4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
97 int sqlite3_found_count
= 0;
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
107 # define UPDATE_MAX_BLOBSIZE(P)
111 ** Invoke the VDBE coverage callback, if that callback is defined. This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go. It is usually 2. "I" is the direction the branch
117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the
118 ** second alternative branch is taken.
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction. This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation). Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine
, u8 I
, u8 M
){
131 if( iSrcLine
<=2 && ALWAYS(iSrcLine
>0) ){
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M
& I
)==I
);
137 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
148 #define Stringify(P, enc) \
149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string. Because the register
156 ** does not control the string, it might be deleted without the register
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls. In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
163 #define Deephemeralize(P) \
164 if( ((P)->flags&MEM_Ephem)!=0 \
165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->pSorter!=0)
171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
172 ** if we run out of memory.
174 static VdbeCursor
*allocateCursor(
175 Vdbe
*p
, /* The virtual machine */
176 int iCur
, /* Index of the new VdbeCursor */
177 int nField
, /* Number of fields in the table or index */
178 int iDb
, /* Database the cursor belongs to, or -1 */
179 int isBtreeCursor
/* True for B-Tree. False for pseudo-table or vtab */
181 /* Find the memory cell that will be used to store the blob of memory
182 ** required for this VdbeCursor structure. It is convenient to use a
183 ** vdbe memory cell to manage the memory allocation required for a
184 ** VdbeCursor structure for the following reasons:
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
199 Mem
*pMem
= &p
->aMem
[p
->nMem
-iCur
];
204 ROUND8(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
205 (isBtreeCursor
?sqlite3BtreeCursorSize():0);
207 assert( iCur
<p
->nCursor
);
208 if( p
->apCsr
[iCur
] ){
209 sqlite3VdbeFreeCursor(p
, p
->apCsr
[iCur
]);
212 if( SQLITE_OK
==sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
213 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->z
;
214 memset(pCx
, 0, sizeof(VdbeCursor
));
216 pCx
->nField
= nField
;
217 pCx
->aOffset
= &pCx
->aType
[nField
];
219 pCx
->pCursor
= (BtCursor
*)
220 &pMem
->z
[ROUND8(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
221 sqlite3BtreeCursorZero(pCx
->pCursor
);
228 ** Try to convert a value into a numeric representation if we can
229 ** do so without loss of information. In other words, if the string
230 ** looks like a number, convert it into a number. If it does not
231 ** look like a number, leave it alone.
233 ** If the bTryForInt flag is true, then extra effort is made to give
234 ** an integer representation. Strings that look like floating point
235 ** values but which have no fractional component (example: '48.00')
236 ** will have a MEM_Int representation when bTryForInt is true.
238 ** If bTryForInt is false, then if the input string contains a decimal
239 ** point or exponential notation, the result is only MEM_Real, even
240 ** if there is an exact integer representation of the quantity.
242 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
246 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
))==MEM_Str
);
247 if( sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec
->z
, &iValue
, pRec
->n
, enc
) ){
250 pRec
->flags
|= MEM_Int
;
253 pRec
->flags
|= MEM_Real
;
254 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
259 ** Processing is determine by the affinity parameter:
261 ** SQLITE_AFF_INTEGER:
263 ** SQLITE_AFF_NUMERIC:
264 ** Try to convert pRec to an integer representation or a
265 ** floating-point representation if an integer representation
266 ** is not possible. Note that the integer representation is
267 ** always preferred, even if the affinity is REAL, because
268 ** an integer representation is more space efficient on disk.
271 ** Convert pRec to a text representation.
274 ** No-op. pRec is unchanged.
276 static void applyAffinity(
277 Mem
*pRec
, /* The value to apply affinity to */
278 char affinity
, /* The affinity to be applied */
279 u8 enc
/* Use this text encoding */
281 if( affinity
>=SQLITE_AFF_NUMERIC
){
282 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
283 || affinity
==SQLITE_AFF_NUMERIC
);
284 if( (pRec
->flags
& MEM_Int
)==0 ){
285 if( (pRec
->flags
& MEM_Real
)==0 ){
286 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
288 sqlite3VdbeIntegerAffinity(pRec
);
291 }else if( affinity
==SQLITE_AFF_TEXT
){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
296 if( 0==(pRec
->flags
&MEM_Str
) && (pRec
->flags
&(MEM_Real
|MEM_Int
)) ){
297 sqlite3VdbeMemStringify(pRec
, enc
, 1);
303 ** Try to convert the type of a function argument or a result column
304 ** into a numeric representation. Use either INTEGER or REAL whichever
305 ** is appropriate. But only do the conversion if it is possible without
306 ** loss of information and return the revised type of the argument.
308 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
309 int eType
= sqlite3_value_type(pVal
);
310 if( eType
==SQLITE_TEXT
){
311 Mem
*pMem
= (Mem
*)pVal
;
312 applyNumericAffinity(pMem
, 0);
313 eType
= sqlite3_value_type(pVal
);
319 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
320 ** not the internal Mem* type.
322 void sqlite3ValueApplyAffinity(
327 applyAffinity((Mem
*)pVal
, affinity
, enc
);
331 ** pMem currently only holds a string type (or maybe a BLOB that we can
332 ** interpret as a string if we want to). Compute its corresponding
333 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
336 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
337 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
))==0 );
338 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
339 if( sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
)==0 ){
342 if( sqlite3Atoi64(pMem
->z
, &pMem
->u
.i
, pMem
->n
, pMem
->enc
)==SQLITE_OK
){
349 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
352 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
353 ** But it does set pMem->u.r and pMem->u.i appropriately.
355 static u16
numericType(Mem
*pMem
){
356 if( pMem
->flags
& (MEM_Int
|MEM_Real
) ){
357 return pMem
->flags
& (MEM_Int
|MEM_Real
);
359 if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
360 return computeNumericType(pMem
);
367 ** Write a nice string representation of the contents of cell pMem
368 ** into buffer zBuf, length nBuf.
370 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, char *zBuf
){
374 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
381 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
382 }else if( f
& MEM_Static
){
384 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
385 }else if( f
& MEM_Ephem
){
387 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
392 sqlite3_snprintf(100, zCsr
, "%c", c
);
393 zCsr
+= sqlite3Strlen30(zCsr
);
394 sqlite3_snprintf(100, zCsr
, "%d[", pMem
->n
);
395 zCsr
+= sqlite3Strlen30(zCsr
);
396 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
397 sqlite3_snprintf(100, zCsr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
398 zCsr
+= sqlite3Strlen30(zCsr
);
400 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
402 if( z
<32 || z
>126 ) *zCsr
++ = '.';
406 sqlite3_snprintf(100, zCsr
, "]%s", encnames
[pMem
->enc
]);
407 zCsr
+= sqlite3Strlen30(zCsr
);
409 sqlite3_snprintf(100, zCsr
,"+%dz",pMem
->u
.nZero
);
410 zCsr
+= sqlite3Strlen30(zCsr
);
413 }else if( f
& MEM_Str
){
418 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
419 }else if( f
& MEM_Static
){
421 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
422 }else if( f
& MEM_Ephem
){
424 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
429 sqlite3_snprintf(100, &zBuf
[k
], "%d", pMem
->n
);
430 k
+= sqlite3Strlen30(&zBuf
[k
]);
432 for(j
=0; j
<15 && j
<pMem
->n
; j
++){
434 if( c
>=0x20 && c
<0x7f ){
441 sqlite3_snprintf(100,&zBuf
[k
], encnames
[pMem
->enc
]);
442 k
+= sqlite3Strlen30(&zBuf
[k
]);
450 ** Print the value of a register for tracing purposes:
452 static void memTracePrint(Mem
*p
){
453 if( p
->flags
& MEM_Undefined
){
454 printf(" undefined");
455 }else if( p
->flags
& MEM_Null
){
457 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
458 printf(" si:%lld", p
->u
.i
);
459 }else if( p
->flags
& MEM_Int
){
460 printf(" i:%lld", p
->u
.i
);
461 #ifndef SQLITE_OMIT_FLOATING_POINT
462 }else if( p
->flags
& MEM_Real
){
463 printf(" r:%g", p
->u
.r
);
465 }else if( p
->flags
& MEM_RowSet
){
469 sqlite3VdbeMemPrettyPrint(p
, zBuf
);
473 static void registerTrace(int iReg
, Mem
*p
){
474 printf("REG[%d] = ", iReg
);
481 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
483 # define REGISTER_TRACE(R,M)
490 ** hwtime.h contains inline assembler code for implementing
491 ** high-performance timing routines.
499 ** This function is only called from within an assert() expression. It
500 ** checks that the sqlite3.nTransaction variable is correctly set to
501 ** the number of non-transaction savepoints currently in the
502 ** linked list starting at sqlite3.pSavepoint.
506 ** assert( checkSavepointCount(db) );
508 static int checkSavepointCount(sqlite3
*db
){
511 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
512 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
519 ** Execute as much of a VDBE program as we can.
520 ** This is the core of sqlite3_step().
523 Vdbe
*p
/* The VDBE */
525 int pc
=0; /* The program counter */
526 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
527 Op
*pOp
; /* Current operation */
528 int rc
= SQLITE_OK
; /* Value to return */
529 sqlite3
*db
= p
->db
; /* The database */
530 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
531 u8 encoding
= ENC(db
); /* The database encoding */
532 int iCompare
= 0; /* Result of last OP_Compare operation */
533 unsigned nVmStep
= 0; /* Number of virtual machine steps */
534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
535 unsigned nProgressLimit
= 0;/* Invoke xProgress() when nVmStep reaches this */
537 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
538 Mem
*pIn1
= 0; /* 1st input operand */
539 Mem
*pIn2
= 0; /* 2nd input operand */
540 Mem
*pIn3
= 0; /* 3rd input operand */
541 Mem
*pOut
= 0; /* Output operand */
542 int *aPermute
= 0; /* Permutation of columns for OP_Compare */
543 i64 lastRowid
= db
->lastRowid
; /* Saved value of the last insert ROWID */
545 u64 start
; /* CPU clock count at start of opcode */
547 /*** INSERT STACK UNION HERE ***/
549 assert( p
->magic
==VDBE_MAGIC_RUN
); /* sqlite3_step() verifies this */
551 if( p
->rc
==SQLITE_NOMEM
){
552 /* This happens if a malloc() inside a call to sqlite3_column_text() or
553 ** sqlite3_column_text16() failed. */
556 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
);
557 assert( p
->bIsReader
|| p
->readOnly
!=0 );
560 assert( p
->explain
==0 );
562 db
->busyHandler
.nBusy
= 0;
563 if( db
->u1
.isInterrupted
) goto abort_due_to_interrupt
;
564 sqlite3VdbeIOTraceSql(p
);
565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
567 assert( 0 < db
->nProgressOps
);
568 nProgressLimit
= (unsigned)p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
569 if( nProgressLimit
==0 ){
570 nProgressLimit
= db
->nProgressOps
;
572 nProgressLimit
%= (unsigned)db
->nProgressOps
;
577 sqlite3BeginBenignMalloc();
579 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
583 sqlite3VdbePrintSql(p
);
584 if( p
->db
->flags
& SQLITE_VdbeListing
){
585 printf("VDBE Program Listing:\n");
586 for(i
=0; i
<p
->nOp
; i
++){
587 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
590 if( p
->db
->flags
& SQLITE_VdbeEQP
){
591 for(i
=0; i
<p
->nOp
; i
++){
592 if( aOp
[i
].opcode
==OP_Explain
){
593 if( once
) printf("VDBE Query Plan:\n");
594 printf("%s\n", aOp
[i
].p4
.z
);
599 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
601 sqlite3EndBenignMalloc();
603 for(pc
=p
->pc
; rc
==SQLITE_OK
; pc
++){
604 assert( pc
>=0 && pc
<p
->nOp
);
605 if( db
->mallocFailed
) goto no_mem
;
607 start
= sqlite3Hwtime();
612 /* Only allow tracing if SQLITE_DEBUG is defined.
615 if( db
->flags
& SQLITE_VdbeTrace
){
616 sqlite3VdbePrintOp(stdout
, pc
, pOp
);
621 /* Check to see if we need to simulate an interrupt. This only happens
622 ** if we have a special test build.
625 if( sqlite3_interrupt_count
>0 ){
626 sqlite3_interrupt_count
--;
627 if( sqlite3_interrupt_count
==0 ){
628 sqlite3_interrupt(db
);
633 /* On any opcode with the "out2-prerelease" tag, free any
634 ** external allocations out of mem[p2] and set mem[p2] to be
635 ** an undefined integer. Opcodes will either fill in the integer
636 ** value or convert mem[p2] to a different type.
638 assert( pOp
->opflags
==sqlite3OpcodeProperty
[pOp
->opcode
] );
639 if( pOp
->opflags
& OPFLG_OUT2_PRERELEASE
){
641 assert( pOp
->p2
<=(p
->nMem
-p
->nCursor
) );
642 pOut
= &aMem
[pOp
->p2
];
643 memAboutToChange(p
, pOut
);
644 if( VdbeMemDynamic(pOut
) ) sqlite3VdbeMemSetNull(pOut
);
645 pOut
->flags
= MEM_Int
;
648 /* Sanity checking on other operands */
650 if( (pOp
->opflags
& OPFLG_IN1
)!=0 ){
652 assert( pOp
->p1
<=(p
->nMem
-p
->nCursor
) );
653 assert( memIsValid(&aMem
[pOp
->p1
]) );
654 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
655 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
657 if( (pOp
->opflags
& OPFLG_IN2
)!=0 ){
659 assert( pOp
->p2
<=(p
->nMem
-p
->nCursor
) );
660 assert( memIsValid(&aMem
[pOp
->p2
]) );
661 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
662 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
664 if( (pOp
->opflags
& OPFLG_IN3
)!=0 ){
666 assert( pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
667 assert( memIsValid(&aMem
[pOp
->p3
]) );
668 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
669 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
671 if( (pOp
->opflags
& OPFLG_OUT2
)!=0 ){
673 assert( pOp
->p2
<=(p
->nMem
-p
->nCursor
) );
674 memAboutToChange(p
, &aMem
[pOp
->p2
]);
676 if( (pOp
->opflags
& OPFLG_OUT3
)!=0 ){
678 assert( pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
679 memAboutToChange(p
, &aMem
[pOp
->p3
]);
683 switch( pOp
->opcode
){
685 /*****************************************************************************
686 ** What follows is a massive switch statement where each case implements a
687 ** separate instruction in the virtual machine. If we follow the usual
688 ** indentation conventions, each case should be indented by 6 spaces. But
689 ** that is a lot of wasted space on the left margin. So the code within
690 ** the switch statement will break with convention and be flush-left. Another
691 ** big comment (similar to this one) will mark the point in the code where
692 ** we transition back to normal indentation.
694 ** The formatting of each case is important. The makefile for SQLite
695 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
696 ** file looking for lines that begin with "case OP_". The opcodes.h files
697 ** will be filled with #defines that give unique integer values to each
698 ** opcode and the opcodes.c file is filled with an array of strings where
699 ** each string is the symbolic name for the corresponding opcode. If the
700 ** case statement is followed by a comment of the form "/# same as ... #/"
701 ** that comment is used to determine the particular value of the opcode.
703 ** Other keywords in the comment that follows each case are used to
704 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
705 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
706 ** the mkopcodeh.awk script for additional information.
708 ** Documentation about VDBE opcodes is generated by scanning this file
709 ** for lines of that contain "Opcode:". That line and all subsequent
710 ** comment lines are used in the generation of the opcode.html documentation
715 ** Formatting is important to scripts that scan this file.
716 ** Do not deviate from the formatting style currently in use.
718 *****************************************************************************/
720 /* Opcode: Goto * P2 * * *
722 ** An unconditional jump to address P2.
723 ** The next instruction executed will be
724 ** the one at index P2 from the beginning of
727 ** The P1 parameter is not actually used by this opcode. However, it
728 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
729 ** that this Goto is the bottom of a loop and that the lines from P2 down
730 ** to the current line should be indented for EXPLAIN output.
732 case OP_Goto
: { /* jump */
735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
737 ** completion. Check to see if sqlite3_interrupt() has been called
738 ** or if the progress callback needs to be invoked.
740 ** This code uses unstructured "goto" statements and does not look clean.
741 ** But that is not due to sloppy coding habits. The code is written this
742 ** way for performance, to avoid having to run the interrupt and progress
743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
744 ** faster according to "valgrind --tool=cachegrind" */
746 if( db
->u1
.isInterrupted
) goto abort_due_to_interrupt
;
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
748 /* Call the progress callback if it is configured and the required number
749 ** of VDBE ops have been executed (either since this invocation of
750 ** sqlite3VdbeExec() or since last time the progress callback was called).
751 ** If the progress callback returns non-zero, exit the virtual machine with
752 ** a return code SQLITE_ABORT.
754 if( db
->xProgress
!=0 && nVmStep
>=nProgressLimit
){
755 assert( db
->nProgressOps
!=0 );
756 nProgressLimit
= nVmStep
+ db
->nProgressOps
- (nVmStep
%db
->nProgressOps
);
757 if( db
->xProgress(db
->pProgressArg
) ){
758 rc
= SQLITE_INTERRUPT
;
759 goto vdbe_error_halt
;
767 /* Opcode: Gosub P1 P2 * * *
769 ** Write the current address onto register P1
770 ** and then jump to address P2.
772 case OP_Gosub
: { /* jump */
773 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
-p
->nCursor
) );
774 pIn1
= &aMem
[pOp
->p1
];
775 assert( VdbeMemDynamic(pIn1
)==0 );
776 memAboutToChange(p
, pIn1
);
777 pIn1
->flags
= MEM_Int
;
779 REGISTER_TRACE(pOp
->p1
, pIn1
);
784 /* Opcode: Return P1 * * * *
786 ** Jump to the next instruction after the address in register P1. After
787 ** the jump, register P1 becomes undefined.
789 case OP_Return
: { /* in1 */
790 pIn1
= &aMem
[pOp
->p1
];
791 assert( pIn1
->flags
==MEM_Int
);
793 pIn1
->flags
= MEM_Undefined
;
797 /* Opcode: InitCoroutine P1 P2 P3 * *
799 ** Set up register P1 so that it will Yield to the coroutine
800 ** located at address P3.
802 ** If P2!=0 then the coroutine implementation immediately follows
803 ** this opcode. So jump over the coroutine implementation to
806 ** See also: EndCoroutine
808 case OP_InitCoroutine
: { /* jump */
809 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
-p
->nCursor
) );
810 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
811 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
812 pOut
= &aMem
[pOp
->p1
];
813 assert( !VdbeMemDynamic(pOut
) );
814 pOut
->u
.i
= pOp
->p3
- 1;
815 pOut
->flags
= MEM_Int
;
816 if( pOp
->p2
) pc
= pOp
->p2
- 1;
820 /* Opcode: EndCoroutine P1 * * * *
822 ** The instruction at the address in register P1 is a Yield.
823 ** Jump to the P2 parameter of that Yield.
824 ** After the jump, register P1 becomes undefined.
826 ** See also: InitCoroutine
828 case OP_EndCoroutine
: { /* in1 */
830 pIn1
= &aMem
[pOp
->p1
];
831 assert( pIn1
->flags
==MEM_Int
);
832 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
833 pCaller
= &aOp
[pIn1
->u
.i
];
834 assert( pCaller
->opcode
==OP_Yield
);
835 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
836 pc
= pCaller
->p2
- 1;
837 pIn1
->flags
= MEM_Undefined
;
841 /* Opcode: Yield P1 P2 * * *
843 ** Swap the program counter with the value in register P1. This
844 ** has the effect of yielding to a coroutine.
846 ** If the coroutine that is launched by this instruction ends with
847 ** Yield or Return then continue to the next instruction. But if
848 ** the coroutine launched by this instruction ends with
849 ** EndCoroutine, then jump to P2 rather than continuing with the
852 ** See also: InitCoroutine
854 case OP_Yield
: { /* in1, jump */
856 pIn1
= &aMem
[pOp
->p1
];
857 assert( VdbeMemDynamic(pIn1
)==0 );
858 pIn1
->flags
= MEM_Int
;
859 pcDest
= (int)pIn1
->u
.i
;
861 REGISTER_TRACE(pOp
->p1
, pIn1
);
866 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
867 ** Synopsis: if r[P3]=null halt
869 ** Check the value in register P3. If it is NULL then Halt using
870 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
871 ** value in register P3 is not NULL, then this routine is a no-op.
872 ** The P5 parameter should be 1.
874 case OP_HaltIfNull
: { /* in3 */
875 pIn3
= &aMem
[pOp
->p3
];
876 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
877 /* Fall through into OP_Halt */
880 /* Opcode: Halt P1 P2 * P4 P5
882 ** Exit immediately. All open cursors, etc are closed
885 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
886 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
887 ** For errors, it can be some other value. If P1!=0 then P2 will determine
888 ** whether or not to rollback the current transaction. Do not rollback
889 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
890 ** then back out all changes that have occurred during this execution of the
891 ** VDBE, but do not rollback the transaction.
893 ** If P4 is not null then it is an error message string.
895 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
898 ** 1: NOT NULL contraint failed: P4
899 ** 2: UNIQUE constraint failed: P4
900 ** 3: CHECK constraint failed: P4
901 ** 4: FOREIGN KEY constraint failed: P4
903 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
906 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
907 ** every program. So a jump past the last instruction of the program
908 ** is the same as executing Halt.
914 if( pOp
->p1
==SQLITE_OK
&& p
->pFrame
){
915 /* Halt the sub-program. Return control to the parent frame. */
916 VdbeFrame
*pFrame
= p
->pFrame
;
917 p
->pFrame
= pFrame
->pParent
;
919 sqlite3VdbeSetChanges(db
, p
->nChange
);
920 pc
= sqlite3VdbeFrameRestore(pFrame
);
921 lastRowid
= db
->lastRowid
;
922 if( pOp
->p2
==OE_Ignore
){
923 /* Instruction pc is the OP_Program that invoked the sub-program
924 ** currently being halted. If the p2 instruction of this OP_Halt
925 ** instruction is set to OE_Ignore, then the sub-program is throwing
926 ** an IGNORE exception. In this case jump to the address specified
927 ** as the p2 of the calling OP_Program. */
928 pc
= p
->aOp
[pc
].p2
-1;
935 p
->errorAction
= (u8
)pOp
->p2
;
939 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
941 assert( pOp
->p5
>=1 && pOp
->p5
<=4 );
942 testcase( pOp
->p5
==1 );
943 testcase( pOp
->p5
==2 );
944 testcase( pOp
->p5
==3 );
945 testcase( pOp
->p5
==4 );
946 zType
= azType
[pOp
->p5
-1];
950 assert( zType
!=0 || pOp
->p4
.z
!=0 );
951 zLogFmt
= "abort at %d in [%s]: %s";
952 if( zType
&& pOp
->p4
.z
){
953 sqlite3SetString(&p
->zErrMsg
, db
, "%s constraint failed: %s",
955 }else if( pOp
->p4
.z
){
956 sqlite3SetString(&p
->zErrMsg
, db
, "%s", pOp
->p4
.z
);
958 sqlite3SetString(&p
->zErrMsg
, db
, "%s constraint failed", zType
);
960 sqlite3_log(pOp
->p1
, zLogFmt
, pc
, p
->zSql
, p
->zErrMsg
);
962 rc
= sqlite3VdbeHalt(p
);
963 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
964 if( rc
==SQLITE_BUSY
){
965 p
->rc
= rc
= SQLITE_BUSY
;
967 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
968 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
969 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
974 /* Opcode: Integer P1 P2 * * *
975 ** Synopsis: r[P2]=P1
977 ** The 32-bit integer value P1 is written into register P2.
979 case OP_Integer
: { /* out2-prerelease */
984 /* Opcode: Int64 * P2 * P4 *
985 ** Synopsis: r[P2]=P4
987 ** P4 is a pointer to a 64-bit integer value.
988 ** Write that value into register P2.
990 case OP_Int64
: { /* out2-prerelease */
991 assert( pOp
->p4
.pI64
!=0 );
992 pOut
->u
.i
= *pOp
->p4
.pI64
;
996 #ifndef SQLITE_OMIT_FLOATING_POINT
997 /* Opcode: Real * P2 * P4 *
998 ** Synopsis: r[P2]=P4
1000 ** P4 is a pointer to a 64-bit floating point value.
1001 ** Write that value into register P2.
1003 case OP_Real
: { /* same as TK_FLOAT, out2-prerelease */
1004 pOut
->flags
= MEM_Real
;
1005 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1006 pOut
->u
.r
= *pOp
->p4
.pReal
;
1011 /* Opcode: String8 * P2 * P4 *
1012 ** Synopsis: r[P2]='P4'
1014 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1015 ** into a String before it is executed for the first time. During
1016 ** this transformation, the length of string P4 is computed and stored
1017 ** as the P1 parameter.
1019 case OP_String8
: { /* same as TK_STRING, out2-prerelease */
1020 assert( pOp
->p4
.z
!=0 );
1021 pOp
->opcode
= OP_String
;
1022 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1024 #ifndef SQLITE_OMIT_UTF16
1025 if( encoding
!=SQLITE_UTF8
){
1026 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1027 if( rc
==SQLITE_TOOBIG
) goto too_big
;
1028 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1029 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1030 assert( VdbeMemDynamic(pOut
)==0 );
1032 pOut
->flags
|= MEM_Static
;
1033 if( pOp
->p4type
==P4_DYNAMIC
){
1034 sqlite3DbFree(db
, pOp
->p4
.z
);
1036 pOp
->p4type
= P4_DYNAMIC
;
1037 pOp
->p4
.z
= pOut
->z
;
1041 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1044 /* Fall through to the next case, OP_String */
1047 /* Opcode: String P1 P2 * P4 *
1048 ** Synopsis: r[P2]='P4' (len=P1)
1050 ** The string value P4 of length P1 (bytes) is stored in register P2.
1052 case OP_String
: { /* out2-prerelease */
1053 assert( pOp
->p4
.z
!=0 );
1054 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1055 pOut
->z
= pOp
->p4
.z
;
1057 pOut
->enc
= encoding
;
1058 UPDATE_MAX_BLOBSIZE(pOut
);
1062 /* Opcode: Null P1 P2 P3 * *
1063 ** Synopsis: r[P2..P3]=NULL
1065 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1066 ** NULL into register P3 and every register in between P2 and P3. If P3
1067 ** is less than P2 (typically P3 is zero) then only register P2 is
1070 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1071 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1074 case OP_Null
: { /* out2-prerelease */
1077 cnt
= pOp
->p3
-pOp
->p2
;
1078 assert( pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
1079 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1082 memAboutToChange(p
, pOut
);
1083 sqlite3VdbeMemSetNull(pOut
);
1084 pOut
->flags
= nullFlag
;
1090 /* Opcode: SoftNull P1 * * * *
1091 ** Synopsis: r[P1]=NULL
1093 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1094 ** instruction, but do not free any string or blob memory associated with
1095 ** the register, so that if the value was a string or blob that was
1096 ** previously copied using OP_SCopy, the copies will continue to be valid.
1099 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
-p
->nCursor
) );
1100 pOut
= &aMem
[pOp
->p1
];
1101 pOut
->flags
= (pOut
->flags
|MEM_Null
)&~MEM_Undefined
;
1105 /* Opcode: Blob P1 P2 * P4 *
1106 ** Synopsis: r[P2]=P4 (len=P1)
1108 ** P4 points to a blob of data P1 bytes long. Store this
1109 ** blob in register P2.
1111 case OP_Blob
: { /* out2-prerelease */
1112 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1113 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1114 pOut
->enc
= encoding
;
1115 UPDATE_MAX_BLOBSIZE(pOut
);
1119 /* Opcode: Variable P1 P2 * P4 *
1120 ** Synopsis: r[P2]=parameter(P1,P4)
1122 ** Transfer the values of bound parameter P1 into register P2
1124 ** If the parameter is named, then its name appears in P4.
1125 ** The P4 value is used by sqlite3_bind_parameter_name().
1127 case OP_Variable
: { /* out2-prerelease */
1128 Mem
*pVar
; /* Value being transferred */
1130 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1131 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==p
->azVar
[pOp
->p1
-1] );
1132 pVar
= &p
->aVar
[pOp
->p1
- 1];
1133 if( sqlite3VdbeMemTooBig(pVar
) ){
1136 sqlite3VdbeMemShallowCopy(pOut
, pVar
, MEM_Static
);
1137 UPDATE_MAX_BLOBSIZE(pOut
);
1141 /* Opcode: Move P1 P2 P3 * *
1142 ** Synopsis: r[P2@P3]=r[P1@P3]
1144 ** Move the P3 values in register P1..P1+P3-1 over into
1145 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1146 ** left holding a NULL. It is an error for register ranges
1147 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1148 ** for P3 to be less than 1.
1151 int n
; /* Number of registers left to copy */
1152 int p1
; /* Register to copy from */
1153 int p2
; /* Register to copy to */
1158 assert( n
>0 && p1
>0 && p2
>0 );
1159 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1164 assert( pOut
<=&aMem
[(p
->nMem
-p
->nCursor
)] );
1165 assert( pIn1
<=&aMem
[(p
->nMem
-p
->nCursor
)] );
1166 assert( memIsValid(pIn1
) );
1167 memAboutToChange(p
, pOut
);
1168 sqlite3VdbeMemMove(pOut
, pIn1
);
1170 if( pOut
->pScopyFrom
>=&aMem
[p1
] && pOut
->pScopyFrom
<&aMem
[p1
+pOp
->p3
] ){
1171 pOut
->pScopyFrom
+= p1
- pOp
->p2
;
1174 REGISTER_TRACE(p2
++, pOut
);
1181 /* Opcode: Copy P1 P2 P3 * *
1182 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1184 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1186 ** This instruction makes a deep copy of the value. A duplicate
1187 ** is made of any string or blob constant. See also OP_SCopy.
1193 pIn1
= &aMem
[pOp
->p1
];
1194 pOut
= &aMem
[pOp
->p2
];
1195 assert( pOut
!=pIn1
);
1197 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1198 Deephemeralize(pOut
);
1200 pOut
->pScopyFrom
= 0;
1202 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1203 if( (n
--)==0 ) break;
1210 /* Opcode: SCopy P1 P2 * * *
1211 ** Synopsis: r[P2]=r[P1]
1213 ** Make a shallow copy of register P1 into register P2.
1215 ** This instruction makes a shallow copy of the value. If the value
1216 ** is a string or blob, then the copy is only a pointer to the
1217 ** original and hence if the original changes so will the copy.
1218 ** Worse, if the original is deallocated, the copy becomes invalid.
1219 ** Thus the program must guarantee that the original will not change
1220 ** during the lifetime of the copy. Use OP_Copy to make a complete
1223 case OP_SCopy
: { /* out2 */
1224 pIn1
= &aMem
[pOp
->p1
];
1225 pOut
= &aMem
[pOp
->p2
];
1226 assert( pOut
!=pIn1
);
1227 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1229 if( pOut
->pScopyFrom
==0 ) pOut
->pScopyFrom
= pIn1
;
1234 /* Opcode: ResultRow P1 P2 * * *
1235 ** Synopsis: output=r[P1@P2]
1237 ** The registers P1 through P1+P2-1 contain a single row of
1238 ** results. This opcode causes the sqlite3_step() call to terminate
1239 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1240 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1243 case OP_ResultRow
: {
1246 assert( p
->nResColumn
==pOp
->p2
);
1247 assert( pOp
->p1
>0 );
1248 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
-p
->nCursor
)+1 );
1250 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1251 /* Run the progress counter just before returning.
1253 if( db
->xProgress
!=0
1254 && nVmStep
>=nProgressLimit
1255 && db
->xProgress(db
->pProgressArg
)!=0
1257 rc
= SQLITE_INTERRUPT
;
1258 goto vdbe_error_halt
;
1262 /* If this statement has violated immediate foreign key constraints, do
1263 ** not return the number of rows modified. And do not RELEASE the statement
1264 ** transaction. It needs to be rolled back. */
1265 if( SQLITE_OK
!=(rc
= sqlite3VdbeCheckFk(p
, 0)) ){
1266 assert( db
->flags
&SQLITE_CountRows
);
1267 assert( p
->usesStmtJournal
);
1271 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1272 ** DML statements invoke this opcode to return the number of rows
1273 ** modified to the user. This is the only way that a VM that
1274 ** opens a statement transaction may invoke this opcode.
1276 ** In case this is such a statement, close any statement transaction
1277 ** opened by this VM before returning control to the user. This is to
1278 ** ensure that statement-transactions are always nested, not overlapping.
1279 ** If the open statement-transaction is not closed here, then the user
1280 ** may step another VM that opens its own statement transaction. This
1281 ** may lead to overlapping statement transactions.
1283 ** The statement transaction is never a top-level transaction. Hence
1284 ** the RELEASE call below can never fail.
1286 assert( p
->iStatement
==0 || db
->flags
&SQLITE_CountRows
);
1287 rc
= sqlite3VdbeCloseStatement(p
, SAVEPOINT_RELEASE
);
1288 if( NEVER(rc
!=SQLITE_OK
) ){
1292 /* Invalidate all ephemeral cursor row caches */
1293 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1295 /* Make sure the results of the current row are \000 terminated
1296 ** and have an assigned type. The results are de-ephemeralized as
1299 pMem
= p
->pResultSet
= &aMem
[pOp
->p1
];
1300 for(i
=0; i
<pOp
->p2
; i
++){
1301 assert( memIsValid(&pMem
[i
]) );
1302 Deephemeralize(&pMem
[i
]);
1303 assert( (pMem
[i
].flags
& MEM_Ephem
)==0
1304 || (pMem
[i
].flags
& (MEM_Str
|MEM_Blob
))==0 );
1305 sqlite3VdbeMemNulTerminate(&pMem
[i
]);
1306 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1308 if( db
->mallocFailed
) goto no_mem
;
1310 /* Return SQLITE_ROW
1317 /* Opcode: Concat P1 P2 P3 * *
1318 ** Synopsis: r[P3]=r[P2]+r[P1]
1320 ** Add the text in register P1 onto the end of the text in
1321 ** register P2 and store the result in register P3.
1322 ** If either the P1 or P2 text are NULL then store NULL in P3.
1326 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1327 ** if P3 is the same register as P2, the implementation is able
1328 ** to avoid a memcpy().
1330 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1333 pIn1
= &aMem
[pOp
->p1
];
1334 pIn2
= &aMem
[pOp
->p2
];
1335 pOut
= &aMem
[pOp
->p3
];
1336 assert( pIn1
!=pOut
);
1337 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1338 sqlite3VdbeMemSetNull(pOut
);
1341 if( ExpandBlob(pIn1
) || ExpandBlob(pIn2
) ) goto no_mem
;
1342 Stringify(pIn1
, encoding
);
1343 Stringify(pIn2
, encoding
);
1344 nByte
= pIn1
->n
+ pIn2
->n
;
1345 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1348 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1351 MemSetTypeFlag(pOut
, MEM_Str
);
1353 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1355 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1357 pOut
->z
[nByte
+1] = 0;
1358 pOut
->flags
|= MEM_Term
;
1359 pOut
->n
= (int)nByte
;
1360 pOut
->enc
= encoding
;
1361 UPDATE_MAX_BLOBSIZE(pOut
);
1365 /* Opcode: Add P1 P2 P3 * *
1366 ** Synopsis: r[P3]=r[P1]+r[P2]
1368 ** Add the value in register P1 to the value in register P2
1369 ** and store the result in register P3.
1370 ** If either input is NULL, the result is NULL.
1372 /* Opcode: Multiply P1 P2 P3 * *
1373 ** Synopsis: r[P3]=r[P1]*r[P2]
1376 ** Multiply the value in register P1 by the value in register P2
1377 ** and store the result in register P3.
1378 ** If either input is NULL, the result is NULL.
1380 /* Opcode: Subtract P1 P2 P3 * *
1381 ** Synopsis: r[P3]=r[P2]-r[P1]
1383 ** Subtract the value in register P1 from the value in register P2
1384 ** and store the result in register P3.
1385 ** If either input is NULL, the result is NULL.
1387 /* Opcode: Divide P1 P2 P3 * *
1388 ** Synopsis: r[P3]=r[P2]/r[P1]
1390 ** Divide the value in register P1 by the value in register P2
1391 ** and store the result in register P3 (P3=P2/P1). If the value in
1392 ** register P1 is zero, then the result is NULL. If either input is
1393 ** NULL, the result is NULL.
1395 /* Opcode: Remainder P1 P2 P3 * *
1396 ** Synopsis: r[P3]=r[P2]%r[P1]
1398 ** Compute the remainder after integer register P2 is divided by
1399 ** register P1 and store the result in register P3.
1400 ** If the value in register P1 is zero the result is NULL.
1401 ** If either operand is NULL, the result is NULL.
1403 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1404 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1405 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1406 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1407 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1408 char bIntint
; /* Started out as two integer operands */
1409 u16 flags
; /* Combined MEM_* flags from both inputs */
1410 u16 type1
; /* Numeric type of left operand */
1411 u16 type2
; /* Numeric type of right operand */
1412 i64 iA
; /* Integer value of left operand */
1413 i64 iB
; /* Integer value of right operand */
1414 double rA
; /* Real value of left operand */
1415 double rB
; /* Real value of right operand */
1417 pIn1
= &aMem
[pOp
->p1
];
1418 type1
= numericType(pIn1
);
1419 pIn2
= &aMem
[pOp
->p2
];
1420 type2
= numericType(pIn2
);
1421 pOut
= &aMem
[pOp
->p3
];
1422 flags
= pIn1
->flags
| pIn2
->flags
;
1423 if( (flags
& MEM_Null
)!=0 ) goto arithmetic_result_is_null
;
1424 if( (type1
& type2
& MEM_Int
)!=0 ){
1428 switch( pOp
->opcode
){
1429 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1430 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1431 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1433 if( iA
==0 ) goto arithmetic_result_is_null
;
1434 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1439 if( iA
==0 ) goto arithmetic_result_is_null
;
1440 if( iA
==-1 ) iA
= 1;
1446 MemSetTypeFlag(pOut
, MEM_Int
);
1450 rA
= sqlite3VdbeRealValue(pIn1
);
1451 rB
= sqlite3VdbeRealValue(pIn2
);
1452 switch( pOp
->opcode
){
1453 case OP_Add
: rB
+= rA
; break;
1454 case OP_Subtract
: rB
-= rA
; break;
1455 case OP_Multiply
: rB
*= rA
; break;
1457 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1458 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1465 if( iA
==0 ) goto arithmetic_result_is_null
;
1466 if( iA
==-1 ) iA
= 1;
1467 rB
= (double)(iB
% iA
);
1471 #ifdef SQLITE_OMIT_FLOATING_POINT
1473 MemSetTypeFlag(pOut
, MEM_Int
);
1475 if( sqlite3IsNaN(rB
) ){
1476 goto arithmetic_result_is_null
;
1479 MemSetTypeFlag(pOut
, MEM_Real
);
1480 if( ((type1
|type2
)&MEM_Real
)==0 && !bIntint
){
1481 sqlite3VdbeIntegerAffinity(pOut
);
1487 arithmetic_result_is_null
:
1488 sqlite3VdbeMemSetNull(pOut
);
1492 /* Opcode: CollSeq P1 * * P4
1494 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1495 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1496 ** be returned. This is used by the built-in min(), max() and nullif()
1499 ** If P1 is not zero, then it is a register that a subsequent min() or
1500 ** max() aggregate will set to 1 if the current row is not the minimum or
1501 ** maximum. The P1 register is initialized to 0 by this instruction.
1503 ** The interface used by the implementation of the aforementioned functions
1504 ** to retrieve the collation sequence set by this opcode is not available
1505 ** publicly, only to user functions defined in func.c.
1508 assert( pOp
->p4type
==P4_COLLSEQ
);
1510 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1515 /* Opcode: Function P1 P2 P3 P4 P5
1516 ** Synopsis: r[P3]=func(r[P2@P5])
1518 ** Invoke a user function (P4 is a pointer to a Function structure that
1519 ** defines the function) with P5 arguments taken from register P2 and
1520 ** successors. The result of the function is stored in register P3.
1521 ** Register P3 must not be one of the function inputs.
1523 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1524 ** function was determined to be constant at compile time. If the first
1525 ** argument was constant then bit 0 of P1 is set. This is used to determine
1526 ** whether meta data associated with a user function argument using the
1527 ** sqlite3_set_auxdata() API may be safely retained until the next
1528 ** invocation of this opcode.
1530 ** See also: AggStep and AggFinal
1535 sqlite3_context ctx
;
1536 sqlite3_value
**apVal
;
1541 assert( apVal
|| n
==0 );
1542 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
1543 ctx
.pOut
= &aMem
[pOp
->p3
];
1544 memAboutToChange(p
, ctx
.pOut
);
1546 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
-p
->nCursor
)+1) );
1547 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
1548 pArg
= &aMem
[pOp
->p2
];
1549 for(i
=0; i
<n
; i
++, pArg
++){
1550 assert( memIsValid(pArg
) );
1552 Deephemeralize(pArg
);
1553 REGISTER_TRACE(pOp
->p2
+i
, pArg
);
1556 assert( pOp
->p4type
==P4_FUNCDEF
);
1557 ctx
.pFunc
= pOp
->p4
.pFunc
;
1560 MemSetTypeFlag(ctx
.pOut
, MEM_Null
);
1561 ctx
.fErrorOrAux
= 0;
1562 db
->lastRowid
= lastRowid
;
1563 (*ctx
.pFunc
->xFunc
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
1564 lastRowid
= db
->lastRowid
; /* Remember rowid changes made by xFunc */
1566 /* If the function returned an error, throw an exception */
1567 if( ctx
.fErrorOrAux
){
1569 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(ctx
.pOut
));
1572 sqlite3VdbeDeleteAuxData(p
, pc
, pOp
->p1
);
1575 /* Copy the result of the function into register P3 */
1576 sqlite3VdbeChangeEncoding(ctx
.pOut
, encoding
);
1577 if( sqlite3VdbeMemTooBig(ctx
.pOut
) ){
1581 REGISTER_TRACE(pOp
->p3
, ctx
.pOut
);
1582 UPDATE_MAX_BLOBSIZE(ctx
.pOut
);
1586 /* Opcode: BitAnd P1 P2 P3 * *
1587 ** Synopsis: r[P3]=r[P1]&r[P2]
1589 ** Take the bit-wise AND of the values in register P1 and P2 and
1590 ** store the result in register P3.
1591 ** If either input is NULL, the result is NULL.
1593 /* Opcode: BitOr P1 P2 P3 * *
1594 ** Synopsis: r[P3]=r[P1]|r[P2]
1596 ** Take the bit-wise OR of the values in register P1 and P2 and
1597 ** store the result in register P3.
1598 ** If either input is NULL, the result is NULL.
1600 /* Opcode: ShiftLeft P1 P2 P3 * *
1601 ** Synopsis: r[P3]=r[P2]<<r[P1]
1603 ** Shift the integer value in register P2 to the left by the
1604 ** number of bits specified by the integer in register P1.
1605 ** Store the result in register P3.
1606 ** If either input is NULL, the result is NULL.
1608 /* Opcode: ShiftRight P1 P2 P3 * *
1609 ** Synopsis: r[P3]=r[P2]>>r[P1]
1611 ** Shift the integer value in register P2 to the right by the
1612 ** number of bits specified by the integer in register P1.
1613 ** Store the result in register P3.
1614 ** If either input is NULL, the result is NULL.
1616 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1617 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1618 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1619 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1625 pIn1
= &aMem
[pOp
->p1
];
1626 pIn2
= &aMem
[pOp
->p2
];
1627 pOut
= &aMem
[pOp
->p3
];
1628 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1629 sqlite3VdbeMemSetNull(pOut
);
1632 iA
= sqlite3VdbeIntValue(pIn2
);
1633 iB
= sqlite3VdbeIntValue(pIn1
);
1635 if( op
==OP_BitAnd
){
1637 }else if( op
==OP_BitOr
){
1640 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1642 /* If shifting by a negative amount, shift in the other direction */
1644 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1645 op
= 2*OP_ShiftLeft
+ 1 - op
;
1646 iB
= iB
>(-64) ? -iB
: 64;
1650 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1652 memcpy(&uA
, &iA
, sizeof(uA
));
1653 if( op
==OP_ShiftLeft
){
1657 /* Sign-extend on a right shift of a negative number */
1658 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1660 memcpy(&iA
, &uA
, sizeof(iA
));
1664 MemSetTypeFlag(pOut
, MEM_Int
);
1668 /* Opcode: AddImm P1 P2 * * *
1669 ** Synopsis: r[P1]=r[P1]+P2
1671 ** Add the constant P2 to the value in register P1.
1672 ** The result is always an integer.
1674 ** To force any register to be an integer, just add 0.
1676 case OP_AddImm
: { /* in1 */
1677 pIn1
= &aMem
[pOp
->p1
];
1678 memAboutToChange(p
, pIn1
);
1679 sqlite3VdbeMemIntegerify(pIn1
);
1680 pIn1
->u
.i
+= pOp
->p2
;
1684 /* Opcode: MustBeInt P1 P2 * * *
1686 ** Force the value in register P1 to be an integer. If the value
1687 ** in P1 is not an integer and cannot be converted into an integer
1688 ** without data loss, then jump immediately to P2, or if P2==0
1689 ** raise an SQLITE_MISMATCH exception.
1691 case OP_MustBeInt
: { /* jump, in1 */
1692 pIn1
= &aMem
[pOp
->p1
];
1693 if( (pIn1
->flags
& MEM_Int
)==0 ){
1694 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1695 VdbeBranchTaken((pIn1
->flags
&MEM_Int
)==0, 2);
1696 if( (pIn1
->flags
& MEM_Int
)==0 ){
1698 rc
= SQLITE_MISMATCH
;
1699 goto abort_due_to_error
;
1706 MemSetTypeFlag(pIn1
, MEM_Int
);
1710 #ifndef SQLITE_OMIT_FLOATING_POINT
1711 /* Opcode: RealAffinity P1 * * * *
1713 ** If register P1 holds an integer convert it to a real value.
1715 ** This opcode is used when extracting information from a column that
1716 ** has REAL affinity. Such column values may still be stored as
1717 ** integers, for space efficiency, but after extraction we want them
1718 ** to have only a real value.
1720 case OP_RealAffinity
: { /* in1 */
1721 pIn1
= &aMem
[pOp
->p1
];
1722 if( pIn1
->flags
& MEM_Int
){
1723 sqlite3VdbeMemRealify(pIn1
);
1729 #ifndef SQLITE_OMIT_CAST
1730 /* Opcode: Cast P1 P2 * * *
1731 ** Synopsis: affinity(r[P1])
1733 ** Force the value in register P1 to be the type defined by P2.
1736 ** <li value="97"> TEXT
1737 ** <li value="98"> BLOB
1738 ** <li value="99"> NUMERIC
1739 ** <li value="100"> INTEGER
1740 ** <li value="101"> REAL
1743 ** A NULL value is not changed by this routine. It remains NULL.
1745 case OP_Cast
: { /* in1 */
1746 assert( pOp
->p2
>=SQLITE_AFF_NONE
&& pOp
->p2
<=SQLITE_AFF_REAL
);
1747 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
1748 testcase( pOp
->p2
==SQLITE_AFF_NONE
);
1749 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
1750 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
1751 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
1752 pIn1
= &aMem
[pOp
->p1
];
1753 memAboutToChange(p
, pIn1
);
1754 rc
= ExpandBlob(pIn1
);
1755 sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
1756 UPDATE_MAX_BLOBSIZE(pIn1
);
1759 #endif /* SQLITE_OMIT_CAST */
1761 /* Opcode: Lt P1 P2 P3 P4 P5
1762 ** Synopsis: if r[P1]<r[P3] goto P2
1764 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1765 ** jump to address P2.
1767 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1768 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1769 ** bit is clear then fall through if either operand is NULL.
1771 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1772 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1773 ** to coerce both inputs according to this affinity before the
1774 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1775 ** affinity is used. Note that the affinity conversions are stored
1776 ** back into the input registers P1 and P3. So this opcode can cause
1777 ** persistent changes to registers P1 and P3.
1779 ** Once any conversions have taken place, and neither value is NULL,
1780 ** the values are compared. If both values are blobs then memcmp() is
1781 ** used to determine the results of the comparison. If both values
1782 ** are text, then the appropriate collating function specified in
1783 ** P4 is used to do the comparison. If P4 is not specified then
1784 ** memcmp() is used to compare text string. If both values are
1785 ** numeric, then a numeric comparison is used. If the two values
1786 ** are of different types, then numbers are considered less than
1787 ** strings and strings are considered less than blobs.
1789 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1790 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1792 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1793 ** equal to one another, provided that they do not have their MEM_Cleared
1796 /* Opcode: Ne P1 P2 P3 P4 P5
1797 ** Synopsis: if r[P1]!=r[P3] goto P2
1799 ** This works just like the Lt opcode except that the jump is taken if
1800 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1801 ** additional information.
1803 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1804 ** true or false and is never NULL. If both operands are NULL then the result
1805 ** of comparison is false. If either operand is NULL then the result is true.
1806 ** If neither operand is NULL the result is the same as it would be if
1807 ** the SQLITE_NULLEQ flag were omitted from P5.
1809 /* Opcode: Eq P1 P2 P3 P4 P5
1810 ** Synopsis: if r[P1]==r[P3] goto P2
1812 ** This works just like the Lt opcode except that the jump is taken if
1813 ** the operands in registers P1 and P3 are equal.
1814 ** See the Lt opcode for additional information.
1816 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1817 ** true or false and is never NULL. If both operands are NULL then the result
1818 ** of comparison is true. If either operand is NULL then the result is false.
1819 ** If neither operand is NULL the result is the same as it would be if
1820 ** the SQLITE_NULLEQ flag were omitted from P5.
1822 /* Opcode: Le P1 P2 P3 P4 P5
1823 ** Synopsis: if r[P1]<=r[P3] goto P2
1825 ** This works just like the Lt opcode except that the jump is taken if
1826 ** the content of register P3 is less than or equal to the content of
1827 ** register P1. See the Lt opcode for additional information.
1829 /* Opcode: Gt P1 P2 P3 P4 P5
1830 ** Synopsis: if r[P1]>r[P3] goto P2
1832 ** This works just like the Lt opcode except that the jump is taken if
1833 ** the content of register P3 is greater than the content of
1834 ** register P1. See the Lt opcode for additional information.
1836 /* Opcode: Ge P1 P2 P3 P4 P5
1837 ** Synopsis: if r[P1]>=r[P3] goto P2
1839 ** This works just like the Lt opcode except that the jump is taken if
1840 ** the content of register P3 is greater than or equal to the content of
1841 ** register P1. See the Lt opcode for additional information.
1843 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
1844 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
1845 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
1846 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
1847 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
1848 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
1849 int res
; /* Result of the comparison of pIn1 against pIn3 */
1850 char affinity
; /* Affinity to use for comparison */
1851 u16 flags1
; /* Copy of initial value of pIn1->flags */
1852 u16 flags3
; /* Copy of initial value of pIn3->flags */
1854 pIn1
= &aMem
[pOp
->p1
];
1855 pIn3
= &aMem
[pOp
->p3
];
1856 flags1
= pIn1
->flags
;
1857 flags3
= pIn3
->flags
;
1858 if( (flags1
| flags3
)&MEM_Null
){
1859 /* One or both operands are NULL */
1860 if( pOp
->p5
& SQLITE_NULLEQ
){
1861 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1862 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1863 ** or not both operands are null.
1865 assert( pOp
->opcode
==OP_Eq
|| pOp
->opcode
==OP_Ne
);
1866 assert( (flags1
& MEM_Cleared
)==0 );
1867 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 );
1868 if( (flags1
&MEM_Null
)!=0
1869 && (flags3
&MEM_Null
)!=0
1870 && (flags3
&MEM_Cleared
)==0
1872 res
= 0; /* Results are equal */
1874 res
= 1; /* Results are not equal */
1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1878 ** then the result is always NULL.
1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1881 if( pOp
->p5
& SQLITE_STOREP2
){
1882 pOut
= &aMem
[pOp
->p2
];
1883 MemSetTypeFlag(pOut
, MEM_Null
);
1884 REGISTER_TRACE(pOp
->p2
, pOut
);
1886 VdbeBranchTaken(2,3);
1887 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
1894 /* Neither operand is NULL. Do a comparison. */
1895 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
1896 if( affinity
>=SQLITE_AFF_NUMERIC
){
1897 if( (pIn1
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
))==MEM_Str
){
1898 applyNumericAffinity(pIn1
,0);
1900 if( (pIn3
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
))==MEM_Str
){
1901 applyNumericAffinity(pIn3
,0);
1903 }else if( affinity
==SQLITE_AFF_TEXT
){
1904 if( (pIn1
->flags
& MEM_Str
)==0 && (pIn1
->flags
& (MEM_Int
|MEM_Real
))!=0 ){
1905 testcase( pIn1
->flags
& MEM_Int
);
1906 testcase( pIn1
->flags
& MEM_Real
);
1907 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
1909 if( (pIn3
->flags
& MEM_Str
)==0 && (pIn3
->flags
& (MEM_Int
|MEM_Real
))!=0 ){
1910 testcase( pIn3
->flags
& MEM_Int
);
1911 testcase( pIn3
->flags
& MEM_Real
);
1912 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
1915 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
1916 if( pIn1
->flags
& MEM_Zero
){
1917 sqlite3VdbeMemExpandBlob(pIn1
);
1918 flags1
&= ~MEM_Zero
;
1920 if( pIn3
->flags
& MEM_Zero
){
1921 sqlite3VdbeMemExpandBlob(pIn3
);
1922 flags3
&= ~MEM_Zero
;
1924 if( db
->mallocFailed
) goto no_mem
;
1925 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
1927 switch( pOp
->opcode
){
1928 case OP_Eq
: res
= res
==0; break;
1929 case OP_Ne
: res
= res
!=0; break;
1930 case OP_Lt
: res
= res
<0; break;
1931 case OP_Le
: res
= res
<=0; break;
1932 case OP_Gt
: res
= res
>0; break;
1933 default: res
= res
>=0; break;
1936 if( pOp
->p5
& SQLITE_STOREP2
){
1937 pOut
= &aMem
[pOp
->p2
];
1938 memAboutToChange(p
, pOut
);
1939 MemSetTypeFlag(pOut
, MEM_Int
);
1941 REGISTER_TRACE(pOp
->p2
, pOut
);
1943 VdbeBranchTaken(res
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
1948 /* Undo any changes made by applyAffinity() to the input registers. */
1949 pIn1
->flags
= flags1
;
1950 pIn3
->flags
= flags3
;
1954 /* Opcode: Permutation * * * P4 *
1956 ** Set the permutation used by the OP_Compare operator to be the array
1957 ** of integers in P4.
1959 ** The permutation is only valid until the next OP_Compare that has
1960 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1961 ** occur immediately prior to the OP_Compare.
1963 case OP_Permutation
: {
1964 assert( pOp
->p4type
==P4_INTARRAY
);
1965 assert( pOp
->p4
.ai
);
1966 aPermute
= pOp
->p4
.ai
;
1970 /* Opcode: Compare P1 P2 P3 P4 P5
1971 ** Synopsis: r[P1@P3] <-> r[P2@P3]
1973 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1974 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1975 ** the comparison for use by the next OP_Jump instruct.
1977 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1978 ** determined by the most recent OP_Permutation operator. If the
1979 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1982 ** P4 is a KeyInfo structure that defines collating sequences and sort
1983 ** orders for the comparison. The permutation applies to registers
1984 ** only. The KeyInfo elements are used sequentially.
1986 ** The comparison is a sort comparison, so NULLs compare equal,
1987 ** NULLs are less than numbers, numbers are less than strings,
1988 ** and strings are less than blobs.
1995 const KeyInfo
*pKeyInfo
;
1997 CollSeq
*pColl
; /* Collating sequence to use on this term */
1998 int bRev
; /* True for DESCENDING sort order */
2000 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ) aPermute
= 0;
2002 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2004 assert( pKeyInfo
!=0 );
2010 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>mx
) mx
= aPermute
[k
];
2011 assert( p1
>0 && p1
+mx
<=(p
->nMem
-p
->nCursor
)+1 );
2012 assert( p2
>0 && p2
+mx
<=(p
->nMem
-p
->nCursor
)+1 );
2014 assert( p1
>0 && p1
+n
<=(p
->nMem
-p
->nCursor
)+1 );
2015 assert( p2
>0 && p2
+n
<=(p
->nMem
-p
->nCursor
)+1 );
2017 #endif /* SQLITE_DEBUG */
2019 idx
= aPermute
? aPermute
[i
] : i
;
2020 assert( memIsValid(&aMem
[p1
+idx
]) );
2021 assert( memIsValid(&aMem
[p2
+idx
]) );
2022 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2023 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2024 assert( i
<pKeyInfo
->nField
);
2025 pColl
= pKeyInfo
->aColl
[i
];
2026 bRev
= pKeyInfo
->aSortOrder
[i
];
2027 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2029 if( bRev
) iCompare
= -iCompare
;
2037 /* Opcode: Jump P1 P2 P3 * *
2039 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2040 ** in the most recent OP_Compare instruction the P1 vector was less than
2041 ** equal to, or greater than the P2 vector, respectively.
2043 case OP_Jump
: { /* jump */
2045 pc
= pOp
->p1
- 1; VdbeBranchTaken(0,3);
2046 }else if( iCompare
==0 ){
2047 pc
= pOp
->p2
- 1; VdbeBranchTaken(1,3);
2049 pc
= pOp
->p3
- 1; VdbeBranchTaken(2,3);
2054 /* Opcode: And P1 P2 P3 * *
2055 ** Synopsis: r[P3]=(r[P1] && r[P2])
2057 ** Take the logical AND of the values in registers P1 and P2 and
2058 ** write the result into register P3.
2060 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2061 ** the other input is NULL. A NULL and true or two NULLs give
2064 /* Opcode: Or P1 P2 P3 * *
2065 ** Synopsis: r[P3]=(r[P1] || r[P2])
2067 ** Take the logical OR of the values in register P1 and P2 and
2068 ** store the answer in register P3.
2070 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2071 ** even if the other input is NULL. A NULL and false or two NULLs
2072 ** give a NULL output.
2074 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2075 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2076 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2077 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2079 pIn1
= &aMem
[pOp
->p1
];
2080 if( pIn1
->flags
& MEM_Null
){
2083 v1
= sqlite3VdbeIntValue(pIn1
)!=0;
2085 pIn2
= &aMem
[pOp
->p2
];
2086 if( pIn2
->flags
& MEM_Null
){
2089 v2
= sqlite3VdbeIntValue(pIn2
)!=0;
2091 if( pOp
->opcode
==OP_And
){
2092 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2093 v1
= and_logic
[v1
*3+v2
];
2095 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2096 v1
= or_logic
[v1
*3+v2
];
2098 pOut
= &aMem
[pOp
->p3
];
2100 MemSetTypeFlag(pOut
, MEM_Null
);
2103 MemSetTypeFlag(pOut
, MEM_Int
);
2108 /* Opcode: Not P1 P2 * * *
2109 ** Synopsis: r[P2]= !r[P1]
2111 ** Interpret the value in register P1 as a boolean value. Store the
2112 ** boolean complement in register P2. If the value in register P1 is
2113 ** NULL, then a NULL is stored in P2.
2115 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2116 pIn1
= &aMem
[pOp
->p1
];
2117 pOut
= &aMem
[pOp
->p2
];
2118 sqlite3VdbeMemSetNull(pOut
);
2119 if( (pIn1
->flags
& MEM_Null
)==0 ){
2120 pOut
->flags
= MEM_Int
;
2121 pOut
->u
.i
= !sqlite3VdbeIntValue(pIn1
);
2126 /* Opcode: BitNot P1 P2 * * *
2127 ** Synopsis: r[P1]= ~r[P1]
2129 ** Interpret the content of register P1 as an integer. Store the
2130 ** ones-complement of the P1 value into register P2. If P1 holds
2131 ** a NULL then store a NULL in P2.
2133 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2134 pIn1
= &aMem
[pOp
->p1
];
2135 pOut
= &aMem
[pOp
->p2
];
2136 sqlite3VdbeMemSetNull(pOut
);
2137 if( (pIn1
->flags
& MEM_Null
)==0 ){
2138 pOut
->flags
= MEM_Int
;
2139 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2144 /* Opcode: Once P1 P2 * * *
2146 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2147 ** Otherwise, set the flag and fall through to the next instruction.
2148 ** In other words, this opcode causes all following opcodes up through P2
2149 ** (but not including P2) to run just once and to be skipped on subsequent
2150 ** times through the loop.
2152 ** All "once" flags are initially cleared whenever a prepared statement
2153 ** first begins to run.
2155 case OP_Once
: { /* jump */
2156 assert( pOp
->p1
<p
->nOnceFlag
);
2157 VdbeBranchTaken(p
->aOnceFlag
[pOp
->p1
]!=0, 2);
2158 if( p
->aOnceFlag
[pOp
->p1
] ){
2161 p
->aOnceFlag
[pOp
->p1
] = 1;
2166 /* Opcode: If P1 P2 P3 * *
2168 ** Jump to P2 if the value in register P1 is true. The value
2169 ** is considered true if it is numeric and non-zero. If the value
2170 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2172 /* Opcode: IfNot P1 P2 P3 * *
2174 ** Jump to P2 if the value in register P1 is False. The value
2175 ** is considered false if it has a numeric value of zero. If the value
2176 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2178 case OP_If
: /* jump, in1 */
2179 case OP_IfNot
: { /* jump, in1 */
2181 pIn1
= &aMem
[pOp
->p1
];
2182 if( pIn1
->flags
& MEM_Null
){
2185 #ifdef SQLITE_OMIT_FLOATING_POINT
2186 c
= sqlite3VdbeIntValue(pIn1
)!=0;
2188 c
= sqlite3VdbeRealValue(pIn1
)!=0.0;
2190 if( pOp
->opcode
==OP_IfNot
) c
= !c
;
2192 VdbeBranchTaken(c
!=0, 2);
2199 /* Opcode: IsNull P1 P2 * * *
2200 ** Synopsis: if r[P1]==NULL goto P2
2202 ** Jump to P2 if the value in register P1 is NULL.
2204 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2205 pIn1
= &aMem
[pOp
->p1
];
2206 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2207 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2213 /* Opcode: NotNull P1 P2 * * *
2214 ** Synopsis: if r[P1]!=NULL goto P2
2216 ** Jump to P2 if the value in register P1 is not NULL.
2218 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2219 pIn1
= &aMem
[pOp
->p1
];
2220 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2221 if( (pIn1
->flags
& MEM_Null
)==0 ){
2227 /* Opcode: Column P1 P2 P3 P4 P5
2228 ** Synopsis: r[P3]=PX
2230 ** Interpret the data that cursor P1 points to as a structure built using
2231 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2232 ** information about the format of the data.) Extract the P2-th column
2233 ** from this record. If there are less that (P2+1)
2234 ** values in the record, extract a NULL.
2236 ** The value extracted is stored in register P3.
2238 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2239 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2242 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2243 ** then the cache of the cursor is reset prior to extracting the column.
2244 ** The first OP_Column against a pseudo-table after the value of the content
2245 ** register has changed should have this bit set.
2247 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2248 ** the result is guaranteed to only be used as the argument of a length()
2249 ** or typeof() function, respectively. The loading of large blobs can be
2250 ** skipped for length() and all content loading can be skipped for typeof().
2253 i64 payloadSize64
; /* Number of bytes in the record */
2254 int p2
; /* column number to retrieve */
2255 VdbeCursor
*pC
; /* The VDBE cursor */
2256 BtCursor
*pCrsr
; /* The BTree cursor */
2257 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2258 int len
; /* The length of the serialized data for the column */
2259 int i
; /* Loop counter */
2260 Mem
*pDest
; /* Where to write the extracted value */
2261 Mem sMem
; /* For storing the record being decoded */
2262 const u8
*zData
; /* Part of the record being decoded */
2263 const u8
*zHdr
; /* Next unparsed byte of the header */
2264 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2265 u32 offset
; /* Offset into the data */
2266 u32 szField
; /* Number of bytes in the content of a field */
2267 u32 avail
; /* Number of bytes of available data */
2268 u32 t
; /* A type code from the record header */
2269 u16 fx
; /* pDest->flags value */
2270 Mem
*pReg
; /* PseudoTable input register */
2273 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
2274 pDest
= &aMem
[pOp
->p3
];
2275 memAboutToChange(p
, pDest
);
2276 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2277 pC
= p
->apCsr
[pOp
->p1
];
2279 assert( p2
<pC
->nField
);
2280 aOffset
= pC
->aOffset
;
2281 #ifndef SQLITE_OMIT_VIRTUALTABLE
2282 assert( pC
->pVtabCursor
==0 ); /* OP_Column never called on virtual table */
2284 pCrsr
= pC
->pCursor
;
2285 assert( pCrsr
!=0 || pC
->pseudoTableReg
>0 ); /* pCrsr NULL on PseudoTables */
2286 assert( pCrsr
!=0 || pC
->nullRow
); /* pC->nullRow on PseudoTables */
2288 /* If the cursor cache is stale, bring it up-to-date */
2289 rc
= sqlite3VdbeCursorMoveto(pC
);
2290 if( rc
) goto abort_due_to_error
;
2291 if( pC
->cacheStatus
!=p
->cacheCtr
){
2294 assert( pC
->pseudoTableReg
>0 );
2295 pReg
= &aMem
[pC
->pseudoTableReg
];
2296 assert( pReg
->flags
& MEM_Blob
);
2297 assert( memIsValid(pReg
) );
2298 pC
->payloadSize
= pC
->szRow
= avail
= pReg
->n
;
2299 pC
->aRow
= (u8
*)pReg
->z
;
2301 sqlite3VdbeMemSetNull(pDest
);
2306 if( pC
->isTable
==0 ){
2307 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2308 VVA_ONLY(rc
=) sqlite3BtreeKeySize(pCrsr
, &payloadSize64
);
2309 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2311 ** payload size, so it is impossible for payloadSize64 to be
2312 ** larger than 32 bits. */
2313 assert( (payloadSize64
& SQLITE_MAX_U32
)==(u64
)payloadSize64
);
2314 pC
->aRow
= sqlite3BtreeKeyFetch(pCrsr
, &avail
);
2315 pC
->payloadSize
= (u32
)payloadSize64
;
2317 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2318 VVA_ONLY(rc
=) sqlite3BtreeDataSize(pCrsr
, &pC
->payloadSize
);
2319 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
2320 pC
->aRow
= sqlite3BtreeDataFetch(pCrsr
, &avail
);
2322 assert( avail
<=65536 ); /* Maximum page size is 64KiB */
2323 if( pC
->payloadSize
<= (u32
)avail
){
2324 pC
->szRow
= pC
->payloadSize
;
2328 if( pC
->payloadSize
> (u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2332 pC
->cacheStatus
= p
->cacheCtr
;
2333 pC
->iHdrOffset
= getVarint32(pC
->aRow
, offset
);
2335 aOffset
[0] = offset
;
2337 /* Make sure a corrupt database has not given us an oversize header.
2338 ** Do this now to avoid an oversize memory allocation.
2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2341 ** types use so much data space that there can only be 4096 and 32 of
2342 ** them, respectively. So the maximum header length results from a
2343 ** 3-byte type for each of the maximum of 32768 columns plus three
2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2346 if( offset
> 98307 || offset
> pC
->payloadSize
){
2347 rc
= SQLITE_CORRUPT_BKPT
;
2348 goto op_column_error
;
2352 /* pC->aRow does not have to hold the entire row, but it does at least
2353 ** need to cover the header of the record. If pC->aRow does not contain
2354 ** the complete header, then set it to zero, forcing the header to be
2355 ** dynamically allocated. */
2360 /* The following goto is an optimization. It can be omitted and
2361 ** everything will still work. But OP_Column is measurably faster
2362 ** by skipping the subsequent conditional, which is always true.
2364 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
2365 goto op_column_read_header
;
2368 /* Make sure at least the first p2+1 entries of the header have been
2369 ** parsed and valid information is in aOffset[] and pC->aType[].
2371 if( pC
->nHdrParsed
<=p2
){
2372 /* If there is more header available for parsing in the record, try
2373 ** to extract additional fields up through the p2+1-th field
2375 op_column_read_header
:
2376 if( pC
->iHdrOffset
<aOffset
[0] ){
2377 /* Make sure zData points to enough of the record to cover the header. */
2379 memset(&sMem
, 0, sizeof(sMem
));
2380 rc
= sqlite3VdbeMemFromBtree(pCrsr
, 0, aOffset
[0],
2381 !pC
->isTable
, &sMem
);
2382 if( rc
!=SQLITE_OK
){
2383 goto op_column_error
;
2385 zData
= (u8
*)sMem
.z
;
2390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2392 offset
= aOffset
[i
];
2393 zHdr
= zData
+ pC
->iHdrOffset
;
2394 zEndHdr
= zData
+ aOffset
[0];
2395 assert( i
<=p2
&& zHdr
<zEndHdr
);
2401 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
2404 szField
= sqlite3VdbeSerialTypeLen(t
);
2406 if( offset
<szField
){ /* True if offset overflows */
2407 zHdr
= &zEndHdr
[1]; /* Forces SQLITE_CORRUPT return below */
2411 aOffset
[i
] = offset
;
2412 }while( i
<=p2
&& zHdr
<zEndHdr
);
2414 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
2416 sqlite3VdbeMemRelease(&sMem
);
2417 sMem
.flags
= MEM_Null
;
2420 /* The record is corrupt if any of the following are true:
2421 ** (1) the bytes of the header extend past the declared header size
2423 ** (2) the entire header was used but not all data was used
2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2425 ** (3) the end of the data extends beyond the end of the record.
2426 ** (offset > pC->payloadSize)
2428 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset
!=pC
->payloadSize
))
2429 || (offset
> pC
->payloadSize
)
2431 rc
= SQLITE_CORRUPT_BKPT
;
2432 goto op_column_error
;
2436 /* If after trying to extra new entries from the header, nHdrParsed is
2437 ** still not up to p2, that means that the record has fewer than p2
2438 ** columns. So the result will be either the default value or a NULL.
2440 if( pC
->nHdrParsed
<=p2
){
2441 if( pOp
->p4type
==P4_MEM
){
2442 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2444 sqlite3VdbeMemSetNull(pDest
);
2450 /* Extract the content for the p2+1-th column. Control can only
2451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2454 assert( p2
<pC
->nHdrParsed
);
2455 assert( rc
==SQLITE_OK
);
2456 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
2457 if( VdbeMemDynamic(pDest
) ) sqlite3VdbeMemSetNull(pDest
);
2459 if( pC
->szRow
>=aOffset
[p2
+1] ){
2460 /* This is the common case where the desired content fits on the original
2461 ** page - where the content is not on an overflow page */
2462 sqlite3VdbeSerialGet(pC
->aRow
+aOffset
[p2
], t
, pDest
);
2464 /* This branch happens only when content is on overflow pages */
2465 if( ((pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
2466 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0))
2467 || (len
= sqlite3VdbeSerialTypeLen(t
))==0
2469 /* Content is irrelevant for
2470 ** 1. the typeof() function,
2471 ** 2. the length(X) function if X is a blob, and
2472 ** 3. if the content length is zero.
2473 ** So we might as well use bogus content rather than reading
2474 ** content from disk. NULL will work for the value for strings
2475 ** and blobs and whatever is in the payloadSize64 variable
2476 ** will work for everything else. */
2477 sqlite3VdbeSerialGet(t
<=13 ? (u8
*)&payloadSize64
: 0, t
, pDest
);
2479 rc
= sqlite3VdbeMemFromBtree(pCrsr
, aOffset
[p2
], len
, !pC
->isTable
,
2481 if( rc
!=SQLITE_OK
){
2482 goto op_column_error
;
2484 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
2485 pDest
->flags
&= ~MEM_Ephem
;
2488 pDest
->enc
= encoding
;
2491 /* If the column value is an ephemeral string, go ahead and persist
2492 ** that string in case the cursor moves before the column value is
2493 ** used. The following code does the equivalent of Deephemeralize()
2494 ** but does it faster. */
2495 if( (pDest
->flags
& MEM_Ephem
)!=0 && pDest
->z
){
2496 fx
= pDest
->flags
& (MEM_Str
|MEM_Blob
);
2498 zData
= (const u8
*)pDest
->z
;
2500 if( sqlite3VdbeMemClearAndResize(pDest
, len
+2) ) goto no_mem
;
2501 memcpy(pDest
->z
, zData
, len
);
2503 pDest
->z
[len
+1] = 0;
2504 pDest
->flags
= fx
|MEM_Term
;
2507 UPDATE_MAX_BLOBSIZE(pDest
);
2508 REGISTER_TRACE(pOp
->p3
, pDest
);
2512 /* Opcode: Affinity P1 P2 * P4 *
2513 ** Synopsis: affinity(r[P1@P2])
2515 ** Apply affinities to a range of P2 registers starting with P1.
2517 ** P4 is a string that is P2 characters long. The nth character of the
2518 ** string indicates the column affinity that should be used for the nth
2519 ** memory cell in the range.
2522 const char *zAffinity
; /* The affinity to be applied */
2523 char cAff
; /* A single character of affinity */
2525 zAffinity
= pOp
->p4
.z
;
2526 assert( zAffinity
!=0 );
2527 assert( zAffinity
[pOp
->p2
]==0 );
2528 pIn1
= &aMem
[pOp
->p1
];
2529 while( (cAff
= *(zAffinity
++))!=0 ){
2530 assert( pIn1
<= &p
->aMem
[(p
->nMem
-p
->nCursor
)] );
2531 assert( memIsValid(pIn1
) );
2532 applyAffinity(pIn1
, cAff
, encoding
);
2538 /* Opcode: MakeRecord P1 P2 P3 P4 *
2539 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2541 ** Convert P2 registers beginning with P1 into the [record format]
2542 ** use as a data record in a database table or as a key
2543 ** in an index. The OP_Column opcode can decode the record later.
2545 ** P4 may be a string that is P2 characters long. The nth character of the
2546 ** string indicates the column affinity that should be used for the nth
2547 ** field of the index key.
2549 ** The mapping from character to affinity is given by the SQLITE_AFF_
2550 ** macros defined in sqliteInt.h.
2552 ** If P4 is NULL then all index fields have the affinity NONE.
2554 case OP_MakeRecord
: {
2555 u8
*zNewRecord
; /* A buffer to hold the data for the new record */
2556 Mem
*pRec
; /* The new record */
2557 u64 nData
; /* Number of bytes of data space */
2558 int nHdr
; /* Number of bytes of header space */
2559 i64 nByte
; /* Data space required for this record */
2560 int nZero
; /* Number of zero bytes at the end of the record */
2561 int nVarint
; /* Number of bytes in a varint */
2562 u32 serial_type
; /* Type field */
2563 Mem
*pData0
; /* First field to be combined into the record */
2564 Mem
*pLast
; /* Last field of the record */
2565 int nField
; /* Number of fields in the record */
2566 char *zAffinity
; /* The affinity string for the record */
2567 int file_format
; /* File format to use for encoding */
2568 int i
; /* Space used in zNewRecord[] header */
2569 int j
; /* Space used in zNewRecord[] content */
2570 int len
; /* Length of a field */
2572 /* Assuming the record contains N fields, the record format looks
2575 ** ------------------------------------------------------------------------
2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2577 ** ------------------------------------------------------------------------
2579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2582 ** Each type field is a varint representing the serial type of the
2583 ** corresponding data element (see sqlite3VdbeSerialType()). The
2584 ** hdr-size field is also a varint which is the offset from the beginning
2585 ** of the record to data0.
2587 nData
= 0; /* Number of bytes of data space */
2588 nHdr
= 0; /* Number of bytes of header space */
2589 nZero
= 0; /* Number of zero bytes at the end of the record */
2591 zAffinity
= pOp
->p4
.z
;
2592 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
-p
->nCursor
)+1 );
2593 pData0
= &aMem
[nField
];
2595 pLast
= &pData0
[nField
-1];
2596 file_format
= p
->minWriteFileFormat
;
2598 /* Identify the output register */
2599 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
2600 pOut
= &aMem
[pOp
->p3
];
2601 memAboutToChange(p
, pOut
);
2603 /* Apply the requested affinity to all inputs
2605 assert( pData0
<=pLast
);
2609 applyAffinity(pRec
++, *(zAffinity
++), encoding
);
2610 assert( zAffinity
[0]==0 || pRec
<=pLast
);
2611 }while( zAffinity
[0] );
2614 /* Loop through the elements that will make up the record to figure
2615 ** out how much space is required for the new record.
2619 assert( memIsValid(pRec
) );
2620 pRec
->uTemp
= serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2621 len
= sqlite3VdbeSerialTypeLen(serial_type
);
2622 if( pRec
->flags
& MEM_Zero
){
2624 sqlite3VdbeMemExpandBlob(pRec
);
2626 nZero
+= pRec
->u
.nZero
;
2627 len
-= pRec
->u
.nZero
;
2631 testcase( serial_type
==127 );
2632 testcase( serial_type
==128 );
2633 nHdr
+= serial_type
<=127 ? 1 : sqlite3VarintLen(serial_type
);
2634 }while( (--pRec
)>=pData0
);
2636 /* Add the initial header varint and total the size */
2637 testcase( nHdr
==126 );
2638 testcase( nHdr
==127 );
2640 /* The common case */
2643 /* Rare case of a really large header */
2644 nVarint
= sqlite3VarintLen(nHdr
);
2646 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
2649 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2653 /* Make sure the output register has a buffer large enough to store
2654 ** the new record. The output register (pOp->p3) is not allowed to
2655 ** be one of the input registers (because the following call to
2656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2658 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
2661 zNewRecord
= (u8
*)pOut
->z
;
2663 /* Write the record */
2664 i
= putVarint32(zNewRecord
, nHdr
);
2666 assert( pData0
<=pLast
);
2669 serial_type
= pRec
->uTemp
;
2670 i
+= putVarint32(&zNewRecord
[i
], serial_type
); /* serial type */
2671 j
+= sqlite3VdbeSerialPut(&zNewRecord
[j
], pRec
, serial_type
); /* content */
2672 }while( (++pRec
)<=pLast
);
2676 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
2677 pOut
->n
= (int)nByte
;
2678 pOut
->flags
= MEM_Blob
;
2680 pOut
->u
.nZero
= nZero
;
2681 pOut
->flags
|= MEM_Zero
;
2683 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever converted to text */
2684 REGISTER_TRACE(pOp
->p3
, pOut
);
2685 UPDATE_MAX_BLOBSIZE(pOut
);
2689 /* Opcode: Count P1 P2 * * *
2690 ** Synopsis: r[P2]=count()
2692 ** Store the number of entries (an integer value) in the table or index
2693 ** opened by cursor P1 in register P2
2695 #ifndef SQLITE_OMIT_BTREECOUNT
2696 case OP_Count
: { /* out2-prerelease */
2700 pCrsr
= p
->apCsr
[pOp
->p1
]->pCursor
;
2702 nEntry
= 0; /* Not needed. Only used to silence a warning. */
2703 rc
= sqlite3BtreeCount(pCrsr
, &nEntry
);
2709 /* Opcode: Savepoint P1 * * P4 *
2711 ** Open, release or rollback the savepoint named by parameter P4, depending
2712 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2713 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2715 case OP_Savepoint
: {
2716 int p1
; /* Value of P1 operand */
2717 char *zName
; /* Name of savepoint */
2720 Savepoint
*pSavepoint
;
2728 /* Assert that the p1 parameter is valid. Also that if there is no open
2729 ** transaction, then there cannot be any savepoints.
2731 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
2732 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
2733 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
2734 assert( checkSavepointCount(db
) );
2735 assert( p
->bIsReader
);
2737 if( p1
==SAVEPOINT_BEGIN
){
2738 if( db
->nVdbeWrite
>0 ){
2739 /* A new savepoint cannot be created if there are active write
2740 ** statements (i.e. open read/write incremental blob handles).
2742 sqlite3SetString(&p
->zErrMsg
, db
, "cannot open savepoint - "
2743 "SQL statements in progress");
2746 nName
= sqlite3Strlen30(zName
);
2748 #ifndef SQLITE_OMIT_VIRTUALTABLE
2749 /* This call is Ok even if this savepoint is actually a transaction
2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2751 ** If this is a transaction savepoint being opened, it is guaranteed
2752 ** that the db->aVTrans[] array is empty. */
2753 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
2754 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
2755 db
->nStatement
+db
->nSavepoint
);
2756 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2759 /* Create a new savepoint structure. */
2760 pNew
= sqlite3DbMallocRaw(db
, sizeof(Savepoint
)+nName
+1);
2762 pNew
->zName
= (char *)&pNew
[1];
2763 memcpy(pNew
->zName
, zName
, nName
+1);
2765 /* If there is no open transaction, then mark this as a special
2766 ** "transaction savepoint". */
2767 if( db
->autoCommit
){
2769 db
->isTransactionSavepoint
= 1;
2774 /* Link the new savepoint into the database handle's list. */
2775 pNew
->pNext
= db
->pSavepoint
;
2776 db
->pSavepoint
= pNew
;
2777 pNew
->nDeferredCons
= db
->nDeferredCons
;
2778 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
2784 /* Find the named savepoint. If there is no such savepoint, then an
2785 ** an error is returned to the user. */
2787 pSavepoint
= db
->pSavepoint
;
2788 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
2789 pSavepoint
= pSavepoint
->pNext
2794 sqlite3SetString(&p
->zErrMsg
, db
, "no such savepoint: %s", zName
);
2796 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
2797 /* It is not possible to release (commit) a savepoint if there are
2798 ** active write statements.
2800 sqlite3SetString(&p
->zErrMsg
, db
,
2801 "cannot release savepoint - SQL statements in progress"
2806 /* Determine whether or not this is a transaction savepoint. If so,
2807 ** and this is a RELEASE command, then the current transaction
2810 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
2811 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
2812 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2816 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2819 p
->rc
= rc
= SQLITE_BUSY
;
2822 db
->isTransactionSavepoint
= 0;
2826 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
2827 if( p1
==SAVEPOINT_ROLLBACK
){
2828 isSchemaChange
= (db
->flags
& SQLITE_InternChanges
)!=0;
2829 for(ii
=0; ii
<db
->nDb
; ii
++){
2830 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
2831 SQLITE_ABORT_ROLLBACK
,
2833 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2838 for(ii
=0; ii
<db
->nDb
; ii
++){
2839 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
2840 if( rc
!=SQLITE_OK
){
2841 goto abort_due_to_error
;
2844 if( isSchemaChange
){
2845 sqlite3ExpirePreparedStatements(db
);
2846 sqlite3ResetAllSchemasOfConnection(db
);
2847 db
->flags
= (db
->flags
| SQLITE_InternChanges
);
2851 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2852 ** savepoints nested inside of the savepoint being operated on. */
2853 while( db
->pSavepoint
!=pSavepoint
){
2854 pTmp
= db
->pSavepoint
;
2855 db
->pSavepoint
= pTmp
->pNext
;
2856 sqlite3DbFree(db
, pTmp
);
2860 /* If it is a RELEASE, then destroy the savepoint being operated on
2861 ** too. If it is a ROLLBACK TO, then set the number of deferred
2862 ** constraint violations present in the database to the value stored
2863 ** when the savepoint was created. */
2864 if( p1
==SAVEPOINT_RELEASE
){
2865 assert( pSavepoint
==db
->pSavepoint
);
2866 db
->pSavepoint
= pSavepoint
->pNext
;
2867 sqlite3DbFree(db
, pSavepoint
);
2868 if( !isTransaction
){
2872 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
2873 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
2876 if( !isTransaction
){
2877 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
2878 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2886 /* Opcode: AutoCommit P1 P2 * * *
2888 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2889 ** back any currently active btree transactions. If there are any active
2890 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2891 ** there are active writing VMs or active VMs that use shared cache.
2893 ** This instruction causes the VM to halt.
2895 case OP_AutoCommit
: {
2896 int desiredAutoCommit
;
2900 desiredAutoCommit
= pOp
->p1
;
2901 iRollback
= pOp
->p2
;
2902 turnOnAC
= desiredAutoCommit
&& !db
->autoCommit
;
2903 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
2904 assert( desiredAutoCommit
==1 || iRollback
==0 );
2905 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
2906 assert( p
->bIsReader
);
2909 if( turnOnAC
&& iRollback
&& db
->nVdbeActive
>1 ){
2910 /* If this instruction implements a ROLLBACK and other VMs are
2911 ** still running, and a transaction is active, return an error indicating
2912 ** that the other VMs must complete first.
2914 sqlite3SetString(&p
->zErrMsg
, db
, "cannot rollback transaction - "
2915 "SQL statements in progress");
2919 if( turnOnAC
&& !iRollback
&& db
->nVdbeWrite
>0 ){
2920 /* If this instruction implements a COMMIT and other VMs are writing
2921 ** return an error indicating that the other VMs must complete first.
2923 sqlite3SetString(&p
->zErrMsg
, db
, "cannot commit transaction - "
2924 "SQL statements in progress");
2926 }else if( desiredAutoCommit
!=db
->autoCommit
){
2928 assert( desiredAutoCommit
==1 );
2929 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
2931 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2934 db
->autoCommit
= (u8
)desiredAutoCommit
;
2935 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2937 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
2938 p
->rc
= rc
= SQLITE_BUSY
;
2942 assert( db
->nStatement
==0 );
2943 sqlite3CloseSavepoints(db
);
2944 if( p
->rc
==SQLITE_OK
){
2951 sqlite3SetString(&p
->zErrMsg
, db
,
2952 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
2953 (iRollback
)?"cannot rollback - no transaction is active":
2954 "cannot commit - no transaction is active"));
2961 /* Opcode: Transaction P1 P2 P3 P4 P5
2963 ** Begin a transaction on database P1 if a transaction is not already
2965 ** If P2 is non-zero, then a write-transaction is started, or if a
2966 ** read-transaction is already active, it is upgraded to a write-transaction.
2967 ** If P2 is zero, then a read-transaction is started.
2969 ** P1 is the index of the database file on which the transaction is
2970 ** started. Index 0 is the main database file and index 1 is the
2971 ** file used for temporary tables. Indices of 2 or more are used for
2972 ** attached databases.
2974 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2975 ** true (this flag is set if the Vdbe may modify more than one row and may
2976 ** throw an ABORT exception), a statement transaction may also be opened.
2977 ** More specifically, a statement transaction is opened iff the database
2978 ** connection is currently not in autocommit mode, or if there are other
2979 ** active statements. A statement transaction allows the changes made by this
2980 ** VDBE to be rolled back after an error without having to roll back the
2981 ** entire transaction. If no error is encountered, the statement transaction
2982 ** will automatically commit when the VDBE halts.
2984 ** If P5!=0 then this opcode also checks the schema cookie against P3
2985 ** and the schema generation counter against P4.
2986 ** The cookie changes its value whenever the database schema changes.
2987 ** This operation is used to detect when that the cookie has changed
2988 ** and that the current process needs to reread the schema. If the schema
2989 ** cookie in P3 differs from the schema cookie in the database header or
2990 ** if the schema generation counter in P4 differs from the current
2991 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
2992 ** halts. The sqlite3_step() wrapper function might then reprepare the
2993 ** statement and rerun it from the beginning.
2995 case OP_Transaction
: {
3000 assert( p
->bIsReader
);
3001 assert( p
->readOnly
==0 || pOp
->p2
==0 );
3002 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3003 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3004 if( pOp
->p2
&& (db
->flags
& SQLITE_QueryOnly
)!=0 ){
3005 rc
= SQLITE_READONLY
;
3006 goto abort_due_to_error
;
3008 pBt
= db
->aDb
[pOp
->p1
].pBt
;
3011 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
);
3012 if( rc
==SQLITE_BUSY
){
3014 p
->rc
= rc
= SQLITE_BUSY
;
3017 if( rc
!=SQLITE_OK
){
3018 goto abort_due_to_error
;
3021 if( pOp
->p2
&& p
->usesStmtJournal
3022 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
3024 assert( sqlite3BtreeIsInTrans(pBt
) );
3025 if( p
->iStatement
==0 ){
3026 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
3028 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
3031 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
3032 if( rc
==SQLITE_OK
){
3033 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
3036 /* Store the current value of the database handles deferred constraint
3037 ** counter. If the statement transaction needs to be rolled back,
3038 ** the value of this counter needs to be restored too. */
3039 p
->nStmtDefCons
= db
->nDeferredCons
;
3040 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
3043 /* Gather the schema version number for checking */
3044 sqlite3BtreeGetMeta(pBt
, BTREE_SCHEMA_VERSION
, (u32
*)&iMeta
);
3045 iGen
= db
->aDb
[pOp
->p1
].pSchema
->iGeneration
;
3049 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
3050 if( pOp
->p5
&& (iMeta
!=pOp
->p3
|| iGen
!=pOp
->p4
.i
) ){
3051 sqlite3DbFree(db
, p
->zErrMsg
);
3052 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3053 /* If the schema-cookie from the database file matches the cookie
3054 ** stored with the in-memory representation of the schema, do
3055 ** not reload the schema from the database file.
3057 ** If virtual-tables are in use, this is not just an optimization.
3058 ** Often, v-tables store their data in other SQLite tables, which
3059 ** are queried from within xNext() and other v-table methods using
3060 ** prepared queries. If such a query is out-of-date, we do not want to
3061 ** discard the database schema, as the user code implementing the
3062 ** v-table would have to be ready for the sqlite3_vtab structure itself
3063 ** to be invalidated whenever sqlite3_step() is called from within
3064 ** a v-table method.
3066 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3067 sqlite3ResetOneSchema(db
, pOp
->p1
);
3075 /* Opcode: ReadCookie P1 P2 P3 * *
3077 ** Read cookie number P3 from database P1 and write it into register P2.
3078 ** P3==1 is the schema version. P3==2 is the database format.
3079 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3080 ** the main database file and P1==1 is the database file used to store
3081 ** temporary tables.
3083 ** There must be a read-lock on the database (either a transaction
3084 ** must be started or there must be an open cursor) before
3085 ** executing this instruction.
3087 case OP_ReadCookie
: { /* out2-prerelease */
3092 assert( p
->bIsReader
);
3095 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
3096 assert( iDb
>=0 && iDb
<db
->nDb
);
3097 assert( db
->aDb
[iDb
].pBt
!=0 );
3098 assert( DbMaskTest(p
->btreeMask
, iDb
) );
3100 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
3105 /* Opcode: SetCookie P1 P2 P3 * *
3107 ** Write the content of register P3 (interpreted as an integer)
3108 ** into cookie number P2 of database P1. P2==1 is the schema version.
3109 ** P2==2 is the database format. P2==3 is the recommended pager cache
3110 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3111 ** database file used to store temporary tables.
3113 ** A transaction must be started before executing this opcode.
3115 case OP_SetCookie
: { /* in3 */
3117 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
3118 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3119 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3120 assert( p
->readOnly
==0 );
3121 pDb
= &db
->aDb
[pOp
->p1
];
3122 assert( pDb
->pBt
!=0 );
3123 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
3124 pIn3
= &aMem
[pOp
->p3
];
3125 sqlite3VdbeMemIntegerify(pIn3
);
3126 /* See note about index shifting on OP_ReadCookie */
3127 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, (int)pIn3
->u
.i
);
3128 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
3129 /* When the schema cookie changes, record the new cookie internally */
3130 pDb
->pSchema
->schema_cookie
= (int)pIn3
->u
.i
;
3131 db
->flags
|= SQLITE_InternChanges
;
3132 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
3133 /* Record changes in the file format */
3134 pDb
->pSchema
->file_format
= (u8
)pIn3
->u
.i
;
3137 /* Invalidate all prepared statements whenever the TEMP database
3138 ** schema is changed. Ticket #1644 */
3139 sqlite3ExpirePreparedStatements(db
);
3145 /* Opcode: OpenRead P1 P2 P3 P4 P5
3146 ** Synopsis: root=P2 iDb=P3
3148 ** Open a read-only cursor for the database table whose root page is
3149 ** P2 in a database file. The database file is determined by P3.
3150 ** P3==0 means the main database, P3==1 means the database used for
3151 ** temporary tables, and P3>1 means used the corresponding attached
3152 ** database. Give the new cursor an identifier of P1. The P1
3153 ** values need not be contiguous but all P1 values should be small integers.
3154 ** It is an error for P1 to be negative.
3156 ** If P5!=0 then use the content of register P2 as the root page, not
3157 ** the value of P2 itself.
3159 ** There will be a read lock on the database whenever there is an
3160 ** open cursor. If the database was unlocked prior to this instruction
3161 ** then a read lock is acquired as part of this instruction. A read
3162 ** lock allows other processes to read the database but prohibits
3163 ** any other process from modifying the database. The read lock is
3164 ** released when all cursors are closed. If this instruction attempts
3165 ** to get a read lock but fails, the script terminates with an
3166 ** SQLITE_BUSY error code.
3168 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3169 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3170 ** structure, then said structure defines the content and collating
3171 ** sequence of the index being opened. Otherwise, if P4 is an integer
3172 ** value, it is set to the number of columns in the table.
3174 ** See also: OpenWrite, ReopenIdx
3176 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3177 ** Synopsis: root=P2 iDb=P3
3179 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3180 ** checks to see if the cursor on P1 is already open with a root page
3181 ** number of P2 and if it is this opcode becomes a no-op. In other words,
3182 ** if the cursor is already open, do not reopen it.
3184 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3185 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3186 ** every other ReopenIdx or OpenRead for the same cursor number.
3188 ** See the OpenRead opcode documentation for additional information.
3190 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3191 ** Synopsis: root=P2 iDb=P3
3193 ** Open a read/write cursor named P1 on the table or index whose root
3194 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3197 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3198 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3199 ** structure, then said structure defines the content and collating
3200 ** sequence of the index being opened. Otherwise, if P4 is an integer
3201 ** value, it is set to the number of columns in the table, or to the
3202 ** largest index of any column of the table that is actually used.
3204 ** This instruction works just like OpenRead except that it opens the cursor
3205 ** in read/write mode. For a given table, there can be one or more read-only
3206 ** cursors or a single read/write cursor but not both.
3208 ** See also OpenRead.
3210 case OP_ReopenIdx
: {
3213 assert( pOp
->p5
==0 );
3214 assert( pOp
->p4type
==P4_KEYINFO
);
3215 pCur
= p
->apCsr
[pOp
->p1
];
3216 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
3217 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
3220 /* If the cursor is not currently open or is open on a different
3221 ** index, then fall through into OP_OpenRead to force a reopen */
3224 case OP_OpenWrite
: {
3234 assert( (pOp
->p5
&(OPFLAG_P2ISREG
|OPFLAG_BULKCSR
))==pOp
->p5
);
3235 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 );
3236 assert( p
->bIsReader
);
3237 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
3238 || p
->readOnly
==0 );
3241 rc
= SQLITE_ABORT_ROLLBACK
;
3249 assert( iDb
>=0 && iDb
<db
->nDb
);
3250 assert( DbMaskTest(p
->btreeMask
, iDb
) );
3251 pDb
= &db
->aDb
[iDb
];
3254 if( pOp
->opcode
==OP_OpenWrite
){
3256 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3257 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
3258 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
3263 if( pOp
->p5
& OPFLAG_P2ISREG
){
3265 assert( p2
<=(p
->nMem
-p
->nCursor
) );
3267 assert( memIsValid(pIn2
) );
3268 assert( (pIn2
->flags
& MEM_Int
)!=0 );
3269 sqlite3VdbeMemIntegerify(pIn2
);
3270 p2
= (int)pIn2
->u
.i
;
3271 /* The p2 value always comes from a prior OP_CreateTable opcode and
3272 ** that opcode will always set the p2 value to 2 or more or else fail.
3273 ** If there were a failure, the prepared statement would have halted
3274 ** before reaching this instruction. */
3276 rc
= SQLITE_CORRUPT_BKPT
;
3277 goto abort_due_to_error
;
3280 if( pOp
->p4type
==P4_KEYINFO
){
3281 pKeyInfo
= pOp
->p4
.pKeyInfo
;
3282 assert( pKeyInfo
->enc
==ENC(db
) );
3283 assert( pKeyInfo
->db
==db
);
3284 nField
= pKeyInfo
->nField
+pKeyInfo
->nXField
;
3285 }else if( pOp
->p4type
==P4_INT32
){
3288 assert( pOp
->p1
>=0 );
3289 assert( nField
>=0 );
3290 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3291 pCur
= allocateCursor(p
, pOp
->p1
, nField
, iDb
, 1);
3292 if( pCur
==0 ) goto no_mem
;
3294 pCur
->isOrdered
= 1;
3295 pCur
->pgnoRoot
= p2
;
3296 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->pCursor
);
3297 pCur
->pKeyInfo
= pKeyInfo
;
3298 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
3299 sqlite3BtreeCursorHints(pCur
->pCursor
, (pOp
->p5
& OPFLAG_BULKCSR
));
3301 /* Set the VdbeCursor.isTable variable. Previous versions of
3302 ** SQLite used to check if the root-page flags were sane at this point
3303 ** and report database corruption if they were not, but this check has
3304 ** since moved into the btree layer. */
3305 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
3309 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3310 ** Synopsis: nColumn=P2
3312 ** Open a new cursor P1 to a transient table.
3313 ** The cursor is always opened read/write even if
3314 ** the main database is read-only. The ephemeral
3315 ** table is deleted automatically when the cursor is closed.
3317 ** P2 is the number of columns in the ephemeral table.
3318 ** The cursor points to a BTree table if P4==0 and to a BTree index
3319 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3320 ** that defines the format of keys in the index.
3322 ** The P5 parameter can be a mask of the BTREE_* flags defined
3323 ** in btree.h. These flags control aspects of the operation of
3324 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3325 ** added automatically.
3327 /* Opcode: OpenAutoindex P1 P2 * P4 *
3328 ** Synopsis: nColumn=P2
3330 ** This opcode works the same as OP_OpenEphemeral. It has a
3331 ** different name to distinguish its use. Tables created using
3332 ** by this opcode will be used for automatically created transient
3333 ** indices in joins.
3335 case OP_OpenAutoindex
:
3336 case OP_OpenEphemeral
: {
3340 static const int vfsFlags
=
3341 SQLITE_OPEN_READWRITE
|
3342 SQLITE_OPEN_CREATE
|
3343 SQLITE_OPEN_EXCLUSIVE
|
3344 SQLITE_OPEN_DELETEONCLOSE
|
3345 SQLITE_OPEN_TRANSIENT_DB
;
3346 assert( pOp
->p1
>=0 );
3347 assert( pOp
->p2
>=0 );
3348 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3349 if( pCx
==0 ) goto no_mem
;
3351 pCx
->isEphemeral
= 1;
3352 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->pBt
,
3353 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
, vfsFlags
);
3354 if( rc
==SQLITE_OK
){
3355 rc
= sqlite3BtreeBeginTrans(pCx
->pBt
, 1);
3357 if( rc
==SQLITE_OK
){
3358 /* If a transient index is required, create it by calling
3359 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3360 ** opening it. If a transient table is required, just use the
3361 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3363 if( (pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
3365 assert( pOp
->p4type
==P4_KEYINFO
);
3366 rc
= sqlite3BtreeCreateTable(pCx
->pBt
, &pgno
, BTREE_BLOBKEY
| pOp
->p5
);
3367 if( rc
==SQLITE_OK
){
3368 assert( pgno
==MASTER_ROOT
+1 );
3369 assert( pKeyInfo
->db
==db
);
3370 assert( pKeyInfo
->enc
==ENC(db
) );
3371 pCx
->pKeyInfo
= pKeyInfo
;
3372 rc
= sqlite3BtreeCursor(pCx
->pBt
, pgno
, 1, pKeyInfo
, pCx
->pCursor
);
3376 rc
= sqlite3BtreeCursor(pCx
->pBt
, MASTER_ROOT
, 1, 0, pCx
->pCursor
);
3380 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
3384 /* Opcode: SorterOpen P1 P2 P3 P4 *
3386 ** This opcode works like OP_OpenEphemeral except that it opens
3387 ** a transient index that is specifically designed to sort large
3388 ** tables using an external merge-sort algorithm.
3390 ** If argument P3 is non-zero, then it indicates that the sorter may
3391 ** assume that a stable sort considering the first P3 fields of each
3392 ** key is sufficient to produce the required results.
3394 case OP_SorterOpen
: {
3397 assert( pOp
->p1
>=0 );
3398 assert( pOp
->p2
>=0 );
3399 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3400 if( pCx
==0 ) goto no_mem
;
3401 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3402 assert( pCx
->pKeyInfo
->db
==db
);
3403 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
3404 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
3408 /* Opcode: SequenceTest P1 P2 * * *
3409 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3411 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3412 ** to P2. Regardless of whether or not the jump is taken, increment the
3413 ** the sequence value.
3415 case OP_SequenceTest
: {
3417 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3418 pC
= p
->apCsr
[pOp
->p1
];
3419 assert( pC
->pSorter
);
3420 if( (pC
->seqCount
++)==0 ){
3426 /* Opcode: OpenPseudo P1 P2 P3 * *
3427 ** Synopsis: P3 columns in r[P2]
3429 ** Open a new cursor that points to a fake table that contains a single
3430 ** row of data. The content of that one row is the content of memory
3431 ** register P2. In other words, cursor P1 becomes an alias for the
3432 ** MEM_Blob content contained in register P2.
3434 ** A pseudo-table created by this opcode is used to hold a single
3435 ** row output from the sorter so that the row can be decomposed into
3436 ** individual columns using the OP_Column opcode. The OP_Column opcode
3437 ** is the only cursor opcode that works with a pseudo-table.
3439 ** P3 is the number of fields in the records that will be stored by
3440 ** the pseudo-table.
3442 case OP_OpenPseudo
: {
3445 assert( pOp
->p1
>=0 );
3446 assert( pOp
->p3
>=0 );
3447 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, -1, 0);
3448 if( pCx
==0 ) goto no_mem
;
3450 pCx
->pseudoTableReg
= pOp
->p2
;
3452 assert( pOp
->p5
==0 );
3456 /* Opcode: Close P1 * * * *
3458 ** Close a cursor previously opened as P1. If P1 is not
3459 ** currently open, this instruction is a no-op.
3462 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3463 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
3464 p
->apCsr
[pOp
->p1
] = 0;
3468 /* Opcode: SeekGE P1 P2 P3 P4 *
3469 ** Synopsis: key=r[P3@P4]
3471 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3472 ** use the value in register P3 as the key. If cursor P1 refers
3473 ** to an SQL index, then P3 is the first in an array of P4 registers
3474 ** that are used as an unpacked index key.
3476 ** Reposition cursor P1 so that it points to the smallest entry that
3477 ** is greater than or equal to the key value. If there are no records
3478 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3480 ** This opcode leaves the cursor configured to move in forward order,
3481 ** from the beginning toward the end. In other words, the cursor is
3482 ** configured to use Next, not Prev.
3484 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3486 /* Opcode: SeekGT P1 P2 P3 P4 *
3487 ** Synopsis: key=r[P3@P4]
3489 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3490 ** use the value in register P3 as a key. If cursor P1 refers
3491 ** to an SQL index, then P3 is the first in an array of P4 registers
3492 ** that are used as an unpacked index key.
3494 ** Reposition cursor P1 so that it points to the smallest entry that
3495 ** is greater than the key value. If there are no records greater than
3496 ** the key and P2 is not zero, then jump to P2.
3498 ** This opcode leaves the cursor configured to move in forward order,
3499 ** from the beginning toward the end. In other words, the cursor is
3500 ** configured to use Next, not Prev.
3502 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3504 /* Opcode: SeekLT P1 P2 P3 P4 *
3505 ** Synopsis: key=r[P3@P4]
3507 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3508 ** use the value in register P3 as a key. If cursor P1 refers
3509 ** to an SQL index, then P3 is the first in an array of P4 registers
3510 ** that are used as an unpacked index key.
3512 ** Reposition cursor P1 so that it points to the largest entry that
3513 ** is less than the key value. If there are no records less than
3514 ** the key and P2 is not zero, then jump to P2.
3516 ** This opcode leaves the cursor configured to move in reverse order,
3517 ** from the end toward the beginning. In other words, the cursor is
3518 ** configured to use Prev, not Next.
3520 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3522 /* Opcode: SeekLE P1 P2 P3 P4 *
3523 ** Synopsis: key=r[P3@P4]
3525 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3526 ** use the value in register P3 as a key. If cursor P1 refers
3527 ** to an SQL index, then P3 is the first in an array of P4 registers
3528 ** that are used as an unpacked index key.
3530 ** Reposition cursor P1 so that it points to the largest entry that
3531 ** is less than or equal to the key value. If there are no records
3532 ** less than or equal to the key and P2 is not zero, then jump to P2.
3534 ** This opcode leaves the cursor configured to move in reverse order,
3535 ** from the end toward the beginning. In other words, the cursor is
3536 ** configured to use Prev, not Next.
3538 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3540 case OP_SeekLT
: /* jump, in3 */
3541 case OP_SeekLE
: /* jump, in3 */
3542 case OP_SeekGE
: /* jump, in3 */
3543 case OP_SeekGT
: { /* jump, in3 */
3549 i64 iKey
; /* The rowid we are to seek to */
3551 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3552 assert( pOp
->p2
!=0 );
3553 pC
= p
->apCsr
[pOp
->p1
];
3555 assert( pC
->pseudoTableReg
==0 );
3556 assert( OP_SeekLE
== OP_SeekLT
+1 );
3557 assert( OP_SeekGE
== OP_SeekLT
+2 );
3558 assert( OP_SeekGT
== OP_SeekLT
+3 );
3559 assert( pC
->isOrdered
);
3560 assert( pC
->pCursor
!=0 );
3564 pC
->seekOp
= pOp
->opcode
;
3567 /* The input value in P3 might be of any type: integer, real, string,
3568 ** blob, or NULL. But it needs to be an integer before we can do
3569 ** the seek, so convert it. */
3570 pIn3
= &aMem
[pOp
->p3
];
3571 if( (pIn3
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
))==MEM_Str
){
3572 applyNumericAffinity(pIn3
, 0);
3574 iKey
= sqlite3VdbeIntValue(pIn3
);
3576 /* If the P3 value could not be converted into an integer without
3577 ** loss of information, then special processing is required... */
3578 if( (pIn3
->flags
& MEM_Int
)==0 ){
3579 if( (pIn3
->flags
& MEM_Real
)==0 ){
3580 /* If the P3 value cannot be converted into any kind of a number,
3581 ** then the seek is not possible, so jump to P2 */
3582 pc
= pOp
->p2
- 1; VdbeBranchTaken(1,2);
3586 /* If the approximation iKey is larger than the actual real search
3587 ** term, substitute >= for > and < for <=. e.g. if the search term
3588 ** is 4.9 and the integer approximation 5:
3590 ** (x > 4.9) -> (x >= 5)
3591 ** (x <= 4.9) -> (x < 5)
3593 if( pIn3
->u
.r
<(double)iKey
){
3594 assert( OP_SeekGE
==(OP_SeekGT
-1) );
3595 assert( OP_SeekLT
==(OP_SeekLE
-1) );
3596 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
3597 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
3600 /* If the approximation iKey is smaller than the actual real search
3601 ** term, substitute <= for < and > for >=. */
3602 else if( pIn3
->u
.r
>(double)iKey
){
3603 assert( OP_SeekLE
==(OP_SeekLT
+1) );
3604 assert( OP_SeekGT
==(OP_SeekGE
+1) );
3605 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
3606 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
3609 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)iKey
, 0, &res
);
3610 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
3611 if( rc
!=SQLITE_OK
){
3612 goto abort_due_to_error
;
3616 assert( pOp
->p4type
==P4_INT32
);
3618 r
.pKeyInfo
= pC
->pKeyInfo
;
3619 r
.nField
= (u16
)nField
;
3621 /* The next line of code computes as follows, only faster:
3622 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3623 ** r.default_rc = -1;
3625 ** r.default_rc = +1;
3628 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
3629 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
3630 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
3631 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
3632 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
3634 r
.aMem
= &aMem
[pOp
->p3
];
3636 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3639 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, &r
, 0, 0, &res
);
3640 if( rc
!=SQLITE_OK
){
3641 goto abort_due_to_error
;
3644 pC
->deferredMoveto
= 0;
3645 pC
->cacheStatus
= CACHE_STALE
;
3647 sqlite3_search_count
++;
3649 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
3650 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
3652 rc
= sqlite3BtreeNext(pC
->pCursor
, &res
);
3653 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3658 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
3659 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
3661 rc
= sqlite3BtreePrevious(pC
->pCursor
, &res
);
3662 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3664 /* res might be negative because the table is empty. Check to
3665 ** see if this is the case.
3667 res
= sqlite3BtreeEof(pC
->pCursor
);
3670 assert( pOp
->p2
>0 );
3671 VdbeBranchTaken(res
!=0,2);
3678 /* Opcode: Seek P1 P2 * * *
3679 ** Synopsis: intkey=r[P2]
3681 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3682 ** for P1 to move so that it points to the rowid given by P2.
3684 ** This is actually a deferred seek. Nothing actually happens until
3685 ** the cursor is used to read a record. That way, if no reads
3686 ** occur, no unnecessary I/O happens.
3688 case OP_Seek
: { /* in2 */
3691 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3692 pC
= p
->apCsr
[pOp
->p1
];
3694 assert( pC
->pCursor
!=0 );
3695 assert( pC
->isTable
);
3697 pIn2
= &aMem
[pOp
->p2
];
3698 pC
->movetoTarget
= sqlite3VdbeIntValue(pIn2
);
3699 pC
->deferredMoveto
= 1;
3704 /* Opcode: Found P1 P2 P3 P4 *
3705 ** Synopsis: key=r[P3@P4]
3707 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3708 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3711 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3712 ** is a prefix of any entry in P1 then a jump is made to P2 and
3713 ** P1 is left pointing at the matching entry.
3715 ** This operation leaves the cursor in a state where it can be
3716 ** advanced in the forward direction. The Next instruction will work,
3717 ** but not the Prev instruction.
3719 ** See also: NotFound, NoConflict, NotExists. SeekGe
3721 /* Opcode: NotFound P1 P2 P3 P4 *
3722 ** Synopsis: key=r[P3@P4]
3724 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3725 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3728 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3729 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3730 ** does contain an entry whose prefix matches the P3/P4 record then control
3731 ** falls through to the next instruction and P1 is left pointing at the
3734 ** This operation leaves the cursor in a state where it cannot be
3735 ** advanced in either direction. In other words, the Next and Prev
3736 ** opcodes do not work after this operation.
3738 ** See also: Found, NotExists, NoConflict
3740 /* Opcode: NoConflict P1 P2 P3 P4 *
3741 ** Synopsis: key=r[P3@P4]
3743 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3744 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3747 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3748 ** contains any NULL value, jump immediately to P2. If all terms of the
3749 ** record are not-NULL then a check is done to determine if any row in the
3750 ** P1 index btree has a matching key prefix. If there are no matches, jump
3751 ** immediately to P2. If there is a match, fall through and leave the P1
3752 ** cursor pointing to the matching row.
3754 ** This opcode is similar to OP_NotFound with the exceptions that the
3755 ** branch is always taken if any part of the search key input is NULL.
3757 ** This operation leaves the cursor in a state where it cannot be
3758 ** advanced in either direction. In other words, the Next and Prev
3759 ** opcodes do not work after this operation.
3761 ** See also: NotFound, Found, NotExists
3763 case OP_NoConflict
: /* jump, in3 */
3764 case OP_NotFound
: /* jump, in3 */
3765 case OP_Found
: { /* jump, in3 */
3771 UnpackedRecord
*pIdxKey
;
3773 char aTempRec
[ROUND8(sizeof(UnpackedRecord
)) + sizeof(Mem
)*4 + 7];
3776 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
3779 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3780 assert( pOp
->p4type
==P4_INT32
);
3781 pC
= p
->apCsr
[pOp
->p1
];
3784 pC
->seekOp
= pOp
->opcode
;
3786 pIn3
= &aMem
[pOp
->p3
];
3787 assert( pC
->pCursor
!=0 );
3788 assert( pC
->isTable
==0 );
3789 pFree
= 0; /* Not needed. Only used to suppress a compiler warning. */
3791 r
.pKeyInfo
= pC
->pKeyInfo
;
3792 r
.nField
= (u16
)pOp
->p4
.i
;
3794 for(ii
=0; ii
<r
.nField
; ii
++){
3795 assert( memIsValid(&r
.aMem
[ii
]) );
3796 ExpandBlob(&r
.aMem
[ii
]);
3798 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
3803 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(
3804 pC
->pKeyInfo
, aTempRec
, sizeof(aTempRec
), &pFree
3806 if( pIdxKey
==0 ) goto no_mem
;
3807 assert( pIn3
->flags
& MEM_Blob
);
3808 assert( (pIn3
->flags
& MEM_Zero
)==0 ); /* zeroblobs already expanded */
3809 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, pIn3
->n
, pIn3
->z
, pIdxKey
);
3811 pIdxKey
->default_rc
= 0;
3812 if( pOp
->opcode
==OP_NoConflict
){
3813 /* For the OP_NoConflict opcode, take the jump if any of the
3814 ** input fields are NULL, since any key with a NULL will not
3816 for(ii
=0; ii
<r
.nField
; ii
++){
3817 if( r
.aMem
[ii
].flags
& MEM_Null
){
3818 pc
= pOp
->p2
- 1; VdbeBranchTaken(1,2);
3823 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, pIdxKey
, 0, 0, &res
);
3825 sqlite3DbFree(db
, pFree
);
3827 if( rc
!=SQLITE_OK
){
3830 pC
->seekResult
= res
;
3831 alreadyExists
= (res
==0);
3832 pC
->nullRow
= 1-alreadyExists
;
3833 pC
->deferredMoveto
= 0;
3834 pC
->cacheStatus
= CACHE_STALE
;
3835 if( pOp
->opcode
==OP_Found
){
3836 VdbeBranchTaken(alreadyExists
!=0,2);
3837 if( alreadyExists
) pc
= pOp
->p2
- 1;
3839 VdbeBranchTaken(alreadyExists
==0,2);
3840 if( !alreadyExists
) pc
= pOp
->p2
- 1;
3845 /* Opcode: NotExists P1 P2 P3 * *
3846 ** Synopsis: intkey=r[P3]
3848 ** P1 is the index of a cursor open on an SQL table btree (with integer
3849 ** keys). P3 is an integer rowid. If P1 does not contain a record with
3850 ** rowid P3 then jump immediately to P2. If P1 does contain a record
3851 ** with rowid P3 then leave the cursor pointing at that record and fall
3852 ** through to the next instruction.
3854 ** The OP_NotFound opcode performs the same operation on index btrees
3855 ** (with arbitrary multi-value keys).
3857 ** This opcode leaves the cursor in a state where it cannot be advanced
3858 ** in either direction. In other words, the Next and Prev opcodes will
3859 ** not work following this opcode.
3861 ** See also: Found, NotFound, NoConflict
3863 case OP_NotExists
: { /* jump, in3 */
3869 pIn3
= &aMem
[pOp
->p3
];
3870 assert( pIn3
->flags
& MEM_Int
);
3871 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3872 pC
= p
->apCsr
[pOp
->p1
];
3877 assert( pC
->isTable
);
3878 assert( pC
->pseudoTableReg
==0 );
3879 pCrsr
= pC
->pCursor
;
3883 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, 0, iKey
, 0, &res
);
3884 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
3886 pC
->cacheStatus
= CACHE_STALE
;
3887 pC
->deferredMoveto
= 0;
3888 VdbeBranchTaken(res
!=0,2);
3892 pC
->seekResult
= res
;
3896 /* Opcode: Sequence P1 P2 * * *
3897 ** Synopsis: r[P2]=cursor[P1].ctr++
3899 ** Find the next available sequence number for cursor P1.
3900 ** Write the sequence number into register P2.
3901 ** The sequence number on the cursor is incremented after this
3904 case OP_Sequence
: { /* out2-prerelease */
3905 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3906 assert( p
->apCsr
[pOp
->p1
]!=0 );
3907 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
3912 /* Opcode: NewRowid P1 P2 P3 * *
3913 ** Synopsis: r[P2]=rowid
3915 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3916 ** The record number is not previously used as a key in the database
3917 ** table that cursor P1 points to. The new record number is written
3918 ** written to register P2.
3920 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3921 ** the largest previously generated record number. No new record numbers are
3922 ** allowed to be less than this value. When this value reaches its maximum,
3923 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3924 ** generated record number. This P3 mechanism is used to help implement the
3925 ** AUTOINCREMENT feature.
3927 case OP_NewRowid
: { /* out2-prerelease */
3928 i64 v
; /* The new rowid */
3929 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
3930 int res
; /* Result of an sqlite3BtreeLast() */
3931 int cnt
; /* Counter to limit the number of searches */
3932 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
3933 VdbeFrame
*pFrame
; /* Root frame of VDBE */
3937 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3938 pC
= p
->apCsr
[pOp
->p1
];
3940 if( NEVER(pC
->pCursor
==0) ){
3941 /* The zero initialization above is all that is needed */
3943 /* The next rowid or record number (different terms for the same
3944 ** thing) is obtained in a two-step algorithm.
3946 ** First we attempt to find the largest existing rowid and add one
3947 ** to that. But if the largest existing rowid is already the maximum
3948 ** positive integer, we have to fall through to the second
3949 ** probabilistic algorithm
3951 ** The second algorithm is to select a rowid at random and see if
3952 ** it already exists in the table. If it does not exist, we have
3953 ** succeeded. If the random rowid does exist, we select a new one
3954 ** and try again, up to 100 times.
3956 assert( pC
->isTable
);
3958 #ifdef SQLITE_32BIT_ROWID
3959 # define MAX_ROWID 0x7fffffff
3961 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3962 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3963 ** to provide the constant while making all compilers happy.
3965 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3968 if( !pC
->useRandomRowid
){
3969 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3970 if( rc
!=SQLITE_OK
){
3971 goto abort_due_to_error
;
3974 v
= 1; /* IMP: R-61914-48074 */
3976 assert( sqlite3BtreeCursorIsValid(pC
->pCursor
) );
3977 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
3978 assert( rc
==SQLITE_OK
); /* Cannot fail following BtreeLast() */
3980 pC
->useRandomRowid
= 1;
3982 v
++; /* IMP: R-29538-34987 */
3987 #ifndef SQLITE_OMIT_AUTOINCREMENT
3989 /* Assert that P3 is a valid memory cell. */
3990 assert( pOp
->p3
>0 );
3992 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
3993 /* Assert that P3 is a valid memory cell. */
3994 assert( pOp
->p3
<=pFrame
->nMem
);
3995 pMem
= &pFrame
->aMem
[pOp
->p3
];
3997 /* Assert that P3 is a valid memory cell. */
3998 assert( pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
3999 pMem
= &aMem
[pOp
->p3
];
4000 memAboutToChange(p
, pMem
);
4002 assert( memIsValid(pMem
) );
4004 REGISTER_TRACE(pOp
->p3
, pMem
);
4005 sqlite3VdbeMemIntegerify(pMem
);
4006 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
4007 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
4008 rc
= SQLITE_FULL
; /* IMP: R-12275-61338 */
4009 goto abort_due_to_error
;
4011 if( v
<pMem
->u
.i
+1 ){
4017 if( pC
->useRandomRowid
){
4018 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4019 ** largest possible integer (9223372036854775807) then the database
4020 ** engine starts picking positive candidate ROWIDs at random until
4021 ** it finds one that is not previously used. */
4022 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
4023 ** an AUTOINCREMENT table. */
4026 sqlite3_randomness(sizeof(v
), &v
);
4027 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
4028 }while( ((rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)v
,
4029 0, &res
))==SQLITE_OK
)
4032 if( rc
==SQLITE_OK
&& res
==0 ){
4033 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
4034 goto abort_due_to_error
;
4036 assert( v
>0 ); /* EV: R-40812-03570 */
4038 pC
->deferredMoveto
= 0;
4039 pC
->cacheStatus
= CACHE_STALE
;
4045 /* Opcode: Insert P1 P2 P3 P4 P5
4046 ** Synopsis: intkey=r[P3] data=r[P2]
4048 ** Write an entry into the table of cursor P1. A new entry is
4049 ** created if it doesn't already exist or the data for an existing
4050 ** entry is overwritten. The data is the value MEM_Blob stored in register
4051 ** number P2. The key is stored in register P3. The key must
4054 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4055 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4056 ** then rowid is stored for subsequent return by the
4057 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4059 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4060 ** the last seek operation (OP_NotExists) was a success, then this
4061 ** operation will not attempt to find the appropriate row before doing
4062 ** the insert but will instead overwrite the row that the cursor is
4063 ** currently pointing to. Presumably, the prior OP_NotExists opcode
4064 ** has already positioned the cursor correctly. This is an optimization
4065 ** that boosts performance by avoiding redundant seeks.
4067 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4068 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4069 ** is part of an INSERT operation. The difference is only important to
4072 ** Parameter P4 may point to a string containing the table-name, or
4073 ** may be NULL. If it is not NULL, then the update-hook
4074 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4076 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4077 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4078 ** and register P2 becomes ephemeral. If the cursor is changed, the
4079 ** value of register P2 will then change. Make sure this does not
4080 ** cause any problems.)
4082 ** This instruction only works on tables. The equivalent instruction
4083 ** for indices is OP_IdxInsert.
4085 /* Opcode: InsertInt P1 P2 P3 P4 P5
4086 ** Synopsis: intkey=P3 data=r[P2]
4088 ** This works exactly like OP_Insert except that the key is the
4089 ** integer value P3, not the value of the integer stored in register P3.
4092 case OP_InsertInt
: {
4093 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
4094 Mem
*pKey
; /* MEM cell holding key for the record */
4095 i64 iKey
; /* The integer ROWID or key for the record to be inserted */
4096 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
4097 int nZero
; /* Number of zero-bytes to append */
4098 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4099 const char *zDb
; /* database name - used by the update hook */
4100 const char *zTbl
; /* Table name - used by the opdate hook */
4101 int op
; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4103 pData
= &aMem
[pOp
->p2
];
4104 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4105 assert( memIsValid(pData
) );
4106 pC
= p
->apCsr
[pOp
->p1
];
4108 assert( pC
->pCursor
!=0 );
4109 assert( pC
->pseudoTableReg
==0 );
4110 assert( pC
->isTable
);
4111 REGISTER_TRACE(pOp
->p2
, pData
);
4113 if( pOp
->opcode
==OP_Insert
){
4114 pKey
= &aMem
[pOp
->p3
];
4115 assert( pKey
->flags
& MEM_Int
);
4116 assert( memIsValid(pKey
) );
4117 REGISTER_TRACE(pOp
->p3
, pKey
);
4120 assert( pOp
->opcode
==OP_InsertInt
);
4124 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
4125 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= lastRowid
= iKey
;
4126 if( pData
->flags
& MEM_Null
){
4130 assert( pData
->flags
& (MEM_Blob
|MEM_Str
) );
4132 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
4133 if( pData
->flags
& MEM_Zero
){
4134 nZero
= pData
->u
.nZero
;
4138 rc
= sqlite3BtreeInsert(pC
->pCursor
, 0, iKey
,
4139 pData
->z
, pData
->n
, nZero
,
4140 (pOp
->p5
& OPFLAG_APPEND
)!=0, seekResult
4142 pC
->deferredMoveto
= 0;
4143 pC
->cacheStatus
= CACHE_STALE
;
4145 /* Invoke the update-hook if required. */
4146 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
4147 zDb
= db
->aDb
[pC
->iDb
].zName
;
4149 op
= ((pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
);
4150 assert( pC
->isTable
);
4151 db
->xUpdateCallback(db
->pUpdateArg
, op
, zDb
, zTbl
, iKey
);
4152 assert( pC
->iDb
>=0 );
4157 /* Opcode: Delete P1 P2 * P4 *
4159 ** Delete the record at which the P1 cursor is currently pointing.
4161 ** The cursor will be left pointing at either the next or the previous
4162 ** record in the table. If it is left pointing at the next record, then
4163 ** the next Next instruction will be a no-op. Hence it is OK to delete
4164 ** a record from within a Next loop.
4166 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4167 ** incremented (otherwise not).
4169 ** P1 must not be pseudo-table. It has to be a real table with
4172 ** If P4 is not NULL, then it is the name of the table that P1 is
4173 ** pointing to. The update hook will be invoked, if it exists.
4174 ** If P4 is not NULL then the P1 cursor must have been positioned
4175 ** using OP_NotFound prior to invoking this opcode.
4180 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4181 pC
= p
->apCsr
[pOp
->p1
];
4183 assert( pC
->pCursor
!=0 ); /* Only valid for real tables, no pseudotables */
4184 assert( pC
->deferredMoveto
==0 );
4187 /* The seek operation that positioned the cursor prior to OP_Delete will
4188 ** have also set the pC->movetoTarget field to the rowid of the row that
4189 ** is being deleted */
4190 if( pOp
->p4
.z
&& pC
->isTable
){
4192 sqlite3BtreeKeySize(pC
->pCursor
, &iKey
);
4193 assert( pC
->movetoTarget
==iKey
);
4197 rc
= sqlite3BtreeDelete(pC
->pCursor
);
4198 pC
->cacheStatus
= CACHE_STALE
;
4200 /* Invoke the update-hook if required. */
4201 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
&& pC
->isTable
){
4202 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
,
4203 db
->aDb
[pC
->iDb
].zName
, pOp
->p4
.z
, pC
->movetoTarget
);
4204 assert( pC
->iDb
>=0 );
4206 if( pOp
->p2
& OPFLAG_NCHANGE
) p
->nChange
++;
4209 /* Opcode: ResetCount * * * * *
4211 ** The value of the change counter is copied to the database handle
4212 ** change counter (returned by subsequent calls to sqlite3_changes()).
4213 ** Then the VMs internal change counter resets to 0.
4214 ** This is used by trigger programs.
4216 case OP_ResetCount
: {
4217 sqlite3VdbeSetChanges(db
, p
->nChange
);
4222 /* Opcode: SorterCompare P1 P2 P3 P4
4223 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4225 ** P1 is a sorter cursor. This instruction compares a prefix of the
4226 ** record blob in register P3 against a prefix of the entry that
4227 ** the sorter cursor currently points to. Only the first P4 fields
4228 ** of r[P3] and the sorter record are compared.
4230 ** If either P3 or the sorter contains a NULL in one of their significant
4231 ** fields (not counting the P4 fields at the end which are ignored) then
4232 ** the comparison is assumed to be equal.
4234 ** Fall through to next instruction if the two records compare equal to
4235 ** each other. Jump to P2 if they are different.
4237 case OP_SorterCompare
: {
4242 pC
= p
->apCsr
[pOp
->p1
];
4243 assert( isSorter(pC
) );
4244 assert( pOp
->p4type
==P4_INT32
);
4245 pIn3
= &aMem
[pOp
->p3
];
4246 nKeyCol
= pOp
->p4
.i
;
4248 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
4249 VdbeBranchTaken(res
!=0,2);
4256 /* Opcode: SorterData P1 P2 P3 * *
4257 ** Synopsis: r[P2]=data
4259 ** Write into register P2 the current sorter data for sorter cursor P1.
4260 ** Then clear the column header cache on cursor P3.
4262 ** This opcode is normally use to move a record out of the sorter and into
4263 ** a register that is the source for a pseudo-table cursor created using
4264 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
4265 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
4266 ** us from having to issue a separate NullRow instruction to clear that cache.
4268 case OP_SorterData
: {
4271 pOut
= &aMem
[pOp
->p2
];
4272 pC
= p
->apCsr
[pOp
->p1
];
4273 assert( isSorter(pC
) );
4274 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
4275 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
4276 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4277 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
4281 /* Opcode: RowData P1 P2 * * *
4282 ** Synopsis: r[P2]=data
4284 ** Write into register P2 the complete row data for cursor P1.
4285 ** There is no interpretation of the data.
4286 ** It is just copied onto the P2 register exactly as
4287 ** it is found in the database file.
4289 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4290 ** of a real table, not a pseudo-table.
4292 /* Opcode: RowKey P1 P2 * * *
4293 ** Synopsis: r[P2]=key
4295 ** Write into register P2 the complete row key for cursor P1.
4296 ** There is no interpretation of the data.
4297 ** The key is copied onto the P2 register exactly as
4298 ** it is found in the database file.
4300 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4301 ** of a real table, not a pseudo-table.
4310 pOut
= &aMem
[pOp
->p2
];
4311 memAboutToChange(p
, pOut
);
4313 /* Note that RowKey and RowData are really exactly the same instruction */
4314 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4315 pC
= p
->apCsr
[pOp
->p1
];
4316 assert( isSorter(pC
)==0 );
4317 assert( pC
->isTable
|| pOp
->opcode
!=OP_RowData
);
4318 assert( pC
->isTable
==0 || pOp
->opcode
==OP_RowData
);
4320 assert( pC
->nullRow
==0 );
4321 assert( pC
->pseudoTableReg
==0 );
4322 assert( pC
->pCursor
!=0 );
4323 pCrsr
= pC
->pCursor
;
4325 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4326 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4327 ** the cursor. If this where not the case, on of the following assert()s
4328 ** would fail. Should this ever change (because of changes in the code
4329 ** generator) then the fix would be to insert a call to
4330 ** sqlite3VdbeCursorMoveto().
4332 assert( pC
->deferredMoveto
==0 );
4333 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
4334 #if 0 /* Not required due to the previous to assert() statements */
4335 rc
= sqlite3VdbeCursorMoveto(pC
);
4336 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4339 if( pC
->isTable
==0 ){
4340 assert( !pC
->isTable
);
4341 VVA_ONLY(rc
=) sqlite3BtreeKeySize(pCrsr
, &n64
);
4342 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
4343 if( n64
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4348 VVA_ONLY(rc
=) sqlite3BtreeDataSize(pCrsr
, &n
);
4349 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
4350 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4355 if( sqlite3VdbeMemClearAndResize(pOut
, MAX(n
,32)) ){
4359 MemSetTypeFlag(pOut
, MEM_Blob
);
4360 if( pC
->isTable
==0 ){
4361 rc
= sqlite3BtreeKey(pCrsr
, 0, n
, pOut
->z
);
4363 rc
= sqlite3BtreeData(pCrsr
, 0, n
, pOut
->z
);
4365 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever cast to text */
4366 UPDATE_MAX_BLOBSIZE(pOut
);
4367 REGISTER_TRACE(pOp
->p2
, pOut
);
4371 /* Opcode: Rowid P1 P2 * * *
4372 ** Synopsis: r[P2]=rowid
4374 ** Store in register P2 an integer which is the key of the table entry that
4375 ** P1 is currently point to.
4377 ** P1 can be either an ordinary table or a virtual table. There used to
4378 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4379 ** one opcode now works for both table types.
4381 case OP_Rowid
: { /* out2-prerelease */
4384 sqlite3_vtab
*pVtab
;
4385 const sqlite3_module
*pModule
;
4387 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4388 pC
= p
->apCsr
[pOp
->p1
];
4390 assert( pC
->pseudoTableReg
==0 || pC
->nullRow
);
4392 pOut
->flags
= MEM_Null
;
4394 }else if( pC
->deferredMoveto
){
4395 v
= pC
->movetoTarget
;
4396 #ifndef SQLITE_OMIT_VIRTUALTABLE
4397 }else if( pC
->pVtabCursor
){
4398 pVtab
= pC
->pVtabCursor
->pVtab
;
4399 pModule
= pVtab
->pModule
;
4400 assert( pModule
->xRowid
);
4401 rc
= pModule
->xRowid(pC
->pVtabCursor
, &v
);
4402 sqlite3VtabImportErrmsg(p
, pVtab
);
4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4405 assert( pC
->pCursor
!=0 );
4406 rc
= sqlite3VdbeCursorRestore(pC
);
4407 if( rc
) goto abort_due_to_error
;
4409 pOut
->flags
= MEM_Null
;
4412 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
4413 assert( rc
==SQLITE_OK
); /* Always so because of CursorRestore() above */
4419 /* Opcode: NullRow P1 * * * *
4421 ** Move the cursor P1 to a null row. Any OP_Column operations
4422 ** that occur while the cursor is on the null row will always
4428 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4429 pC
= p
->apCsr
[pOp
->p1
];
4432 pC
->cacheStatus
= CACHE_STALE
;
4434 sqlite3BtreeClearCursor(pC
->pCursor
);
4439 /* Opcode: Last P1 P2 * * *
4441 ** The next use of the Rowid or Column or Prev instruction for P1
4442 ** will refer to the last entry in the database table or index.
4443 ** If the table or index is empty and P2>0, then jump immediately to P2.
4444 ** If P2 is 0 or if the table or index is not empty, fall through
4445 ** to the following instruction.
4447 ** This opcode leaves the cursor configured to move in reverse order,
4448 ** from the end toward the beginning. In other words, the cursor is
4449 ** configured to use Prev, not Next.
4451 case OP_Last
: { /* jump */
4456 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4457 pC
= p
->apCsr
[pOp
->p1
];
4459 pCrsr
= pC
->pCursor
;
4462 rc
= sqlite3BtreeLast(pCrsr
, &res
);
4463 pC
->nullRow
= (u8
)res
;
4464 pC
->deferredMoveto
= 0;
4465 pC
->cacheStatus
= CACHE_STALE
;
4467 pC
->seekOp
= OP_Last
;
4470 VdbeBranchTaken(res
!=0,2);
4471 if( res
) pc
= pOp
->p2
- 1;
4477 /* Opcode: Sort P1 P2 * * *
4479 ** This opcode does exactly the same thing as OP_Rewind except that
4480 ** it increments an undocumented global variable used for testing.
4482 ** Sorting is accomplished by writing records into a sorting index,
4483 ** then rewinding that index and playing it back from beginning to
4484 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4485 ** rewinding so that the global variable will be incremented and
4486 ** regression tests can determine whether or not the optimizer is
4487 ** correctly optimizing out sorts.
4489 case OP_SorterSort
: /* jump */
4490 case OP_Sort
: { /* jump */
4492 sqlite3_sort_count
++;
4493 sqlite3_search_count
--;
4495 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
4496 /* Fall through into OP_Rewind */
4498 /* Opcode: Rewind P1 P2 * * *
4500 ** The next use of the Rowid or Column or Next instruction for P1
4501 ** will refer to the first entry in the database table or index.
4502 ** If the table or index is empty and P2>0, then jump immediately to P2.
4503 ** If P2 is 0 or if the table or index is not empty, fall through
4504 ** to the following instruction.
4506 ** This opcode leaves the cursor configured to move in forward order,
4507 ** from the beginning toward the end. In other words, the cursor is
4508 ** configured to use Next, not Prev.
4510 case OP_Rewind
: { /* jump */
4515 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4516 pC
= p
->apCsr
[pOp
->p1
];
4518 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
4521 pC
->seekOp
= OP_Rewind
;
4524 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
4526 pCrsr
= pC
->pCursor
;
4528 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
4529 pC
->deferredMoveto
= 0;
4530 pC
->cacheStatus
= CACHE_STALE
;
4532 pC
->nullRow
= (u8
)res
;
4533 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
4534 VdbeBranchTaken(res
!=0,2);
4541 /* Opcode: Next P1 P2 P3 P4 P5
4543 ** Advance cursor P1 so that it points to the next key/data pair in its
4544 ** table or index. If there are no more key/value pairs then fall through
4545 ** to the following instruction. But if the cursor advance was successful,
4546 ** jump immediately to P2.
4548 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4549 ** OP_Rewind opcode used to position the cursor. Next is not allowed
4550 ** to follow SeekLT, SeekLE, or OP_Last.
4552 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4553 ** been opened prior to this opcode or the program will segfault.
4555 ** The P3 value is a hint to the btree implementation. If P3==1, that
4556 ** means P1 is an SQL index and that this instruction could have been
4557 ** omitted if that index had been unique. P3 is usually 0. P3 is
4558 ** always either 0 or 1.
4560 ** P4 is always of type P4_ADVANCE. The function pointer points to
4561 ** sqlite3BtreeNext().
4563 ** If P5 is positive and the jump is taken, then event counter
4564 ** number P5-1 in the prepared statement is incremented.
4566 ** See also: Prev, NextIfOpen
4568 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4570 ** This opcode works just like Next except that if cursor P1 is not
4571 ** open it behaves a no-op.
4573 /* Opcode: Prev P1 P2 P3 P4 P5
4575 ** Back up cursor P1 so that it points to the previous key/data pair in its
4576 ** table or index. If there is no previous key/value pairs then fall through
4577 ** to the following instruction. But if the cursor backup was successful,
4578 ** jump immediately to P2.
4581 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4582 ** OP_Last opcode used to position the cursor. Prev is not allowed
4583 ** to follow SeekGT, SeekGE, or OP_Rewind.
4585 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4586 ** not open then the behavior is undefined.
4588 ** The P3 value is a hint to the btree implementation. If P3==1, that
4589 ** means P1 is an SQL index and that this instruction could have been
4590 ** omitted if that index had been unique. P3 is usually 0. P3 is
4591 ** always either 0 or 1.
4593 ** P4 is always of type P4_ADVANCE. The function pointer points to
4594 ** sqlite3BtreePrevious().
4596 ** If P5 is positive and the jump is taken, then event counter
4597 ** number P5-1 in the prepared statement is incremented.
4599 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4601 ** This opcode works just like Prev except that if cursor P1 is not
4602 ** open it behaves a no-op.
4604 case OP_SorterNext
: { /* jump */
4608 pC
= p
->apCsr
[pOp
->p1
];
4609 assert( isSorter(pC
) );
4611 rc
= sqlite3VdbeSorterNext(db
, pC
, &res
);
4613 case OP_PrevIfOpen
: /* jump */
4614 case OP_NextIfOpen
: /* jump */
4615 if( p
->apCsr
[pOp
->p1
]==0 ) break;
4617 case OP_Prev
: /* jump */
4618 case OP_Next
: /* jump */
4619 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4620 assert( pOp
->p5
<ArraySize(p
->aCounter
) );
4621 pC
= p
->apCsr
[pOp
->p1
];
4624 assert( pC
->deferredMoveto
==0 );
4625 assert( pC
->pCursor
);
4626 assert( res
==0 || (res
==1 && pC
->isTable
==0) );
4628 assert( pOp
->opcode
!=OP_Next
|| pOp
->p4
.xAdvance
==sqlite3BtreeNext
);
4629 assert( pOp
->opcode
!=OP_Prev
|| pOp
->p4
.xAdvance
==sqlite3BtreePrevious
);
4630 assert( pOp
->opcode
!=OP_NextIfOpen
|| pOp
->p4
.xAdvance
==sqlite3BtreeNext
);
4631 assert( pOp
->opcode
!=OP_PrevIfOpen
|| pOp
->p4
.xAdvance
==sqlite3BtreePrevious
);
4633 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4634 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4635 assert( pOp
->opcode
!=OP_Next
|| pOp
->opcode
!=OP_NextIfOpen
4636 || pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
4637 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
);
4638 assert( pOp
->opcode
!=OP_Prev
|| pOp
->opcode
!=OP_PrevIfOpen
4639 || pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
4640 || pC
->seekOp
==OP_Last
);
4642 rc
= pOp
->p4
.xAdvance(pC
->pCursor
, &res
);
4644 pC
->cacheStatus
= CACHE_STALE
;
4645 VdbeBranchTaken(res
==0,2);
4649 p
->aCounter
[pOp
->p5
]++;
4651 sqlite3_search_count
++;
4656 goto check_for_interrupt
;
4659 /* Opcode: IdxInsert P1 P2 P3 * P5
4660 ** Synopsis: key=r[P2]
4662 ** Register P2 holds an SQL index key made using the
4663 ** MakeRecord instructions. This opcode writes that key
4664 ** into the index P1. Data for the entry is nil.
4666 ** P3 is a flag that provides a hint to the b-tree layer that this
4667 ** insert is likely to be an append.
4669 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4670 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4671 ** then the change counter is unchanged.
4673 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4674 ** just done a seek to the spot where the new entry is to be inserted.
4675 ** This flag avoids doing an extra seek.
4677 ** This instruction only works for indices. The equivalent instruction
4678 ** for tables is OP_Insert.
4680 case OP_SorterInsert
: /* in2 */
4681 case OP_IdxInsert
: { /* in2 */
4687 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4688 pC
= p
->apCsr
[pOp
->p1
];
4690 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterInsert
) );
4691 pIn2
= &aMem
[pOp
->p2
];
4692 assert( pIn2
->flags
& MEM_Blob
);
4693 pCrsr
= pC
->pCursor
;
4694 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
4696 assert( pC
->isTable
==0 );
4697 rc
= ExpandBlob(pIn2
);
4698 if( rc
==SQLITE_OK
){
4700 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
4704 rc
= sqlite3BtreeInsert(pCrsr
, zKey
, nKey
, "", 0, 0, pOp
->p3
,
4705 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
4707 assert( pC
->deferredMoveto
==0 );
4708 pC
->cacheStatus
= CACHE_STALE
;
4714 /* Opcode: IdxDelete P1 P2 P3 * *
4715 ** Synopsis: key=r[P2@P3]
4717 ** The content of P3 registers starting at register P2 form
4718 ** an unpacked index key. This opcode removes that entry from the
4719 ** index opened by cursor P1.
4721 case OP_IdxDelete
: {
4727 assert( pOp
->p3
>0 );
4728 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
-p
->nCursor
)+1 );
4729 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4730 pC
= p
->apCsr
[pOp
->p1
];
4732 pCrsr
= pC
->pCursor
;
4734 assert( pOp
->p5
==0 );
4735 r
.pKeyInfo
= pC
->pKeyInfo
;
4736 r
.nField
= (u16
)pOp
->p3
;
4738 r
.aMem
= &aMem
[pOp
->p2
];
4740 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4742 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &res
);
4743 if( rc
==SQLITE_OK
&& res
==0 ){
4744 rc
= sqlite3BtreeDelete(pCrsr
);
4746 assert( pC
->deferredMoveto
==0 );
4747 pC
->cacheStatus
= CACHE_STALE
;
4751 /* Opcode: IdxRowid P1 P2 * * *
4752 ** Synopsis: r[P2]=rowid
4754 ** Write into register P2 an integer which is the last entry in the record at
4755 ** the end of the index key pointed to by cursor P1. This integer should be
4756 ** the rowid of the table entry to which this index entry points.
4758 ** See also: Rowid, MakeRecord.
4760 case OP_IdxRowid
: { /* out2-prerelease */
4765 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4766 pC
= p
->apCsr
[pOp
->p1
];
4768 pCrsr
= pC
->pCursor
;
4770 pOut
->flags
= MEM_Null
;
4771 assert( pC
->isTable
==0 );
4772 assert( pC
->deferredMoveto
==0 );
4774 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4775 ** out from under the cursor. That will never happend for an IdxRowid
4776 ** opcode, hence the NEVER() arround the check of the return value.
4778 rc
= sqlite3VdbeCursorRestore(pC
);
4779 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
4782 rowid
= 0; /* Not needed. Only used to silence a warning. */
4783 rc
= sqlite3VdbeIdxRowid(db
, pCrsr
, &rowid
);
4784 if( rc
!=SQLITE_OK
){
4785 goto abort_due_to_error
;
4788 pOut
->flags
= MEM_Int
;
4793 /* Opcode: IdxGE P1 P2 P3 P4 P5
4794 ** Synopsis: key=r[P3@P4]
4796 ** The P4 register values beginning with P3 form an unpacked index
4797 ** key that omits the PRIMARY KEY. Compare this key value against the index
4798 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4799 ** fields at the end.
4801 ** If the P1 index entry is greater than or equal to the key value
4802 ** then jump to P2. Otherwise fall through to the next instruction.
4804 /* Opcode: IdxGT P1 P2 P3 P4 P5
4805 ** Synopsis: key=r[P3@P4]
4807 ** The P4 register values beginning with P3 form an unpacked index
4808 ** key that omits the PRIMARY KEY. Compare this key value against the index
4809 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4810 ** fields at the end.
4812 ** If the P1 index entry is greater than the key value
4813 ** then jump to P2. Otherwise fall through to the next instruction.
4815 /* Opcode: IdxLT P1 P2 P3 P4 P5
4816 ** Synopsis: key=r[P3@P4]
4818 ** The P4 register values beginning with P3 form an unpacked index
4819 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4820 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4821 ** ROWID on the P1 index.
4823 ** If the P1 index entry is less than the key value then jump to P2.
4824 ** Otherwise fall through to the next instruction.
4826 /* Opcode: IdxLE P1 P2 P3 P4 P5
4827 ** Synopsis: key=r[P3@P4]
4829 ** The P4 register values beginning with P3 form an unpacked index
4830 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4831 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4832 ** ROWID on the P1 index.
4834 ** If the P1 index entry is less than or equal to the key value then jump
4835 ** to P2. Otherwise fall through to the next instruction.
4837 case OP_IdxLE
: /* jump */
4838 case OP_IdxGT
: /* jump */
4839 case OP_IdxLT
: /* jump */
4840 case OP_IdxGE
: { /* jump */
4845 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4846 pC
= p
->apCsr
[pOp
->p1
];
4848 assert( pC
->isOrdered
);
4849 assert( pC
->pCursor
!=0);
4850 assert( pC
->deferredMoveto
==0 );
4851 assert( pOp
->p5
==0 || pOp
->p5
==1 );
4852 assert( pOp
->p4type
==P4_INT32
);
4853 r
.pKeyInfo
= pC
->pKeyInfo
;
4854 r
.nField
= (u16
)pOp
->p4
.i
;
4855 if( pOp
->opcode
<OP_IdxLT
){
4856 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
4859 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
4862 r
.aMem
= &aMem
[pOp
->p3
];
4864 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4866 res
= 0; /* Not needed. Only used to silence a warning. */
4867 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
4868 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
4869 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
4870 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
4873 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
4876 VdbeBranchTaken(res
>0,2);
4883 /* Opcode: Destroy P1 P2 P3 * *
4885 ** Delete an entire database table or index whose root page in the database
4886 ** file is given by P1.
4888 ** The table being destroyed is in the main database file if P3==0. If
4889 ** P3==1 then the table to be clear is in the auxiliary database file
4890 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4892 ** If AUTOVACUUM is enabled then it is possible that another root page
4893 ** might be moved into the newly deleted root page in order to keep all
4894 ** root pages contiguous at the beginning of the database. The former
4895 ** value of the root page that moved - its value before the move occurred -
4896 ** is stored in register P2. If no page
4897 ** movement was required (because the table being dropped was already
4898 ** the last one in the database) then a zero is stored in register P2.
4899 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4903 case OP_Destroy
: { /* out2-prerelease */
4909 assert( p
->readOnly
==0 );
4910 #ifndef SQLITE_OMIT_VIRTUALTABLE
4912 for(pVdbe
=db
->pVdbe
; pVdbe
; pVdbe
= pVdbe
->pNext
){
4913 if( pVdbe
->magic
==VDBE_MAGIC_RUN
&& pVdbe
->bIsReader
4914 && pVdbe
->inVtabMethod
<2 && pVdbe
->pc
>=0
4920 iCnt
= db
->nVdbeRead
;
4922 pOut
->flags
= MEM_Null
;
4925 p
->errorAction
= OE_Abort
;
4929 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4930 iMoved
= 0; /* Not needed. Only to silence a warning. */
4931 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
4932 pOut
->flags
= MEM_Int
;
4934 #ifndef SQLITE_OMIT_AUTOVACUUM
4935 if( rc
==SQLITE_OK
&& iMoved
!=0 ){
4936 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
4937 /* All OP_Destroy operations occur on the same btree */
4938 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
4939 resetSchemaOnFault
= iDb
+1;
4946 /* Opcode: Clear P1 P2 P3
4948 ** Delete all contents of the database table or index whose root page
4949 ** in the database file is given by P1. But, unlike Destroy, do not
4950 ** remove the table or index from the database file.
4952 ** The table being clear is in the main database file if P2==0. If
4953 ** P2==1 then the table to be clear is in the auxiliary database file
4954 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4956 ** If the P3 value is non-zero, then the table referred to must be an
4957 ** intkey table (an SQL table, not an index). In this case the row change
4958 ** count is incremented by the number of rows in the table being cleared.
4959 ** If P3 is greater than zero, then the value stored in register P3 is
4960 ** also incremented by the number of rows in the table being cleared.
4962 ** See also: Destroy
4968 assert( p
->readOnly
==0 );
4969 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
4970 rc
= sqlite3BtreeClearTable(
4971 db
->aDb
[pOp
->p2
].pBt
, pOp
->p1
, (pOp
->p3
? &nChange
: 0)
4974 p
->nChange
+= nChange
;
4976 assert( memIsValid(&aMem
[pOp
->p3
]) );
4977 memAboutToChange(p
, &aMem
[pOp
->p3
]);
4978 aMem
[pOp
->p3
].u
.i
+= nChange
;
4984 /* Opcode: ResetSorter P1 * * * *
4986 ** Delete all contents from the ephemeral table or sorter
4987 ** that is open on cursor P1.
4989 ** This opcode only works for cursors used for sorting and
4990 ** opened with OP_OpenEphemeral or OP_SorterOpen.
4992 case OP_ResetSorter
: {
4995 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4996 pC
= p
->apCsr
[pOp
->p1
];
4999 sqlite3VdbeSorterReset(db
, pC
->pSorter
);
5001 assert( pC
->isEphemeral
);
5002 rc
= sqlite3BtreeClearTableOfCursor(pC
->pCursor
);
5007 /* Opcode: CreateTable P1 P2 * * *
5008 ** Synopsis: r[P2]=root iDb=P1
5010 ** Allocate a new table in the main database file if P1==0 or in the
5011 ** auxiliary database file if P1==1 or in an attached database if
5012 ** P1>1. Write the root page number of the new table into
5015 ** The difference between a table and an index is this: A table must
5016 ** have a 4-byte integer key and can have arbitrary data. An index
5017 ** has an arbitrary key but no data.
5019 ** See also: CreateIndex
5021 /* Opcode: CreateIndex P1 P2 * * *
5022 ** Synopsis: r[P2]=root iDb=P1
5024 ** Allocate a new index in the main database file if P1==0 or in the
5025 ** auxiliary database file if P1==1 or in an attached database if
5026 ** P1>1. Write the root page number of the new table into
5029 ** See documentation on OP_CreateTable for additional information.
5031 case OP_CreateIndex
: /* out2-prerelease */
5032 case OP_CreateTable
: { /* out2-prerelease */
5038 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5039 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
5040 assert( p
->readOnly
==0 );
5041 pDb
= &db
->aDb
[pOp
->p1
];
5042 assert( pDb
->pBt
!=0 );
5043 if( pOp
->opcode
==OP_CreateTable
){
5044 /* flags = BTREE_INTKEY; */
5045 flags
= BTREE_INTKEY
;
5047 flags
= BTREE_BLOBKEY
;
5049 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, flags
);
5054 /* Opcode: ParseSchema P1 * * P4 *
5056 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5057 ** that match the WHERE clause P4.
5059 ** This opcode invokes the parser to create a new virtual machine,
5060 ** then runs the new virtual machine. It is thus a re-entrant opcode.
5062 case OP_ParseSchema
: {
5064 const char *zMaster
;
5068 /* Any prepared statement that invokes this opcode will hold mutexes
5069 ** on every btree. This is a prerequisite for invoking
5070 ** sqlite3InitCallback().
5073 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
5074 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
5079 assert( iDb
>=0 && iDb
<db
->nDb
);
5080 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
) );
5081 /* Used to be a conditional */ {
5082 zMaster
= SCHEMA_TABLE(iDb
);
5084 initData
.iDb
= pOp
->p1
;
5085 initData
.pzErrMsg
= &p
->zErrMsg
;
5086 zSql
= sqlite3MPrintf(db
,
5087 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5088 db
->aDb
[iDb
].zName
, zMaster
, pOp
->p4
.z
);
5092 assert( db
->init
.busy
==0 );
5094 initData
.rc
= SQLITE_OK
;
5095 assert( !db
->mallocFailed
);
5096 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
5097 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
5098 sqlite3DbFree(db
, zSql
);
5102 if( rc
) sqlite3ResetAllSchemasOfConnection(db
);
5103 if( rc
==SQLITE_NOMEM
){
5109 #if !defined(SQLITE_OMIT_ANALYZE)
5110 /* Opcode: LoadAnalysis P1 * * * *
5112 ** Read the sqlite_stat1 table for database P1 and load the content
5113 ** of that table into the internal index hash table. This will cause
5114 ** the analysis to be used when preparing all subsequent queries.
5116 case OP_LoadAnalysis
: {
5117 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5118 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
5121 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5123 /* Opcode: DropTable P1 * * P4 *
5125 ** Remove the internal (in-memory) data structures that describe
5126 ** the table named P4 in database P1. This is called after a table
5127 ** is dropped from disk (using the Destroy opcode) in order to keep
5128 ** the internal representation of the
5129 ** schema consistent with what is on disk.
5131 case OP_DropTable
: {
5132 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
5136 /* Opcode: DropIndex P1 * * P4 *
5138 ** Remove the internal (in-memory) data structures that describe
5139 ** the index named P4 in database P1. This is called after an index
5140 ** is dropped from disk (using the Destroy opcode)
5141 ** in order to keep the internal representation of the
5142 ** schema consistent with what is on disk.
5144 case OP_DropIndex
: {
5145 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
5149 /* Opcode: DropTrigger P1 * * P4 *
5151 ** Remove the internal (in-memory) data structures that describe
5152 ** the trigger named P4 in database P1. This is called after a trigger
5153 ** is dropped from disk (using the Destroy opcode) in order to keep
5154 ** the internal representation of the
5155 ** schema consistent with what is on disk.
5157 case OP_DropTrigger
: {
5158 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
5163 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5164 /* Opcode: IntegrityCk P1 P2 P3 * P5
5166 ** Do an analysis of the currently open database. Store in
5167 ** register P1 the text of an error message describing any problems.
5168 ** If no problems are found, store a NULL in register P1.
5170 ** The register P3 contains the maximum number of allowed errors.
5171 ** At most reg(P3) errors will be reported.
5172 ** In other words, the analysis stops as soon as reg(P1) errors are
5173 ** seen. Reg(P1) is updated with the number of errors remaining.
5175 ** The root page numbers of all tables in the database are integer
5176 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
5179 ** If P5 is not zero, the check is done on the auxiliary database
5180 ** file, not the main database file.
5182 ** This opcode is used to implement the integrity_check pragma.
5184 case OP_IntegrityCk
: {
5185 int nRoot
; /* Number of tables to check. (Number of root pages.) */
5186 int *aRoot
; /* Array of rootpage numbers for tables to be checked */
5187 int j
; /* Loop counter */
5188 int nErr
; /* Number of errors reported */
5189 char *z
; /* Text of the error report */
5190 Mem
*pnErr
; /* Register keeping track of errors remaining */
5192 assert( p
->bIsReader
);
5195 aRoot
= sqlite3DbMallocRaw(db
, sizeof(int)*(nRoot
+1) );
5196 if( aRoot
==0 ) goto no_mem
;
5197 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
5198 pnErr
= &aMem
[pOp
->p3
];
5199 assert( (pnErr
->flags
& MEM_Int
)!=0 );
5200 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
5201 pIn1
= &aMem
[pOp
->p1
];
5202 for(j
=0; j
<nRoot
; j
++){
5203 aRoot
[j
] = (int)sqlite3VdbeIntValue(&pIn1
[j
]);
5206 assert( pOp
->p5
<db
->nDb
);
5207 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
5208 z
= sqlite3BtreeIntegrityCheck(db
->aDb
[pOp
->p5
].pBt
, aRoot
, nRoot
,
5209 (int)pnErr
->u
.i
, &nErr
);
5210 sqlite3DbFree(db
, aRoot
);
5212 sqlite3VdbeMemSetNull(pIn1
);
5218 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
5220 UPDATE_MAX_BLOBSIZE(pIn1
);
5221 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
5224 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5226 /* Opcode: RowSetAdd P1 P2 * * *
5227 ** Synopsis: rowset(P1)=r[P2]
5229 ** Insert the integer value held by register P2 into a boolean index
5230 ** held in register P1.
5232 ** An assertion fails if P2 is not an integer.
5234 case OP_RowSetAdd
: { /* in1, in2 */
5235 pIn1
= &aMem
[pOp
->p1
];
5236 pIn2
= &aMem
[pOp
->p2
];
5237 assert( (pIn2
->flags
& MEM_Int
)!=0 );
5238 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5239 sqlite3VdbeMemSetRowSet(pIn1
);
5240 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5242 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn2
->u
.i
);
5246 /* Opcode: RowSetRead P1 P2 P3 * *
5247 ** Synopsis: r[P3]=rowset(P1)
5249 ** Extract the smallest value from boolean index P1 and put that value into
5250 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5251 ** unchanged and jump to instruction P2.
5253 case OP_RowSetRead
: { /* jump, in1, out3 */
5256 pIn1
= &aMem
[pOp
->p1
];
5257 if( (pIn1
->flags
& MEM_RowSet
)==0
5258 || sqlite3RowSetNext(pIn1
->u
.pRowSet
, &val
)==0
5260 /* The boolean index is empty */
5261 sqlite3VdbeMemSetNull(pIn1
);
5263 VdbeBranchTaken(1,2);
5265 /* A value was pulled from the index */
5266 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
5267 VdbeBranchTaken(0,2);
5269 goto check_for_interrupt
;
5272 /* Opcode: RowSetTest P1 P2 P3 P4
5273 ** Synopsis: if r[P3] in rowset(P1) goto P2
5275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5276 ** contains a RowSet object and that RowSet object contains
5277 ** the value held in P3, jump to register P2. Otherwise, insert the
5278 ** integer in P3 into the RowSet and continue on to the
5281 ** The RowSet object is optimized for the case where successive sets
5282 ** of integers, where each set contains no duplicates. Each set
5283 ** of values is identified by a unique P4 value. The first set
5284 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5285 ** non-negative. For non-negative values of P4 only the lower 4
5286 ** bits are significant.
5288 ** This allows optimizations: (a) when P4==0 there is no need to test
5289 ** the rowset object for P3, as it is guaranteed not to contain it,
5290 ** (b) when P4==-1 there is no need to insert the value, as it will
5291 ** never be tested for, and (c) when a value that is part of set X is
5292 ** inserted, there is no need to search to see if the same value was
5293 ** previously inserted as part of set X (only if it was previously
5294 ** inserted as part of some other set).
5296 case OP_RowSetTest
: { /* jump, in1, in3 */
5300 pIn1
= &aMem
[pOp
->p1
];
5301 pIn3
= &aMem
[pOp
->p3
];
5303 assert( pIn3
->flags
&MEM_Int
);
5305 /* If there is anything other than a rowset object in memory cell P1,
5306 ** delete it now and initialize P1 with an empty rowset
5308 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5309 sqlite3VdbeMemSetRowSet(pIn1
);
5310 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5313 assert( pOp
->p4type
==P4_INT32
);
5314 assert( iSet
==-1 || iSet
>=0 );
5316 exists
= sqlite3RowSetTest(pIn1
->u
.pRowSet
, iSet
, pIn3
->u
.i
);
5317 VdbeBranchTaken(exists
!=0,2);
5324 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn3
->u
.i
);
5330 #ifndef SQLITE_OMIT_TRIGGER
5332 /* Opcode: Program P1 P2 P3 P4 P5
5334 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5336 ** P1 contains the address of the memory cell that contains the first memory
5337 ** cell in an array of values used as arguments to the sub-program. P2
5338 ** contains the address to jump to if the sub-program throws an IGNORE
5339 ** exception using the RAISE() function. Register P3 contains the address
5340 ** of a memory cell in this (the parent) VM that is used to allocate the
5341 ** memory required by the sub-vdbe at runtime.
5343 ** P4 is a pointer to the VM containing the trigger program.
5345 ** If P5 is non-zero, then recursive program invocation is enabled.
5347 case OP_Program
: { /* jump */
5348 int nMem
; /* Number of memory registers for sub-program */
5349 int nByte
; /* Bytes of runtime space required for sub-program */
5350 Mem
*pRt
; /* Register to allocate runtime space */
5351 Mem
*pMem
; /* Used to iterate through memory cells */
5352 Mem
*pEnd
; /* Last memory cell in new array */
5353 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
5354 SubProgram
*pProgram
; /* Sub-program to execute */
5355 void *t
; /* Token identifying trigger */
5357 pProgram
= pOp
->p4
.pProgram
;
5358 pRt
= &aMem
[pOp
->p3
];
5359 assert( pProgram
->nOp
>0 );
5361 /* If the p5 flag is clear, then recursive invocation of triggers is
5362 ** disabled for backwards compatibility (p5 is set if this sub-program
5363 ** is really a trigger, not a foreign key action, and the flag set
5364 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5366 ** It is recursive invocation of triggers, at the SQL level, that is
5367 ** disabled. In some cases a single trigger may generate more than one
5368 ** SubProgram (if the trigger may be executed with more than one different
5369 ** ON CONFLICT algorithm). SubProgram structures associated with a
5370 ** single trigger all have the same value for the SubProgram.token
5373 t
= pProgram
->token
;
5374 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
5378 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
5380 sqlite3SetString(&p
->zErrMsg
, db
, "too many levels of trigger recursion");
5384 /* Register pRt is used to store the memory required to save the state
5385 ** of the current program, and the memory required at runtime to execute
5386 ** the trigger program. If this trigger has been fired before, then pRt
5387 ** is already allocated. Otherwise, it must be initialized. */
5388 if( (pRt
->flags
&MEM_Frame
)==0 ){
5389 /* SubProgram.nMem is set to the number of memory cells used by the
5390 ** program stored in SubProgram.aOp. As well as these, one memory
5391 ** cell is required for each cursor used by the program. Set local
5392 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5394 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
5395 nByte
= ROUND8(sizeof(VdbeFrame
))
5396 + nMem
* sizeof(Mem
)
5397 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
5398 + pProgram
->nOnce
* sizeof(u8
);
5399 pFrame
= sqlite3DbMallocZero(db
, nByte
);
5403 sqlite3VdbeMemRelease(pRt
);
5404 pRt
->flags
= MEM_Frame
;
5405 pRt
->u
.pFrame
= pFrame
;
5408 pFrame
->nChildMem
= nMem
;
5409 pFrame
->nChildCsr
= pProgram
->nCsr
;
5411 pFrame
->aMem
= p
->aMem
;
5412 pFrame
->nMem
= p
->nMem
;
5413 pFrame
->apCsr
= p
->apCsr
;
5414 pFrame
->nCursor
= p
->nCursor
;
5415 pFrame
->aOp
= p
->aOp
;
5416 pFrame
->nOp
= p
->nOp
;
5417 pFrame
->token
= pProgram
->token
;
5418 pFrame
->aOnceFlag
= p
->aOnceFlag
;
5419 pFrame
->nOnceFlag
= p
->nOnceFlag
;
5421 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
5422 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
5423 pMem
->flags
= MEM_Undefined
;
5427 pFrame
= pRt
->u
.pFrame
;
5428 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
);
5429 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
5430 assert( pc
==pFrame
->pc
);
5434 pFrame
->pParent
= p
->pFrame
;
5435 pFrame
->lastRowid
= lastRowid
;
5436 pFrame
->nChange
= p
->nChange
;
5439 p
->aMem
= aMem
= &VdbeFrameMem(pFrame
)[-1];
5440 p
->nMem
= pFrame
->nChildMem
;
5441 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
5442 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
+1];
5443 p
->aOp
= aOp
= pProgram
->aOp
;
5444 p
->nOp
= pProgram
->nOp
;
5445 p
->aOnceFlag
= (u8
*)&p
->apCsr
[p
->nCursor
];
5446 p
->nOnceFlag
= pProgram
->nOnce
;
5448 memset(p
->aOnceFlag
, 0, p
->nOnceFlag
);
5453 /* Opcode: Param P1 P2 * * *
5455 ** This opcode is only ever present in sub-programs called via the
5456 ** OP_Program instruction. Copy a value currently stored in a memory
5457 ** cell of the calling (parent) frame to cell P2 in the current frames
5458 ** address space. This is used by trigger programs to access the new.*
5459 ** and old.* values.
5461 ** The address of the cell in the parent frame is determined by adding
5462 ** the value of the P1 argument to the value of the P1 argument to the
5463 ** calling OP_Program instruction.
5465 case OP_Param
: { /* out2-prerelease */
5469 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
5470 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
5474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5476 #ifndef SQLITE_OMIT_FOREIGN_KEY
5477 /* Opcode: FkCounter P1 P2 * * *
5478 ** Synopsis: fkctr[P1]+=P2
5480 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5481 ** If P1 is non-zero, the database constraint counter is incremented
5482 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5483 ** statement counter is incremented (immediate foreign key constraints).
5485 case OP_FkCounter
: {
5486 if( db
->flags
& SQLITE_DeferFKs
){
5487 db
->nDeferredImmCons
+= pOp
->p2
;
5488 }else if( pOp
->p1
){
5489 db
->nDeferredCons
+= pOp
->p2
;
5491 p
->nFkConstraint
+= pOp
->p2
;
5496 /* Opcode: FkIfZero P1 P2 * * *
5497 ** Synopsis: if fkctr[P1]==0 goto P2
5499 ** This opcode tests if a foreign key constraint-counter is currently zero.
5500 ** If so, jump to instruction P2. Otherwise, fall through to the next
5503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5504 ** is zero (the one that counts deferred constraint violations). If P1 is
5505 ** zero, the jump is taken if the statement constraint-counter is zero
5506 ** (immediate foreign key constraint violations).
5508 case OP_FkIfZero
: { /* jump */
5510 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
5511 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) pc
= pOp
->p2
-1;
5513 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
5514 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) pc
= pOp
->p2
-1;
5518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5520 #ifndef SQLITE_OMIT_AUTOINCREMENT
5521 /* Opcode: MemMax P1 P2 * * *
5522 ** Synopsis: r[P1]=max(r[P1],r[P2])
5524 ** P1 is a register in the root frame of this VM (the root frame is
5525 ** different from the current frame if this instruction is being executed
5526 ** within a sub-program). Set the value of register P1 to the maximum of
5527 ** its current value and the value in register P2.
5529 ** This instruction throws an error if the memory cell is not initially
5532 case OP_MemMax
: { /* in2 */
5535 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5536 pIn1
= &pFrame
->aMem
[pOp
->p1
];
5538 pIn1
= &aMem
[pOp
->p1
];
5540 assert( memIsValid(pIn1
) );
5541 sqlite3VdbeMemIntegerify(pIn1
);
5542 pIn2
= &aMem
[pOp
->p2
];
5543 sqlite3VdbeMemIntegerify(pIn2
);
5544 if( pIn1
->u
.i
<pIn2
->u
.i
){
5545 pIn1
->u
.i
= pIn2
->u
.i
;
5549 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5551 /* Opcode: IfPos P1 P2 * * *
5552 ** Synopsis: if r[P1]>0 goto P2
5554 ** If the value of register P1 is 1 or greater, jump to P2.
5556 ** It is illegal to use this instruction on a register that does
5557 ** not contain an integer. An assertion fault will result if you try.
5559 case OP_IfPos
: { /* jump, in1 */
5560 pIn1
= &aMem
[pOp
->p1
];
5561 assert( pIn1
->flags
&MEM_Int
);
5562 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
5569 /* Opcode: IfNeg P1 P2 P3 * *
5570 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
5572 ** Register P1 must contain an integer. Add literal P3 to the value in
5573 ** register P1 then if the value of register P1 is less than zero, jump to P2.
5575 case OP_IfNeg
: { /* jump, in1 */
5576 pIn1
= &aMem
[pOp
->p1
];
5577 assert( pIn1
->flags
&MEM_Int
);
5578 pIn1
->u
.i
+= pOp
->p3
;
5579 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
5586 /* Opcode: IfZero P1 P2 P3 * *
5587 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
5589 ** The register P1 must contain an integer. Add literal P3 to the
5590 ** value in register P1. If the result is exactly 0, jump to P2.
5592 case OP_IfZero
: { /* jump, in1 */
5593 pIn1
= &aMem
[pOp
->p1
];
5594 assert( pIn1
->flags
&MEM_Int
);
5595 pIn1
->u
.i
+= pOp
->p3
;
5596 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
5603 /* Opcode: AggStep * P2 P3 P4 P5
5604 ** Synopsis: accum=r[P3] step(r[P2@P5])
5606 ** Execute the step function for an aggregate. The
5607 ** function has P5 arguments. P4 is a pointer to the FuncDef
5608 ** structure that specifies the function. Use register
5609 ** P3 as the accumulator.
5611 ** The P5 arguments are taken from register P2 and its
5620 sqlite3_context ctx
;
5621 sqlite3_value
**apVal
;
5625 pRec
= &aMem
[pOp
->p2
];
5627 assert( apVal
|| n
==0 );
5628 for(i
=0; i
<n
; i
++, pRec
++){
5629 assert( memIsValid(pRec
) );
5631 memAboutToChange(p
, pRec
);
5633 ctx
.pFunc
= pOp
->p4
.pFunc
;
5634 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
5635 ctx
.pMem
= pMem
= &aMem
[pOp
->p3
];
5637 sqlite3VdbeMemInit(&t
, db
, MEM_Null
);
5643 (ctx
.pFunc
->xStep
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
5645 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&t
));
5649 assert( pOp
[-1].opcode
==OP_CollSeq
);
5651 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
5653 sqlite3VdbeMemRelease(&t
);
5657 /* Opcode: AggFinal P1 P2 * P4 *
5658 ** Synopsis: accum=r[P1] N=P2
5660 ** Execute the finalizer function for an aggregate. P1 is
5661 ** the memory location that is the accumulator for the aggregate.
5663 ** P2 is the number of arguments that the step function takes and
5664 ** P4 is a pointer to the FuncDef for this function. The P2
5665 ** argument is not used by this opcode. It is only there to disambiguate
5666 ** functions that can take varying numbers of arguments. The
5667 ** P4 argument is only needed for the degenerate case where
5668 ** the step function was not previously called.
5672 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
-p
->nCursor
) );
5673 pMem
= &aMem
[pOp
->p1
];
5674 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
5675 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
5677 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(pMem
));
5679 sqlite3VdbeChangeEncoding(pMem
, encoding
);
5680 UPDATE_MAX_BLOBSIZE(pMem
);
5681 if( sqlite3VdbeMemTooBig(pMem
) ){
5687 #ifndef SQLITE_OMIT_WAL
5688 /* Opcode: Checkpoint P1 P2 P3 * *
5690 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5691 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5692 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5693 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5694 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5695 ** in the WAL that have been checkpointed after the checkpoint
5696 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5697 ** mem[P3+2] are initialized to -1.
5699 case OP_Checkpoint
: {
5700 int i
; /* Loop counter */
5701 int aRes
[3]; /* Results */
5702 Mem
*pMem
; /* Write results here */
5704 assert( p
->readOnly
==0 );
5706 aRes
[1] = aRes
[2] = -1;
5707 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
5708 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
5709 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
5711 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
5712 if( rc
==SQLITE_BUSY
){
5716 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
5717 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
5723 #ifndef SQLITE_OMIT_PRAGMA
5724 /* Opcode: JournalMode P1 P2 P3 * *
5726 ** Change the journal mode of database P1 to P3. P3 must be one of the
5727 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5728 ** modes (delete, truncate, persist, off and memory), this is a simple
5729 ** operation. No IO is required.
5731 ** If changing into or out of WAL mode the procedure is more complicated.
5733 ** Write a string containing the final journal-mode to register P2.
5735 case OP_JournalMode
: { /* out2-prerelease */
5736 Btree
*pBt
; /* Btree to change journal mode of */
5737 Pager
*pPager
; /* Pager associated with pBt */
5738 int eNew
; /* New journal mode */
5739 int eOld
; /* The old journal mode */
5740 #ifndef SQLITE_OMIT_WAL
5741 const char *zFilename
; /* Name of database file for pPager */
5745 assert( eNew
==PAGER_JOURNALMODE_DELETE
5746 || eNew
==PAGER_JOURNALMODE_TRUNCATE
5747 || eNew
==PAGER_JOURNALMODE_PERSIST
5748 || eNew
==PAGER_JOURNALMODE_OFF
5749 || eNew
==PAGER_JOURNALMODE_MEMORY
5750 || eNew
==PAGER_JOURNALMODE_WAL
5751 || eNew
==PAGER_JOURNALMODE_QUERY
5753 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5754 assert( p
->readOnly
==0 );
5756 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5757 pPager
= sqlite3BtreePager(pBt
);
5758 eOld
= sqlite3PagerGetJournalMode(pPager
);
5759 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
5760 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
5762 #ifndef SQLITE_OMIT_WAL
5763 zFilename
= sqlite3PagerFilename(pPager
, 1);
5765 /* Do not allow a transition to journal_mode=WAL for a database
5766 ** in temporary storage or if the VFS does not support shared memory
5768 if( eNew
==PAGER_JOURNALMODE_WAL
5769 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
5770 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
5776 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
5778 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
5780 sqlite3SetString(&p
->zErrMsg
, db
,
5781 "cannot change %s wal mode from within a transaction",
5782 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
5787 if( eOld
==PAGER_JOURNALMODE_WAL
){
5788 /* If leaving WAL mode, close the log file. If successful, the call
5789 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5790 ** file. An EXCLUSIVE lock may still be held on the database file
5791 ** after a successful return.
5793 rc
= sqlite3PagerCloseWal(pPager
);
5794 if( rc
==SQLITE_OK
){
5795 sqlite3PagerSetJournalMode(pPager
, eNew
);
5797 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
5798 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5799 ** as an intermediate */
5800 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
5803 /* Open a transaction on the database file. Regardless of the journal
5804 ** mode, this transaction always uses a rollback journal.
5806 assert( sqlite3BtreeIsInTrans(pBt
)==0 );
5807 if( rc
==SQLITE_OK
){
5808 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
5812 #endif /* ifndef SQLITE_OMIT_WAL */
5817 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
5819 pOut
= &aMem
[pOp
->p2
];
5820 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
5821 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
5822 pOut
->n
= sqlite3Strlen30(pOut
->z
);
5823 pOut
->enc
= SQLITE_UTF8
;
5824 sqlite3VdbeChangeEncoding(pOut
, encoding
);
5827 #endif /* SQLITE_OMIT_PRAGMA */
5829 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5830 /* Opcode: Vacuum * * * * *
5832 ** Vacuum the entire database. This opcode will cause other virtual
5833 ** machines to be created and run. It may not be called from within
5837 assert( p
->readOnly
==0 );
5838 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
);
5843 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5844 /* Opcode: IncrVacuum P1 P2 * * *
5846 ** Perform a single step of the incremental vacuum procedure on
5847 ** the P1 database. If the vacuum has finished, jump to instruction
5848 ** P2. Otherwise, fall through to the next instruction.
5850 case OP_IncrVacuum
: { /* jump */
5853 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5854 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
5855 assert( p
->readOnly
==0 );
5856 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5857 rc
= sqlite3BtreeIncrVacuum(pBt
);
5858 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
5859 if( rc
==SQLITE_DONE
){
5867 /* Opcode: Expire P1 * * * *
5869 ** Cause precompiled statements to expire. When an expired statement
5870 ** is executed using sqlite3_step() it will either automatically
5871 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5872 ** or it will fail with SQLITE_SCHEMA.
5874 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5875 ** then only the currently executing statement is expired.
5879 sqlite3ExpirePreparedStatements(db
);
5886 #ifndef SQLITE_OMIT_SHARED_CACHE
5887 /* Opcode: TableLock P1 P2 P3 P4 *
5888 ** Synopsis: iDb=P1 root=P2 write=P3
5890 ** Obtain a lock on a particular table. This instruction is only used when
5891 ** the shared-cache feature is enabled.
5893 ** P1 is the index of the database in sqlite3.aDb[] of the database
5894 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5895 ** a write lock if P3==1.
5897 ** P2 contains the root-page of the table to lock.
5899 ** P4 contains a pointer to the name of the table being locked. This is only
5900 ** used to generate an error message if the lock cannot be obtained.
5902 case OP_TableLock
: {
5903 u8 isWriteLock
= (u8
)pOp
->p3
;
5904 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommitted
) ){
5906 assert( p1
>=0 && p1
<db
->nDb
);
5907 assert( DbMaskTest(p
->btreeMask
, p1
) );
5908 assert( isWriteLock
==0 || isWriteLock
==1 );
5909 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
5910 if( (rc
&0xFF)==SQLITE_LOCKED
){
5911 const char *z
= pOp
->p4
.z
;
5912 sqlite3SetString(&p
->zErrMsg
, db
, "database table is locked: %s", z
);
5917 #endif /* SQLITE_OMIT_SHARED_CACHE */
5919 #ifndef SQLITE_OMIT_VIRTUALTABLE
5920 /* Opcode: VBegin * * * P4 *
5922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5923 ** xBegin method for that table.
5925 ** Also, whether or not P4 is set, check that this is not being called from
5926 ** within a callback to a virtual table xSync() method. If it is, the error
5927 ** code will be set to SQLITE_LOCKED.
5931 pVTab
= pOp
->p4
.pVtab
;
5932 rc
= sqlite3VtabBegin(db
, pVTab
);
5933 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5938 #ifndef SQLITE_OMIT_VIRTUALTABLE
5939 /* Opcode: VCreate P1 * * P4 *
5941 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5945 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, pOp
->p4
.z
, &p
->zErrMsg
);
5948 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5950 #ifndef SQLITE_OMIT_VIRTUALTABLE
5951 /* Opcode: VDestroy P1 * * P4 *
5953 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5957 p
->inVtabMethod
= 2;
5958 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
5959 p
->inVtabMethod
= 0;
5962 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5964 #ifndef SQLITE_OMIT_VIRTUALTABLE
5965 /* Opcode: VOpen P1 * * P4 *
5967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5968 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5969 ** table and stores that cursor in P1.
5973 sqlite3_vtab_cursor
*pVtabCursor
;
5974 sqlite3_vtab
*pVtab
;
5975 sqlite3_module
*pModule
;
5977 assert( p
->bIsReader
);
5980 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5981 pModule
= (sqlite3_module
*)pVtab
->pModule
;
5982 assert(pVtab
&& pModule
);
5983 rc
= pModule
->xOpen(pVtab
, &pVtabCursor
);
5984 sqlite3VtabImportErrmsg(p
, pVtab
);
5985 if( SQLITE_OK
==rc
){
5986 /* Initialize sqlite3_vtab_cursor base class */
5987 pVtabCursor
->pVtab
= pVtab
;
5989 /* Initialize vdbe cursor object */
5990 pCur
= allocateCursor(p
, pOp
->p1
, 0, -1, 0);
5992 pCur
->pVtabCursor
= pVtabCursor
;
5994 db
->mallocFailed
= 1;
5995 pModule
->xClose(pVtabCursor
);
6000 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6002 #ifndef SQLITE_OMIT_VIRTUALTABLE
6003 /* Opcode: VFilter P1 P2 P3 P4 *
6004 ** Synopsis: iplan=r[P3] zplan='P4'
6006 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6007 ** the filtered result set is empty.
6009 ** P4 is either NULL or a string that was generated by the xBestIndex
6010 ** method of the module. The interpretation of the P4 string is left
6011 ** to the module implementation.
6013 ** This opcode invokes the xFilter method on the virtual table specified
6014 ** by P1. The integer query plan parameter to xFilter is stored in register
6015 ** P3. Register P3+1 stores the argc parameter to be passed to the
6016 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6017 ** additional parameters which are passed to
6018 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6020 ** A jump is made to P2 if the result set after filtering would be empty.
6022 case OP_VFilter
: { /* jump */
6025 const sqlite3_module
*pModule
;
6028 sqlite3_vtab_cursor
*pVtabCursor
;
6029 sqlite3_vtab
*pVtab
;
6035 pQuery
= &aMem
[pOp
->p3
];
6037 pCur
= p
->apCsr
[pOp
->p1
];
6038 assert( memIsValid(pQuery
) );
6039 REGISTER_TRACE(pOp
->p3
, pQuery
);
6040 assert( pCur
->pVtabCursor
);
6041 pVtabCursor
= pCur
->pVtabCursor
;
6042 pVtab
= pVtabCursor
->pVtab
;
6043 pModule
= pVtab
->pModule
;
6045 /* Grab the index number and argc parameters */
6046 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
6047 nArg
= (int)pArgc
->u
.i
;
6048 iQuery
= (int)pQuery
->u
.i
;
6050 /* Invoke the xFilter method */
6054 for(i
= 0; i
<nArg
; i
++){
6055 apArg
[i
] = &pArgc
[i
+1];
6058 p
->inVtabMethod
= 1;
6059 rc
= pModule
->xFilter(pVtabCursor
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
6060 p
->inVtabMethod
= 0;
6061 sqlite3VtabImportErrmsg(p
, pVtab
);
6062 if( rc
==SQLITE_OK
){
6063 res
= pModule
->xEof(pVtabCursor
);
6065 VdbeBranchTaken(res
!=0,2);
6074 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6076 #ifndef SQLITE_OMIT_VIRTUALTABLE
6077 /* Opcode: VColumn P1 P2 P3 * *
6078 ** Synopsis: r[P3]=vcolumn(P2)
6080 ** Store the value of the P2-th column of
6081 ** the row of the virtual-table that the
6082 ** P1 cursor is pointing to into register P3.
6085 sqlite3_vtab
*pVtab
;
6086 const sqlite3_module
*pModule
;
6088 sqlite3_context sContext
;
6090 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
6091 assert( pCur
->pVtabCursor
);
6092 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
-p
->nCursor
) );
6093 pDest
= &aMem
[pOp
->p3
];
6094 memAboutToChange(p
, pDest
);
6095 if( pCur
->nullRow
){
6096 sqlite3VdbeMemSetNull(pDest
);
6099 pVtab
= pCur
->pVtabCursor
->pVtab
;
6100 pModule
= pVtab
->pModule
;
6101 assert( pModule
->xColumn
);
6102 memset(&sContext
, 0, sizeof(sContext
));
6103 sContext
.pOut
= pDest
;
6104 MemSetTypeFlag(pDest
, MEM_Null
);
6105 rc
= pModule
->xColumn(pCur
->pVtabCursor
, &sContext
, pOp
->p2
);
6106 sqlite3VtabImportErrmsg(p
, pVtab
);
6107 if( sContext
.isError
){
6108 rc
= sContext
.isError
;
6110 sqlite3VdbeChangeEncoding(pDest
, encoding
);
6111 REGISTER_TRACE(pOp
->p3
, pDest
);
6112 UPDATE_MAX_BLOBSIZE(pDest
);
6114 if( sqlite3VdbeMemTooBig(pDest
) ){
6119 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6121 #ifndef SQLITE_OMIT_VIRTUALTABLE
6122 /* Opcode: VNext P1 P2 * * *
6124 ** Advance virtual table P1 to the next row in its result set and
6125 ** jump to instruction P2. Or, if the virtual table has reached
6126 ** the end of its result set, then fall through to the next instruction.
6128 case OP_VNext
: { /* jump */
6129 sqlite3_vtab
*pVtab
;
6130 const sqlite3_module
*pModule
;
6135 pCur
= p
->apCsr
[pOp
->p1
];
6136 assert( pCur
->pVtabCursor
);
6137 if( pCur
->nullRow
){
6140 pVtab
= pCur
->pVtabCursor
->pVtab
;
6141 pModule
= pVtab
->pModule
;
6142 assert( pModule
->xNext
);
6144 /* Invoke the xNext() method of the module. There is no way for the
6145 ** underlying implementation to return an error if one occurs during
6146 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6147 ** data is available) and the error code returned when xColumn or
6148 ** some other method is next invoked on the save virtual table cursor.
6150 p
->inVtabMethod
= 1;
6151 rc
= pModule
->xNext(pCur
->pVtabCursor
);
6152 p
->inVtabMethod
= 0;
6153 sqlite3VtabImportErrmsg(p
, pVtab
);
6154 if( rc
==SQLITE_OK
){
6155 res
= pModule
->xEof(pCur
->pVtabCursor
);
6157 VdbeBranchTaken(!res
,2);
6159 /* If there is data, jump to P2 */
6162 goto check_for_interrupt
;
6164 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6166 #ifndef SQLITE_OMIT_VIRTUALTABLE
6167 /* Opcode: VRename P1 * * P4 *
6169 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6170 ** This opcode invokes the corresponding xRename method. The value
6171 ** in register P1 is passed as the zName argument to the xRename method.
6174 sqlite3_vtab
*pVtab
;
6177 pVtab
= pOp
->p4
.pVtab
->pVtab
;
6178 pName
= &aMem
[pOp
->p1
];
6179 assert( pVtab
->pModule
->xRename
);
6180 assert( memIsValid(pName
) );
6181 assert( p
->readOnly
==0 );
6182 REGISTER_TRACE(pOp
->p1
, pName
);
6183 assert( pName
->flags
& MEM_Str
);
6184 testcase( pName
->enc
==SQLITE_UTF8
);
6185 testcase( pName
->enc
==SQLITE_UTF16BE
);
6186 testcase( pName
->enc
==SQLITE_UTF16LE
);
6187 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
6188 if( rc
==SQLITE_OK
){
6189 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
6190 sqlite3VtabImportErrmsg(p
, pVtab
);
6197 #ifndef SQLITE_OMIT_VIRTUALTABLE
6198 /* Opcode: VUpdate P1 P2 P3 P4 P5
6199 ** Synopsis: data=r[P3@P2]
6201 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6202 ** This opcode invokes the corresponding xUpdate method. P2 values
6203 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6204 ** invocation. The value in register (P3+P2-1) corresponds to the
6205 ** p2th element of the argv array passed to xUpdate.
6207 ** The xUpdate method will do a DELETE or an INSERT or both.
6208 ** The argv[0] element (which corresponds to memory cell P3)
6209 ** is the rowid of a row to delete. If argv[0] is NULL then no
6210 ** deletion occurs. The argv[1] element is the rowid of the new
6211 ** row. This can be NULL to have the virtual table select the new
6212 ** rowid for itself. The subsequent elements in the array are
6213 ** the values of columns in the new row.
6215 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6218 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6219 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6220 ** is set to the value of the rowid for the row just inserted.
6222 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6223 ** apply in the case of a constraint failure on an insert or update.
6226 sqlite3_vtab
*pVtab
;
6227 sqlite3_module
*pModule
;
6234 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
6235 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
6237 assert( p
->readOnly
==0 );
6238 pVtab
= pOp
->p4
.pVtab
->pVtab
;
6239 pModule
= (sqlite3_module
*)pVtab
->pModule
;
6241 assert( pOp
->p4type
==P4_VTAB
);
6242 if( ALWAYS(pModule
->xUpdate
) ){
6243 u8 vtabOnConflict
= db
->vtabOnConflict
;
6245 pX
= &aMem
[pOp
->p3
];
6246 for(i
=0; i
<nArg
; i
++){
6247 assert( memIsValid(pX
) );
6248 memAboutToChange(p
, pX
);
6252 db
->vtabOnConflict
= pOp
->p5
;
6253 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
6254 db
->vtabOnConflict
= vtabOnConflict
;
6255 sqlite3VtabImportErrmsg(p
, pVtab
);
6256 if( rc
==SQLITE_OK
&& pOp
->p1
){
6257 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
6258 db
->lastRowid
= lastRowid
= rowid
;
6260 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
6261 if( pOp
->p5
==OE_Ignore
){
6264 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
6272 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6274 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6275 /* Opcode: Pagecount P1 P2 * * *
6277 ** Write the current number of pages in database P1 to memory cell P2.
6279 case OP_Pagecount
: { /* out2-prerelease */
6280 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
6286 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6287 /* Opcode: MaxPgcnt P1 P2 P3 * *
6289 ** Try to set the maximum page count for database P1 to the value in P3.
6290 ** Do not let the maximum page count fall below the current page count and
6291 ** do not change the maximum page count value if P3==0.
6293 ** Store the maximum page count after the change in register P2.
6295 case OP_MaxPgcnt
: { /* out2-prerelease */
6296 unsigned int newMax
;
6299 pBt
= db
->aDb
[pOp
->p1
].pBt
;
6302 newMax
= sqlite3BtreeLastPage(pBt
);
6303 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
6305 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
6311 /* Opcode: Init * P2 * P4 *
6312 ** Synopsis: Start at P2
6314 ** Programs contain a single instance of this opcode as the very first
6317 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6318 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6319 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6321 ** If P2 is not zero, jump to instruction P2.
6323 case OP_Init
: { /* jump */
6330 #ifndef SQLITE_OMIT_TRACE
6333 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
6335 z
= sqlite3VdbeExpandSql(p
, zTrace
);
6336 db
->xTrace(db
->pTraceArg
, z
);
6337 sqlite3DbFree(db
, z
);
6339 #ifdef SQLITE_USE_FCNTL_TRACE
6340 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
6343 for(i
=0; i
<db
->nDb
; i
++){
6344 if( DbMaskTest(p
->btreeMask
, i
)==0 ) continue;
6345 sqlite3_file_control(db
, db
->aDb
[i
].zName
, SQLITE_FCNTL_TRACE
, zTrace
);
6348 #endif /* SQLITE_USE_FCNTL_TRACE */
6350 if( (db
->flags
& SQLITE_SqlTrace
)!=0
6351 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
6353 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
6355 #endif /* SQLITE_DEBUG */
6356 #endif /* SQLITE_OMIT_TRACE */
6361 /* Opcode: Noop * * * * *
6363 ** Do nothing. This instruction is often useful as a jump
6367 ** The magic Explain opcode are only inserted when explain==2 (which
6368 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6369 ** This opcode records information from the optimizer. It is the
6370 ** the same as a no-op. This opcodesnever appears in a real VM program.
6372 default: { /* This is really OP_Noop and OP_Explain */
6373 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
6377 /*****************************************************************************
6378 ** The cases of the switch statement above this line should all be indented
6379 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6380 ** readability. From this point on down, the normal indentation rules are
6382 *****************************************************************************/
6387 u64 endTime
= sqlite3Hwtime();
6388 if( endTime
>start
) pOp
->cycles
+= endTime
- start
;
6393 /* The following code adds nothing to the actual functionality
6394 ** of the program. It is only here for testing and debugging.
6395 ** On the other hand, it does burn CPU cycles every time through
6396 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6399 assert( pc
>=-1 && pc
<p
->nOp
);
6402 if( db
->flags
& SQLITE_VdbeTrace
){
6403 if( rc
!=0 ) printf("rc=%d\n",rc
);
6404 if( pOp
->opflags
& (OPFLG_OUT2_PRERELEASE
|OPFLG_OUT2
) ){
6405 registerTrace(pOp
->p2
, &aMem
[pOp
->p2
]);
6407 if( pOp
->opflags
& OPFLG_OUT3
){
6408 registerTrace(pOp
->p3
, &aMem
[pOp
->p3
]);
6411 #endif /* SQLITE_DEBUG */
6413 } /* The end of the for(;;) loop the loops through opcodes */
6415 /* If we reach this point, it means that execution is finished with
6416 ** an error of some kind.
6421 testcase( sqlite3GlobalConfig
.xLog
!=0 );
6422 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
6423 pc
, p
->zSql
, p
->zErrMsg
);
6425 if( rc
==SQLITE_IOERR_NOMEM
) db
->mallocFailed
= 1;
6427 if( resetSchemaOnFault
>0 ){
6428 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
6431 /* This is the only way out of this procedure. We have to
6432 ** release the mutexes on btrees that were acquired at the
6435 db
->lastRowid
= lastRowid
;
6436 testcase( nVmStep
>0 );
6437 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
6438 sqlite3VdbeLeave(p
);
6441 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6445 sqlite3SetString(&p
->zErrMsg
, db
, "string or blob too big");
6447 goto vdbe_error_halt
;
6449 /* Jump to here if a malloc() fails.
6452 db
->mallocFailed
= 1;
6453 sqlite3SetString(&p
->zErrMsg
, db
, "out of memory");
6455 goto vdbe_error_halt
;
6457 /* Jump to here for any other kind of fatal error. The "rc" variable
6458 ** should hold the error number.
6461 assert( p
->zErrMsg
==0 );
6462 if( db
->mallocFailed
) rc
= SQLITE_NOMEM
;
6463 if( rc
!=SQLITE_IOERR_NOMEM
){
6464 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
6466 goto vdbe_error_halt
;
6468 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6471 abort_due_to_interrupt
:
6472 assert( db
->u1
.isInterrupted
);
6473 rc
= SQLITE_INTERRUPT
;
6475 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
6476 goto vdbe_error_halt
;