 static const unsigned char x
[] = {
1298 7, 7, 7, /* 6,7,8 */
1299 6, 6, 6, /* 9,10,11 */
1300 5, 5, 5, /* 12-14 */
1301 4, 4, 4, 4, /* 15-18 */
1302 3, 3, 3, 3, 3, 3, /* 19-24 */
1303 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1306 if( a
>b
+49 ) return a
;
1307 if( a
>b
+31 ) return a
+1;
1310 if( b
>a
+49 ) return b
;
1311 if( b
>a
+31 ) return b
+1;
1317 ** Convert an integer into a LogEst. In other words, compute an
1318 ** approximation for 10*log2(x).
1320 LogEst
sqlite3LogEst(u64 x
){
1321 static LogEst a
[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1325 while( x
<8 ){ y
-= 10; x
<<= 1; }
1327 while( x
>255 ){ y
+= 40; x
>>= 4; }
1328 while( x
>15 ){ y
+= 10; x
>>= 1; }
1330 return a
[x
&7] + y
- 10;
1333 #ifndef SQLITE_OMIT_VIRTUALTABLE
1335 ** Convert a double into a LogEst
1336 ** In other words, compute an approximation for 10*log2(x).
1338 LogEst
sqlite3LogEstFromDouble(double x
){
1341 assert( sizeof(x
)==8 && sizeof(a
)==8 );
1342 if( x
<=1 ) return 0;
1343 if( x
<=2000000000 ) return sqlite3LogEst((u64
)x
);
1348 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1351 ** Convert a LogEst into an integer.
1353 u64
sqlite3LogEstToInt(LogEst x
){
1355 if( x
<10 ) return 1;
1359 else if( n
>=1 ) n
-= 1;
1361 return x
>60 ? (u64
)LARGEST_INT64
: (n
+8)<<(x
-3);
1363 return (n
+8)>>(3-x
);