4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
32 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p
->flags
& (MEM_Int
|MEM_Real
))!=(MEM_Int
|MEM_Real
) );
43 /* The szMalloc field holds the correct memory allocation size */
44 assert( p
->szMalloc
==0
45 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
) );
47 /* If p holds a string or blob, the Mem.z must point to exactly
48 ** one of the following:
50 ** (1) Memory in Mem.zMalloc and managed by the Mem object
51 ** (2) Memory to be freed using Mem.xDel
52 ** (3) An ephemeral string or blob
53 ** (4) A static string or blob
55 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
57 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
58 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
59 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
60 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
81 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
82 #ifndef SQLITE_OMIT_UTF16
85 assert( (pMem
->flags
&MEM_RowSet
)==0 );
86 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
87 || desiredEnc
==SQLITE_UTF16BE
);
88 if( !(pMem
->flags
&MEM_Str
) || pMem
->enc
==desiredEnc
){
91 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
92 #ifdef SQLITE_OMIT_UTF16
96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97 ** then the encoding of the value may not have changed.
99 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
100 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
101 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
102 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
108 ** Make sure pMem->z points to a writable allocation of at least
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation. pMem must be either a string or
113 ** blob if bPreserve is true. If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
116 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
117 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
118 assert( (pMem
->flags
&MEM_RowSet
)==0 );
120 /* If the bPreserve flag is set to true, then the memory cell must already
121 ** contain a valid string or blob value. */
122 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
123 testcase( bPreserve
&& pMem
->z
==0 );
125 assert( pMem
->szMalloc
==0
126 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
) );
127 if( pMem
->szMalloc
<n
){
129 if( bPreserve
&& pMem
->szMalloc
>0 && pMem
->z
==pMem
->zMalloc
){
130 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
133 if( pMem
->szMalloc
>0 ) sqlite3DbFree(pMem
->db
, pMem
->zMalloc
);
134 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
136 if( pMem
->zMalloc
==0 ){
137 sqlite3VdbeMemSetNull(pMem
);
142 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
146 if( bPreserve
&& pMem
->z
&& pMem
->z
!=pMem
->zMalloc
){
147 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
149 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
150 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
151 pMem
->xDel((void *)(pMem
->z
));
154 pMem
->z
= pMem
->zMalloc
;
155 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
160 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
161 ** If pMem->zMalloc already meets or exceeds the requested size, this
162 ** routine is a no-op.
164 ** Any prior string or blob content in the pMem object may be discarded.
165 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
166 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
167 ** values are preserved.
169 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
170 ** if unable to complete the resizing.
172 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
174 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
175 if( pMem
->szMalloc
<szNew
){
176 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
178 assert( (pMem
->flags
& MEM_Dyn
)==0 );
179 pMem
->z
= pMem
->zMalloc
;
180 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
);
185 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
186 ** MEM.zMalloc, where it can be safely written.
188 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
190 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
192 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
193 assert( (pMem
->flags
&MEM_RowSet
)==0 );
196 if( (f
&(MEM_Str
|MEM_Blob
)) && (pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
) ){
197 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+ 2, 1) ){
200 pMem
->z
[pMem
->n
] = 0;
201 pMem
->z
[pMem
->n
+1] = 0;
202 pMem
->flags
|= MEM_Term
;
204 pMem
->pScopyFrom
= 0;
212 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
213 ** blob stored in dynamically allocated space.
215 #ifndef SQLITE_OMIT_INCRBLOB
216 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
217 if( pMem
->flags
& MEM_Zero
){
219 assert( pMem
->flags
&MEM_Blob
);
220 assert( (pMem
->flags
&MEM_RowSet
)==0 );
221 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
223 /* Set nByte to the number of bytes required to store the expanded blob. */
224 nByte
= pMem
->n
+ pMem
->u
.nZero
;
228 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
232 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
233 pMem
->n
+= pMem
->u
.nZero
;
234 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
241 ** It is already known that pMem contains an unterminated string.
242 ** Add the zero terminator.
244 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
245 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+2, 1) ){
248 pMem
->z
[pMem
->n
] = 0;
249 pMem
->z
[pMem
->n
+1] = 0;
250 pMem
->flags
|= MEM_Term
;
255 ** Make sure the given Mem is \u0000 terminated.
257 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
258 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
259 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
260 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
261 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
262 return SQLITE_OK
; /* Nothing to do */
264 return vdbeMemAddTerminator(pMem
);
269 ** Add MEM_Str to the set of representations for the given Mem. Numbers
270 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
273 ** Existing representations MEM_Int and MEM_Real are invalidated if
274 ** bForce is true but are retained if bForce is false.
276 ** A MEM_Null value will never be passed to this function. This function is
277 ** used for converting values to text for returning to the user (i.e. via
278 ** sqlite3_value_text()), or for ensuring that values to be used as btree
279 ** keys are strings. In the former case a NULL pointer is returned the
280 ** user and the latter is an internal programming error.
282 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
283 int fg
= pMem
->flags
;
284 const int nByte
= 32;
286 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
287 assert( !(fg
&MEM_Zero
) );
288 assert( !(fg
&(MEM_Str
|MEM_Blob
)) );
289 assert( fg
&(MEM_Int
|MEM_Real
) );
290 assert( (pMem
->flags
&MEM_RowSet
)==0 );
291 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
294 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
298 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
299 ** string representation of the value. Then, if the required encoding
300 ** is UTF-16le or UTF-16be do a translation.
302 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
305 sqlite3_snprintf(nByte
, pMem
->z
, "%lld", pMem
->u
.i
);
307 assert( fg
& MEM_Real
);
308 sqlite3_snprintf(nByte
, pMem
->z
, "%!.15g", pMem
->u
.r
);
310 pMem
->n
= sqlite3Strlen30(pMem
->z
);
311 pMem
->enc
= SQLITE_UTF8
;
312 pMem
->flags
|= MEM_Str
|MEM_Term
;
313 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
);
314 sqlite3VdbeChangeEncoding(pMem
, enc
);
319 ** Memory cell pMem contains the context of an aggregate function.
320 ** This routine calls the finalize method for that function. The
321 ** result of the aggregate is stored back into pMem.
323 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
326 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
328 if( ALWAYS(pFunc
&& pFunc
->xFinalize
) ){
331 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
332 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
333 memset(&ctx
, 0, sizeof(ctx
));
334 memset(&t
, 0, sizeof(t
));
340 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
341 assert( (pMem
->flags
& MEM_Dyn
)==0 );
342 if( pMem
->szMalloc
>0 ) sqlite3DbFree(pMem
->db
, pMem
->zMalloc
);
343 memcpy(pMem
, &t
, sizeof(t
));
350 ** If the memory cell contains a value that must be freed by
351 ** invoking the external callback in Mem.xDel, then this routine
352 ** will free that value. It also sets Mem.flags to MEM_Null.
354 ** This is a helper routine for sqlite3VdbeMemSetNull() and
355 ** for sqlite3VdbeMemRelease(). Use those other routines as the
356 ** entry point for releasing Mem resources.
358 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
359 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
360 assert( VdbeMemDynamic(p
) );
361 if( p
->flags
&MEM_Agg
){
362 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
363 assert( (p
->flags
& MEM_Agg
)==0 );
364 testcase( p
->flags
& MEM_Dyn
);
366 if( p
->flags
&MEM_Dyn
){
367 assert( (p
->flags
&MEM_RowSet
)==0 );
368 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
369 p
->xDel((void *)p
->z
);
370 }else if( p
->flags
&MEM_RowSet
){
371 sqlite3RowSetClear(p
->u
.pRowSet
);
372 }else if( p
->flags
&MEM_Frame
){
373 VdbeFrame
*pFrame
= p
->u
.pFrame
;
374 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
375 pFrame
->v
->pDelFrame
= pFrame
;
381 ** Release memory held by the Mem p, both external memory cleared
382 ** by p->xDel and memory in p->zMalloc.
384 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
385 ** the unusual case where there really is memory in p that needs
388 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
389 if( VdbeMemDynamic(p
) ){
390 vdbeMemClearExternAndSetNull(p
);
393 sqlite3DbFree(p
->db
, p
->zMalloc
);
400 ** Release any memory resources held by the Mem. Both the memory that is
401 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
403 ** Use this routine prior to clean up prior to abandoning a Mem, or to
404 ** reset a Mem back to its minimum memory utilization.
406 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
407 ** prior to inserting new content into the Mem.
409 void sqlite3VdbeMemRelease(Mem
*p
){
410 assert( sqlite3VdbeCheckMemInvariants(p
) );
411 if( VdbeMemDynamic(p
) || p
->szMalloc
){
417 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
418 ** If the double is out of range of a 64-bit signed integer then
419 ** return the closest available 64-bit signed integer.
421 static i64
doubleToInt64(double r
){
422 #ifdef SQLITE_OMIT_FLOATING_POINT
423 /* When floating-point is omitted, double and int64 are the same thing */
427 ** Many compilers we encounter do not define constants for the
428 ** minimum and maximum 64-bit integers, or they define them
429 ** inconsistently. And many do not understand the "LL" notation.
430 ** So we define our own static constants here using nothing
431 ** larger than a 32-bit integer constant.
433 static const i64 maxInt
= LARGEST_INT64
;
434 static const i64 minInt
= SMALLEST_INT64
;
436 if( r
<=(double)minInt
){
438 }else if( r
>=(double)maxInt
){
447 ** Return some kind of integer value which is the best we can do
448 ** at representing the value that *pMem describes as an integer.
449 ** If pMem is an integer, then the value is exact. If pMem is
450 ** a floating-point then the value returned is the integer part.
451 ** If pMem is a string or blob, then we make an attempt to convert
452 ** it into an integer and return that. If pMem represents an
453 ** an SQL-NULL value, return 0.
455 ** If pMem represents a string value, its encoding might be changed.
457 i64
sqlite3VdbeIntValue(Mem
*pMem
){
459 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
460 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
462 if( flags
& MEM_Int
){
464 }else if( flags
& MEM_Real
){
465 return doubleToInt64(pMem
->u
.r
);
466 }else if( flags
& (MEM_Str
|MEM_Blob
) ){
468 assert( pMem
->z
|| pMem
->n
==0 );
469 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
477 ** Return the best representation of pMem that we can get into a
478 ** double. If pMem is already a double or an integer, return its
479 ** value. If it is a string or blob, try to convert it to a double.
480 ** If it is a NULL, return 0.0.
482 double sqlite3VdbeRealValue(Mem
*pMem
){
483 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
484 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
485 if( pMem
->flags
& MEM_Real
){
487 }else if( pMem
->flags
& MEM_Int
){
488 return (double)pMem
->u
.i
;
489 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
490 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
491 double val
= (double)0;
492 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
495 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
501 ** The MEM structure is already a MEM_Real. Try to also make it a
502 ** MEM_Int if we can.
504 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
506 assert( pMem
->flags
& MEM_Real
);
507 assert( (pMem
->flags
& MEM_RowSet
)==0 );
508 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
509 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
511 ix
= doubleToInt64(pMem
->u
.r
);
513 /* Only mark the value as an integer if
515 ** (1) the round-trip conversion real->int->real is a no-op, and
516 ** (2) The integer is neither the largest nor the smallest
517 ** possible integer (ticket #3922)
519 ** The second and third terms in the following conditional enforces
520 ** the second condition under the assumption that addition overflow causes
521 ** values to wrap around.
523 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
525 MemSetTypeFlag(pMem
, MEM_Int
);
530 ** Convert pMem to type integer. Invalidate any prior representations.
532 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
533 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
534 assert( (pMem
->flags
& MEM_RowSet
)==0 );
535 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
537 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
538 MemSetTypeFlag(pMem
, MEM_Int
);
543 ** Convert pMem so that it is of type MEM_Real.
544 ** Invalidate any prior representations.
546 int sqlite3VdbeMemRealify(Mem
*pMem
){
547 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
548 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
550 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
551 MemSetTypeFlag(pMem
, MEM_Real
);
556 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
557 ** Invalidate any prior representations.
559 ** Every effort is made to force the conversion, even if the input
560 ** is a string that does not look completely like a number. Convert
561 ** as much of the string as we can and ignore the rest.
563 int sqlite3VdbeMemNumerify(Mem
*pMem
){
564 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))==0 ){
565 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
566 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
567 if( 0==sqlite3Atoi64(pMem
->z
, &pMem
->u
.i
, pMem
->n
, pMem
->enc
) ){
568 MemSetTypeFlag(pMem
, MEM_Int
);
570 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
571 MemSetTypeFlag(pMem
, MEM_Real
);
572 sqlite3VdbeIntegerAffinity(pMem
);
575 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))!=0 );
576 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
);
581 ** Cast the datatype of the value in pMem according to the affinity
582 ** "aff". Casting is different from applying affinity in that a cast
583 ** is forced. In other words, the value is converted into the desired
584 ** affinity even if that results in loss of data. This routine is
585 ** used (for example) to implement the SQL "cast()" operator.
587 void sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
588 if( pMem
->flags
& MEM_Null
) return;
590 case SQLITE_AFF_NONE
: { /* Really a cast to BLOB */
591 if( (pMem
->flags
& MEM_Blob
)==0 ){
592 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
593 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
594 MemSetTypeFlag(pMem
, MEM_Blob
);
596 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
600 case SQLITE_AFF_NUMERIC
: {
601 sqlite3VdbeMemNumerify(pMem
);
604 case SQLITE_AFF_INTEGER
: {
605 sqlite3VdbeMemIntegerify(pMem
);
608 case SQLITE_AFF_REAL
: {
609 sqlite3VdbeMemRealify(pMem
);
613 assert( aff
==SQLITE_AFF_TEXT
);
614 assert( MEM_Str
==(MEM_Blob
>>3) );
615 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
616 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
617 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
618 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_Blob
|MEM_Zero
);
625 ** Initialize bulk memory to be a consistent Mem object.
627 ** The minimum amount of initialization feasible is performed.
629 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
630 assert( (flags
& ~MEM_TypeMask
)==0 );
638 ** Delete any previous value and set the value stored in *pMem to NULL.
640 ** This routine calls the Mem.xDel destructor to dispose of values that
641 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
642 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
643 ** routine to invoke the destructor and deallocates Mem.zMalloc.
645 ** Use this routine to reset the Mem prior to insert a new value.
647 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
649 void sqlite3VdbeMemSetNull(Mem
*pMem
){
650 if( VdbeMemDynamic(pMem
) ){
651 vdbeMemClearExternAndSetNull(pMem
);
653 pMem
->flags
= MEM_Null
;
656 void sqlite3ValueSetNull(sqlite3_value
*p
){
657 sqlite3VdbeMemSetNull((Mem
*)p
);
661 ** Delete any previous value and set the value to be a BLOB of length
662 ** n containing all zeros.
664 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
665 sqlite3VdbeMemRelease(pMem
);
666 pMem
->flags
= MEM_Blob
|MEM_Zero
;
670 pMem
->enc
= SQLITE_UTF8
;
675 ** The pMem is known to contain content that needs to be destroyed prior
676 ** to a value change. So invoke the destructor, then set the value to
679 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
680 sqlite3VdbeMemSetNull(pMem
);
682 pMem
->flags
= MEM_Int
;
686 ** Delete any previous value and set the value stored in *pMem to val,
687 ** manifest type INTEGER.
689 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
690 if( VdbeMemDynamic(pMem
) ){
691 vdbeReleaseAndSetInt64(pMem
, val
);
694 pMem
->flags
= MEM_Int
;
698 #ifndef SQLITE_OMIT_FLOATING_POINT
700 ** Delete any previous value and set the value stored in *pMem to val,
701 ** manifest type REAL.
703 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
704 sqlite3VdbeMemSetNull(pMem
);
705 if( !sqlite3IsNaN(val
) ){
707 pMem
->flags
= MEM_Real
;
713 ** Delete any previous value and set the value of pMem to be an
714 ** empty boolean index.
716 void sqlite3VdbeMemSetRowSet(Mem
*pMem
){
717 sqlite3
*db
= pMem
->db
;
719 assert( (pMem
->flags
& MEM_RowSet
)==0 );
720 sqlite3VdbeMemRelease(pMem
);
721 pMem
->zMalloc
= sqlite3DbMallocRaw(db
, 64);
722 if( db
->mallocFailed
){
723 pMem
->flags
= MEM_Null
;
726 assert( pMem
->zMalloc
);
727 pMem
->szMalloc
= sqlite3DbMallocSize(db
, pMem
->zMalloc
);
728 pMem
->u
.pRowSet
= sqlite3RowSetInit(db
, pMem
->zMalloc
, pMem
->szMalloc
);
729 assert( pMem
->u
.pRowSet
!=0 );
730 pMem
->flags
= MEM_RowSet
;
735 ** Return true if the Mem object contains a TEXT or BLOB that is
736 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
738 int sqlite3VdbeMemTooBig(Mem
*p
){
740 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
742 if( p
->flags
& MEM_Zero
){
745 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
752 ** This routine prepares a memory cell for modification by breaking
753 ** its link to a shallow copy and by marking any current shallow
754 ** copies of this cell as invalid.
756 ** This is used for testing and debugging only - to make sure shallow
757 ** copies are not misused.
759 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
762 for(i
=1, pX
=&pVdbe
->aMem
[1]; i
<=pVdbe
->nMem
; i
++, pX
++){
763 if( pX
->pScopyFrom
==pMem
){
764 pX
->flags
|= MEM_Undefined
;
768 pMem
->pScopyFrom
= 0;
770 #endif /* SQLITE_DEBUG */
773 ** Size of struct Mem not including the Mem.zMalloc member.
775 #define MEMCELLSIZE offsetof(Mem,zMalloc)
778 ** Make an shallow copy of pFrom into pTo. Prior contents of
779 ** pTo are freed. The pFrom->z field is not duplicated. If
780 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
781 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
783 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
784 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
785 assert( pTo
->db
==pFrom
->db
);
786 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
787 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
788 if( (pFrom
->flags
&MEM_Static
)==0 ){
789 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
790 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
791 pTo
->flags
|= srcType
;
796 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
797 ** freed before the copy is made.
799 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
802 assert( pTo
->db
==pFrom
->db
);
803 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
804 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
805 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
806 pTo
->flags
&= ~MEM_Dyn
;
807 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
808 if( 0==(pFrom
->flags
&MEM_Static
) ){
809 pTo
->flags
|= MEM_Ephem
;
810 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
818 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
819 ** freed. If pFrom contains ephemeral data, a copy is made.
821 ** pFrom contains an SQL NULL when this routine returns.
823 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
824 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
825 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
826 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
828 sqlite3VdbeMemRelease(pTo
);
829 memcpy(pTo
, pFrom
, sizeof(Mem
));
830 pFrom
->flags
= MEM_Null
;
835 ** Change the value of a Mem to be a string or a BLOB.
837 ** The memory management strategy depends on the value of the xDel
838 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
839 ** string is copied into a (possibly existing) buffer managed by the
840 ** Mem structure. Otherwise, any existing buffer is freed and the
843 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
844 ** size limit) then no memory allocation occurs. If the string can be
845 ** stored without allocating memory, then it is. If a memory allocation
846 ** is required to store the string, then value of pMem is unchanged. In
847 ** either case, SQLITE_TOOBIG is returned.
849 int sqlite3VdbeMemSetStr(
850 Mem
*pMem
, /* Memory cell to set to string value */
851 const char *z
, /* String pointer */
852 int n
, /* Bytes in string, or negative */
853 u8 enc
, /* Encoding of z. 0 for BLOBs */
854 void (*xDel
)(void*) /* Destructor function */
856 int nByte
= n
; /* New value for pMem->n */
857 int iLimit
; /* Maximum allowed string or blob size */
858 u16 flags
= 0; /* New value for pMem->flags */
860 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
861 assert( (pMem
->flags
& MEM_RowSet
)==0 );
863 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
865 sqlite3VdbeMemSetNull(pMem
);
870 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
872 iLimit
= SQLITE_MAX_LENGTH
;
874 flags
= (enc
==0?MEM_Blob
:MEM_Str
);
877 if( enc
==SQLITE_UTF8
){
878 nByte
= sqlite3Strlen30(z
);
879 if( nByte
>iLimit
) nByte
= iLimit
+1;
881 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
886 /* The following block sets the new values of Mem.z and Mem.xDel. It
887 ** also sets a flag in local variable "flags" to indicate the memory
888 ** management (one of MEM_Dyn or MEM_Static).
890 if( xDel
==SQLITE_TRANSIENT
){
892 if( flags
&MEM_Term
){
893 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
896 return SQLITE_TOOBIG
;
898 testcase( nAlloc
==0 );
899 testcase( nAlloc
==31 );
900 testcase( nAlloc
==32 );
901 if( sqlite3VdbeMemClearAndResize(pMem
, MAX(nAlloc
,32)) ){
904 memcpy(pMem
->z
, z
, nAlloc
);
905 }else if( xDel
==SQLITE_DYNAMIC
){
906 sqlite3VdbeMemRelease(pMem
);
907 pMem
->zMalloc
= pMem
->z
= (char *)z
;
908 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
910 sqlite3VdbeMemRelease(pMem
);
913 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
918 pMem
->enc
= (enc
==0 ? SQLITE_UTF8
: enc
);
920 #ifndef SQLITE_OMIT_UTF16
921 if( pMem
->enc
!=SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
927 return SQLITE_TOOBIG
;
934 ** Move data out of a btree key or data field and into a Mem structure.
935 ** The data or key is taken from the entry that pCur is currently pointing
936 ** to. offset and amt determine what portion of the data or key to retrieve.
937 ** key is true to get the key or false to get data. The result is written
938 ** into the pMem element.
940 ** The pMem object must have been initialized. This routine will use
941 ** pMem->zMalloc to hold the content from the btree, if possible. New
942 ** pMem->zMalloc space will be allocated if necessary. The calling routine
943 ** is responsible for making sure that the pMem object is eventually
946 ** If this routine fails for any reason (malloc returns NULL or unable
947 ** to read from the disk) then the pMem is left in an inconsistent state.
949 int sqlite3VdbeMemFromBtree(
950 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
951 u32 offset
, /* Offset from the start of data to return bytes from. */
952 u32 amt
, /* Number of bytes to return. */
953 int key
, /* If true, retrieve from the btree key, not data. */
954 Mem
*pMem
/* OUT: Return data in this Mem structure. */
956 char *zData
; /* Data from the btree layer */
957 u32 available
= 0; /* Number of bytes available on the local btree page */
958 int rc
= SQLITE_OK
; /* Return code */
960 assert( sqlite3BtreeCursorIsValid(pCur
) );
961 assert( !VdbeMemDynamic(pMem
) );
963 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
964 ** that both the BtShared and database handle mutexes are held. */
965 assert( (pMem
->flags
& MEM_RowSet
)==0 );
967 zData
= (char *)sqlite3BtreeKeyFetch(pCur
, &available
);
969 zData
= (char *)sqlite3BtreeDataFetch(pCur
, &available
);
973 if( offset
+amt
<=available
){
974 pMem
->z
= &zData
[offset
];
975 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
978 pMem
->flags
= MEM_Null
;
979 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+2)) ){
981 rc
= sqlite3BtreeKey(pCur
, offset
, amt
, pMem
->z
);
983 rc
= sqlite3BtreeData(pCur
, offset
, amt
, pMem
->z
);
988 pMem
->flags
= MEM_Blob
|MEM_Term
;
991 sqlite3VdbeMemRelease(pMem
);
1000 ** The pVal argument is known to be a value other than NULL.
1001 ** Convert it into a string with encoding enc and return a pointer
1002 ** to a zero-terminated version of that string.
1004 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1006 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1007 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1008 assert( (pVal
->flags
& MEM_RowSet
)==0 );
1009 assert( (pVal
->flags
& (MEM_Null
))==0 );
1010 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1011 pVal
->flags
|= MEM_Str
;
1012 if( pVal
->flags
& MEM_Zero
){
1013 sqlite3VdbeMemExpandBlob(pVal
);
1015 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1016 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1018 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1019 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1020 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1024 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1026 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1027 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1029 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1030 || pVal
->db
->mallocFailed
);
1031 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1038 /* This function is only available internally, it is not part of the
1039 ** external API. It works in a similar way to sqlite3_value_text(),
1040 ** except the data returned is in the encoding specified by the second
1041 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1044 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1045 ** If that is the case, then the result must be aligned on an even byte
1048 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1049 if( !pVal
) return 0;
1050 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1051 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1052 assert( (pVal
->flags
& MEM_RowSet
)==0 );
1053 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1056 if( pVal
->flags
&MEM_Null
){
1059 return valueToText(pVal
, enc
);
1063 ** Create a new sqlite3_value object.
1065 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1066 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1068 p
->flags
= MEM_Null
;
1075 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1076 ** valueNew(). See comments above valueNew() for details.
1078 struct ValueNewStat4Ctx
{
1081 UnpackedRecord
**ppRec
;
1086 ** Allocate and return a pointer to a new sqlite3_value object. If
1087 ** the second argument to this function is NULL, the object is allocated
1088 ** by calling sqlite3ValueNew().
1090 ** Otherwise, if the second argument is non-zero, then this function is
1091 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1092 ** already been allocated, allocate the UnpackedRecord structure that
1093 ** that function will return to its caller here. Then return a pointer
1094 ** an sqlite3_value within the UnpackedRecord.a[] array.
1096 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1097 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1099 UnpackedRecord
*pRec
= p
->ppRec
[0];
1102 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1103 int nByte
; /* Bytes of space to allocate */
1104 int i
; /* Counter variable */
1105 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1107 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1108 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1110 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1111 if( pRec
->pKeyInfo
){
1112 assert( pRec
->pKeyInfo
->nField
+pRec
->pKeyInfo
->nXField
==nCol
);
1113 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1114 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1115 for(i
=0; i
<nCol
; i
++){
1116 pRec
->aMem
[i
].flags
= MEM_Null
;
1117 pRec
->aMem
[i
].db
= db
;
1120 sqlite3DbFree(db
, pRec
);
1124 if( pRec
==0 ) return 0;
1128 pRec
->nField
= p
->iVal
+1;
1129 return &pRec
->aMem
[p
->iVal
];
1132 UNUSED_PARAMETER(p
);
1133 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1134 return sqlite3ValueNew(db
);
1138 ** Extract a value from the supplied expression in the manner described
1139 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1140 ** using valueNew().
1142 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1143 ** has been allocated, it is freed before returning. Or, if pCtx is not
1144 ** NULL, it is assumed that the caller will free any allocated object
1147 static int valueFromExpr(
1148 sqlite3
*db
, /* The database connection */
1149 Expr
*pExpr
, /* The expression to evaluate */
1150 u8 enc
, /* Encoding to use */
1151 u8 affinity
, /* Affinity to use */
1152 sqlite3_value
**ppVal
, /* Write the new value here */
1153 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1157 sqlite3_value
*pVal
= 0;
1159 const char *zNeg
= "";
1166 while( (op
= pExpr
->op
)==TK_UPLUS
) pExpr
= pExpr
->pLeft
;
1167 if( NEVER(op
==TK_REGISTER
) ) op
= pExpr
->op2
;
1170 u8 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1171 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1172 testcase( rc
!=SQLITE_OK
);
1174 sqlite3VdbeMemCast(*ppVal
, aff
, SQLITE_UTF8
);
1175 sqlite3ValueApplyAffinity(*ppVal
, affinity
, SQLITE_UTF8
);
1180 /* Handle negative integers in a single step. This is needed in the
1181 ** case when the value is -9223372036854775808.
1184 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1185 pExpr
= pExpr
->pLeft
;
1191 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1192 pVal
= valueNew(db
, pCtx
);
1193 if( pVal
==0 ) goto no_mem
;
1194 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1195 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1197 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1198 if( zVal
==0 ) goto no_mem
;
1199 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1201 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_NONE
){
1202 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1204 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1206 if( pVal
->flags
& (MEM_Int
|MEM_Real
) ) pVal
->flags
&= ~MEM_Str
;
1207 if( enc
!=SQLITE_UTF8
){
1208 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1210 }else if( op
==TK_UMINUS
) {
1211 /* This branch happens for multiple negative signs. Ex: -(-5) */
1212 if( SQLITE_OK
==sqlite3ValueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
)
1215 sqlite3VdbeMemNumerify(pVal
);
1216 if( pVal
->flags
& MEM_Real
){
1217 pVal
->u
.r
= -pVal
->u
.r
;
1218 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1219 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1220 MemSetTypeFlag(pVal
, MEM_Real
);
1222 pVal
->u
.i
= -pVal
->u
.i
;
1224 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1226 }else if( op
==TK_NULL
){
1227 pVal
= valueNew(db
, pCtx
);
1228 if( pVal
==0 ) goto no_mem
;
1230 #ifndef SQLITE_OMIT_BLOB_LITERAL
1231 else if( op
==TK_BLOB
){
1233 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1234 assert( pExpr
->u
.zToken
[1]=='\'' );
1235 pVal
= valueNew(db
, pCtx
);
1236 if( !pVal
) goto no_mem
;
1237 zVal
= &pExpr
->u
.zToken
[2];
1238 nVal
= sqlite3Strlen30(zVal
)-1;
1239 assert( zVal
[nVal
]=='\'' );
1240 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1249 db
->mallocFailed
= 1;
1250 sqlite3DbFree(db
, zVal
);
1251 assert( *ppVal
==0 );
1252 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1253 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1255 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1257 return SQLITE_NOMEM
;
1261 ** Create a new sqlite3_value object, containing the value of pExpr.
1263 ** This only works for very simple expressions that consist of one constant
1264 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1265 ** be converted directly into a value, then the value is allocated and
1266 ** a pointer written to *ppVal. The caller is responsible for deallocating
1267 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1268 ** cannot be converted to a value, then *ppVal is set to NULL.
1270 int sqlite3ValueFromExpr(
1271 sqlite3
*db
, /* The database connection */
1272 Expr
*pExpr
, /* The expression to evaluate */
1273 u8 enc
, /* Encoding to use */
1274 u8 affinity
, /* Affinity to use */
1275 sqlite3_value
**ppVal
/* Write the new value here */
1277 return valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0);
1280 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1282 ** The implementation of the sqlite_record() function. This function accepts
1283 ** a single argument of any type. The return value is a formatted database
1284 ** record (a blob) containing the argument value.
1286 ** This is used to convert the value stored in the 'sample' column of the
1287 ** sqlite_stat3 table to the record format SQLite uses internally.
1289 static void recordFunc(
1290 sqlite3_context
*context
,
1292 sqlite3_value
**argv
1294 const int file_format
= 1;
1295 int iSerial
; /* Serial type */
1296 int nSerial
; /* Bytes of space for iSerial as varint */
1297 int nVal
; /* Bytes of space required for argv[0] */
1302 UNUSED_PARAMETER( argc
);
1303 iSerial
= sqlite3VdbeSerialType(argv
[0], file_format
);
1304 nSerial
= sqlite3VarintLen(iSerial
);
1305 nVal
= sqlite3VdbeSerialTypeLen(iSerial
);
1306 db
= sqlite3_context_db_handle(context
);
1308 nRet
= 1 + nSerial
+ nVal
;
1309 aRet
= sqlite3DbMallocRaw(db
, nRet
);
1311 sqlite3_result_error_nomem(context
);
1313 aRet
[0] = nSerial
+1;
1314 putVarint32(&aRet
[1], iSerial
);
1315 sqlite3VdbeSerialPut(&aRet
[1+nSerial
], argv
[0], iSerial
);
1316 sqlite3_result_blob(context
, aRet
, nRet
, SQLITE_TRANSIENT
);
1317 sqlite3DbFree(db
, aRet
);
1322 ** Register built-in functions used to help read ANALYZE data.
1324 void sqlite3AnalyzeFunctions(void){
1325 static SQLITE_WSD FuncDef aAnalyzeTableFuncs
[] = {
1326 FUNCTION(sqlite_record
, 1, 0, 0, recordFunc
),
1329 FuncDefHash
*pHash
= &GLOBAL(FuncDefHash
, sqlite3GlobalFunctions
);
1330 FuncDef
*aFunc
= (FuncDef
*)&GLOBAL(FuncDef
, aAnalyzeTableFuncs
);
1331 for(i
=0; i
<ArraySize(aAnalyzeTableFuncs
); i
++){
1332 sqlite3FuncDefInsert(pHash
, &aFunc
[i
]);
1337 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1339 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1340 ** pAlloc if one does not exist and the new value is added to the
1341 ** UnpackedRecord object.
1343 ** A value is extracted in the following cases:
1345 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1347 ** * The expression is a bound variable, and this is a reprepare, or
1349 ** * The expression is a literal value.
1351 ** On success, *ppVal is made to point to the extracted value. The caller
1352 ** is responsible for ensuring that the value is eventually freed.
1354 static int stat4ValueFromExpr(
1355 Parse
*pParse
, /* Parse context */
1356 Expr
*pExpr
, /* The expression to extract a value from */
1357 u8 affinity
, /* Affinity to use */
1358 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1359 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1362 sqlite3_value
*pVal
= 0;
1363 sqlite3
*db
= pParse
->db
;
1365 /* Skip over any TK_COLLATE nodes */
1366 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1369 pVal
= valueNew(db
, pAlloc
);
1371 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1373 }else if( pExpr
->op
==TK_VARIABLE
1374 || NEVER(pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_VARIABLE
)
1377 int iBindVar
= pExpr
->iColumn
;
1378 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1379 if( (v
= pParse
->pReprepare
)!=0 ){
1380 pVal
= valueNew(db
, pAlloc
);
1382 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1383 if( rc
==SQLITE_OK
){
1384 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1386 pVal
->db
= pParse
->db
;
1390 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1393 assert( pVal
==0 || pVal
->db
==db
);
1399 ** This function is used to allocate and populate UnpackedRecord
1400 ** structures intended to be compared against sample index keys stored
1401 ** in the sqlite_stat4 table.
1403 ** A single call to this function attempts to populates field iVal (leftmost
1404 ** is 0 etc.) of the unpacked record with a value extracted from expression
1405 ** pExpr. Extraction of values is possible if:
1407 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1409 ** * The expression is a bound variable, and this is a reprepare, or
1411 ** * The sqlite3ValueFromExpr() function is able to extract a value
1412 ** from the expression (i.e. the expression is a literal value).
1414 ** If a value can be extracted, the affinity passed as the 5th argument
1415 ** is applied to it before it is copied into the UnpackedRecord. Output
1416 ** parameter *pbOk is set to true if a value is extracted, or false
1419 ** When this function is called, *ppRec must either point to an object
1420 ** allocated by an earlier call to this function, or must be NULL. If it
1421 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1422 ** is allocated (and *ppRec set to point to it) before returning.
1424 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1425 ** error if a value cannot be extracted from pExpr. If an error does
1426 ** occur, an SQLite error code is returned.
1428 int sqlite3Stat4ProbeSetValue(
1429 Parse
*pParse
, /* Parse context */
1430 Index
*pIdx
, /* Index being probed */
1431 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1432 Expr
*pExpr
, /* The expression to extract a value from */
1433 u8 affinity
, /* Affinity to use */
1434 int iVal
, /* Array element to populate */
1435 int *pbOk
/* OUT: True if value was extracted */
1438 sqlite3_value
*pVal
= 0;
1439 struct ValueNewStat4Ctx alloc
;
1441 alloc
.pParse
= pParse
;
1443 alloc
.ppRec
= ppRec
;
1446 rc
= stat4ValueFromExpr(pParse
, pExpr
, affinity
, &alloc
, &pVal
);
1447 assert( pVal
==0 || pVal
->db
==pParse
->db
);
1453 ** Attempt to extract a value from expression pExpr using the methods
1454 ** as described for sqlite3Stat4ProbeSetValue() above.
1456 ** If successful, set *ppVal to point to a new value object and return
1457 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1458 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1459 ** does occur, return an SQLite error code. The final value of *ppVal
1460 ** is undefined in this case.
1462 int sqlite3Stat4ValueFromExpr(
1463 Parse
*pParse
, /* Parse context */
1464 Expr
*pExpr
, /* The expression to extract a value from */
1465 u8 affinity
, /* Affinity to use */
1466 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1468 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1472 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1473 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1474 ** sqlite3_value object is allocated.
1476 ** If *ppVal is initially NULL then the caller is responsible for
1477 ** ensuring that the value written into *ppVal is eventually freed.
1479 int sqlite3Stat4Column(
1480 sqlite3
*db
, /* Database handle */
1481 const void *pRec
, /* Pointer to buffer containing record */
1482 int nRec
, /* Size of buffer pRec in bytes */
1483 int iCol
, /* Column to extract */
1484 sqlite3_value
**ppVal
/* OUT: Extracted value */
1486 u32 t
; /* a column type code */
1487 int nHdr
; /* Size of the header in the record */
1488 int iHdr
; /* Next unread header byte */
1489 int iField
; /* Next unread data byte */
1490 int szField
; /* Size of the current data field */
1491 int i
; /* Column index */
1492 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1493 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1496 iHdr
= getVarint32(a
, nHdr
);
1497 if( nHdr
>nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1499 for(i
=0; i
<=iCol
; i
++){
1500 iHdr
+= getVarint32(&a
[iHdr
], t
);
1501 testcase( iHdr
==nHdr
);
1502 testcase( iHdr
==nHdr
+1 );
1503 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1504 szField
= sqlite3VdbeSerialTypeLen(t
);
1507 testcase( iField
==nRec
);
1508 testcase( iField
==nRec
+1 );
1509 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1511 pMem
= *ppVal
= sqlite3ValueNew(db
);
1512 if( pMem
==0 ) return SQLITE_NOMEM
;
1514 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1515 pMem
->enc
= ENC(db
);
1520 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1521 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1524 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1527 int nCol
= pRec
->pKeyInfo
->nField
+pRec
->pKeyInfo
->nXField
;
1528 Mem
*aMem
= pRec
->aMem
;
1529 sqlite3
*db
= aMem
[0].db
;
1530 for(i
=0; i
<nCol
; i
++){
1531 if( aMem
[i
].szMalloc
) sqlite3DbFree(db
, aMem
[i
].zMalloc
);
1533 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1534 sqlite3DbFree(db
, pRec
);
1537 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1540 ** Change the string value of an sqlite3_value object
1542 void sqlite3ValueSetStr(
1543 sqlite3_value
*v
, /* Value to be set */
1544 int n
, /* Length of string z */
1545 const void *z
, /* Text of the new string */
1546 u8 enc
, /* Encoding to use */
1547 void (*xDel
)(void*) /* Destructor for the string */
1549 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1553 ** Free an sqlite3_value object
1555 void sqlite3ValueFree(sqlite3_value
*v
){
1557 sqlite3VdbeMemRelease((Mem
*)v
);
1558 sqlite3DbFree(((Mem
*)v
)->db
, v
);
1562 ** Return the number of bytes in the sqlite3_value object assuming
1563 ** that it uses the encoding "enc"
1565 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1566 Mem
*p
= (Mem
*)pVal
;
1567 if( (p
->flags
& MEM_Blob
)!=0 || sqlite3ValueText(pVal
, enc
) ){
1568 if( p
->flags
& MEM_Zero
){
1569 return p
->n
+ p
->u
.nZero
;