4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Return the estimated number of output rows from a WHERE clause
25 u64
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
26 return sqlite3LogEstToInt(pWInfo
->nRowOut
);
30 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
31 ** WHERE clause returns outputs for DISTINCT processing.
33 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
34 return pWInfo
->eDistinct
;
38 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
39 ** Return FALSE if the output needs to be sorted.
41 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
42 return pWInfo
->nOBSat
;
46 ** Return the VDBE address or label to jump to in order to continue
47 ** immediately with the next row of a WHERE clause.
49 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
50 assert( pWInfo
->iContinue
!=0 );
51 return pWInfo
->iContinue
;
55 ** Return the VDBE address or label to jump to in order to break
56 ** out of a WHERE loop.
58 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
59 return pWInfo
->iBreak
;
63 ** Return TRUE if an UPDATE or DELETE statement can operate directly on
64 ** the rowids returned by a WHERE clause. Return FALSE if doing an
65 ** UPDATE or DELETE might change subsequent WHERE clause results.
67 ** If the ONEPASS optimization is used (if this routine returns true)
68 ** then also write the indices of open cursors used by ONEPASS
69 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
70 ** table and iaCur[1] gets the cursor used by an auxiliary index.
71 ** Either value may be -1, indicating that cursor is not used.
72 ** Any cursors returned will have been opened for writing.
74 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
75 ** unable to use the ONEPASS optimization.
77 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
78 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
79 return pWInfo
->okOnePass
;
83 ** Move the content of pSrc into pDest
85 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
87 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
91 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
93 ** The new entry might overwrite an existing entry, or it might be
94 ** appended, or it might be discarded. Do whatever is the right thing
95 ** so that pSet keeps the N_OR_COST best entries seen so far.
97 static int whereOrInsert(
98 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
99 Bitmask prereq
, /* Prerequisites of the new entry */
100 LogEst rRun
, /* Run-cost of the new entry */
101 LogEst nOut
/* Number of outputs for the new entry */
105 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
106 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
107 goto whereOrInsert_done
;
109 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
113 if( pSet
->n
<N_OR_COST
){
114 p
= &pSet
->a
[pSet
->n
++];
118 for(i
=1; i
<pSet
->n
; i
++){
119 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
121 if( p
->rRun
<=rRun
) return 0;
126 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
131 ** Initialize a preallocated WhereClause structure.
133 static void whereClauseInit(
134 WhereClause
*pWC
, /* The WhereClause to be initialized */
135 WhereInfo
*pWInfo
/* The WHERE processing context */
137 pWC
->pWInfo
= pWInfo
;
140 pWC
->nSlot
= ArraySize(pWC
->aStatic
);
141 pWC
->a
= pWC
->aStatic
;
144 /* Forward reference */
145 static void whereClauseClear(WhereClause
*);
148 ** Deallocate all memory associated with a WhereOrInfo object.
150 static void whereOrInfoDelete(sqlite3
*db
, WhereOrInfo
*p
){
151 whereClauseClear(&p
->wc
);
152 sqlite3DbFree(db
, p
);
156 ** Deallocate all memory associated with a WhereAndInfo object.
158 static void whereAndInfoDelete(sqlite3
*db
, WhereAndInfo
*p
){
159 whereClauseClear(&p
->wc
);
160 sqlite3DbFree(db
, p
);
164 ** Deallocate a WhereClause structure. The WhereClause structure
165 ** itself is not freed. This routine is the inverse of whereClauseInit().
167 static void whereClauseClear(WhereClause
*pWC
){
170 sqlite3
*db
= pWC
->pWInfo
->pParse
->db
;
171 for(i
=pWC
->nTerm
-1, a
=pWC
->a
; i
>=0; i
--, a
++){
172 if( a
->wtFlags
& TERM_DYNAMIC
){
173 sqlite3ExprDelete(db
, a
->pExpr
);
175 if( a
->wtFlags
& TERM_ORINFO
){
176 whereOrInfoDelete(db
, a
->u
.pOrInfo
);
177 }else if( a
->wtFlags
& TERM_ANDINFO
){
178 whereAndInfoDelete(db
, a
->u
.pAndInfo
);
181 if( pWC
->a
!=pWC
->aStatic
){
182 sqlite3DbFree(db
, pWC
->a
);
187 ** Add a single new WhereTerm entry to the WhereClause object pWC.
188 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
189 ** The index in pWC->a[] of the new WhereTerm is returned on success.
190 ** 0 is returned if the new WhereTerm could not be added due to a memory
191 ** allocation error. The memory allocation failure will be recorded in
192 ** the db->mallocFailed flag so that higher-level functions can detect it.
194 ** This routine will increase the size of the pWC->a[] array as necessary.
196 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
197 ** for freeing the expression p is assumed by the WhereClause object pWC.
198 ** This is true even if this routine fails to allocate a new WhereTerm.
200 ** WARNING: This routine might reallocate the space used to store
201 ** WhereTerms. All pointers to WhereTerms should be invalidated after
202 ** calling this routine. Such pointers may be reinitialized by referencing
203 ** the pWC->a[] array.
205 static int whereClauseInsert(WhereClause
*pWC
, Expr
*p
, u8 wtFlags
){
208 testcase( wtFlags
& TERM_VIRTUAL
);
209 if( pWC
->nTerm
>=pWC
->nSlot
){
210 WhereTerm
*pOld
= pWC
->a
;
211 sqlite3
*db
= pWC
->pWInfo
->pParse
->db
;
212 pWC
->a
= sqlite3DbMallocRaw(db
, sizeof(pWC
->a
[0])*pWC
->nSlot
*2 );
214 if( wtFlags
& TERM_DYNAMIC
){
215 sqlite3ExprDelete(db
, p
);
220 memcpy(pWC
->a
, pOld
, sizeof(pWC
->a
[0])*pWC
->nTerm
);
221 if( pOld
!=pWC
->aStatic
){
222 sqlite3DbFree(db
, pOld
);
224 pWC
->nSlot
= sqlite3DbMallocSize(db
, pWC
->a
)/sizeof(pWC
->a
[0]);
226 pTerm
= &pWC
->a
[idx
= pWC
->nTerm
++];
227 if( p
&& ExprHasProperty(p
, EP_Unlikely
) ){
228 pTerm
->truthProb
= sqlite3LogEst(p
->iTable
) - 99;
230 pTerm
->truthProb
= 1;
232 pTerm
->pExpr
= sqlite3ExprSkipCollate(p
);
233 pTerm
->wtFlags
= wtFlags
;
240 ** This routine identifies subexpressions in the WHERE clause where
241 ** each subexpression is separated by the AND operator or some other
242 ** operator specified in the op parameter. The WhereClause structure
243 ** is filled with pointers to subexpressions. For example:
245 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
246 ** \________/ \_______________/ \________________/
247 ** slot[0] slot[1] slot[2]
249 ** The original WHERE clause in pExpr is unaltered. All this routine
250 ** does is make slot[] entries point to substructure within pExpr.
252 ** In the previous sentence and in the diagram, "slot[]" refers to
253 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
254 ** all terms of the WHERE clause.
256 static void whereSplit(WhereClause
*pWC
, Expr
*pExpr
, u8 op
){
258 if( pExpr
==0 ) return;
260 whereClauseInsert(pWC
, pExpr
, 0);
262 whereSplit(pWC
, pExpr
->pLeft
, op
);
263 whereSplit(pWC
, pExpr
->pRight
, op
);
268 ** Initialize a WhereMaskSet object
270 #define initMaskSet(P) (P)->n=0
273 ** Return the bitmask for the given cursor number. Return 0 if
274 ** iCursor is not in the set.
276 static Bitmask
getMask(WhereMaskSet
*pMaskSet
, int iCursor
){
278 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
279 for(i
=0; i
<pMaskSet
->n
; i
++){
280 if( pMaskSet
->ix
[i
]==iCursor
){
288 ** Create a new mask for cursor iCursor.
290 ** There is one cursor per table in the FROM clause. The number of
291 ** tables in the FROM clause is limited by a test early in the
292 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
293 ** array will never overflow.
295 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
296 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
297 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
301 ** These routines walk (recursively) an expression tree and generate
302 ** a bitmask indicating which tables are used in that expression
305 static Bitmask
exprListTableUsage(WhereMaskSet
*, ExprList
*);
306 static Bitmask
exprSelectTableUsage(WhereMaskSet
*, Select
*);
307 static Bitmask
exprTableUsage(WhereMaskSet
*pMaskSet
, Expr
*p
){
310 if( p
->op
==TK_COLUMN
){
311 mask
= getMask(pMaskSet
, p
->iTable
);
314 mask
= exprTableUsage(pMaskSet
, p
->pRight
);
315 mask
|= exprTableUsage(pMaskSet
, p
->pLeft
);
316 if( ExprHasProperty(p
, EP_xIsSelect
) ){
317 mask
|= exprSelectTableUsage(pMaskSet
, p
->x
.pSelect
);
319 mask
|= exprListTableUsage(pMaskSet
, p
->x
.pList
);
323 static Bitmask
exprListTableUsage(WhereMaskSet
*pMaskSet
, ExprList
*pList
){
327 for(i
=0; i
<pList
->nExpr
; i
++){
328 mask
|= exprTableUsage(pMaskSet
, pList
->a
[i
].pExpr
);
333 static Bitmask
exprSelectTableUsage(WhereMaskSet
*pMaskSet
, Select
*pS
){
336 SrcList
*pSrc
= pS
->pSrc
;
337 mask
|= exprListTableUsage(pMaskSet
, pS
->pEList
);
338 mask
|= exprListTableUsage(pMaskSet
, pS
->pGroupBy
);
339 mask
|= exprListTableUsage(pMaskSet
, pS
->pOrderBy
);
340 mask
|= exprTableUsage(pMaskSet
, pS
->pWhere
);
341 mask
|= exprTableUsage(pMaskSet
, pS
->pHaving
);
342 if( ALWAYS(pSrc
!=0) ){
344 for(i
=0; i
<pSrc
->nSrc
; i
++){
345 mask
|= exprSelectTableUsage(pMaskSet
, pSrc
->a
[i
].pSelect
);
346 mask
|= exprTableUsage(pMaskSet
, pSrc
->a
[i
].pOn
);
355 ** Return TRUE if the given operator is one of the operators that is
356 ** allowed for an indexable WHERE clause term. The allowed operators are
357 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
359 static int allowedOp(int op
){
360 assert( TK_GT
>TK_EQ
&& TK_GT
<TK_GE
);
361 assert( TK_LT
>TK_EQ
&& TK_LT
<TK_GE
);
362 assert( TK_LE
>TK_EQ
&& TK_LE
<TK_GE
);
363 assert( TK_GE
==TK_EQ
+4 );
364 return op
==TK_IN
|| (op
>=TK_EQ
&& op
<=TK_GE
) || op
==TK_ISNULL
;
368 ** Commute a comparison operator. Expressions of the form "X op Y"
369 ** are converted into "Y op X".
371 ** If left/right precedence rules come into play when determining the
372 ** collating sequence, then COLLATE operators are adjusted to ensure
373 ** that the collating sequence does not change. For example:
374 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
375 ** the left hand side of a comparison overrides any collation sequence
376 ** attached to the right. For the same reason the EP_Collate flag
379 static void exprCommute(Parse
*pParse
, Expr
*pExpr
){
380 u16 expRight
= (pExpr
->pRight
->flags
& EP_Collate
);
381 u16 expLeft
= (pExpr
->pLeft
->flags
& EP_Collate
);
382 assert( allowedOp(pExpr
->op
) && pExpr
->op
!=TK_IN
);
383 if( expRight
==expLeft
){
384 /* Either X and Y both have COLLATE operator or neither do */
386 /* Both X and Y have COLLATE operators. Make sure X is always
387 ** used by clearing the EP_Collate flag from Y. */
388 pExpr
->pRight
->flags
&= ~EP_Collate
;
389 }else if( sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
)!=0 ){
390 /* Neither X nor Y have COLLATE operators, but X has a non-default
391 ** collating sequence. So add the EP_Collate marker on X to cause
392 ** it to be searched first. */
393 pExpr
->pLeft
->flags
|= EP_Collate
;
396 SWAP(Expr
*,pExpr
->pRight
,pExpr
->pLeft
);
397 if( pExpr
->op
>=TK_GT
){
398 assert( TK_LT
==TK_GT
+2 );
399 assert( TK_GE
==TK_LE
+2 );
400 assert( TK_GT
>TK_EQ
);
401 assert( TK_GT
<TK_LE
);
402 assert( pExpr
->op
>=TK_GT
&& pExpr
->op
<=TK_GE
);
403 pExpr
->op
= ((pExpr
->op
-TK_GT
)^2)+TK_GT
;
408 ** Translate from TK_xx operator to WO_xx bitmask.
410 static u16
operatorMask(int op
){
412 assert( allowedOp(op
) );
415 }else if( op
==TK_ISNULL
){
418 assert( (WO_EQ
<<(op
-TK_EQ
)) < 0x7fff );
419 c
= (u16
)(WO_EQ
<<(op
-TK_EQ
));
421 assert( op
!=TK_ISNULL
|| c
==WO_ISNULL
);
422 assert( op
!=TK_IN
|| c
==WO_IN
);
423 assert( op
!=TK_EQ
|| c
==WO_EQ
);
424 assert( op
!=TK_LT
|| c
==WO_LT
);
425 assert( op
!=TK_LE
|| c
==WO_LE
);
426 assert( op
!=TK_GT
|| c
==WO_GT
);
427 assert( op
!=TK_GE
|| c
==WO_GE
);
432 ** Advance to the next WhereTerm that matches according to the criteria
433 ** established when the pScan object was initialized by whereScanInit().
434 ** Return NULL if there are no more matching WhereTerms.
436 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
437 int iCur
; /* The cursor on the LHS of the term */
438 int iColumn
; /* The column on the LHS of the term. -1 for IPK */
439 Expr
*pX
; /* An expression being tested */
440 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
441 WhereTerm
*pTerm
; /* The term being tested */
442 int k
= pScan
->k
; /* Where to start scanning */
444 while( pScan
->iEquiv
<=pScan
->nEquiv
){
445 iCur
= pScan
->aEquiv
[pScan
->iEquiv
-2];
446 iColumn
= pScan
->aEquiv
[pScan
->iEquiv
-1];
447 while( (pWC
= pScan
->pWC
)!=0 ){
448 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
449 if( pTerm
->leftCursor
==iCur
450 && pTerm
->u
.leftColumn
==iColumn
451 && (pScan
->iEquiv
<=2 || !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
453 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
454 && pScan
->nEquiv
<ArraySize(pScan
->aEquiv
)
457 pX
= sqlite3ExprSkipCollate(pTerm
->pExpr
->pRight
);
458 assert( pX
->op
==TK_COLUMN
);
459 for(j
=0; j
<pScan
->nEquiv
; j
+=2){
460 if( pScan
->aEquiv
[j
]==pX
->iTable
461 && pScan
->aEquiv
[j
+1]==pX
->iColumn
){
465 if( j
==pScan
->nEquiv
){
466 pScan
->aEquiv
[j
] = pX
->iTable
;
467 pScan
->aEquiv
[j
+1] = pX
->iColumn
;
471 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
472 /* Verify the affinity and collating sequence match */
473 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
475 Parse
*pParse
= pWC
->pWInfo
->pParse
;
477 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
481 pColl
= sqlite3BinaryCompareCollSeq(pParse
,
482 pX
->pLeft
, pX
->pRight
);
483 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
484 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
488 if( (pTerm
->eOperator
& WO_EQ
)!=0
489 && (pX
= pTerm
->pExpr
->pRight
)->op
==TK_COLUMN
490 && pX
->iTable
==pScan
->aEquiv
[0]
491 && pX
->iColumn
==pScan
->aEquiv
[1]
500 pScan
->pWC
= pScan
->pWC
->pOuter
;
503 pScan
->pWC
= pScan
->pOrigWC
;
511 ** Initialize a WHERE clause scanner object. Return a pointer to the
512 ** first match. Return NULL if there are no matches.
514 ** The scanner will be searching the WHERE clause pWC. It will look
515 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
516 ** iCur. The <op> must be one of the operators described by opMask.
518 ** If the search is for X and the WHERE clause contains terms of the
519 ** form X=Y then this routine might also return terms of the form
520 ** "Y <op> <expr>". The number of levels of transitivity is limited,
521 ** but is enough to handle most commonly occurring SQL statements.
523 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
526 static WhereTerm
*whereScanInit(
527 WhereScan
*pScan
, /* The WhereScan object being initialized */
528 WhereClause
*pWC
, /* The WHERE clause to be scanned */
529 int iCur
, /* Cursor to scan for */
530 int iColumn
, /* Column to scan for */
531 u32 opMask
, /* Operator(s) to scan for */
532 Index
*pIdx
/* Must be compatible with this index */
536 /* memset(pScan, 0, sizeof(*pScan)); */
537 pScan
->pOrigWC
= pWC
;
539 if( pIdx
&& iColumn
>=0 ){
540 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
541 for(j
=0; pIdx
->aiColumn
[j
]!=iColumn
; j
++){
542 if( NEVER(j
>pIdx
->nColumn
) ) return 0;
544 pScan
->zCollName
= pIdx
->azColl
[j
];
547 pScan
->zCollName
= 0;
549 pScan
->opMask
= opMask
;
551 pScan
->aEquiv
[0] = iCur
;
552 pScan
->aEquiv
[1] = iColumn
;
555 return whereScanNext(pScan
);
559 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
560 ** where X is a reference to the iColumn of table iCur and <op> is one of
561 ** the WO_xx operator codes specified by the op parameter.
562 ** Return a pointer to the term. Return 0 if not found.
564 ** The term returned might by Y=<expr> if there is another constraint in
565 ** the WHERE clause that specifies that X=Y. Any such constraints will be
566 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
567 ** aEquiv[] array holds X and all its equivalents, with each SQL variable
568 ** taking up two slots in aEquiv[]. The first slot is for the cursor number
569 ** and the second is for the column number. There are 22 slots in aEquiv[]
570 ** so that means we can look for X plus up to 10 other equivalent values.
571 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
572 ** and ... and A9=A10 and A10=<expr>.
574 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
575 ** then try for the one with no dependencies on <expr> - in other words where
576 ** <expr> is a constant expression of some kind. Only return entries of
577 ** the form "X <op> Y" where Y is a column in another table if no terms of
578 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
579 ** exist, try to return a term that does not use WO_EQUIV.
581 static WhereTerm
*findTerm(
582 WhereClause
*pWC
, /* The WHERE clause to be searched */
583 int iCur
, /* Cursor number of LHS */
584 int iColumn
, /* Column number of LHS */
585 Bitmask notReady
, /* RHS must not overlap with this mask */
586 u32 op
, /* Mask of WO_xx values describing operator */
587 Index
*pIdx
/* Must be compatible with this index, if not NULL */
589 WhereTerm
*pResult
= 0;
593 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
595 if( (p
->prereqRight
& notReady
)==0 ){
596 if( p
->prereqRight
==0 && (p
->eOperator
&WO_EQ
)!=0 ){
599 if( pResult
==0 ) pResult
= p
;
601 p
= whereScanNext(&scan
);
606 /* Forward reference */
607 static void exprAnalyze(SrcList
*, WhereClause
*, int);
610 ** Call exprAnalyze on all terms in a WHERE clause.
612 static void exprAnalyzeAll(
613 SrcList
*pTabList
, /* the FROM clause */
614 WhereClause
*pWC
/* the WHERE clause to be analyzed */
617 for(i
=pWC
->nTerm
-1; i
>=0; i
--){
618 exprAnalyze(pTabList
, pWC
, i
);
622 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
624 ** Check to see if the given expression is a LIKE or GLOB operator that
625 ** can be optimized using inequality constraints. Return TRUE if it is
626 ** so and false if not.
628 ** In order for the operator to be optimizible, the RHS must be a string
629 ** literal that does not begin with a wildcard.
631 static int isLikeOrGlob(
632 Parse
*pParse
, /* Parsing and code generating context */
633 Expr
*pExpr
, /* Test this expression */
634 Expr
**ppPrefix
, /* Pointer to TK_STRING expression with pattern prefix */
635 int *pisComplete
, /* True if the only wildcard is % in the last character */
636 int *pnoCase
/* True if uppercase is equivalent to lowercase */
638 const char *z
= 0; /* String on RHS of LIKE operator */
639 Expr
*pRight
, *pLeft
; /* Right and left size of LIKE operator */
640 ExprList
*pList
; /* List of operands to the LIKE operator */
641 int c
; /* One character in z[] */
642 int cnt
; /* Number of non-wildcard prefix characters */
643 char wc
[3]; /* Wildcard characters */
644 sqlite3
*db
= pParse
->db
; /* Database connection */
645 sqlite3_value
*pVal
= 0;
646 int op
; /* Opcode of pRight */
648 if( !sqlite3IsLikeFunction(db
, pExpr
, pnoCase
, wc
) ){
652 if( *pnoCase
) return 0;
654 pList
= pExpr
->x
.pList
;
655 pLeft
= pList
->a
[1].pExpr
;
656 if( pLeft
->op
!=TK_COLUMN
657 || sqlite3ExprAffinity(pLeft
)!=SQLITE_AFF_TEXT
658 || IsVirtual(pLeft
->pTab
)
660 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
661 ** be the name of an indexed column with TEXT affinity. */
664 assert( pLeft
->iColumn
!=(-1) ); /* Because IPK never has AFF_TEXT */
666 pRight
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
668 if( op
==TK_VARIABLE
){
669 Vdbe
*pReprepare
= pParse
->pReprepare
;
670 int iCol
= pRight
->iColumn
;
671 pVal
= sqlite3VdbeGetBoundValue(pReprepare
, iCol
, SQLITE_AFF_NONE
);
672 if( pVal
&& sqlite3_value_type(pVal
)==SQLITE_TEXT
){
673 z
= (char *)sqlite3_value_text(pVal
);
675 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iCol
);
676 assert( pRight
->op
==TK_VARIABLE
|| pRight
->op
==TK_REGISTER
);
677 }else if( op
==TK_STRING
){
678 z
= pRight
->u
.zToken
;
682 while( (c
=z
[cnt
])!=0 && c
!=wc
[0] && c
!=wc
[1] && c
!=wc
[2] ){
685 if( cnt
!=0 && 255!=(u8
)z
[cnt
-1] ){
687 *pisComplete
= c
==wc
[0] && z
[cnt
+1]==0;
688 pPrefix
= sqlite3Expr(db
, TK_STRING
, z
);
689 if( pPrefix
) pPrefix
->u
.zToken
[cnt
] = 0;
691 if( op
==TK_VARIABLE
){
692 Vdbe
*v
= pParse
->pVdbe
;
693 sqlite3VdbeSetVarmask(v
, pRight
->iColumn
);
694 if( *pisComplete
&& pRight
->u
.zToken
[1] ){
695 /* If the rhs of the LIKE expression is a variable, and the current
696 ** value of the variable means there is no need to invoke the LIKE
697 ** function, then no OP_Variable will be added to the program.
698 ** This causes problems for the sqlite3_bind_parameter_name()
699 ** API. To work around them, add a dummy OP_Variable here.
701 int r1
= sqlite3GetTempReg(pParse
);
702 sqlite3ExprCodeTarget(pParse
, pRight
, r1
);
703 sqlite3VdbeChangeP3(v
, sqlite3VdbeCurrentAddr(v
)-1, 0);
704 sqlite3ReleaseTempReg(pParse
, r1
);
712 sqlite3ValueFree(pVal
);
715 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
718 #ifndef SQLITE_OMIT_VIRTUALTABLE
720 ** Check to see if the given expression is of the form
724 ** If it is then return TRUE. If not, return FALSE.
726 static int isMatchOfColumn(
727 Expr
*pExpr
/* Test this expression */
731 if( pExpr
->op
!=TK_FUNCTION
){
734 if( sqlite3StrICmp(pExpr
->u
.zToken
,"match")!=0 ){
737 pList
= pExpr
->x
.pList
;
738 if( pList
->nExpr
!=2 ){
741 if( pList
->a
[1].pExpr
->op
!= TK_COLUMN
){
746 #endif /* SQLITE_OMIT_VIRTUALTABLE */
749 ** If the pBase expression originated in the ON or USING clause of
750 ** a join, then transfer the appropriate markings over to derived.
752 static void transferJoinMarkings(Expr
*pDerived
, Expr
*pBase
){
754 pDerived
->flags
|= pBase
->flags
& EP_FromJoin
;
755 pDerived
->iRightJoinTable
= pBase
->iRightJoinTable
;
759 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
761 ** Analyze a term that consists of two or more OR-connected
764 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
765 ** ^^^^^^^^^^^^^^^^^^^^
767 ** This routine analyzes terms such as the middle term in the above example.
768 ** A WhereOrTerm object is computed and attached to the term under
769 ** analysis, regardless of the outcome of the analysis. Hence:
771 ** WhereTerm.wtFlags |= TERM_ORINFO
772 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
774 ** The term being analyzed must have two or more of OR-connected subterms.
775 ** A single subterm might be a set of AND-connected sub-subterms.
776 ** Examples of terms under analysis:
778 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
779 ** (B) x=expr1 OR expr2=x OR x=expr3
780 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
781 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
782 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
786 ** If all subterms are of the form T.C=expr for some single column of C and
787 ** a single table T (as shown in example B above) then create a new virtual
788 ** term that is an equivalent IN expression. In other words, if the term
789 ** being analyzed is:
791 ** x = expr1 OR expr2 = x OR x = expr3
793 ** then create a new virtual term like this:
795 ** x IN (expr1,expr2,expr3)
799 ** If all subterms are indexable by a single table T, then set
801 ** WhereTerm.eOperator = WO_OR
802 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
804 ** A subterm is "indexable" if it is of the form
805 ** "T.C <op> <expr>" where C is any column of table T and
806 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
807 ** A subterm is also indexable if it is an AND of two or more
808 ** subsubterms at least one of which is indexable. Indexable AND
809 ** subterms have their eOperator set to WO_AND and they have
810 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
812 ** From another point of view, "indexable" means that the subterm could
813 ** potentially be used with an index if an appropriate index exists.
814 ** This analysis does not consider whether or not the index exists; that
815 ** is decided elsewhere. This analysis only looks at whether subterms
816 ** appropriate for indexing exist.
818 ** All examples A through E above satisfy case 2. But if a term
819 ** also satisfies case 1 (such as B) we know that the optimizer will
820 ** always prefer case 1, so in that case we pretend that case 2 is not
823 ** It might be the case that multiple tables are indexable. For example,
824 ** (E) above is indexable on tables P, Q, and R.
826 ** Terms that satisfy case 2 are candidates for lookup by using
827 ** separate indices to find rowids for each subterm and composing
828 ** the union of all rowids using a RowSet object. This is similar
829 ** to "bitmap indices" in other database engines.
833 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
834 ** zero. This term is not useful for search.
836 static void exprAnalyzeOrTerm(
837 SrcList
*pSrc
, /* the FROM clause */
838 WhereClause
*pWC
, /* the complete WHERE clause */
839 int idxTerm
/* Index of the OR-term to be analyzed */
841 WhereInfo
*pWInfo
= pWC
->pWInfo
; /* WHERE clause processing context */
842 Parse
*pParse
= pWInfo
->pParse
; /* Parser context */
843 sqlite3
*db
= pParse
->db
; /* Database connection */
844 WhereTerm
*pTerm
= &pWC
->a
[idxTerm
]; /* The term to be analyzed */
845 Expr
*pExpr
= pTerm
->pExpr
; /* The expression of the term */
846 int i
; /* Loop counters */
847 WhereClause
*pOrWc
; /* Breakup of pTerm into subterms */
848 WhereTerm
*pOrTerm
; /* A Sub-term within the pOrWc */
849 WhereOrInfo
*pOrInfo
; /* Additional information associated with pTerm */
850 Bitmask chngToIN
; /* Tables that might satisfy case 1 */
851 Bitmask indexable
; /* Tables that are indexable, satisfying case 2 */
854 ** Break the OR clause into its separate subterms. The subterms are
855 ** stored in a WhereClause structure containing within the WhereOrInfo
856 ** object that is attached to the original OR clause term.
858 assert( (pTerm
->wtFlags
& (TERM_DYNAMIC
|TERM_ORINFO
|TERM_ANDINFO
))==0 );
859 assert( pExpr
->op
==TK_OR
);
860 pTerm
->u
.pOrInfo
= pOrInfo
= sqlite3DbMallocZero(db
, sizeof(*pOrInfo
));
861 if( pOrInfo
==0 ) return;
862 pTerm
->wtFlags
|= TERM_ORINFO
;
863 pOrWc
= &pOrInfo
->wc
;
864 whereClauseInit(pOrWc
, pWInfo
);
865 whereSplit(pOrWc
, pExpr
, TK_OR
);
866 exprAnalyzeAll(pSrc
, pOrWc
);
867 if( db
->mallocFailed
) return;
868 assert( pOrWc
->nTerm
>=2 );
871 ** Compute the set of tables that might satisfy cases 1 or 2.
873 indexable
= ~(Bitmask
)0;
874 chngToIN
= ~(Bitmask
)0;
875 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0 && indexable
; i
--, pOrTerm
++){
876 if( (pOrTerm
->eOperator
& WO_SINGLE
)==0 ){
877 WhereAndInfo
*pAndInfo
;
878 assert( (pOrTerm
->wtFlags
& (TERM_ANDINFO
|TERM_ORINFO
))==0 );
880 pAndInfo
= sqlite3DbMallocRaw(db
, sizeof(*pAndInfo
));
886 pOrTerm
->u
.pAndInfo
= pAndInfo
;
887 pOrTerm
->wtFlags
|= TERM_ANDINFO
;
888 pOrTerm
->eOperator
= WO_AND
;
889 pAndWC
= &pAndInfo
->wc
;
890 whereClauseInit(pAndWC
, pWC
->pWInfo
);
891 whereSplit(pAndWC
, pOrTerm
->pExpr
, TK_AND
);
892 exprAnalyzeAll(pSrc
, pAndWC
);
893 pAndWC
->pOuter
= pWC
;
894 testcase( db
->mallocFailed
);
895 if( !db
->mallocFailed
){
896 for(j
=0, pAndTerm
=pAndWC
->a
; j
<pAndWC
->nTerm
; j
++, pAndTerm
++){
897 assert( pAndTerm
->pExpr
);
898 if( allowedOp(pAndTerm
->pExpr
->op
) ){
899 b
|= getMask(&pWInfo
->sMaskSet
, pAndTerm
->leftCursor
);
905 }else if( pOrTerm
->wtFlags
& TERM_COPIED
){
906 /* Skip this term for now. We revisit it when we process the
907 ** corresponding TERM_VIRTUAL term */
910 b
= getMask(&pWInfo
->sMaskSet
, pOrTerm
->leftCursor
);
911 if( pOrTerm
->wtFlags
& TERM_VIRTUAL
){
912 WhereTerm
*pOther
= &pOrWc
->a
[pOrTerm
->iParent
];
913 b
|= getMask(&pWInfo
->sMaskSet
, pOther
->leftCursor
);
916 if( (pOrTerm
->eOperator
& WO_EQ
)==0 ){
925 ** Record the set of tables that satisfy case 2. The set might be
928 pOrInfo
->indexable
= indexable
;
929 pTerm
->eOperator
= indexable
==0 ? 0 : WO_OR
;
932 ** chngToIN holds a set of tables that *might* satisfy case 1. But
933 ** we have to do some additional checking to see if case 1 really
936 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
937 ** that there is no possibility of transforming the OR clause into an
938 ** IN operator because one or more terms in the OR clause contain
939 ** something other than == on a column in the single table. The 1-bit
940 ** case means that every term of the OR clause is of the form
941 ** "table.column=expr" for some single table. The one bit that is set
942 ** will correspond to the common table. We still need to check to make
943 ** sure the same column is used on all terms. The 2-bit case is when
944 ** the all terms are of the form "table1.column=table2.column". It
945 ** might be possible to form an IN operator with either table1.column
946 ** or table2.column as the LHS if either is common to every term of
949 ** Note that terms of the form "table.column1=table.column2" (the
950 ** same table on both sizes of the ==) cannot be optimized.
953 int okToChngToIN
= 0; /* True if the conversion to IN is valid */
954 int iColumn
= -1; /* Column index on lhs of IN operator */
955 int iCursor
= -1; /* Table cursor common to all terms */
956 int j
= 0; /* Loop counter */
958 /* Search for a table and column that appears on one side or the
959 ** other of the == operator in every subterm. That table and column
960 ** will be recorded in iCursor and iColumn. There might not be any
961 ** such table and column. Set okToChngToIN if an appropriate table
962 ** and column is found but leave okToChngToIN false if not found.
964 for(j
=0; j
<2 && !okToChngToIN
; j
++){
966 for(i
=pOrWc
->nTerm
-1; i
>=0; i
--, pOrTerm
++){
967 assert( pOrTerm
->eOperator
& WO_EQ
);
968 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
969 if( pOrTerm
->leftCursor
==iCursor
){
970 /* This is the 2-bit case and we are on the second iteration and
971 ** current term is from the first iteration. So skip this term. */
975 if( (chngToIN
& getMask(&pWInfo
->sMaskSet
, pOrTerm
->leftCursor
))==0 ){
976 /* This term must be of the form t1.a==t2.b where t2 is in the
977 ** chngToIN set but t1 is not. This term will be either preceded
978 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
979 ** and use its inversion. */
980 testcase( pOrTerm
->wtFlags
& TERM_COPIED
);
981 testcase( pOrTerm
->wtFlags
& TERM_VIRTUAL
);
982 assert( pOrTerm
->wtFlags
& (TERM_COPIED
|TERM_VIRTUAL
) );
985 iColumn
= pOrTerm
->u
.leftColumn
;
986 iCursor
= pOrTerm
->leftCursor
;
990 /* No candidate table+column was found. This can only occur
991 ** on the second iteration */
993 assert( IsPowerOfTwo(chngToIN
) );
994 assert( chngToIN
==getMask(&pWInfo
->sMaskSet
, iCursor
) );
999 /* We have found a candidate table and column. Check to see if that
1000 ** table and column is common to every term in the OR clause */
1002 for(; i
>=0 && okToChngToIN
; i
--, pOrTerm
++){
1003 assert( pOrTerm
->eOperator
& WO_EQ
);
1004 if( pOrTerm
->leftCursor
!=iCursor
){
1005 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
1006 }else if( pOrTerm
->u
.leftColumn
!=iColumn
){
1009 int affLeft
, affRight
;
1010 /* If the right-hand side is also a column, then the affinities
1011 ** of both right and left sides must be such that no type
1012 ** conversions are required on the right. (Ticket #2249)
1014 affRight
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pRight
);
1015 affLeft
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pLeft
);
1016 if( affRight
!=0 && affRight
!=affLeft
){
1019 pOrTerm
->wtFlags
|= TERM_OR_OK
;
1025 /* At this point, okToChngToIN is true if original pTerm satisfies
1026 ** case 1. In that case, construct a new virtual term that is
1027 ** pTerm converted into an IN operator.
1030 Expr
*pDup
; /* A transient duplicate expression */
1031 ExprList
*pList
= 0; /* The RHS of the IN operator */
1032 Expr
*pLeft
= 0; /* The LHS of the IN operator */
1033 Expr
*pNew
; /* The complete IN operator */
1035 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0; i
--, pOrTerm
++){
1036 if( (pOrTerm
->wtFlags
& TERM_OR_OK
)==0 ) continue;
1037 assert( pOrTerm
->eOperator
& WO_EQ
);
1038 assert( pOrTerm
->leftCursor
==iCursor
);
1039 assert( pOrTerm
->u
.leftColumn
==iColumn
);
1040 pDup
= sqlite3ExprDup(db
, pOrTerm
->pExpr
->pRight
, 0);
1041 pList
= sqlite3ExprListAppend(pWInfo
->pParse
, pList
, pDup
);
1042 pLeft
= pOrTerm
->pExpr
->pLeft
;
1045 pDup
= sqlite3ExprDup(db
, pLeft
, 0);
1046 pNew
= sqlite3PExpr(pParse
, TK_IN
, pDup
, 0, 0);
1049 transferJoinMarkings(pNew
, pExpr
);
1050 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
1051 pNew
->x
.pList
= pList
;
1052 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1053 testcase( idxNew
==0 );
1054 exprAnalyze(pSrc
, pWC
, idxNew
);
1055 pTerm
= &pWC
->a
[idxTerm
];
1056 pWC
->a
[idxNew
].iParent
= idxTerm
;
1059 sqlite3ExprListDelete(db
, pList
);
1061 pTerm
->eOperator
= WO_NOOP
; /* case 1 trumps case 2 */
1065 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1068 ** The input to this routine is an WhereTerm structure with only the
1069 ** "pExpr" field filled in. The job of this routine is to analyze the
1070 ** subexpression and populate all the other fields of the WhereTerm
1073 ** If the expression is of the form "<expr> <op> X" it gets commuted
1074 ** to the standard form of "X <op> <expr>".
1076 ** If the expression is of the form "X <op> Y" where both X and Y are
1077 ** columns, then the original expression is unchanged and a new virtual
1078 ** term of the form "Y <op> X" is added to the WHERE clause and
1079 ** analyzed separately. The original term is marked with TERM_COPIED
1080 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1081 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1082 ** is a commuted copy of a prior term.) The original term has nChild=1
1083 ** and the copy has idxParent set to the index of the original term.
1085 static void exprAnalyze(
1086 SrcList
*pSrc
, /* the FROM clause */
1087 WhereClause
*pWC
, /* the WHERE clause */
1088 int idxTerm
/* Index of the term to be analyzed */
1090 WhereInfo
*pWInfo
= pWC
->pWInfo
; /* WHERE clause processing context */
1091 WhereTerm
*pTerm
; /* The term to be analyzed */
1092 WhereMaskSet
*pMaskSet
; /* Set of table index masks */
1093 Expr
*pExpr
; /* The expression to be analyzed */
1094 Bitmask prereqLeft
; /* Prerequesites of the pExpr->pLeft */
1095 Bitmask prereqAll
; /* Prerequesites of pExpr */
1096 Bitmask extraRight
= 0; /* Extra dependencies on LEFT JOIN */
1097 Expr
*pStr1
= 0; /* RHS of LIKE/GLOB operator */
1098 int isComplete
= 0; /* RHS of LIKE/GLOB ends with wildcard */
1099 int noCase
= 0; /* LIKE/GLOB distinguishes case */
1100 int op
; /* Top-level operator. pExpr->op */
1101 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
1102 sqlite3
*db
= pParse
->db
; /* Database connection */
1104 if( db
->mallocFailed
){
1107 pTerm
= &pWC
->a
[idxTerm
];
1108 pMaskSet
= &pWInfo
->sMaskSet
;
1109 pExpr
= pTerm
->pExpr
;
1110 assert( pExpr
->op
!=TK_AS
&& pExpr
->op
!=TK_COLLATE
);
1111 prereqLeft
= exprTableUsage(pMaskSet
, pExpr
->pLeft
);
1114 assert( pExpr
->pRight
==0 );
1115 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
1116 pTerm
->prereqRight
= exprSelectTableUsage(pMaskSet
, pExpr
->x
.pSelect
);
1118 pTerm
->prereqRight
= exprListTableUsage(pMaskSet
, pExpr
->x
.pList
);
1120 }else if( op
==TK_ISNULL
){
1121 pTerm
->prereqRight
= 0;
1123 pTerm
->prereqRight
= exprTableUsage(pMaskSet
, pExpr
->pRight
);
1125 prereqAll
= exprTableUsage(pMaskSet
, pExpr
);
1126 if( ExprHasProperty(pExpr
, EP_FromJoin
) ){
1127 Bitmask x
= getMask(pMaskSet
, pExpr
->iRightJoinTable
);
1129 extraRight
= x
-1; /* ON clause terms may not be used with an index
1130 ** on left table of a LEFT JOIN. Ticket #3015 */
1132 pTerm
->prereqAll
= prereqAll
;
1133 pTerm
->leftCursor
= -1;
1134 pTerm
->iParent
= -1;
1135 pTerm
->eOperator
= 0;
1136 if( allowedOp(op
) ){
1137 Expr
*pLeft
= sqlite3ExprSkipCollate(pExpr
->pLeft
);
1138 Expr
*pRight
= sqlite3ExprSkipCollate(pExpr
->pRight
);
1139 u16 opMask
= (pTerm
->prereqRight
& prereqLeft
)==0 ? WO_ALL
: WO_EQUIV
;
1140 if( pLeft
->op
==TK_COLUMN
){
1141 pTerm
->leftCursor
= pLeft
->iTable
;
1142 pTerm
->u
.leftColumn
= pLeft
->iColumn
;
1143 pTerm
->eOperator
= operatorMask(op
) & opMask
;
1145 if( pRight
&& pRight
->op
==TK_COLUMN
){
1148 u16 eExtraOp
= 0; /* Extra bits for pNew->eOperator */
1149 if( pTerm
->leftCursor
>=0 ){
1151 pDup
= sqlite3ExprDup(db
, pExpr
, 0);
1152 if( db
->mallocFailed
){
1153 sqlite3ExprDelete(db
, pDup
);
1156 idxNew
= whereClauseInsert(pWC
, pDup
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1157 if( idxNew
==0 ) return;
1158 pNew
= &pWC
->a
[idxNew
];
1159 pNew
->iParent
= idxTerm
;
1160 pTerm
= &pWC
->a
[idxTerm
];
1162 pTerm
->wtFlags
|= TERM_COPIED
;
1163 if( pExpr
->op
==TK_EQ
1164 && !ExprHasProperty(pExpr
, EP_FromJoin
)
1165 && OptimizationEnabled(db
, SQLITE_Transitive
)
1167 pTerm
->eOperator
|= WO_EQUIV
;
1168 eExtraOp
= WO_EQUIV
;
1174 exprCommute(pParse
, pDup
);
1175 pLeft
= sqlite3ExprSkipCollate(pDup
->pLeft
);
1176 pNew
->leftCursor
= pLeft
->iTable
;
1177 pNew
->u
.leftColumn
= pLeft
->iColumn
;
1178 testcase( (prereqLeft
| extraRight
) != prereqLeft
);
1179 pNew
->prereqRight
= prereqLeft
| extraRight
;
1180 pNew
->prereqAll
= prereqAll
;
1181 pNew
->eOperator
= (operatorMask(pDup
->op
) + eExtraOp
) & opMask
;
1185 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1186 /* If a term is the BETWEEN operator, create two new virtual terms
1187 ** that define the range that the BETWEEN implements. For example:
1189 ** a BETWEEN b AND c
1191 ** is converted into:
1193 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1195 ** The two new terms are added onto the end of the WhereClause object.
1196 ** The new terms are "dynamic" and are children of the original BETWEEN
1197 ** term. That means that if the BETWEEN term is coded, the children are
1198 ** skipped. Or, if the children are satisfied by an index, the original
1199 ** BETWEEN term is skipped.
1201 else if( pExpr
->op
==TK_BETWEEN
&& pWC
->op
==TK_AND
){
1202 ExprList
*pList
= pExpr
->x
.pList
;
1204 static const u8 ops
[] = {TK_GE
, TK_LE
};
1206 assert( pList
->nExpr
==2 );
1210 pNewExpr
= sqlite3PExpr(pParse
, ops
[i
],
1211 sqlite3ExprDup(db
, pExpr
->pLeft
, 0),
1212 sqlite3ExprDup(db
, pList
->a
[i
].pExpr
, 0), 0);
1213 transferJoinMarkings(pNewExpr
, pExpr
);
1214 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1215 testcase( idxNew
==0 );
1216 exprAnalyze(pSrc
, pWC
, idxNew
);
1217 pTerm
= &pWC
->a
[idxTerm
];
1218 pWC
->a
[idxNew
].iParent
= idxTerm
;
1222 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1224 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1225 /* Analyze a term that is composed of two or more subterms connected by
1228 else if( pExpr
->op
==TK_OR
){
1229 assert( pWC
->op
==TK_AND
);
1230 exprAnalyzeOrTerm(pSrc
, pWC
, idxTerm
);
1231 pTerm
= &pWC
->a
[idxTerm
];
1233 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1235 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1236 /* Add constraints to reduce the search space on a LIKE or GLOB
1239 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1241 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1243 ** The last character of the prefix "abc" is incremented to form the
1244 ** termination condition "abd".
1247 && isLikeOrGlob(pParse
, pExpr
, &pStr1
, &isComplete
, &noCase
)
1249 Expr
*pLeft
; /* LHS of LIKE/GLOB operator */
1250 Expr
*pStr2
; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1255 Token sCollSeqName
; /* Name of collating sequence */
1257 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1258 pStr2
= sqlite3ExprDup(db
, pStr1
, 0);
1259 if( !db
->mallocFailed
){
1260 u8 c
, *pC
; /* Last character before the first wildcard */
1261 pC
= (u8
*)&pStr2
->u
.zToken
[sqlite3Strlen30(pStr2
->u
.zToken
)-1];
1264 /* The point is to increment the last character before the first
1265 ** wildcard. But if we increment '@', that will push it into the
1266 ** alphabetic range where case conversions will mess up the
1267 ** inequality. To avoid this, make sure to also run the full
1268 ** LIKE on all candidate expressions by clearing the isComplete flag
1270 if( c
=='A'-1 ) isComplete
= 0;
1271 c
= sqlite3UpperToLower
[c
];
1275 sCollSeqName
.z
= noCase
? "NOCASE" : "BINARY";
1277 pNewExpr1
= sqlite3ExprDup(db
, pLeft
, 0);
1278 pNewExpr1
= sqlite3PExpr(pParse
, TK_GE
,
1279 sqlite3ExprAddCollateToken(pParse
,pNewExpr1
,&sCollSeqName
),
1281 transferJoinMarkings(pNewExpr1
, pExpr
);
1282 idxNew1
= whereClauseInsert(pWC
, pNewExpr1
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1283 testcase( idxNew1
==0 );
1284 exprAnalyze(pSrc
, pWC
, idxNew1
);
1285 pNewExpr2
= sqlite3ExprDup(db
, pLeft
, 0);
1286 pNewExpr2
= sqlite3PExpr(pParse
, TK_LT
,
1287 sqlite3ExprAddCollateToken(pParse
,pNewExpr2
,&sCollSeqName
),
1289 transferJoinMarkings(pNewExpr2
, pExpr
);
1290 idxNew2
= whereClauseInsert(pWC
, pNewExpr2
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1291 testcase( idxNew2
==0 );
1292 exprAnalyze(pSrc
, pWC
, idxNew2
);
1293 pTerm
= &pWC
->a
[idxTerm
];
1295 pWC
->a
[idxNew1
].iParent
= idxTerm
;
1296 pWC
->a
[idxNew2
].iParent
= idxTerm
;
1300 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1302 #ifndef SQLITE_OMIT_VIRTUALTABLE
1303 /* Add a WO_MATCH auxiliary term to the constraint set if the
1304 ** current expression is of the form: column MATCH expr.
1305 ** This information is used by the xBestIndex methods of
1306 ** virtual tables. The native query optimizer does not attempt
1307 ** to do anything with MATCH functions.
1309 if( isMatchOfColumn(pExpr
) ){
1311 Expr
*pRight
, *pLeft
;
1312 WhereTerm
*pNewTerm
;
1313 Bitmask prereqColumn
, prereqExpr
;
1315 pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
1316 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1317 prereqExpr
= exprTableUsage(pMaskSet
, pRight
);
1318 prereqColumn
= exprTableUsage(pMaskSet
, pLeft
);
1319 if( (prereqExpr
& prereqColumn
)==0 ){
1321 pNewExpr
= sqlite3PExpr(pParse
, TK_MATCH
,
1322 0, sqlite3ExprDup(db
, pRight
, 0), 0);
1323 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1324 testcase( idxNew
==0 );
1325 pNewTerm
= &pWC
->a
[idxNew
];
1326 pNewTerm
->prereqRight
= prereqExpr
;
1327 pNewTerm
->leftCursor
= pLeft
->iTable
;
1328 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1329 pNewTerm
->eOperator
= WO_MATCH
;
1330 pNewTerm
->iParent
= idxTerm
;
1331 pTerm
= &pWC
->a
[idxTerm
];
1333 pTerm
->wtFlags
|= TERM_COPIED
;
1334 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1337 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1339 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1340 /* When sqlite_stat3 histogram data is available an operator of the
1341 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1342 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1343 ** virtual term of that form.
1345 ** Note that the virtual term must be tagged with TERM_VNULL. This
1346 ** TERM_VNULL tag will suppress the not-null check at the beginning
1347 ** of the loop. Without the TERM_VNULL flag, the not-null check at
1348 ** the start of the loop will prevent any results from being returned.
1350 if( pExpr
->op
==TK_NOTNULL
1351 && pExpr
->pLeft
->op
==TK_COLUMN
1352 && pExpr
->pLeft
->iColumn
>=0
1353 && OptimizationEnabled(db
, SQLITE_Stat3
)
1356 Expr
*pLeft
= pExpr
->pLeft
;
1358 WhereTerm
*pNewTerm
;
1360 pNewExpr
= sqlite3PExpr(pParse
, TK_GT
,
1361 sqlite3ExprDup(db
, pLeft
, 0),
1362 sqlite3PExpr(pParse
, TK_NULL
, 0, 0, 0), 0);
1364 idxNew
= whereClauseInsert(pWC
, pNewExpr
,
1365 TERM_VIRTUAL
|TERM_DYNAMIC
|TERM_VNULL
);
1367 pNewTerm
= &pWC
->a
[idxNew
];
1368 pNewTerm
->prereqRight
= 0;
1369 pNewTerm
->leftCursor
= pLeft
->iTable
;
1370 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1371 pNewTerm
->eOperator
= WO_GT
;
1372 pNewTerm
->iParent
= idxTerm
;
1373 pTerm
= &pWC
->a
[idxTerm
];
1375 pTerm
->wtFlags
|= TERM_COPIED
;
1376 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1379 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1381 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1382 ** an index for tables to the left of the join.
1384 pTerm
->prereqRight
|= extraRight
;
1388 ** This function searches pList for an entry that matches the iCol-th column
1391 ** If such an expression is found, its index in pList->a[] is returned. If
1392 ** no expression is found, -1 is returned.
1394 static int findIndexCol(
1395 Parse
*pParse
, /* Parse context */
1396 ExprList
*pList
, /* Expression list to search */
1397 int iBase
, /* Cursor for table associated with pIdx */
1398 Index
*pIdx
, /* Index to match column of */
1399 int iCol
/* Column of index to match */
1402 const char *zColl
= pIdx
->azColl
[iCol
];
1404 for(i
=0; i
<pList
->nExpr
; i
++){
1405 Expr
*p
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1406 if( p
->op
==TK_COLUMN
1407 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
1410 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pList
->a
[i
].pExpr
);
1411 if( ALWAYS(pColl
) && 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
1421 ** Return true if the DISTINCT expression-list passed as the third argument
1424 ** A DISTINCT list is redundant if the database contains some subset of
1425 ** columns that are unique and non-null.
1427 static int isDistinctRedundant(
1428 Parse
*pParse
, /* Parsing context */
1429 SrcList
*pTabList
, /* The FROM clause */
1430 WhereClause
*pWC
, /* The WHERE clause */
1431 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
1438 /* If there is more than one table or sub-select in the FROM clause of
1439 ** this query, then it will not be possible to show that the DISTINCT
1440 ** clause is redundant. */
1441 if( pTabList
->nSrc
!=1 ) return 0;
1442 iBase
= pTabList
->a
[0].iCursor
;
1443 pTab
= pTabList
->a
[0].pTab
;
1445 /* If any of the expressions is an IPK column on table iBase, then return
1446 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
1447 ** current SELECT is a correlated sub-query.
1449 for(i
=0; i
<pDistinct
->nExpr
; i
++){
1450 Expr
*p
= sqlite3ExprSkipCollate(pDistinct
->a
[i
].pExpr
);
1451 if( p
->op
==TK_COLUMN
&& p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
1454 /* Loop through all indices on the table, checking each to see if it makes
1455 ** the DISTINCT qualifier redundant. It does so if:
1457 ** 1. The index is itself UNIQUE, and
1459 ** 2. All of the columns in the index are either part of the pDistinct
1460 ** list, or else the WHERE clause contains a term of the form "col=X",
1461 ** where X is a constant value. The collation sequences of the
1462 ** comparison and select-list expressions must match those of the index.
1464 ** 3. All of those index columns for which the WHERE clause does not
1465 ** contain a "col=X" term are subject to a NOT NULL constraint.
1467 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1468 if( !IsUniqueIndex(pIdx
) ) continue;
1469 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
1470 i16 iCol
= pIdx
->aiColumn
[i
];
1471 if( 0==findTerm(pWC
, iBase
, iCol
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
1472 int iIdxCol
= findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
);
1473 if( iIdxCol
<0 || pTab
->aCol
[iCol
].notNull
==0 ){
1478 if( i
==pIdx
->nKeyCol
){
1479 /* This index implies that the DISTINCT qualifier is redundant. */
1489 ** Estimate the logarithm of the input value to base 2.
1491 static LogEst
estLog(LogEst N
){
1492 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
1496 ** Two routines for printing the content of an sqlite3_index_info
1497 ** structure. Used for testing and debugging only. If neither
1498 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1501 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
1502 static void TRACE_IDX_INPUTS(sqlite3_index_info
*p
){
1504 if( !sqlite3WhereTrace
) return;
1505 for(i
=0; i
<p
->nConstraint
; i
++){
1506 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1508 p
->aConstraint
[i
].iColumn
,
1509 p
->aConstraint
[i
].iTermOffset
,
1510 p
->aConstraint
[i
].op
,
1511 p
->aConstraint
[i
].usable
);
1513 for(i
=0; i
<p
->nOrderBy
; i
++){
1514 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1516 p
->aOrderBy
[i
].iColumn
,
1517 p
->aOrderBy
[i
].desc
);
1520 static void TRACE_IDX_OUTPUTS(sqlite3_index_info
*p
){
1522 if( !sqlite3WhereTrace
) return;
1523 for(i
=0; i
<p
->nConstraint
; i
++){
1524 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1526 p
->aConstraintUsage
[i
].argvIndex
,
1527 p
->aConstraintUsage
[i
].omit
);
1529 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
1530 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
1531 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
1532 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
1533 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
1536 #define TRACE_IDX_INPUTS(A)
1537 #define TRACE_IDX_OUTPUTS(A)
1540 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1542 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1543 ** could be used with an index to access pSrc, assuming an appropriate
1546 static int termCanDriveIndex(
1547 WhereTerm
*pTerm
, /* WHERE clause term to check */
1548 struct SrcList_item
*pSrc
, /* Table we are trying to access */
1549 Bitmask notReady
/* Tables in outer loops of the join */
1552 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
1553 if( (pTerm
->eOperator
& WO_EQ
)==0 ) return 0;
1554 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
1555 if( pTerm
->u
.leftColumn
<0 ) return 0;
1556 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.leftColumn
].affinity
;
1557 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
1563 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1565 ** Generate code to construct the Index object for an automatic index
1566 ** and to set up the WhereLevel object pLevel so that the code generator
1567 ** makes use of the automatic index.
1569 static void constructAutomaticIndex(
1570 Parse
*pParse
, /* The parsing context */
1571 WhereClause
*pWC
, /* The WHERE clause */
1572 struct SrcList_item
*pSrc
, /* The FROM clause term to get the next index */
1573 Bitmask notReady
, /* Mask of cursors that are not available */
1574 WhereLevel
*pLevel
/* Write new index here */
1576 int nKeyCol
; /* Number of columns in the constructed index */
1577 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1578 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
1579 Index
*pIdx
; /* Object describing the transient index */
1580 Vdbe
*v
; /* Prepared statement under construction */
1581 int addrInit
; /* Address of the initialization bypass jump */
1582 Table
*pTable
; /* The table being indexed */
1583 int addrTop
; /* Top of the index fill loop */
1584 int regRecord
; /* Register holding an index record */
1585 int n
; /* Column counter */
1586 int i
; /* Loop counter */
1587 int mxBitCol
; /* Maximum column in pSrc->colUsed */
1588 CollSeq
*pColl
; /* Collating sequence to on a column */
1589 WhereLoop
*pLoop
; /* The Loop object */
1590 char *zNotUsed
; /* Extra space on the end of pIdx */
1591 Bitmask idxCols
; /* Bitmap of columns used for indexing */
1592 Bitmask extraCols
; /* Bitmap of additional columns */
1593 u8 sentWarning
= 0; /* True if a warnning has been issued */
1595 /* Generate code to skip over the creation and initialization of the
1596 ** transient index on 2nd and subsequent iterations of the loop. */
1599 addrInit
= sqlite3CodeOnce(pParse
); VdbeCoverage(v
);
1601 /* Count the number of columns that will be added to the index
1602 ** and used to match WHERE clause constraints */
1604 pTable
= pSrc
->pTab
;
1605 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
1606 pLoop
= pLevel
->pWLoop
;
1608 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1609 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1610 int iCol
= pTerm
->u
.leftColumn
;
1611 Bitmask cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
1612 testcase( iCol
==BMS
);
1613 testcase( iCol
==BMS
-1 );
1615 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
1616 "automatic index on %s(%s)", pTable
->zName
,
1617 pTable
->aCol
[iCol
].zName
);
1620 if( (idxCols
& cMask
)==0 ){
1621 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ) return;
1622 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
1627 assert( nKeyCol
>0 );
1628 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
1629 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
1632 /* Count the number of additional columns needed to create a
1633 ** covering index. A "covering index" is an index that contains all
1634 ** columns that are needed by the query. With a covering index, the
1635 ** original table never needs to be accessed. Automatic indices must
1636 ** be a covering index because the index will not be updated if the
1637 ** original table changes and the index and table cannot both be used
1638 ** if they go out of sync.
1640 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
1641 mxBitCol
= (pTable
->nCol
>= BMS
-1) ? BMS
-1 : pTable
->nCol
;
1642 testcase( pTable
->nCol
==BMS
-1 );
1643 testcase( pTable
->nCol
==BMS
-2 );
1644 for(i
=0; i
<mxBitCol
; i
++){
1645 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
1647 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
1648 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
1650 pLoop
->wsFlags
|= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
;
1652 /* Construct the Index object to describe this index */
1653 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
1654 if( pIdx
==0 ) return;
1655 pLoop
->u
.btree
.pIndex
= pIdx
;
1656 pIdx
->zName
= "auto-index";
1657 pIdx
->pTable
= pTable
;
1660 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1661 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1662 int iCol
= pTerm
->u
.leftColumn
;
1663 Bitmask cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
1664 testcase( iCol
==BMS
-1 );
1665 testcase( iCol
==BMS
);
1666 if( (idxCols
& cMask
)==0 ){
1667 Expr
*pX
= pTerm
->pExpr
;
1669 pIdx
->aiColumn
[n
] = pTerm
->u
.leftColumn
;
1670 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
1671 pIdx
->azColl
[n
] = ALWAYS(pColl
) ? pColl
->zName
: "BINARY";
1676 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
1678 /* Add additional columns needed to make the automatic index into
1679 ** a covering index */
1680 for(i
=0; i
<mxBitCol
; i
++){
1681 if( extraCols
& MASKBIT(i
) ){
1682 pIdx
->aiColumn
[n
] = i
;
1683 pIdx
->azColl
[n
] = "BINARY";
1687 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
1688 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
1689 pIdx
->aiColumn
[n
] = i
;
1690 pIdx
->azColl
[n
] = "BINARY";
1694 assert( n
==nKeyCol
);
1695 pIdx
->aiColumn
[n
] = -1;
1696 pIdx
->azColl
[n
] = "BINARY";
1698 /* Create the automatic index */
1699 assert( pLevel
->iIdxCur
>=0 );
1700 pLevel
->iIdxCur
= pParse
->nTab
++;
1701 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
1702 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1703 VdbeComment((v
, "for %s", pTable
->zName
));
1705 /* Fill the automatic index with content */
1706 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
1707 regRecord
= sqlite3GetTempReg(pParse
);
1708 sqlite3GenerateIndexKey(pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0);
1709 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
1710 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1711 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
1712 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
1713 sqlite3VdbeJumpHere(v
, addrTop
);
1714 sqlite3ReleaseTempReg(pParse
, regRecord
);
1716 /* Jump here when skipping the initialization */
1717 sqlite3VdbeJumpHere(v
, addrInit
);
1719 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1721 #ifndef SQLITE_OMIT_VIRTUALTABLE
1723 ** Allocate and populate an sqlite3_index_info structure. It is the
1724 ** responsibility of the caller to eventually release the structure
1725 ** by passing the pointer returned by this function to sqlite3_free().
1727 static sqlite3_index_info
*allocateIndexInfo(
1730 struct SrcList_item
*pSrc
,
1735 struct sqlite3_index_constraint
*pIdxCons
;
1736 struct sqlite3_index_orderby
*pIdxOrderBy
;
1737 struct sqlite3_index_constraint_usage
*pUsage
;
1740 sqlite3_index_info
*pIdxInfo
;
1742 /* Count the number of possible WHERE clause constraints referring
1743 ** to this virtual table */
1744 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1745 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1746 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1747 testcase( pTerm
->eOperator
& WO_IN
);
1748 testcase( pTerm
->eOperator
& WO_ISNULL
);
1749 testcase( pTerm
->eOperator
& WO_ALL
);
1750 if( (pTerm
->eOperator
& ~(WO_ISNULL
|WO_EQUIV
))==0 ) continue;
1751 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1755 /* If the ORDER BY clause contains only columns in the current
1756 ** virtual table then allocate space for the aOrderBy part of
1757 ** the sqlite3_index_info structure.
1761 int n
= pOrderBy
->nExpr
;
1763 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1764 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=pSrc
->iCursor
) break;
1771 /* Allocate the sqlite3_index_info structure
1773 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1774 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1775 + sizeof(*pIdxOrderBy
)*nOrderBy
);
1777 sqlite3ErrorMsg(pParse
, "out of memory");
1781 /* Initialize the structure. The sqlite3_index_info structure contains
1782 ** many fields that are declared "const" to prevent xBestIndex from
1783 ** changing them. We have to do some funky casting in order to
1784 ** initialize those fields.
1786 pIdxCons
= (struct sqlite3_index_constraint
*)&pIdxInfo
[1];
1787 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
1788 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
1789 *(int*)&pIdxInfo
->nConstraint
= nTerm
;
1790 *(int*)&pIdxInfo
->nOrderBy
= nOrderBy
;
1791 *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
= pIdxCons
;
1792 *(struct sqlite3_index_orderby
**)&pIdxInfo
->aOrderBy
= pIdxOrderBy
;
1793 *(struct sqlite3_index_constraint_usage
**)&pIdxInfo
->aConstraintUsage
=
1796 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1798 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1799 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1800 testcase( pTerm
->eOperator
& WO_IN
);
1801 testcase( pTerm
->eOperator
& WO_ISNULL
);
1802 testcase( pTerm
->eOperator
& WO_ALL
);
1803 if( (pTerm
->eOperator
& ~(WO_ISNULL
|WO_EQUIV
))==0 ) continue;
1804 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1805 pIdxCons
[j
].iColumn
= pTerm
->u
.leftColumn
;
1806 pIdxCons
[j
].iTermOffset
= i
;
1807 op
= (u8
)pTerm
->eOperator
& WO_ALL
;
1808 if( op
==WO_IN
) op
= WO_EQ
;
1809 pIdxCons
[j
].op
= op
;
1810 /* The direct assignment in the previous line is possible only because
1811 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1812 ** following asserts verify this fact. */
1813 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
1814 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
1815 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
1816 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
1817 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
1818 assert( WO_MATCH
==SQLITE_INDEX_CONSTRAINT_MATCH
);
1819 assert( pTerm
->eOperator
& (WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_MATCH
) );
1822 for(i
=0; i
<nOrderBy
; i
++){
1823 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1824 pIdxOrderBy
[i
].iColumn
= pExpr
->iColumn
;
1825 pIdxOrderBy
[i
].desc
= pOrderBy
->a
[i
].sortOrder
;
1832 ** The table object reference passed as the second argument to this function
1833 ** must represent a virtual table. This function invokes the xBestIndex()
1834 ** method of the virtual table with the sqlite3_index_info object that
1835 ** comes in as the 3rd argument to this function.
1837 ** If an error occurs, pParse is populated with an error message and a
1838 ** non-zero value is returned. Otherwise, 0 is returned and the output
1839 ** part of the sqlite3_index_info structure is left populated.
1841 ** Whether or not an error is returned, it is the responsibility of the
1842 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1843 ** that this is required.
1845 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
1846 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
1850 TRACE_IDX_INPUTS(p
);
1851 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
1852 TRACE_IDX_OUTPUTS(p
);
1854 if( rc
!=SQLITE_OK
){
1855 if( rc
==SQLITE_NOMEM
){
1856 pParse
->db
->mallocFailed
= 1;
1857 }else if( !pVtab
->zErrMsg
){
1858 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1860 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1863 sqlite3_free(pVtab
->zErrMsg
);
1866 for(i
=0; i
<p
->nConstraint
; i
++){
1867 if( !p
->aConstraint
[i
].usable
&& p
->aConstraintUsage
[i
].argvIndex
>0 ){
1868 sqlite3ErrorMsg(pParse
,
1869 "table %s: xBestIndex returned an invalid plan", pTab
->zName
);
1873 return pParse
->nErr
;
1875 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1878 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1880 ** Estimate the location of a particular key among all keys in an
1881 ** index. Store the results in aStat as follows:
1883 ** aStat[0] Est. number of rows less than pVal
1884 ** aStat[1] Est. number of rows equal to pVal
1886 ** Return SQLITE_OK on success.
1888 static void whereKeyStats(
1889 Parse
*pParse
, /* Database connection */
1890 Index
*pIdx
, /* Index to consider domain of */
1891 UnpackedRecord
*pRec
, /* Vector of values to consider */
1892 int roundUp
, /* Round up if true. Round down if false */
1893 tRowcnt
*aStat
/* OUT: stats written here */
1895 IndexSample
*aSample
= pIdx
->aSample
;
1896 int iCol
; /* Index of required stats in anEq[] etc. */
1897 int iMin
= 0; /* Smallest sample not yet tested */
1898 int i
= pIdx
->nSample
; /* Smallest sample larger than or equal to pRec */
1899 int iTest
; /* Next sample to test */
1900 int res
; /* Result of comparison operation */
1902 #ifndef SQLITE_DEBUG
1903 UNUSED_PARAMETER( pParse
);
1906 iCol
= pRec
->nField
- 1;
1907 assert( pIdx
->nSample
>0 );
1908 assert( pRec
->nField
>0 && iCol
<pIdx
->nSampleCol
);
1911 res
= sqlite3VdbeRecordCompare(aSample
[iTest
].n
, aSample
[iTest
].p
, pRec
);
1917 }while( res
&& iMin
<i
);
1920 /* The following assert statements check that the binary search code
1921 ** above found the right answer. This block serves no purpose other
1922 ** than to invoke the asserts. */
1924 /* If (res==0) is true, then sample $i must be equal to pRec */
1925 assert( i
<pIdx
->nSample
);
1926 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1927 || pParse
->db
->mallocFailed
);
1929 /* Otherwise, pRec must be smaller than sample $i and larger than
1930 ** sample ($i-1). */
1931 assert( i
==pIdx
->nSample
1932 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1933 || pParse
->db
->mallocFailed
);
1935 || sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1936 || pParse
->db
->mallocFailed
);
1938 #endif /* ifdef SQLITE_DEBUG */
1940 /* At this point, aSample[i] is the first sample that is greater than
1941 ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less
1942 ** than pVal. If aSample[i]==pVal, then res==0.
1945 aStat
[0] = aSample
[i
].anLt
[iCol
];
1946 aStat
[1] = aSample
[i
].anEq
[iCol
];
1948 tRowcnt iLower
, iUpper
, iGap
;
1951 iUpper
= aSample
[0].anLt
[iCol
];
1953 i64 nRow0
= sqlite3LogEstToInt(pIdx
->aiRowLogEst
[0]);
1954 iUpper
= i
>=pIdx
->nSample
? nRow0
: aSample
[i
].anLt
[iCol
];
1955 iLower
= aSample
[i
-1].anEq
[iCol
] + aSample
[i
-1].anLt
[iCol
];
1957 aStat
[1] = pIdx
->aAvgEq
[iCol
];
1958 if( iLower
>=iUpper
){
1961 iGap
= iUpper
- iLower
;
1968 aStat
[0] = iLower
+ iGap
;
1971 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1974 ** If it is not NULL, pTerm is a term that provides an upper or lower
1975 ** bound on a range scan. Without considering pTerm, it is estimated
1976 ** that the scan will visit nNew rows. This function returns the number
1977 ** estimated to be visited after taking pTerm into account.
1979 ** If the user explicitly specified a likelihood() value for this term,
1980 ** then the return value is the likelihood multiplied by the number of
1981 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1982 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1984 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1987 if( pTerm
->truthProb
<=0 ){
1988 nRet
+= pTerm
->truthProb
;
1989 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1990 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1996 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1998 ** This function is called to estimate the number of rows visited by a
1999 ** range-scan on a skip-scan index. For example:
2001 ** CREATE INDEX i1 ON t1(a, b, c);
2002 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
2004 ** Value pLoop->nOut is currently set to the estimated number of rows
2005 ** visited for scanning (a=? AND b=?). This function reduces that estimate
2006 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
2007 ** on the stat4 data for the index. this scan will be peformed multiple
2008 ** times (once for each (a,b) combination that matches a=?) is dealt with
2011 ** It does this by scanning through all stat4 samples, comparing values
2012 ** extracted from pLower and pUpper with the corresponding column in each
2013 ** sample. If L and U are the number of samples found to be less than or
2014 ** equal to the values extracted from pLower and pUpper respectively, and
2015 ** N is the total number of samples, the pLoop->nOut value is adjusted
2018 ** nOut = nOut * ( min(U - L, 1) / N )
2020 ** If pLower is NULL, or a value cannot be extracted from the term, L is
2021 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
2024 ** Normally, this function sets *pbDone to 1 before returning. However,
2025 ** if no value can be extracted from either pLower or pUpper (and so the
2026 ** estimate of the number of rows delivered remains unchanged), *pbDone
2029 ** If an error occurs, an SQLite error code is returned. Otherwise,
2032 static int whereRangeSkipScanEst(
2033 Parse
*pParse
, /* Parsing & code generating context */
2034 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
2035 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
2036 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
2037 int *pbDone
/* Set to true if at least one expr. value extracted */
2039 Index
*p
= pLoop
->u
.btree
.pIndex
;
2040 int nEq
= pLoop
->u
.btree
.nEq
;
2041 sqlite3
*db
= pParse
->db
;
2043 int nUpper
= p
->nSample
+1;
2045 int iCol
= p
->aiColumn
[nEq
];
2046 u8 aff
= iCol
>=0 ? p
->pTable
->aCol
[iCol
].affinity
: SQLITE_AFF_INTEGER
;
2049 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
2050 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
2051 sqlite3_value
*pVal
= 0; /* Value extracted from record */
2053 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
2055 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
2058 if( pUpper
&& rc
==SQLITE_OK
){
2059 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
2060 nUpper
= p2
? 0 : p
->nSample
;
2066 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
2067 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
2068 if( rc
==SQLITE_OK
&& p1
){
2069 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
2070 if( res
>=0 ) nLower
++;
2072 if( rc
==SQLITE_OK
&& p2
){
2073 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
2074 if( res
>=0 ) nUpper
++;
2077 nDiff
= (nUpper
- nLower
);
2078 if( nDiff
<=0 ) nDiff
= 1;
2080 /* If there is both an upper and lower bound specified, and the
2081 ** comparisons indicate that they are close together, use the fallback
2082 ** method (assume that the scan visits 1/64 of the rows) for estimating
2083 ** the number of rows visited. Otherwise, estimate the number of rows
2084 ** using the method described in the header comment for this function. */
2085 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
2086 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
2087 pLoop
->nOut
-= nAdjust
;
2089 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
2090 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
2094 assert( *pbDone
==0 );
2097 sqlite3ValueFree(p1
);
2098 sqlite3ValueFree(p2
);
2099 sqlite3ValueFree(pVal
);
2103 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
2106 ** This function is used to estimate the number of rows that will be visited
2107 ** by scanning an index for a range of values. The range may have an upper
2108 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2109 ** and lower bounds are represented by pLower and pUpper respectively. For
2110 ** example, assuming that index p is on t1(a):
2112 ** ... FROM t1 WHERE a > ? AND a < ? ...
2117 ** If either of the upper or lower bound is not present, then NULL is passed in
2118 ** place of the corresponding WhereTerm.
2120 ** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
2121 ** column subject to the range constraint. Or, equivalently, the number of
2122 ** equality constraints optimized by the proposed index scan. For example,
2123 ** assuming index p is on t1(a, b), and the SQL query is:
2125 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2127 ** then nEq is set to 1 (as the range restricted column, b, is the second
2128 ** left-most column of the index). Or, if the query is:
2130 ** ... FROM t1 WHERE a > ? AND a < ? ...
2132 ** then nEq is set to 0.
2134 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
2135 ** number of rows that the index scan is expected to visit without
2136 ** considering the range constraints. If nEq is 0, this is the number of
2137 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
2138 ** to account for the range constraints pLower and pUpper.
2140 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
2141 ** used, a single range inequality reduces the search space by a factor of 4.
2142 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
2143 ** rows visited by a factor of 64.
2145 static int whereRangeScanEst(
2146 Parse
*pParse
, /* Parsing & code generating context */
2147 WhereLoopBuilder
*pBuilder
,
2148 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
2149 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
2150 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
2153 int nOut
= pLoop
->nOut
;
2156 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2157 Index
*p
= pLoop
->u
.btree
.pIndex
;
2158 int nEq
= pLoop
->u
.btree
.nEq
;
2161 && nEq
<p
->nSampleCol
2162 && OptimizationEnabled(pParse
->db
, SQLITE_Stat3
)
2164 if( nEq
==pBuilder
->nRecValid
){
2165 UnpackedRecord
*pRec
= pBuilder
->pRec
;
2169 /* Variable iLower will be set to the estimate of the number of rows in
2170 ** the index that are less than the lower bound of the range query. The
2171 ** lower bound being the concatenation of $P and $L, where $P is the
2172 ** key-prefix formed by the nEq values matched against the nEq left-most
2173 ** columns of the index, and $L is the value in pLower.
2175 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
2176 ** is not a simple variable or literal value), the lower bound of the
2177 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
2178 ** if $L is available, whereKeyStats() is called for both ($P) and
2179 ** ($P:$L) and the larger of the two returned values used.
2181 ** Similarly, iUpper is to be set to the estimate of the number of rows
2182 ** less than the upper bound of the range query. Where the upper bound
2183 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
2184 ** of iUpper are requested of whereKeyStats() and the smaller used.
2190 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
2191 pRec
->nField
= pBuilder
->nRecValid
;
2193 if( nEq
==p
->nKeyCol
){
2194 aff
= SQLITE_AFF_INTEGER
;
2196 aff
= p
->pTable
->aCol
[p
->aiColumn
[nEq
]].affinity
;
2198 /* Determine iLower and iUpper using ($P) only. */
2201 iUpper
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
2203 /* Note: this call could be optimized away - since the same values must
2204 ** have been requested when testing key $P in whereEqualScanEst(). */
2205 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2207 iUpper
= a
[0] + a
[1];
2210 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
2211 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
2212 assert( p
->aSortOrder
!=0 );
2213 if( p
->aSortOrder
[nEq
] ){
2214 /* The roles of pLower and pUpper are swapped for a DESC index */
2215 SWAP(WhereTerm
*, pLower
, pUpper
);
2218 /* If possible, improve on the iLower estimate using ($P:$L). */
2220 int bOk
; /* True if value is extracted from pExpr */
2221 Expr
*pExpr
= pLower
->pExpr
->pRight
;
2222 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, aff
, nEq
, &bOk
);
2223 if( rc
==SQLITE_OK
&& bOk
){
2225 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2226 iNew
= a
[0] + ((pLower
->eOperator
& (WO_GT
|WO_LE
)) ? a
[1] : 0);
2227 if( iNew
>iLower
) iLower
= iNew
;
2233 /* If possible, improve on the iUpper estimate using ($P:$U). */
2235 int bOk
; /* True if value is extracted from pExpr */
2236 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
2237 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, aff
, nEq
, &bOk
);
2238 if( rc
==SQLITE_OK
&& bOk
){
2240 whereKeyStats(pParse
, p
, pRec
, 1, a
);
2241 iNew
= a
[0] + ((pUpper
->eOperator
& (WO_GT
|WO_LE
)) ? a
[1] : 0);
2242 if( iNew
<iUpper
) iUpper
= iNew
;
2248 pBuilder
->pRec
= pRec
;
2249 if( rc
==SQLITE_OK
){
2250 if( iUpper
>iLower
){
2251 nNew
= sqlite3LogEst(iUpper
- iLower
);
2253 nNew
= 10; assert( 10==sqlite3LogEst(2) );
2258 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
2259 (u32
)iLower
, (u32
)iUpper
, nOut
));
2263 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
2264 if( bDone
) return rc
;
2268 UNUSED_PARAMETER(pParse
);
2269 UNUSED_PARAMETER(pBuilder
);
2270 assert( pLower
|| pUpper
);
2272 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 );
2273 nNew
= whereRangeAdjust(pLower
, nOut
);
2274 nNew
= whereRangeAdjust(pUpper
, nNew
);
2276 /* TUNING: If there is both an upper and lower limit, assume the range is
2277 ** reduced by an additional 75%. This means that, by default, an open-ended
2278 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
2279 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
2280 ** match 1/64 of the index. */
2281 if( pLower
&& pUpper
) nNew
-= 20;
2283 nOut
-= (pLower
!=0) + (pUpper
!=0);
2284 if( nNew
<10 ) nNew
= 10;
2285 if( nNew
<nOut
) nOut
= nNew
;
2286 #if defined(WHERETRACE_ENABLED)
2287 if( pLoop
->nOut
>nOut
){
2288 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
2289 pLoop
->nOut
, nOut
));
2292 pLoop
->nOut
= (LogEst
)nOut
;
2296 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2298 ** Estimate the number of rows that will be returned based on
2299 ** an equality constraint x=VALUE and where that VALUE occurs in
2300 ** the histogram data. This only works when x is the left-most
2301 ** column of an index and sqlite_stat3 histogram data is available
2302 ** for that index. When pExpr==NULL that means the constraint is
2303 ** "x IS NULL" instead of "x=VALUE".
2305 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2306 ** If unable to make an estimate, leave *pnRow unchanged and return
2309 ** This routine can fail if it is unable to load a collating sequence
2310 ** required for string comparison, or if unable to allocate memory
2311 ** for a UTF conversion required for comparison. The error is stored
2312 ** in the pParse structure.
2314 static int whereEqualScanEst(
2315 Parse
*pParse
, /* Parsing & code generating context */
2316 WhereLoopBuilder
*pBuilder
,
2317 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2318 tRowcnt
*pnRow
/* Write the revised row estimate here */
2320 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2321 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
2322 UnpackedRecord
*pRec
= pBuilder
->pRec
;
2323 u8 aff
; /* Column affinity */
2324 int rc
; /* Subfunction return code */
2325 tRowcnt a
[2]; /* Statistics */
2329 assert( nEq
<=p
->nColumn
);
2330 assert( p
->aSample
!=0 );
2331 assert( p
->nSample
>0 );
2332 assert( pBuilder
->nRecValid
<nEq
);
2334 /* If values are not available for all fields of the index to the left
2335 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2336 if( pBuilder
->nRecValid
<(nEq
-1) ){
2337 return SQLITE_NOTFOUND
;
2340 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2341 ** below would return the same value. */
2342 if( nEq
>=p
->nColumn
){
2347 aff
= p
->pTable
->aCol
[p
->aiColumn
[nEq
-1]].affinity
;
2348 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, aff
, nEq
-1, &bOk
);
2349 pBuilder
->pRec
= pRec
;
2350 if( rc
!=SQLITE_OK
) return rc
;
2351 if( bOk
==0 ) return SQLITE_NOTFOUND
;
2352 pBuilder
->nRecValid
= nEq
;
2354 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2355 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a
[1]));
2360 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
2362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2364 ** Estimate the number of rows that will be returned based on
2365 ** an IN constraint where the right-hand side of the IN operator
2366 ** is a list of values. Example:
2368 ** WHERE x IN (1,2,3,4)
2370 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2371 ** If unable to make an estimate, leave *pnRow unchanged and return
2374 ** This routine can fail if it is unable to load a collating sequence
2375 ** required for string comparison, or if unable to allocate memory
2376 ** for a UTF conversion required for comparison. The error is stored
2377 ** in the pParse structure.
2379 static int whereInScanEst(
2380 Parse
*pParse
, /* Parsing & code generating context */
2381 WhereLoopBuilder
*pBuilder
,
2382 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2383 tRowcnt
*pnRow
/* Write the revised row estimate here */
2385 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2386 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
2387 int nRecValid
= pBuilder
->nRecValid
;
2388 int rc
= SQLITE_OK
; /* Subfunction return code */
2389 tRowcnt nEst
; /* Number of rows for a single term */
2390 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
2391 int i
; /* Loop counter */
2393 assert( p
->aSample
!=0 );
2394 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2396 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
2398 pBuilder
->nRecValid
= nRecValid
;
2401 if( rc
==SQLITE_OK
){
2402 if( nRowEst
> nRow0
) nRowEst
= nRow0
;
2404 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst
));
2406 assert( pBuilder
->nRecValid
==nRecValid
);
2409 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
2412 ** Disable a term in the WHERE clause. Except, do not disable the term
2413 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2414 ** or USING clause of that join.
2416 ** Consider the term t2.z='ok' in the following queries:
2418 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2419 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2420 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2422 ** The t2.z='ok' is disabled in the in (2) because it originates
2423 ** in the ON clause. The term is disabled in (3) because it is not part
2424 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2426 ** Disabling a term causes that term to not be tested in the inner loop
2427 ** of the join. Disabling is an optimization. When terms are satisfied
2428 ** by indices, we disable them to prevent redundant tests in the inner
2429 ** loop. We would get the correct results if nothing were ever disabled,
2430 ** but joins might run a little slower. The trick is to disable as much
2431 ** as we can without disabling too much. If we disabled in (1), we'd get
2432 ** the wrong answer. See ticket #813.
2434 static void disableTerm(WhereLevel
*pLevel
, WhereTerm
*pTerm
){
2436 && (pTerm
->wtFlags
& TERM_CODED
)==0
2437 && (pLevel
->iLeftJoin
==0 || ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
2438 && (pLevel
->notReady
& pTerm
->prereqAll
)==0
2440 pTerm
->wtFlags
|= TERM_CODED
;
2441 if( pTerm
->iParent
>=0 ){
2442 WhereTerm
*pOther
= &pTerm
->pWC
->a
[pTerm
->iParent
];
2443 if( (--pOther
->nChild
)==0 ){
2444 disableTerm(pLevel
, pOther
);
2451 ** Code an OP_Affinity opcode to apply the column affinity string zAff
2452 ** to the n registers starting at base.
2454 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
2455 ** beginning and end of zAff are ignored. If all entries in zAff are
2456 ** SQLITE_AFF_NONE, then no code gets generated.
2458 ** This routine makes its own copy of zAff so that the caller is free
2459 ** to modify zAff after this routine returns.
2461 static void codeApplyAffinity(Parse
*pParse
, int base
, int n
, char *zAff
){
2462 Vdbe
*v
= pParse
->pVdbe
;
2464 assert( pParse
->db
->mallocFailed
);
2469 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
2470 ** and end of the affinity string.
2472 while( n
>0 && zAff
[0]==SQLITE_AFF_NONE
){
2477 while( n
>1 && zAff
[n
-1]==SQLITE_AFF_NONE
){
2481 /* Code the OP_Affinity opcode if there is anything left to do. */
2483 sqlite3VdbeAddOp2(v
, OP_Affinity
, base
, n
);
2484 sqlite3VdbeChangeP4(v
, -1, zAff
, n
);
2485 sqlite3ExprCacheAffinityChange(pParse
, base
, n
);
2491 ** Generate code for a single equality term of the WHERE clause. An equality
2492 ** term can be either X=expr or X IN (...). pTerm is the term to be
2495 ** The current value for the constraint is left in register iReg.
2497 ** For a constraint of the form X=expr, the expression is evaluated and its
2498 ** result is left on the stack. For constraints of the form X IN (...)
2499 ** this routine sets up a loop that will iterate over all values of X.
2501 static int codeEqualityTerm(
2502 Parse
*pParse
, /* The parsing context */
2503 WhereTerm
*pTerm
, /* The term of the WHERE clause to be coded */
2504 WhereLevel
*pLevel
, /* The level of the FROM clause we are working on */
2505 int iEq
, /* Index of the equality term within this level */
2506 int bRev
, /* True for reverse-order IN operations */
2507 int iTarget
/* Attempt to leave results in this register */
2509 Expr
*pX
= pTerm
->pExpr
;
2510 Vdbe
*v
= pParse
->pVdbe
;
2511 int iReg
; /* Register holding results */
2513 assert( iTarget
>0 );
2514 if( pX
->op
==TK_EQ
){
2515 iReg
= sqlite3ExprCodeTarget(pParse
, pX
->pRight
, iTarget
);
2516 }else if( pX
->op
==TK_ISNULL
){
2518 sqlite3VdbeAddOp2(v
, OP_Null
, 0, iReg
);
2519 #ifndef SQLITE_OMIT_SUBQUERY
2524 WhereLoop
*pLoop
= pLevel
->pWLoop
;
2526 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
2527 && pLoop
->u
.btree
.pIndex
!=0
2528 && pLoop
->u
.btree
.pIndex
->aSortOrder
[iEq
]
2534 assert( pX
->op
==TK_IN
);
2536 eType
= sqlite3FindInIndex(pParse
, pX
, IN_INDEX_LOOP
, 0);
2537 if( eType
==IN_INDEX_INDEX_DESC
){
2542 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iTab
, 0);
2543 VdbeCoverageIf(v
, bRev
);
2544 VdbeCoverageIf(v
, !bRev
);
2545 assert( (pLoop
->wsFlags
& WHERE_MULTI_OR
)==0 );
2546 pLoop
->wsFlags
|= WHERE_IN_ABLE
;
2547 if( pLevel
->u
.in
.nIn
==0 ){
2548 pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
2551 pLevel
->u
.in
.aInLoop
=
2552 sqlite3DbReallocOrFree(pParse
->db
, pLevel
->u
.in
.aInLoop
,
2553 sizeof(pLevel
->u
.in
.aInLoop
[0])*pLevel
->u
.in
.nIn
);
2554 pIn
= pLevel
->u
.in
.aInLoop
;
2556 pIn
+= pLevel
->u
.in
.nIn
- 1;
2558 if( eType
==IN_INDEX_ROWID
){
2559 pIn
->addrInTop
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iTab
, iReg
);
2561 pIn
->addrInTop
= sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, 0, iReg
);
2563 pIn
->eEndLoopOp
= bRev
? OP_PrevIfOpen
: OP_NextIfOpen
;
2564 sqlite3VdbeAddOp1(v
, OP_IsNull
, iReg
); VdbeCoverage(v
);
2566 pLevel
->u
.in
.nIn
= 0;
2570 disableTerm(pLevel
, pTerm
);
2575 ** Generate code that will evaluate all == and IN constraints for an
2578 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2579 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
2580 ** The index has as many as three equality constraints, but in this
2581 ** example, the third "c" value is an inequality. So only two
2582 ** constraints are coded. This routine will generate code to evaluate
2583 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
2584 ** in consecutive registers and the index of the first register is returned.
2586 ** In the example above nEq==2. But this subroutine works for any value
2587 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
2588 ** The only thing it does is allocate the pLevel->iMem memory cell and
2589 ** compute the affinity string.
2591 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
2592 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
2593 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
2594 ** occurs after the nEq quality constraints.
2596 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
2597 ** the index of the first memory cell in that range. The code that
2598 ** calls this routine will use that memory range to store keys for
2599 ** start and termination conditions of the loop.
2600 ** key value of the loop. If one or more IN operators appear, then
2601 ** this routine allocates an additional nEq memory cells for internal
2604 ** Before returning, *pzAff is set to point to a buffer containing a
2605 ** copy of the column affinity string of the index allocated using
2606 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2607 ** with equality constraints that use NONE affinity are set to
2608 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2610 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2611 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2613 ** In the example above, the index on t1(a) has TEXT affinity. But since
2614 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
2615 ** no conversion should be attempted before using a t2.b value as part of
2616 ** a key to search the index. Hence the first byte in the returned affinity
2617 ** string in this example would be set to SQLITE_AFF_NONE.
2619 static int codeAllEqualityTerms(
2620 Parse
*pParse
, /* Parsing context */
2621 WhereLevel
*pLevel
, /* Which nested loop of the FROM we are coding */
2622 int bRev
, /* Reverse the order of IN operators */
2623 int nExtraReg
, /* Number of extra registers to allocate */
2624 char **pzAff
/* OUT: Set to point to affinity string */
2626 u16 nEq
; /* The number of == or IN constraints to code */
2627 u16 nSkip
; /* Number of left-most columns to skip */
2628 Vdbe
*v
= pParse
->pVdbe
; /* The vm under construction */
2629 Index
*pIdx
; /* The index being used for this loop */
2630 WhereTerm
*pTerm
; /* A single constraint term */
2631 WhereLoop
*pLoop
; /* The WhereLoop object */
2632 int j
; /* Loop counter */
2633 int regBase
; /* Base register */
2634 int nReg
; /* Number of registers to allocate */
2635 char *zAff
; /* Affinity string to return */
2637 /* This module is only called on query plans that use an index. */
2638 pLoop
= pLevel
->pWLoop
;
2639 assert( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2640 nEq
= pLoop
->u
.btree
.nEq
;
2641 nSkip
= pLoop
->u
.btree
.nSkip
;
2642 pIdx
= pLoop
->u
.btree
.pIndex
;
2645 /* Figure out how many memory cells we will need then allocate them.
2647 regBase
= pParse
->nMem
+ 1;
2648 nReg
= pLoop
->u
.btree
.nEq
+ nExtraReg
;
2649 pParse
->nMem
+= nReg
;
2651 zAff
= sqlite3DbStrDup(pParse
->db
, sqlite3IndexAffinityStr(v
, pIdx
));
2653 pParse
->db
->mallocFailed
= 1;
2657 int iIdxCur
= pLevel
->iIdxCur
;
2658 sqlite3VdbeAddOp1(v
, (bRev
?OP_Last
:OP_Rewind
), iIdxCur
);
2659 VdbeCoverageIf(v
, bRev
==0);
2660 VdbeCoverageIf(v
, bRev
!=0);
2661 VdbeComment((v
, "begin skip-scan on %s", pIdx
->zName
));
2662 j
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2663 pLevel
->addrSkip
= sqlite3VdbeAddOp4Int(v
, (bRev
?OP_SeekLT
:OP_SeekGT
),
2664 iIdxCur
, 0, regBase
, nSkip
);
2665 VdbeCoverageIf(v
, bRev
==0);
2666 VdbeCoverageIf(v
, bRev
!=0);
2667 sqlite3VdbeJumpHere(v
, j
);
2668 for(j
=0; j
<nSkip
; j
++){
2669 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, j
, regBase
+j
);
2670 assert( pIdx
->aiColumn
[j
]>=0 );
2671 VdbeComment((v
, "%s", pIdx
->pTable
->aCol
[pIdx
->aiColumn
[j
]].zName
));
2675 /* Evaluate the equality constraints
2677 assert( zAff
==0 || (int)strlen(zAff
)>=nEq
);
2678 for(j
=nSkip
; j
<nEq
; j
++){
2680 pTerm
= pLoop
->aLTerm
[j
];
2682 /* The following testcase is true for indices with redundant columns.
2683 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
2684 testcase( (pTerm
->wtFlags
& TERM_CODED
)!=0 );
2685 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
2686 r1
= codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, bRev
, regBase
+j
);
2687 if( r1
!=regBase
+j
){
2689 sqlite3ReleaseTempReg(pParse
, regBase
);
2692 sqlite3VdbeAddOp2(v
, OP_SCopy
, r1
, regBase
+j
);
2695 testcase( pTerm
->eOperator
& WO_ISNULL
);
2696 testcase( pTerm
->eOperator
& WO_IN
);
2697 if( (pTerm
->eOperator
& (WO_ISNULL
|WO_IN
))==0 ){
2698 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2699 if( sqlite3ExprCanBeNull(pRight
) ){
2700 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+j
, pLevel
->addrBrk
);
2704 if( sqlite3CompareAffinity(pRight
, zAff
[j
])==SQLITE_AFF_NONE
){
2705 zAff
[j
] = SQLITE_AFF_NONE
;
2707 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zAff
[j
]) ){
2708 zAff
[j
] = SQLITE_AFF_NONE
;
2717 #ifndef SQLITE_OMIT_EXPLAIN
2719 ** This routine is a helper for explainIndexRange() below
2721 ** pStr holds the text of an expression that we are building up one term
2722 ** at a time. This routine adds a new term to the end of the expression.
2723 ** Terms are separated by AND so add the "AND" text for second and subsequent
2726 static void explainAppendTerm(
2727 StrAccum
*pStr
, /* The text expression being built */
2728 int iTerm
, /* Index of this term. First is zero */
2729 const char *zColumn
, /* Name of the column */
2730 const char *zOp
/* Name of the operator */
2732 if( iTerm
) sqlite3StrAccumAppend(pStr
, " AND ", 5);
2733 sqlite3StrAccumAppendAll(pStr
, zColumn
);
2734 sqlite3StrAccumAppend(pStr
, zOp
, 1);
2735 sqlite3StrAccumAppend(pStr
, "?", 1);
2739 ** Argument pLevel describes a strategy for scanning table pTab. This
2740 ** function appends text to pStr that describes the subset of table
2741 ** rows scanned by the strategy in the form of an SQL expression.
2743 ** For example, if the query:
2745 ** SELECT * FROM t1 WHERE a=1 AND b>2;
2747 ** is run and there is an index on (a, b), then this function returns a
2748 ** string similar to:
2752 static void explainIndexRange(StrAccum
*pStr
, WhereLoop
*pLoop
, Table
*pTab
){
2753 Index
*pIndex
= pLoop
->u
.btree
.pIndex
;
2754 u16 nEq
= pLoop
->u
.btree
.nEq
;
2755 u16 nSkip
= pLoop
->u
.btree
.nSkip
;
2757 Column
*aCol
= pTab
->aCol
;
2758 i16
*aiColumn
= pIndex
->aiColumn
;
2760 if( nEq
==0 && (pLoop
->wsFlags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))==0 ) return;
2761 sqlite3StrAccumAppend(pStr
, " (", 2);
2762 for(i
=0; i
<nEq
; i
++){
2763 char *z
= aiColumn
[i
] < 0 ? "rowid" : aCol
[aiColumn
[i
]].zName
;
2765 explainAppendTerm(pStr
, i
, z
, "=");
2767 if( i
) sqlite3StrAccumAppend(pStr
, " AND ", 5);
2768 sqlite3XPrintf(pStr
, 0, "ANY(%s)", z
);
2773 if( pLoop
->wsFlags
&WHERE_BTM_LIMIT
){
2774 char *z
= aiColumn
[j
] < 0 ? "rowid" : aCol
[aiColumn
[j
]].zName
;
2775 explainAppendTerm(pStr
, i
++, z
, ">");
2777 if( pLoop
->wsFlags
&WHERE_TOP_LIMIT
){
2778 char *z
= aiColumn
[j
] < 0 ? "rowid" : aCol
[aiColumn
[j
]].zName
;
2779 explainAppendTerm(pStr
, i
, z
, "<");
2781 sqlite3StrAccumAppend(pStr
, ")", 1);
2785 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
2786 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
2787 ** record is added to the output to describe the table scan strategy in
2790 static void explainOneScan(
2791 Parse
*pParse
, /* Parse context */
2792 SrcList
*pTabList
, /* Table list this loop refers to */
2793 WhereLevel
*pLevel
, /* Scan to write OP_Explain opcode for */
2794 int iLevel
, /* Value for "level" column of output */
2795 int iFrom
, /* Value for "from" column of output */
2796 u16 wctrlFlags
/* Flags passed to sqlite3WhereBegin() */
2798 #ifndef SQLITE_DEBUG
2799 if( pParse
->explain
==2 )
2802 struct SrcList_item
*pItem
= &pTabList
->a
[pLevel
->iFrom
];
2803 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
2804 sqlite3
*db
= pParse
->db
; /* Database handle */
2805 int iId
= pParse
->iSelectId
; /* Select id (left-most output column) */
2806 int isSearch
; /* True for a SEARCH. False for SCAN. */
2807 WhereLoop
*pLoop
; /* The controlling WhereLoop object */
2808 u32 flags
; /* Flags that describe this loop */
2809 char *zMsg
; /* Text to add to EQP output */
2810 StrAccum str
; /* EQP output string */
2811 char zBuf
[100]; /* Initial space for EQP output string */
2813 pLoop
= pLevel
->pWLoop
;
2814 flags
= pLoop
->wsFlags
;
2815 if( (flags
&WHERE_MULTI_OR
) || (wctrlFlags
&WHERE_ONETABLE_ONLY
) ) return;
2817 isSearch
= (flags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0
2818 || ((flags
&WHERE_VIRTUALTABLE
)==0 && (pLoop
->u
.btree
.nEq
>0))
2819 || (wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
));
2821 sqlite3StrAccumInit(&str
, zBuf
, sizeof(zBuf
), SQLITE_MAX_LENGTH
);
2823 sqlite3StrAccumAppendAll(&str
, isSearch
? "SEARCH" : "SCAN");
2824 if( pItem
->pSelect
){
2825 sqlite3XPrintf(&str
, 0, " SUBQUERY %d", pItem
->iSelectId
);
2827 sqlite3XPrintf(&str
, 0, " TABLE %s", pItem
->zName
);
2830 if( pItem
->zAlias
){
2831 sqlite3XPrintf(&str
, 0, " AS %s", pItem
->zAlias
);
2833 if( (flags
& (WHERE_IPK
|WHERE_VIRTUALTABLE
))==0 ){
2834 const char *zFmt
= 0;
2837 assert( pLoop
->u
.btree
.pIndex
!=0 );
2838 pIdx
= pLoop
->u
.btree
.pIndex
;
2839 assert( !(flags
&WHERE_AUTO_INDEX
) || (flags
&WHERE_IDX_ONLY
) );
2840 if( !HasRowid(pItem
->pTab
) && IsPrimaryKeyIndex(pIdx
) ){
2842 zFmt
= "PRIMARY KEY";
2844 }else if( flags
& WHERE_AUTO_INDEX
){
2845 zFmt
= "AUTOMATIC COVERING INDEX";
2846 }else if( flags
& WHERE_IDX_ONLY
){
2847 zFmt
= "COVERING INDEX %s";
2852 sqlite3StrAccumAppend(&str
, " USING ", 7);
2853 sqlite3XPrintf(&str
, 0, zFmt
, pIdx
->zName
);
2854 explainIndexRange(&str
, pLoop
, pItem
->pTab
);
2856 }else if( (flags
& WHERE_IPK
)!=0 && (flags
& WHERE_CONSTRAINT
)!=0 ){
2858 if( flags
&(WHERE_COLUMN_EQ
|WHERE_COLUMN_IN
) ){
2859 zRange
= "(rowid=?)";
2860 }else if( (flags
&WHERE_BOTH_LIMIT
)==WHERE_BOTH_LIMIT
){
2861 zRange
= "(rowid>? AND rowid<?)";
2862 }else if( flags
&WHERE_BTM_LIMIT
){
2863 zRange
= "(rowid>?)";
2865 assert( flags
&WHERE_TOP_LIMIT
);
2866 zRange
= "(rowid<?)";
2868 sqlite3StrAccumAppendAll(&str
, " USING INTEGER PRIMARY KEY ");
2869 sqlite3StrAccumAppendAll(&str
, zRange
);
2871 #ifndef SQLITE_OMIT_VIRTUALTABLE
2872 else if( (flags
& WHERE_VIRTUALTABLE
)!=0 ){
2873 sqlite3XPrintf(&str
, 0, " VIRTUAL TABLE INDEX %d:%s",
2874 pLoop
->u
.vtab
.idxNum
, pLoop
->u
.vtab
.idxStr
);
2877 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
2878 if( pLoop
->nOut
>=10 ){
2879 sqlite3XPrintf(&str
, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop
->nOut
));
2881 sqlite3StrAccumAppend(&str
, " (~1 row)", 9);
2884 zMsg
= sqlite3StrAccumFinish(&str
);
2885 sqlite3VdbeAddOp4(v
, OP_Explain
, iId
, iLevel
, iFrom
, zMsg
, P4_DYNAMIC
);
2889 # define explainOneScan(u,v,w,x,y,z)
2890 #endif /* SQLITE_OMIT_EXPLAIN */
2894 ** Generate code for the start of the iLevel-th loop in the WHERE clause
2895 ** implementation described by pWInfo.
2897 static Bitmask
codeOneLoopStart(
2898 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
2899 int iLevel
, /* Which level of pWInfo->a[] should be coded */
2900 Bitmask notReady
/* Which tables are currently available */
2902 int j
, k
; /* Loop counters */
2903 int iCur
; /* The VDBE cursor for the table */
2904 int addrNxt
; /* Where to jump to continue with the next IN case */
2905 int omitTable
; /* True if we use the index only */
2906 int bRev
; /* True if we need to scan in reverse order */
2907 WhereLevel
*pLevel
; /* The where level to be coded */
2908 WhereLoop
*pLoop
; /* The WhereLoop object being coded */
2909 WhereClause
*pWC
; /* Decomposition of the entire WHERE clause */
2910 WhereTerm
*pTerm
; /* A WHERE clause term */
2911 Parse
*pParse
; /* Parsing context */
2912 sqlite3
*db
; /* Database connection */
2913 Vdbe
*v
; /* The prepared stmt under constructions */
2914 struct SrcList_item
*pTabItem
; /* FROM clause term being coded */
2915 int addrBrk
; /* Jump here to break out of the loop */
2916 int addrCont
; /* Jump here to continue with next cycle */
2917 int iRowidReg
= 0; /* Rowid is stored in this register, if not zero */
2918 int iReleaseReg
= 0; /* Temp register to free before returning */
2920 pParse
= pWInfo
->pParse
;
2924 pLevel
= &pWInfo
->a
[iLevel
];
2925 pLoop
= pLevel
->pWLoop
;
2926 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
2927 iCur
= pTabItem
->iCursor
;
2928 pLevel
->notReady
= notReady
& ~getMask(&pWInfo
->sMaskSet
, iCur
);
2929 bRev
= (pWInfo
->revMask
>>iLevel
)&1;
2930 omitTable
= (pLoop
->wsFlags
& WHERE_IDX_ONLY
)!=0
2931 && (pWInfo
->wctrlFlags
& WHERE_FORCE_TABLE
)==0;
2932 VdbeModuleComment((v
, "Begin WHERE-loop%d: %s",iLevel
,pTabItem
->pTab
->zName
));
2934 /* Create labels for the "break" and "continue" instructions
2935 ** for the current loop. Jump to addrBrk to break out of a loop.
2936 ** Jump to cont to go immediately to the next iteration of the
2939 ** When there is an IN operator, we also have a "addrNxt" label that
2940 ** means to continue with the next IN value combination. When
2941 ** there are no IN operators in the constraints, the "addrNxt" label
2942 ** is the same as "addrBrk".
2944 addrBrk
= pLevel
->addrBrk
= pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
2945 addrCont
= pLevel
->addrCont
= sqlite3VdbeMakeLabel(v
);
2947 /* If this is the right table of a LEFT OUTER JOIN, allocate and
2948 ** initialize a memory cell that records if this table matches any
2949 ** row of the left table of the join.
2951 if( pLevel
->iFrom
>0 && (pTabItem
[0].jointype
& JT_LEFT
)!=0 ){
2952 pLevel
->iLeftJoin
= ++pParse
->nMem
;
2953 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pLevel
->iLeftJoin
);
2954 VdbeComment((v
, "init LEFT JOIN no-match flag"));
2957 /* Special case of a FROM clause subquery implemented as a co-routine */
2958 if( pTabItem
->viaCoroutine
){
2959 int regYield
= pTabItem
->regReturn
;
2960 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pTabItem
->addrFillSub
);
2961 pLevel
->p2
= sqlite3VdbeAddOp2(v
, OP_Yield
, regYield
, addrBrk
);
2963 VdbeComment((v
, "next row of \"%s\"", pTabItem
->pTab
->zName
));
2964 pLevel
->op
= OP_Goto
;
2967 #ifndef SQLITE_OMIT_VIRTUALTABLE
2968 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
2969 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
2970 ** to access the data.
2972 int iReg
; /* P3 Value for OP_VFilter */
2974 int nConstraint
= pLoop
->nLTerm
;
2976 sqlite3ExprCachePush(pParse
);
2977 iReg
= sqlite3GetTempRange(pParse
, nConstraint
+2);
2978 addrNotFound
= pLevel
->addrBrk
;
2979 for(j
=0; j
<nConstraint
; j
++){
2980 int iTarget
= iReg
+j
+2;
2981 pTerm
= pLoop
->aLTerm
[j
];
2982 if( pTerm
==0 ) continue;
2983 if( pTerm
->eOperator
& WO_IN
){
2984 codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, bRev
, iTarget
);
2985 addrNotFound
= pLevel
->addrNxt
;
2987 sqlite3ExprCode(pParse
, pTerm
->pExpr
->pRight
, iTarget
);
2990 sqlite3VdbeAddOp2(v
, OP_Integer
, pLoop
->u
.vtab
.idxNum
, iReg
);
2991 sqlite3VdbeAddOp2(v
, OP_Integer
, nConstraint
, iReg
+1);
2992 sqlite3VdbeAddOp4(v
, OP_VFilter
, iCur
, addrNotFound
, iReg
,
2993 pLoop
->u
.vtab
.idxStr
,
2994 pLoop
->u
.vtab
.needFree
? P4_MPRINTF
: P4_STATIC
);
2996 pLoop
->u
.vtab
.needFree
= 0;
2997 for(j
=0; j
<nConstraint
&& j
<16; j
++){
2998 if( (pLoop
->u
.vtab
.omitMask
>>j
)&1 ){
2999 disableTerm(pLevel
, pLoop
->aLTerm
[j
]);
3002 pLevel
->op
= OP_VNext
;
3004 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
3005 sqlite3ReleaseTempRange(pParse
, iReg
, nConstraint
+2);
3006 sqlite3ExprCachePop(pParse
);
3008 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3010 if( (pLoop
->wsFlags
& WHERE_IPK
)!=0
3011 && (pLoop
->wsFlags
& (WHERE_COLUMN_IN
|WHERE_COLUMN_EQ
))!=0
3013 /* Case 2: We can directly reference a single row using an
3014 ** equality comparison against the ROWID field. Or
3015 ** we reference multiple rows using a "rowid IN (...)"
3018 assert( pLoop
->u
.btree
.nEq
==1 );
3019 pTerm
= pLoop
->aLTerm
[0];
3021 assert( pTerm
->pExpr
!=0 );
3022 assert( omitTable
==0 );
3023 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
3024 iReleaseReg
= ++pParse
->nMem
;
3025 iRowidReg
= codeEqualityTerm(pParse
, pTerm
, pLevel
, 0, bRev
, iReleaseReg
);
3026 if( iRowidReg
!=iReleaseReg
) sqlite3ReleaseTempReg(pParse
, iReleaseReg
);
3027 addrNxt
= pLevel
->addrNxt
;
3028 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, iRowidReg
, addrNxt
); VdbeCoverage(v
);
3029 sqlite3VdbeAddOp3(v
, OP_NotExists
, iCur
, addrNxt
, iRowidReg
);
3031 sqlite3ExprCacheAffinityChange(pParse
, iRowidReg
, 1);
3032 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3033 VdbeComment((v
, "pk"));
3034 pLevel
->op
= OP_Noop
;
3035 }else if( (pLoop
->wsFlags
& WHERE_IPK
)!=0
3036 && (pLoop
->wsFlags
& WHERE_COLUMN_RANGE
)!=0
3038 /* Case 3: We have an inequality comparison against the ROWID field.
3040 int testOp
= OP_Noop
;
3042 int memEndValue
= 0;
3043 WhereTerm
*pStart
, *pEnd
;
3045 assert( omitTable
==0 );
3048 if( pLoop
->wsFlags
& WHERE_BTM_LIMIT
) pStart
= pLoop
->aLTerm
[j
++];
3049 if( pLoop
->wsFlags
& WHERE_TOP_LIMIT
) pEnd
= pLoop
->aLTerm
[j
++];
3050 assert( pStart
!=0 || pEnd
!=0 );
3057 Expr
*pX
; /* The expression that defines the start bound */
3058 int r1
, rTemp
; /* Registers for holding the start boundary */
3060 /* The following constant maps TK_xx codes into corresponding
3061 ** seek opcodes. It depends on a particular ordering of TK_xx
3063 const u8 aMoveOp
[] = {
3064 /* TK_GT */ OP_SeekGT
,
3065 /* TK_LE */ OP_SeekLE
,
3066 /* TK_LT */ OP_SeekLT
,
3067 /* TK_GE */ OP_SeekGE
3069 assert( TK_LE
==TK_GT
+1 ); /* Make sure the ordering.. */
3070 assert( TK_LT
==TK_GT
+2 ); /* ... of the TK_xx values... */
3071 assert( TK_GE
==TK_GT
+3 ); /* ... is correcct. */
3073 assert( (pStart
->wtFlags
& TERM_VNULL
)==0 );
3074 testcase( pStart
->wtFlags
& TERM_VIRTUAL
);
3077 testcase( pStart
->leftCursor
!=iCur
); /* transitive constraints */
3078 r1
= sqlite3ExprCodeTemp(pParse
, pX
->pRight
, &rTemp
);
3079 sqlite3VdbeAddOp3(v
, aMoveOp
[pX
->op
-TK_GT
], iCur
, addrBrk
, r1
);
3080 VdbeComment((v
, "pk"));
3081 VdbeCoverageIf(v
, pX
->op
==TK_GT
);
3082 VdbeCoverageIf(v
, pX
->op
==TK_LE
);
3083 VdbeCoverageIf(v
, pX
->op
==TK_LT
);
3084 VdbeCoverageIf(v
, pX
->op
==TK_GE
);
3085 sqlite3ExprCacheAffinityChange(pParse
, r1
, 1);
3086 sqlite3ReleaseTempReg(pParse
, rTemp
);
3087 disableTerm(pLevel
, pStart
);
3089 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iCur
, addrBrk
);
3090 VdbeCoverageIf(v
, bRev
==0);
3091 VdbeCoverageIf(v
, bRev
!=0);
3097 assert( (pEnd
->wtFlags
& TERM_VNULL
)==0 );
3098 testcase( pEnd
->leftCursor
!=iCur
); /* Transitive constraints */
3099 testcase( pEnd
->wtFlags
& TERM_VIRTUAL
);
3100 memEndValue
= ++pParse
->nMem
;
3101 sqlite3ExprCode(pParse
, pX
->pRight
, memEndValue
);
3102 if( pX
->op
==TK_LT
|| pX
->op
==TK_GT
){
3103 testOp
= bRev
? OP_Le
: OP_Ge
;
3105 testOp
= bRev
? OP_Lt
: OP_Gt
;
3107 disableTerm(pLevel
, pEnd
);
3109 start
= sqlite3VdbeCurrentAddr(v
);
3110 pLevel
->op
= bRev
? OP_Prev
: OP_Next
;
3113 assert( pLevel
->p5
==0 );
3114 if( testOp
!=OP_Noop
){
3115 iRowidReg
= ++pParse
->nMem
;
3116 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, iRowidReg
);
3117 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3118 sqlite3VdbeAddOp3(v
, testOp
, memEndValue
, addrBrk
, iRowidReg
);
3119 VdbeCoverageIf(v
, testOp
==OP_Le
);
3120 VdbeCoverageIf(v
, testOp
==OP_Lt
);
3121 VdbeCoverageIf(v
, testOp
==OP_Ge
);
3122 VdbeCoverageIf(v
, testOp
==OP_Gt
);
3123 sqlite3VdbeChangeP5(v
, SQLITE_AFF_NUMERIC
| SQLITE_JUMPIFNULL
);
3125 }else if( pLoop
->wsFlags
& WHERE_INDEXED
){
3126 /* Case 4: A scan using an index.
3128 ** The WHERE clause may contain zero or more equality
3129 ** terms ("==" or "IN" operators) that refer to the N
3130 ** left-most columns of the index. It may also contain
3131 ** inequality constraints (>, <, >= or <=) on the indexed
3132 ** column that immediately follows the N equalities. Only
3133 ** the right-most column can be an inequality - the rest must
3134 ** use the "==" and "IN" operators. For example, if the
3135 ** index is on (x,y,z), then the following clauses are all
3141 ** x=5 AND y>5 AND y<10
3142 ** x=5 AND y=5 AND z<=10
3144 ** The z<10 term of the following cannot be used, only
3149 ** N may be zero if there are inequality constraints.
3150 ** If there are no inequality constraints, then N is at
3153 ** This case is also used when there are no WHERE clause
3154 ** constraints but an index is selected anyway, in order
3155 ** to force the output order to conform to an ORDER BY.
3157 static const u8 aStartOp
[] = {
3160 OP_Rewind
, /* 2: (!start_constraints && startEq && !bRev) */
3161 OP_Last
, /* 3: (!start_constraints && startEq && bRev) */
3162 OP_SeekGT
, /* 4: (start_constraints && !startEq && !bRev) */
3163 OP_SeekLT
, /* 5: (start_constraints && !startEq && bRev) */
3164 OP_SeekGE
, /* 6: (start_constraints && startEq && !bRev) */
3165 OP_SeekLE
/* 7: (start_constraints && startEq && bRev) */
3167 static const u8 aEndOp
[] = {
3168 OP_IdxGE
, /* 0: (end_constraints && !bRev && !endEq) */
3169 OP_IdxGT
, /* 1: (end_constraints && !bRev && endEq) */
3170 OP_IdxLE
, /* 2: (end_constraints && bRev && !endEq) */
3171 OP_IdxLT
, /* 3: (end_constraints && bRev && endEq) */
3173 u16 nEq
= pLoop
->u
.btree
.nEq
; /* Number of == or IN terms */
3174 int regBase
; /* Base register holding constraint values */
3175 WhereTerm
*pRangeStart
= 0; /* Inequality constraint at range start */
3176 WhereTerm
*pRangeEnd
= 0; /* Inequality constraint at range end */
3177 int startEq
; /* True if range start uses ==, >= or <= */
3178 int endEq
; /* True if range end uses ==, >= or <= */
3179 int start_constraints
; /* Start of range is constrained */
3180 int nConstraint
; /* Number of constraint terms */
3181 Index
*pIdx
; /* The index we will be using */
3182 int iIdxCur
; /* The VDBE cursor for the index */
3183 int nExtraReg
= 0; /* Number of extra registers needed */
3184 int op
; /* Instruction opcode */
3185 char *zStartAff
; /* Affinity for start of range constraint */
3186 char cEndAff
= 0; /* Affinity for end of range constraint */
3187 u8 bSeekPastNull
= 0; /* True to seek past initial nulls */
3188 u8 bStopAtNull
= 0; /* Add condition to terminate at NULLs */
3190 pIdx
= pLoop
->u
.btree
.pIndex
;
3191 iIdxCur
= pLevel
->iIdxCur
;
3192 assert( nEq
>=pLoop
->u
.btree
.nSkip
);
3194 /* If this loop satisfies a sort order (pOrderBy) request that
3195 ** was passed to this function to implement a "SELECT min(x) ..."
3196 ** query, then the caller will only allow the loop to run for
3197 ** a single iteration. This means that the first row returned
3198 ** should not have a NULL value stored in 'x'. If column 'x' is
3199 ** the first one after the nEq equality constraints in the index,
3200 ** this requires some special handling.
3202 assert( pWInfo
->pOrderBy
==0
3203 || pWInfo
->pOrderBy
->nExpr
==1
3204 || (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0 );
3205 if( (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)!=0
3207 && (pIdx
->nKeyCol
>nEq
)
3209 assert( pLoop
->u
.btree
.nSkip
==0 );
3214 /* Find any inequality constraint terms for the start and end
3218 if( pLoop
->wsFlags
& WHERE_BTM_LIMIT
){
3219 pRangeStart
= pLoop
->aLTerm
[j
++];
3222 if( pLoop
->wsFlags
& WHERE_TOP_LIMIT
){
3223 pRangeEnd
= pLoop
->aLTerm
[j
++];
3226 && (j
= pIdx
->aiColumn
[nEq
])>=0
3227 && pIdx
->pTable
->aCol
[j
].notNull
==0
3232 assert( pRangeEnd
==0 || (pRangeEnd
->wtFlags
& TERM_VNULL
)==0 );
3234 /* Generate code to evaluate all constraint terms using == or IN
3235 ** and store the values of those terms in an array of registers
3236 ** starting at regBase.
3238 regBase
= codeAllEqualityTerms(pParse
,pLevel
,bRev
,nExtraReg
,&zStartAff
);
3239 assert( zStartAff
==0 || sqlite3Strlen30(zStartAff
)>=nEq
);
3240 if( zStartAff
) cEndAff
= zStartAff
[nEq
];
3241 addrNxt
= pLevel
->addrNxt
;
3243 /* If we are doing a reverse order scan on an ascending index, or
3244 ** a forward order scan on a descending index, interchange the
3245 ** start and end terms (pRangeStart and pRangeEnd).
3247 if( (nEq
<pIdx
->nKeyCol
&& bRev
==(pIdx
->aSortOrder
[nEq
]==SQLITE_SO_ASC
))
3248 || (bRev
&& pIdx
->nKeyCol
==nEq
)
3250 SWAP(WhereTerm
*, pRangeEnd
, pRangeStart
);
3251 SWAP(u8
, bSeekPastNull
, bStopAtNull
);
3254 testcase( pRangeStart
&& (pRangeStart
->eOperator
& WO_LE
)!=0 );
3255 testcase( pRangeStart
&& (pRangeStart
->eOperator
& WO_GE
)!=0 );
3256 testcase( pRangeEnd
&& (pRangeEnd
->eOperator
& WO_LE
)!=0 );
3257 testcase( pRangeEnd
&& (pRangeEnd
->eOperator
& WO_GE
)!=0 );
3258 startEq
= !pRangeStart
|| pRangeStart
->eOperator
& (WO_LE
|WO_GE
);
3259 endEq
= !pRangeEnd
|| pRangeEnd
->eOperator
& (WO_LE
|WO_GE
);
3260 start_constraints
= pRangeStart
|| nEq
>0;
3262 /* Seek the index cursor to the start of the range. */
3265 Expr
*pRight
= pRangeStart
->pExpr
->pRight
;
3266 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
3267 if( (pRangeStart
->wtFlags
& TERM_VNULL
)==0
3268 && sqlite3ExprCanBeNull(pRight
)
3270 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+nEq
, addrNxt
);
3274 if( sqlite3CompareAffinity(pRight
, zStartAff
[nEq
])==SQLITE_AFF_NONE
){
3275 /* Since the comparison is to be performed with no conversions
3276 ** applied to the operands, set the affinity to apply to pRight to
3277 ** SQLITE_AFF_NONE. */
3278 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
3280 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zStartAff
[nEq
]) ){
3281 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
3285 testcase( pRangeStart
->wtFlags
& TERM_VIRTUAL
);
3286 }else if( bSeekPastNull
){
3287 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
3290 start_constraints
= 1;
3292 codeApplyAffinity(pParse
, regBase
, nConstraint
- bSeekPastNull
, zStartAff
);
3293 op
= aStartOp
[(start_constraints
<<2) + (startEq
<<1) + bRev
];
3295 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
3297 VdbeCoverageIf(v
, op
==OP_Rewind
); testcase( op
==OP_Rewind
);
3298 VdbeCoverageIf(v
, op
==OP_Last
); testcase( op
==OP_Last
);
3299 VdbeCoverageIf(v
, op
==OP_SeekGT
); testcase( op
==OP_SeekGT
);
3300 VdbeCoverageIf(v
, op
==OP_SeekGE
); testcase( op
==OP_SeekGE
);
3301 VdbeCoverageIf(v
, op
==OP_SeekLE
); testcase( op
==OP_SeekLE
);
3302 VdbeCoverageIf(v
, op
==OP_SeekLT
); testcase( op
==OP_SeekLT
);
3304 /* Load the value for the inequality constraint at the end of the
3309 Expr
*pRight
= pRangeEnd
->pExpr
->pRight
;
3310 sqlite3ExprCacheRemove(pParse
, regBase
+nEq
, 1);
3311 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
3312 if( (pRangeEnd
->wtFlags
& TERM_VNULL
)==0
3313 && sqlite3ExprCanBeNull(pRight
)
3315 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+nEq
, addrNxt
);
3318 if( sqlite3CompareAffinity(pRight
, cEndAff
)!=SQLITE_AFF_NONE
3319 && !sqlite3ExprNeedsNoAffinityChange(pRight
, cEndAff
)
3321 codeApplyAffinity(pParse
, regBase
+nEq
, 1, &cEndAff
);
3324 testcase( pRangeEnd
->wtFlags
& TERM_VIRTUAL
);
3325 }else if( bStopAtNull
){
3326 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
3330 sqlite3DbFree(db
, zStartAff
);
3332 /* Top of the loop body */
3333 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
3335 /* Check if the index cursor is past the end of the range. */
3337 op
= aEndOp
[bRev
*2 + endEq
];
3338 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
3339 testcase( op
==OP_IdxGT
); VdbeCoverageIf(v
, op
==OP_IdxGT
);
3340 testcase( op
==OP_IdxGE
); VdbeCoverageIf(v
, op
==OP_IdxGE
);
3341 testcase( op
==OP_IdxLT
); VdbeCoverageIf(v
, op
==OP_IdxLT
);
3342 testcase( op
==OP_IdxLE
); VdbeCoverageIf(v
, op
==OP_IdxLE
);
3345 /* Seek the table cursor, if required */
3346 disableTerm(pLevel
, pRangeStart
);
3347 disableTerm(pLevel
, pRangeEnd
);
3349 /* pIdx is a covering index. No need to access the main table. */
3350 }else if( HasRowid(pIdx
->pTable
) ){
3351 iRowidReg
= ++pParse
->nMem
;
3352 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iIdxCur
, iRowidReg
);
3353 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3354 sqlite3VdbeAddOp2(v
, OP_Seek
, iCur
, iRowidReg
); /* Deferred seek */
3355 }else if( iCur
!=iIdxCur
){
3356 Index
*pPk
= sqlite3PrimaryKeyIndex(pIdx
->pTable
);
3357 iRowidReg
= sqlite3GetTempRange(pParse
, pPk
->nKeyCol
);
3358 for(j
=0; j
<pPk
->nKeyCol
; j
++){
3359 k
= sqlite3ColumnOfIndex(pIdx
, pPk
->aiColumn
[j
]);
3360 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, k
, iRowidReg
+j
);
3362 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, iCur
, addrCont
,
3363 iRowidReg
, pPk
->nKeyCol
); VdbeCoverage(v
);
3366 /* Record the instruction used to terminate the loop. Disable
3367 ** WHERE clause terms made redundant by the index range scan.
3369 if( pLoop
->wsFlags
& WHERE_ONEROW
){
3370 pLevel
->op
= OP_Noop
;
3372 pLevel
->op
= OP_Prev
;
3374 pLevel
->op
= OP_Next
;
3376 pLevel
->p1
= iIdxCur
;
3377 pLevel
->p3
= (pLoop
->wsFlags
&WHERE_UNQ_WANTED
)!=0 ? 1:0;
3378 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)==0 ){
3379 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
3381 assert( pLevel
->p5
==0 );
3385 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
3386 if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
3387 /* Case 5: Two or more separately indexed terms connected by OR
3391 ** CREATE TABLE t1(a,b,c,d);
3392 ** CREATE INDEX i1 ON t1(a);
3393 ** CREATE INDEX i2 ON t1(b);
3394 ** CREATE INDEX i3 ON t1(c);
3396 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3398 ** In the example, there are three indexed terms connected by OR.
3399 ** The top of the loop looks like this:
3401 ** Null 1 # Zero the rowset in reg 1
3403 ** Then, for each indexed term, the following. The arguments to
3404 ** RowSetTest are such that the rowid of the current row is inserted
3405 ** into the RowSet. If it is already present, control skips the
3406 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
3408 ** sqlite3WhereBegin(<term>)
3409 ** RowSetTest # Insert rowid into rowset
3411 ** sqlite3WhereEnd()
3413 ** Following the above, code to terminate the loop. Label A, the target
3414 ** of the Gosub above, jumps to the instruction right after the Goto.
3416 ** Null 1 # Zero the rowset in reg 1
3417 ** Goto B # The loop is finished.
3419 ** A: <loop body> # Return data, whatever.
3421 ** Return 2 # Jump back to the Gosub
3423 ** B: <after the loop>
3425 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
3426 ** use an ephemeral index instead of a RowSet to record the primary
3427 ** keys of the rows we have already seen.
3430 WhereClause
*pOrWc
; /* The OR-clause broken out into subterms */
3431 SrcList
*pOrTab
; /* Shortened table list or OR-clause generation */
3432 Index
*pCov
= 0; /* Potential covering index (or NULL) */
3433 int iCovCur
= pParse
->nTab
++; /* Cursor used for index scans (if any) */
3435 int regReturn
= ++pParse
->nMem
; /* Register used with OP_Gosub */
3436 int regRowset
= 0; /* Register for RowSet object */
3437 int regRowid
= 0; /* Register holding rowid */
3438 int iLoopBody
= sqlite3VdbeMakeLabel(v
); /* Start of loop body */
3439 int iRetInit
; /* Address of regReturn init */
3440 int untestedTerms
= 0; /* Some terms not completely tested */
3441 int ii
; /* Loop counter */
3442 u16 wctrlFlags
; /* Flags for sub-WHERE clause */
3443 Expr
*pAndExpr
= 0; /* An ".. AND (...)" expression */
3444 Table
*pTab
= pTabItem
->pTab
;
3446 pTerm
= pLoop
->aLTerm
[0];
3448 assert( pTerm
->eOperator
& WO_OR
);
3449 assert( (pTerm
->wtFlags
& TERM_ORINFO
)!=0 );
3450 pOrWc
= &pTerm
->u
.pOrInfo
->wc
;
3451 pLevel
->op
= OP_Return
;
3452 pLevel
->p1
= regReturn
;
3454 /* Set up a new SrcList in pOrTab containing the table being scanned
3455 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
3456 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
3458 if( pWInfo
->nLevel
>1 ){
3459 int nNotReady
; /* The number of notReady tables */
3460 struct SrcList_item
*origSrc
; /* Original list of tables */
3461 nNotReady
= pWInfo
->nLevel
- iLevel
- 1;
3462 pOrTab
= sqlite3StackAllocRaw(db
,
3463 sizeof(*pOrTab
)+ nNotReady
*sizeof(pOrTab
->a
[0]));
3464 if( pOrTab
==0 ) return notReady
;
3465 pOrTab
->nAlloc
= (u8
)(nNotReady
+ 1);
3466 pOrTab
->nSrc
= pOrTab
->nAlloc
;
3467 memcpy(pOrTab
->a
, pTabItem
, sizeof(*pTabItem
));
3468 origSrc
= pWInfo
->pTabList
->a
;
3469 for(k
=1; k
<=nNotReady
; k
++){
3470 memcpy(&pOrTab
->a
[k
], &origSrc
[pLevel
[k
].iFrom
], sizeof(pOrTab
->a
[k
]));
3473 pOrTab
= pWInfo
->pTabList
;
3476 /* Initialize the rowset register to contain NULL. An SQL NULL is
3477 ** equivalent to an empty rowset. Or, create an ephemeral index
3478 ** capable of holding primary keys in the case of a WITHOUT ROWID.
3480 ** Also initialize regReturn to contain the address of the instruction
3481 ** immediately following the OP_Return at the bottom of the loop. This
3482 ** is required in a few obscure LEFT JOIN cases where control jumps
3483 ** over the top of the loop into the body of it. In this case the
3484 ** correct response for the end-of-loop code (the OP_Return) is to
3485 ** fall through to the next instruction, just as an OP_Next does if
3486 ** called on an uninitialized cursor.
3488 if( (pWInfo
->wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
3489 if( HasRowid(pTab
) ){
3490 regRowset
= ++pParse
->nMem
;
3491 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowset
);
3493 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
3494 regRowset
= pParse
->nTab
++;
3495 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, regRowset
, pPk
->nKeyCol
);
3496 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
3498 regRowid
= ++pParse
->nMem
;
3500 iRetInit
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regReturn
);
3502 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
3503 ** Then for every term xN, evaluate as the subexpression: xN AND z
3504 ** That way, terms in y that are factored into the disjunction will
3505 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
3507 ** Actually, each subexpression is converted to "xN AND w" where w is
3508 ** the "interesting" terms of z - terms that did not originate in the
3509 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
3512 ** This optimization also only applies if the (x1 OR x2 OR ...) term
3513 ** is not contained in the ON clause of a LEFT JOIN.
3514 ** See ticket http://www.sqlite.org/src/info/f2369304e4
3518 for(iTerm
=0; iTerm
<pWC
->nTerm
; iTerm
++){
3519 Expr
*pExpr
= pWC
->a
[iTerm
].pExpr
;
3520 if( &pWC
->a
[iTerm
] == pTerm
) continue;
3521 if( ExprHasProperty(pExpr
, EP_FromJoin
) ) continue;
3522 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_ORINFO
);
3523 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_VIRTUAL
);
3524 if( pWC
->a
[iTerm
].wtFlags
& (TERM_ORINFO
|TERM_VIRTUAL
) ) continue;
3525 if( (pWC
->a
[iTerm
].eOperator
& WO_ALL
)==0 ) continue;
3526 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
3527 pAndExpr
= sqlite3ExprAnd(db
, pAndExpr
, pExpr
);
3530 pAndExpr
= sqlite3PExpr(pParse
, TK_AND
, 0, pAndExpr
, 0);
3534 /* Run a separate WHERE clause for each term of the OR clause. After
3535 ** eliminating duplicates from other WHERE clauses, the action for each
3536 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
3538 wctrlFlags
= WHERE_OMIT_OPEN_CLOSE
3540 | WHERE_ONETABLE_ONLY
;
3541 for(ii
=0; ii
<pOrWc
->nTerm
; ii
++){
3542 WhereTerm
*pOrTerm
= &pOrWc
->a
[ii
];
3543 if( pOrTerm
->leftCursor
==iCur
|| (pOrTerm
->eOperator
& WO_AND
)!=0 ){
3544 WhereInfo
*pSubWInfo
; /* Info for single OR-term scan */
3545 Expr
*pOrExpr
= pOrTerm
->pExpr
; /* Current OR clause term */
3546 int j1
= 0; /* Address of jump operation */
3547 if( pAndExpr
&& !ExprHasProperty(pOrExpr
, EP_FromJoin
) ){
3548 pAndExpr
->pLeft
= pOrExpr
;
3551 /* Loop through table entries that match term pOrTerm. */
3552 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
3553 pSubWInfo
= sqlite3WhereBegin(pParse
, pOrTab
, pOrExpr
, 0, 0,
3554 wctrlFlags
, iCovCur
);
3555 assert( pSubWInfo
|| pParse
->nErr
|| db
->mallocFailed
);
3557 WhereLoop
*pSubLoop
;
3559 pParse
, pOrTab
, &pSubWInfo
->a
[0], iLevel
, pLevel
->iFrom
, 0
3561 /* This is the sub-WHERE clause body. First skip over
3562 ** duplicate rows from prior sub-WHERE clauses, and record the
3563 ** rowid (or PRIMARY KEY) for the current row so that the same
3564 ** row will be skipped in subsequent sub-WHERE clauses.
3566 if( (pWInfo
->wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
3568 int iSet
= ((ii
==pOrWc
->nTerm
-1)?-1:ii
);
3569 if( HasRowid(pTab
) ){
3570 r
= sqlite3ExprCodeGetColumn(pParse
, pTab
, -1, iCur
, regRowid
, 0);
3571 j1
= sqlite3VdbeAddOp4Int(v
, OP_RowSetTest
, regRowset
, 0, r
,iSet
);
3574 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
3575 int nPk
= pPk
->nKeyCol
;
3578 /* Read the PK into an array of temp registers. */
3579 r
= sqlite3GetTempRange(pParse
, nPk
);
3580 for(iPk
=0; iPk
<nPk
; iPk
++){
3581 int iCol
= pPk
->aiColumn
[iPk
];
3582 sqlite3ExprCodeGetColumn(pParse
, pTab
, iCol
, iCur
, r
+iPk
, 0);
3585 /* Check if the temp table already contains this key. If so,
3586 ** the row has already been included in the result set and
3587 ** can be ignored (by jumping past the Gosub below). Otherwise,
3588 ** insert the key into the temp table and proceed with processing
3591 ** Use some of the same optimizations as OP_RowSetTest: If iSet
3592 ** is zero, assume that the key cannot already be present in
3593 ** the temp table. And if iSet is -1, assume that there is no
3594 ** need to insert the key into the temp table, as it will never
3595 ** be tested for. */
3597 j1
= sqlite3VdbeAddOp4Int(v
, OP_Found
, regRowset
, 0, r
, nPk
);
3601 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r
, nPk
, regRowid
);
3602 sqlite3VdbeAddOp3(v
, OP_IdxInsert
, regRowset
, regRowid
, 0);
3603 if( iSet
) sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
3606 /* Release the array of temp registers */
3607 sqlite3ReleaseTempRange(pParse
, r
, nPk
);
3611 /* Invoke the main loop body as a subroutine */
3612 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReturn
, iLoopBody
);
3614 /* Jump here (skipping the main loop body subroutine) if the
3615 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
3616 if( j1
) sqlite3VdbeJumpHere(v
, j1
);
3618 /* The pSubWInfo->untestedTerms flag means that this OR term
3619 ** contained one or more AND term from a notReady table. The
3620 ** terms from the notReady table could not be tested and will
3621 ** need to be tested later.
3623 if( pSubWInfo
->untestedTerms
) untestedTerms
= 1;
3625 /* If all of the OR-connected terms are optimized using the same
3626 ** index, and the index is opened using the same cursor number
3627 ** by each call to sqlite3WhereBegin() made by this loop, it may
3628 ** be possible to use that index as a covering index.
3630 ** If the call to sqlite3WhereBegin() above resulted in a scan that
3631 ** uses an index, and this is either the first OR-connected term
3632 ** processed or the index is the same as that used by all previous
3633 ** terms, set pCov to the candidate covering index. Otherwise, set
3634 ** pCov to NULL to indicate that no candidate covering index will
3637 pSubLoop
= pSubWInfo
->a
[0].pWLoop
;
3638 assert( (pSubLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
3639 if( (pSubLoop
->wsFlags
& WHERE_INDEXED
)!=0
3640 && (ii
==0 || pSubLoop
->u
.btree
.pIndex
==pCov
)
3641 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pSubLoop
->u
.btree
.pIndex
))
3643 assert( pSubWInfo
->a
[0].iIdxCur
==iCovCur
);
3644 pCov
= pSubLoop
->u
.btree
.pIndex
;
3645 wctrlFlags
|= WHERE_REOPEN_IDX
;
3650 /* Finish the loop through table entries that match term pOrTerm. */
3651 sqlite3WhereEnd(pSubWInfo
);
3655 pLevel
->u
.pCovidx
= pCov
;
3656 if( pCov
) pLevel
->iIdxCur
= iCovCur
;
3658 pAndExpr
->pLeft
= 0;
3659 sqlite3ExprDelete(db
, pAndExpr
);
3661 sqlite3VdbeChangeP1(v
, iRetInit
, sqlite3VdbeCurrentAddr(v
));
3662 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrBrk
);
3663 sqlite3VdbeResolveLabel(v
, iLoopBody
);
3665 if( pWInfo
->nLevel
>1 ) sqlite3StackFree(db
, pOrTab
);
3666 if( !untestedTerms
) disableTerm(pLevel
, pTerm
);
3668 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
3671 /* Case 6: There is no usable index. We must do a complete
3672 ** scan of the entire table.
3674 static const u8 aStep
[] = { OP_Next
, OP_Prev
};
3675 static const u8 aStart
[] = { OP_Rewind
, OP_Last
};
3676 assert( bRev
==0 || bRev
==1 );
3677 if( pTabItem
->isRecursive
){
3678 /* Tables marked isRecursive have only a single row that is stored in
3679 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
3680 pLevel
->op
= OP_Noop
;
3682 pLevel
->op
= aStep
[bRev
];
3684 pLevel
->p2
= 1 + sqlite3VdbeAddOp2(v
, aStart
[bRev
], iCur
, addrBrk
);
3685 VdbeCoverageIf(v
, bRev
==0);
3686 VdbeCoverageIf(v
, bRev
!=0);
3687 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
3691 /* Insert code to test every subexpression that can be completely
3692 ** computed using the current set of tables.
3694 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
3696 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
3697 testcase( pTerm
->wtFlags
& TERM_CODED
);
3698 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
3699 if( (pTerm
->prereqAll
& pLevel
->notReady
)!=0 ){
3700 testcase( pWInfo
->untestedTerms
==0
3701 && (pWInfo
->wctrlFlags
& WHERE_ONETABLE_ONLY
)!=0 );
3702 pWInfo
->untestedTerms
= 1;
3707 if( pLevel
->iLeftJoin
&& !ExprHasProperty(pE
, EP_FromJoin
) ){
3710 sqlite3ExprIfFalse(pParse
, pE
, addrCont
, SQLITE_JUMPIFNULL
);
3711 pTerm
->wtFlags
|= TERM_CODED
;
3714 /* Insert code to test for implied constraints based on transitivity
3715 ** of the "==" operator.
3717 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
3718 ** and we are coding the t1 loop and the t2 loop has not yet coded,
3719 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
3720 ** the implied "t1.a=123" constraint.
3722 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
3725 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
3726 if( pTerm
->eOperator
!=(WO_EQUIV
|WO_EQ
) ) continue;
3727 if( pTerm
->leftCursor
!=iCur
) continue;
3728 if( pLevel
->iLeftJoin
) continue;
3730 assert( !ExprHasProperty(pE
, EP_FromJoin
) );
3731 assert( (pTerm
->prereqRight
& pLevel
->notReady
)!=0 );
3732 pAlt
= findTerm(pWC
, iCur
, pTerm
->u
.leftColumn
, notReady
, WO_EQ
|WO_IN
, 0);
3733 if( pAlt
==0 ) continue;
3734 if( pAlt
->wtFlags
& (TERM_CODED
) ) continue;
3735 testcase( pAlt
->eOperator
& WO_EQ
);
3736 testcase( pAlt
->eOperator
& WO_IN
);
3737 VdbeModuleComment((v
, "begin transitive constraint"));
3738 pEAlt
= sqlite3StackAllocRaw(db
, sizeof(*pEAlt
));
3740 *pEAlt
= *pAlt
->pExpr
;
3741 pEAlt
->pLeft
= pE
->pLeft
;
3742 sqlite3ExprIfFalse(pParse
, pEAlt
, addrCont
, SQLITE_JUMPIFNULL
);
3743 sqlite3StackFree(db
, pEAlt
);
3747 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3748 ** at least one row of the right table has matched the left table.
3750 if( pLevel
->iLeftJoin
){
3751 pLevel
->addrFirst
= sqlite3VdbeCurrentAddr(v
);
3752 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pLevel
->iLeftJoin
);
3753 VdbeComment((v
, "record LEFT JOIN hit"));
3754 sqlite3ExprCacheClear(pParse
);
3755 for(pTerm
=pWC
->a
, j
=0; j
<pWC
->nTerm
; j
++, pTerm
++){
3756 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
3757 testcase( pTerm
->wtFlags
& TERM_CODED
);
3758 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
3759 if( (pTerm
->prereqAll
& pLevel
->notReady
)!=0 ){
3760 assert( pWInfo
->untestedTerms
);
3763 assert( pTerm
->pExpr
);
3764 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
3765 pTerm
->wtFlags
|= TERM_CODED
;
3769 return pLevel
->notReady
;
3772 #ifdef WHERETRACE_ENABLED
3774 ** Print the content of a WhereTerm object
3776 static void whereTermPrint(WhereTerm
*pTerm
, int iTerm
){
3778 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
3781 memcpy(zType
, "...", 4);
3782 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
3783 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
3784 if( ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
) ) zType
[2] = 'L';
3785 sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n",
3786 iTerm
, pTerm
, zType
, pTerm
->leftCursor
, pTerm
->truthProb
,
3788 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
3793 #ifdef WHERETRACE_ENABLED
3795 ** Print a WhereLoop object for debugging purposes
3797 static void whereLoopPrint(WhereLoop
*p
, WhereClause
*pWC
){
3798 WhereInfo
*pWInfo
= pWC
->pWInfo
;
3799 int nb
= 1+(pWInfo
->pTabList
->nSrc
+7)/8;
3800 struct SrcList_item
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
3801 Table
*pTab
= pItem
->pTab
;
3802 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
3803 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
);
3804 sqlite3DebugPrintf(" %12s",
3805 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
3806 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
3808 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
3809 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
3810 int i
= sqlite3Strlen30(zName
) - 1;
3811 while( zName
[i
]!='_' ) i
--;
3814 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
3816 sqlite3DebugPrintf("%20s","");
3820 if( p
->u
.vtab
.idxStr
){
3821 z
= sqlite3_mprintf("(%d,\"%s\",%x)",
3822 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
3824 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
3826 sqlite3DebugPrintf(" %-19s", z
);
3829 if( p
->wsFlags
& WHERE_SKIPSCAN
){
3830 sqlite3DebugPrintf(" f %05x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->u
.btree
.nSkip
);
3832 sqlite3DebugPrintf(" f %05x N %d", p
->wsFlags
, p
->nLTerm
);
3834 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
3835 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x100)!=0 ){
3837 for(i
=0; i
<p
->nLTerm
; i
++){
3838 whereTermPrint(p
->aLTerm
[i
], i
);
3845 ** Convert bulk memory into a valid WhereLoop that can be passed
3846 ** to whereLoopClear harmlessly.
3848 static void whereLoopInit(WhereLoop
*p
){
3849 p
->aLTerm
= p
->aLTermSpace
;
3851 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
3856 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
3858 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
3859 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
3860 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
3861 sqlite3_free(p
->u
.vtab
.idxStr
);
3862 p
->u
.vtab
.needFree
= 0;
3863 p
->u
.vtab
.idxStr
= 0;
3864 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
3865 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
3866 sqlite3KeyInfoUnref(p
->u
.btree
.pIndex
->pKeyInfo
);
3867 sqlite3DbFree(db
, p
->u
.btree
.pIndex
);
3868 p
->u
.btree
.pIndex
= 0;
3874 ** Deallocate internal memory used by a WhereLoop object
3876 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
3877 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFree(db
, p
->aLTerm
);
3878 whereLoopClearUnion(db
, p
);
3883 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
3885 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
3887 if( p
->nLSlot
>=n
) return SQLITE_OK
;
3889 paNew
= sqlite3DbMallocRaw(db
, sizeof(p
->aLTerm
[0])*n
);
3890 if( paNew
==0 ) return SQLITE_NOMEM
;
3891 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
3892 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFree(db
, p
->aLTerm
);
3899 ** Transfer content from the second pLoop into the first.
3901 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
3902 whereLoopClearUnion(db
, pTo
);
3903 if( whereLoopResize(db
, pTo
, pFrom
->nLTerm
) ){
3904 memset(&pTo
->u
, 0, sizeof(pTo
->u
));
3905 return SQLITE_NOMEM
;
3907 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
3908 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
3909 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
3910 pFrom
->u
.vtab
.needFree
= 0;
3911 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
3912 pFrom
->u
.btree
.pIndex
= 0;
3918 ** Delete a WhereLoop object
3920 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
3921 whereLoopClear(db
, p
);
3922 sqlite3DbFree(db
, p
);
3926 ** Free a WhereInfo structure
3928 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
3929 if( ALWAYS(pWInfo
) ){
3930 whereClauseClear(&pWInfo
->sWC
);
3931 while( pWInfo
->pLoops
){
3932 WhereLoop
*p
= pWInfo
->pLoops
;
3933 pWInfo
->pLoops
= p
->pNextLoop
;
3934 whereLoopDelete(db
, p
);
3936 sqlite3DbFree(db
, pWInfo
);
3941 ** Return TRUE if both of the following are true:
3943 ** (1) X has the same or lower cost that Y
3944 ** (2) X is a proper subset of Y
3946 ** By "proper subset" we mean that X uses fewer WHERE clause terms
3947 ** than Y and that every WHERE clause term used by X is also used
3950 ** If X is a proper subset of Y then Y is a better choice and ought
3951 ** to have a lower cost. This routine returns TRUE when that cost
3952 ** relationship is inverted and needs to be adjusted.
3954 static int whereLoopCheaperProperSubset(
3955 const WhereLoop
*pX
, /* First WhereLoop to compare */
3956 const WhereLoop
*pY
/* Compare against this WhereLoop */
3959 if( pX
->nLTerm
>= pY
->nLTerm
) return 0; /* X is not a subset of Y */
3960 if( pX
->rRun
>= pY
->rRun
){
3961 if( pX
->rRun
> pY
->rRun
) return 0; /* X costs more than Y */
3962 if( pX
->nOut
> pY
->nOut
) return 0; /* X costs more than Y */
3964 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
3965 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
3966 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
3968 if( j
<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
3970 return 1; /* All conditions meet */
3974 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
3977 ** (1) pTemplate costs less than any other WhereLoops that are a proper
3978 ** subset of pTemplate
3980 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
3981 ** is a proper subset.
3983 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
3984 ** WHERE clause terms than Y and that every WHERE clause term used by X is
3987 ** This adjustment is omitted for SKIPSCAN loops. In a SKIPSCAN loop, the
3988 ** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE
3989 ** clause terms covered, since some of the first nLTerm entries in aLTerm[]
3990 ** will be NULL (because they are skipped). That makes it more difficult
3991 ** to compare the loops. We could add extra code to do the comparison, and
3992 ** perhaps we will someday. But SKIPSCAN is sufficiently uncommon, and this
3993 ** adjustment is sufficient minor, that it is very difficult to construct
3994 ** a test case where the extra code would improve the query plan. Better
3995 ** to avoid the added complexity and just omit cost adjustments to SKIPSCAN
3998 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
3999 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
4000 if( (pTemplate
->wsFlags
& WHERE_SKIPSCAN
)!=0 ) return;
4001 for(; p
; p
=p
->pNextLoop
){
4002 if( p
->iTab
!=pTemplate
->iTab
) continue;
4003 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
4004 if( (p
->wsFlags
& WHERE_SKIPSCAN
)!=0 ) continue;
4005 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
4006 /* Adjust pTemplate cost downward so that it is cheaper than its
4008 pTemplate
->rRun
= p
->rRun
;
4009 pTemplate
->nOut
= p
->nOut
- 1;
4010 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
4011 /* Adjust pTemplate cost upward so that it is costlier than p since
4012 ** pTemplate is a proper subset of p */
4013 pTemplate
->rRun
= p
->rRun
;
4014 pTemplate
->nOut
= p
->nOut
+ 1;
4020 ** Search the list of WhereLoops in *ppPrev looking for one that can be
4021 ** supplanted by pTemplate.
4023 ** Return NULL if the WhereLoop list contains an entry that can supplant
4024 ** pTemplate, in other words if pTemplate does not belong on the list.
4026 ** If pX is a WhereLoop that pTemplate can supplant, then return the
4027 ** link that points to pX.
4029 ** If pTemplate cannot supplant any existing element of the list but needs
4030 ** to be added to the list, then return a pointer to the tail of the list.
4032 static WhereLoop
**whereLoopFindLesser(
4034 const WhereLoop
*pTemplate
4037 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
4038 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
4039 /* If either the iTab or iSortIdx values for two WhereLoop are different
4040 ** then those WhereLoops need to be considered separately. Neither is
4041 ** a candidate to replace the other. */
4044 /* In the current implementation, the rSetup value is either zero
4045 ** or the cost of building an automatic index (NlogN) and the NlogN
4046 ** is the same for compatible WhereLoops. */
4047 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
4048 || p
->rSetup
==pTemplate
->rSetup
);
4050 /* whereLoopAddBtree() always generates and inserts the automatic index
4051 ** case first. Hence compatible candidate WhereLoops never have a larger
4052 ** rSetup. Call this SETUP-INVARIANT */
4053 assert( p
->rSetup
>=pTemplate
->rSetup
);
4055 /* Any loop using an appliation-defined index (or PRIMARY KEY or
4056 ** UNIQUE constraint) with one or more == constraints is better
4057 ** than an automatic index. */
4058 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
4059 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
4060 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
4061 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
4066 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
4067 ** discarded. WhereLoop p is better if:
4068 ** (1) p has no more dependencies than pTemplate, and
4069 ** (2) p has an equal or lower cost than pTemplate
4071 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
4072 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
4073 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
4074 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
4076 return 0; /* Discard pTemplate */
4079 /* If pTemplate is always better than p, then cause p to be overwritten
4080 ** with pTemplate. pTemplate is better than p if:
4081 ** (1) pTemplate has no more dependences than p, and
4082 ** (2) pTemplate has an equal or lower cost than p.
4084 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
4085 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
4086 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
4088 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
4089 break; /* Cause p to be overwritten by pTemplate */
4096 ** Insert or replace a WhereLoop entry using the template supplied.
4098 ** An existing WhereLoop entry might be overwritten if the new template
4099 ** is better and has fewer dependencies. Or the template will be ignored
4100 ** and no insert will occur if an existing WhereLoop is faster and has
4101 ** fewer dependencies than the template. Otherwise a new WhereLoop is
4102 ** added based on the template.
4104 ** If pBuilder->pOrSet is not NULL then we care about only the
4105 ** prerequisites and rRun and nOut costs of the N best loops. That
4106 ** information is gathered in the pBuilder->pOrSet object. This special
4107 ** processing mode is used only for OR clause processing.
4109 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
4110 ** still might overwrite similar loops with the new template if the
4111 ** new template is better. Loops may be overwritten if the following
4112 ** conditions are met:
4114 ** (1) They have the same iTab.
4115 ** (2) They have the same iSortIdx.
4116 ** (3) The template has same or fewer dependencies than the current loop
4117 ** (4) The template has the same or lower cost than the current loop
4119 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
4120 WhereLoop
**ppPrev
, *p
;
4121 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4122 sqlite3
*db
= pWInfo
->pParse
->db
;
4124 /* If pBuilder->pOrSet is defined, then only keep track of the costs
4127 if( pBuilder
->pOrSet
!=0 ){
4128 #if WHERETRACE_ENABLED
4129 u16 n
= pBuilder
->pOrSet
->n
;
4132 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
4134 #if WHERETRACE_ENABLED /* 0x8 */
4135 if( sqlite3WhereTrace
& 0x8 ){
4136 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
4137 whereLoopPrint(pTemplate
, pBuilder
->pWC
);
4143 /* Look for an existing WhereLoop to replace with pTemplate
4145 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
4146 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
4149 /* There already exists a WhereLoop on the list that is better
4150 ** than pTemplate, so just ignore pTemplate */
4151 #if WHERETRACE_ENABLED /* 0x8 */
4152 if( sqlite3WhereTrace
& 0x8 ){
4153 sqlite3DebugPrintf(" skip: ");
4154 whereLoopPrint(pTemplate
, pBuilder
->pWC
);
4162 /* If we reach this point it means that either p[] should be overwritten
4163 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
4164 ** WhereLoop and insert it.
4166 #if WHERETRACE_ENABLED /* 0x8 */
4167 if( sqlite3WhereTrace
& 0x8 ){
4169 sqlite3DebugPrintf("replace: ");
4170 whereLoopPrint(p
, pBuilder
->pWC
);
4172 sqlite3DebugPrintf(" add: ");
4173 whereLoopPrint(pTemplate
, pBuilder
->pWC
);
4177 /* Allocate a new WhereLoop to add to the end of the list */
4178 *ppPrev
= p
= sqlite3DbMallocRaw(db
, sizeof(WhereLoop
));
4179 if( p
==0 ) return SQLITE_NOMEM
;
4183 /* We will be overwriting WhereLoop p[]. But before we do, first
4184 ** go through the rest of the list and delete any other entries besides
4185 ** p[] that are also supplated by pTemplate */
4186 WhereLoop
**ppTail
= &p
->pNextLoop
;
4189 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
4190 if( ppTail
==0 ) break;
4192 if( pToDel
==0 ) break;
4193 *ppTail
= pToDel
->pNextLoop
;
4194 #if WHERETRACE_ENABLED /* 0x8 */
4195 if( sqlite3WhereTrace
& 0x8 ){
4196 sqlite3DebugPrintf(" delete: ");
4197 whereLoopPrint(pToDel
, pBuilder
->pWC
);
4200 whereLoopDelete(db
, pToDel
);
4203 whereLoopXfer(db
, p
, pTemplate
);
4204 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
4205 Index
*pIndex
= p
->u
.btree
.pIndex
;
4206 if( pIndex
&& pIndex
->tnum
==0 ){
4207 p
->u
.btree
.pIndex
= 0;
4214 ** Adjust the WhereLoop.nOut value downward to account for terms of the
4215 ** WHERE clause that reference the loop but which are not used by an
4218 ** In the current implementation, the first extra WHERE clause term reduces
4219 ** the number of output rows by a factor of 10 and each additional term
4220 ** reduces the number of output rows by sqrt(2).
4222 static void whereLoopOutputAdjust(
4223 WhereClause
*pWC
, /* The WHERE clause */
4224 WhereLoop
*pLoop
, /* The loop to adjust downward */
4225 LogEst nRow
/* Number of rows in the entire table */
4227 WhereTerm
*pTerm
, *pX
;
4228 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
4230 int nEq
= 0; /* Number of = constraints not within likely()/unlikely() */
4232 for(i
=pWC
->nTerm
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
4233 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) break;
4234 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
4235 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
4236 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
4237 pX
= pLoop
->aLTerm
[j
];
4238 if( pX
==0 ) continue;
4239 if( pX
==pTerm
) break;
4240 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
4243 if( pTerm
->truthProb
<=0 ){
4244 pLoop
->nOut
+= pTerm
->truthProb
;
4247 if( pTerm
->eOperator
&WO_EQ
) nEq
++;
4251 /* TUNING: If there is at least one equality constraint in the WHERE
4252 ** clause that does not have a likelihood() explicitly assigned to it
4253 ** then do not let the estimated number of output rows exceed half
4254 ** the number of rows in the table. */
4255 if( nEq
&& pLoop
->nOut
>nRow
-10 ){
4256 pLoop
->nOut
= nRow
- 10;
4261 ** Adjust the cost C by the costMult facter T. This only occurs if
4262 ** compiled with -DSQLITE_ENABLE_COSTMULT
4264 #ifdef SQLITE_ENABLE_COSTMULT
4265 # define ApplyCostMultiplier(C,T) C += T
4267 # define ApplyCostMultiplier(C,T)
4271 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
4272 ** index pIndex. Try to match one more.
4274 ** When this function is called, pBuilder->pNew->nOut contains the
4275 ** number of rows expected to be visited by filtering using the nEq
4276 ** terms only. If it is modified, this value is restored before this
4277 ** function returns.
4279 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
4280 ** INTEGER PRIMARY KEY.
4282 static int whereLoopAddBtreeIndex(
4283 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
4284 struct SrcList_item
*pSrc
, /* FROM clause term being analyzed */
4285 Index
*pProbe
, /* An index on pSrc */
4286 LogEst nInMul
/* log(Number of iterations due to IN) */
4288 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyse context */
4289 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
4290 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
4291 WhereLoop
*pNew
; /* Template WhereLoop under construction */
4292 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
4293 int opMask
; /* Valid operators for constraints */
4294 WhereScan scan
; /* Iterator for WHERE terms */
4295 Bitmask saved_prereq
; /* Original value of pNew->prereq */
4296 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
4297 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
4298 u16 saved_nSkip
; /* Original value of pNew->u.btree.nSkip */
4299 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
4300 LogEst saved_nOut
; /* Original value of pNew->nOut */
4301 int iCol
; /* Index of the column in the table */
4302 int rc
= SQLITE_OK
; /* Return code */
4303 LogEst rSize
; /* Number of rows in the table */
4304 LogEst rLogSize
; /* Logarithm of table size */
4305 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
4307 pNew
= pBuilder
->pNew
;
4308 if( db
->mallocFailed
) return SQLITE_NOMEM
;
4310 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
4311 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
4312 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
4313 opMask
= WO_LT
|WO_LE
;
4314 }else if( pProbe
->tnum
<=0 || (pSrc
->jointype
& JT_LEFT
)!=0 ){
4315 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
;
4317 opMask
= WO_EQ
|WO_IN
|WO_ISNULL
|WO_GT
|WO_GE
|WO_LT
|WO_LE
;
4319 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
4321 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
4322 iCol
= pProbe
->aiColumn
[pNew
->u
.btree
.nEq
];
4324 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, iCol
,
4326 saved_nEq
= pNew
->u
.btree
.nEq
;
4327 saved_nSkip
= pNew
->u
.btree
.nSkip
;
4328 saved_nLTerm
= pNew
->nLTerm
;
4329 saved_wsFlags
= pNew
->wsFlags
;
4330 saved_prereq
= pNew
->prereq
;
4331 saved_nOut
= pNew
->nOut
;
4333 rSize
= pProbe
->aiRowLogEst
[0];
4334 rLogSize
= estLog(rSize
);
4336 /* Consider using a skip-scan if there are no WHERE clause constraints
4337 ** available for the left-most terms of the index, and if the average
4338 ** number of repeats in the left-most terms is at least 18.
4340 ** The magic number 18 is selected on the basis that scanning 17 rows
4341 ** is almost always quicker than an index seek (even though if the index
4342 ** contains fewer than 2^17 rows we assume otherwise in other parts of
4343 ** the code). And, even if it is not, it should not be too much slower.
4344 ** On the other hand, the extra seeks could end up being significantly
4345 ** more expensive. */
4346 assert( 42==sqlite3LogEst(18) );
4347 if( saved_nEq
==saved_nSkip
4348 && saved_nEq
+1<pProbe
->nKeyCol
4349 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
4350 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
4353 pNew
->u
.btree
.nEq
++;
4354 pNew
->u
.btree
.nSkip
++;
4355 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
4356 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
4357 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
4359 /* TUNING: When estimating skip-scan for a term that is also indexable,
4360 ** multiply the cost of the skip-scan by 2.0, to make it a little less
4361 ** desirable than the regular index lookup. */
4362 nIter
+= 10; assert( 10==sqlite3LogEst(2) );
4364 pNew
->nOut
-= nIter
;
4365 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
4366 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
4368 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
4369 pNew
->nOut
= saved_nOut
;
4370 pNew
->u
.btree
.nEq
= saved_nEq
;
4371 pNew
->u
.btree
.nSkip
= saved_nSkip
;
4373 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
4374 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
4376 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
4378 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4379 int nRecValid
= pBuilder
->nRecValid
;
4381 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
4382 && (iCol
<0 || pSrc
->pTab
->aCol
[iCol
].notNull
)
4384 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
4386 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
4388 pNew
->wsFlags
= saved_wsFlags
;
4389 pNew
->u
.btree
.nEq
= saved_nEq
;
4390 pNew
->nLTerm
= saved_nLTerm
;
4391 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
4392 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
4393 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
4396 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
4397 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
4398 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
4402 Expr
*pExpr
= pTerm
->pExpr
;
4403 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
4404 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
4405 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
4406 nIn
= 46; assert( 46==sqlite3LogEst(25) );
4407 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
4408 /* "x IN (value, value, ...)" */
4409 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
4411 assert( nIn
>0 ); /* RHS always has 2 or more terms... The parser
4412 ** changes "x IN (?)" into "x=?". */
4414 }else if( eOp
& (WO_EQ
) ){
4415 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
4416 if( iCol
<0 || (nInMul
==0 && pNew
->u
.btree
.nEq
==pProbe
->nKeyCol
-1) ){
4417 if( iCol
>=0 && !IsUniqueIndex(pProbe
) ){
4418 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
4420 pNew
->wsFlags
|= WHERE_ONEROW
;
4423 }else if( eOp
& WO_ISNULL
){
4424 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
4425 }else if( eOp
& (WO_GT
|WO_GE
) ){
4426 testcase( eOp
& WO_GT
);
4427 testcase( eOp
& WO_GE
);
4428 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
4432 assert( eOp
& (WO_LT
|WO_LE
) );
4433 testcase( eOp
& WO_LT
);
4434 testcase( eOp
& WO_LE
);
4435 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
4437 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
4438 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
4441 /* At this point pNew->nOut is set to the number of rows expected to
4442 ** be visited by the index scan before considering term pTerm, or the
4443 ** values of nIn and nInMul. In other words, assuming that all
4444 ** "x IN(...)" terms are replaced with "x = ?". This block updates
4445 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
4446 assert( pNew
->nOut
==saved_nOut
);
4447 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
4448 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
4449 ** data, using some other estimate. */
4450 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
4452 int nEq
= ++pNew
->u
.btree
.nEq
;
4453 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
) );
4455 assert( pNew
->nOut
==saved_nOut
);
4456 if( pTerm
->truthProb
<=0 && iCol
>=0 ){
4457 assert( (eOp
& WO_IN
) || nIn
==0 );
4458 testcase( eOp
& WO_IN
);
4459 pNew
->nOut
+= pTerm
->truthProb
;
4462 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4466 && pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
4467 && OptimizationEnabled(db
, SQLITE_Stat3
)
4468 && ((eOp
& WO_IN
)==0 || !ExprHasProperty(pTerm
->pExpr
, EP_xIsSelect
))
4470 Expr
*pExpr
= pTerm
->pExpr
;
4471 if( (eOp
& (WO_EQ
|WO_ISNULL
))!=0 ){
4472 testcase( eOp
& WO_EQ
);
4473 testcase( eOp
& WO_ISNULL
);
4474 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
4476 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
4478 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
4479 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
4481 pNew
->nOut
= sqlite3LogEst(nOut
);
4482 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
4489 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
4490 if( eOp
& WO_ISNULL
){
4491 /* TUNING: If there is no likelihood() value, assume that a
4492 ** "col IS NULL" expression matches twice as many rows
4500 /* Set rCostIdx to the cost of visiting selected rows in index. Add
4501 ** it to pNew->rRun, which is currently set to the cost of the index
4502 ** seek only. Then, if this is a non-covering index, add the cost of
4503 ** visiting the rows in the main table. */
4504 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
4505 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
4506 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
))==0 ){
4507 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
4509 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
4511 nOutUnadjusted
= pNew
->nOut
;
4512 pNew
->rRun
+= nInMul
+ nIn
;
4513 pNew
->nOut
+= nInMul
+ nIn
;
4514 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
4515 rc
= whereLoopInsert(pBuilder
, pNew
);
4517 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
4518 pNew
->nOut
= saved_nOut
;
4520 pNew
->nOut
= nOutUnadjusted
;
4523 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
4524 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
4526 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
4528 pNew
->nOut
= saved_nOut
;
4529 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4530 pBuilder
->nRecValid
= nRecValid
;
4533 pNew
->prereq
= saved_prereq
;
4534 pNew
->u
.btree
.nEq
= saved_nEq
;
4535 pNew
->u
.btree
.nSkip
= saved_nSkip
;
4536 pNew
->wsFlags
= saved_wsFlags
;
4537 pNew
->nOut
= saved_nOut
;
4538 pNew
->nLTerm
= saved_nLTerm
;
4543 ** Return True if it is possible that pIndex might be useful in
4544 ** implementing the ORDER BY clause in pBuilder.
4546 ** Return False if pBuilder does not contain an ORDER BY clause or
4547 ** if there is no way for pIndex to be useful in implementing that
4550 static int indexMightHelpWithOrderBy(
4551 WhereLoopBuilder
*pBuilder
,
4558 if( pIndex
->bUnordered
) return 0;
4559 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
4560 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
4561 Expr
*pExpr
= sqlite3ExprSkipCollate(pOB
->a
[ii
].pExpr
);
4562 if( pExpr
->op
!=TK_COLUMN
) return 0;
4563 if( pExpr
->iTable
==iCursor
){
4564 if( pExpr
->iColumn
<0 ) return 1;
4565 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
4566 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
4574 ** Return a bitmask where 1s indicate that the corresponding column of
4575 ** the table is used by an index. Only the first 63 columns are considered.
4577 static Bitmask
columnsInIndex(Index
*pIdx
){
4580 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
4581 int x
= pIdx
->aiColumn
[j
];
4583 testcase( x
==BMS
-1 );
4584 testcase( x
==BMS
-2 );
4585 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
4591 /* Check to see if a partial index with pPartIndexWhere can be used
4592 ** in the current query. Return true if it can be and false if not.
4594 static int whereUsablePartialIndex(int iTab
, WhereClause
*pWC
, Expr
*pWhere
){
4597 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
4598 if( sqlite3ExprImpliesExpr(pTerm
->pExpr
, pWhere
, iTab
) ) return 1;
4604 ** Add all WhereLoop objects for a single table of the join where the table
4605 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be
4606 ** a b-tree table, not a virtual table.
4608 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
4609 ** are calculated as follows:
4611 ** For a full scan, assuming the table (or index) contains nRow rows:
4613 ** cost = nRow * 3.0 // full-table scan
4614 ** cost = nRow * K // scan of covering index
4615 ** cost = nRow * (K+3.0) // scan of non-covering index
4617 ** where K is a value between 1.1 and 3.0 set based on the relative
4618 ** estimated average size of the index and table records.
4620 ** For an index scan, where nVisit is the number of index rows visited
4621 ** by the scan, and nSeek is the number of seek operations required on
4622 ** the index b-tree:
4624 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
4625 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
4627 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
4628 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
4629 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
4631 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
4632 ** of uncertainty. For this reason, scoring is designed to pick plans that
4633 ** "do the least harm" if the estimates are inaccurate. For example, a
4634 ** log(nRow) factor is omitted from a non-covering index scan in order to
4635 ** bias the scoring in favor of using an index, since the worst-case
4636 ** performance of using an index is far better than the worst-case performance
4637 ** of a full table scan.
4639 static int whereLoopAddBtree(
4640 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
4641 Bitmask mExtra
/* Extra prerequesites for using this table */
4643 WhereInfo
*pWInfo
; /* WHERE analysis context */
4644 Index
*pProbe
; /* An index we are evaluating */
4645 Index sPk
; /* A fake index object for the primary key */
4646 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
4647 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
4648 SrcList
*pTabList
; /* The FROM clause */
4649 struct SrcList_item
*pSrc
; /* The FROM clause btree term to add */
4650 WhereLoop
*pNew
; /* Template WhereLoop object */
4651 int rc
= SQLITE_OK
; /* Return code */
4652 int iSortIdx
= 1; /* Index number */
4653 int b
; /* A boolean value */
4654 LogEst rSize
; /* number of rows in the table */
4655 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
4656 WhereClause
*pWC
; /* The parsed WHERE clause */
4657 Table
*pTab
; /* Table being queried */
4659 pNew
= pBuilder
->pNew
;
4660 pWInfo
= pBuilder
->pWInfo
;
4661 pTabList
= pWInfo
->pTabList
;
4662 pSrc
= pTabList
->a
+ pNew
->iTab
;
4664 pWC
= pBuilder
->pWC
;
4665 assert( !IsVirtual(pSrc
->pTab
) );
4668 /* An INDEXED BY clause specifies a particular index to use */
4669 pProbe
= pSrc
->pIndex
;
4670 }else if( !HasRowid(pTab
) ){
4671 pProbe
= pTab
->pIndex
;
4673 /* There is no INDEXED BY clause. Create a fake Index object in local
4674 ** variable sPk to represent the rowid primary key index. Make this
4675 ** fake index the first in a chain of Index objects with all of the real
4676 ** indices to follow */
4677 Index
*pFirst
; /* First of real indices on the table */
4678 memset(&sPk
, 0, sizeof(Index
));
4681 sPk
.aiColumn
= &aiColumnPk
;
4682 sPk
.aiRowLogEst
= aiRowEstPk
;
4683 sPk
.onError
= OE_Replace
;
4685 sPk
.szIdxRow
= pTab
->szTabRow
;
4686 aiRowEstPk
[0] = pTab
->nRowLogEst
;
4688 pFirst
= pSrc
->pTab
->pIndex
;
4689 if( pSrc
->notIndexed
==0 ){
4690 /* The real indices of the table are only considered if the
4691 ** NOT INDEXED qualifier is omitted from the FROM clause */
4696 rSize
= pTab
->nRowLogEst
;
4697 rLogSize
= estLog(rSize
);
4699 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4700 /* Automatic indexes */
4701 if( !pBuilder
->pOrSet
4702 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
4704 && !pSrc
->viaCoroutine
4705 && !pSrc
->notIndexed
4707 && !pSrc
->isCorrelated
4708 && !pSrc
->isRecursive
4710 /* Generate auto-index WhereLoops */
4712 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
4713 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
4714 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
4715 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
4716 pNew
->u
.btree
.nEq
= 1;
4717 pNew
->u
.btree
.nSkip
= 0;
4718 pNew
->u
.btree
.pIndex
= 0;
4720 pNew
->aLTerm
[0] = pTerm
;
4721 /* TUNING: One-time cost for computing the automatic index is
4722 ** estimated to be X*N*log2(N) where N is the number of rows in
4723 ** the table being indexed and where X is 7 (LogEst=28) for normal
4724 ** tables or 1.375 (LogEst=4) for views and subqueries. The value
4725 ** of X is smaller for views and subqueries so that the query planner
4726 ** will be more aggressive about generating automatic indexes for
4727 ** those objects, since there is no opportunity to add schema
4728 ** indexes on subqueries and views. */
4729 pNew
->rSetup
= rLogSize
+ rSize
+ 4;
4730 if( pTab
->pSelect
==0 && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
4733 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
4734 /* TUNING: Each index lookup yields 20 rows in the table. This
4735 ** is more than the usual guess of 10 rows, since we have no way
4736 ** of knowing how selective the index will ultimately be. It would
4737 ** not be unreasonable to make this value much larger. */
4738 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
4739 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
4740 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
4741 pNew
->prereq
= mExtra
| pTerm
->prereqRight
;
4742 rc
= whereLoopInsert(pBuilder
, pNew
);
4746 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
4748 /* Loop over all indices
4750 for(; rc
==SQLITE_OK
&& pProbe
; pProbe
=pProbe
->pNext
, iSortIdx
++){
4751 if( pProbe
->pPartIdxWhere
!=0
4752 && !whereUsablePartialIndex(pSrc
->iCursor
, pWC
, pProbe
->pPartIdxWhere
) ){
4753 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
4754 continue; /* Partial index inappropriate for this query */
4756 rSize
= pProbe
->aiRowLogEst
[0];
4757 pNew
->u
.btree
.nEq
= 0;
4758 pNew
->u
.btree
.nSkip
= 0;
4762 pNew
->prereq
= mExtra
;
4764 pNew
->u
.btree
.pIndex
= pProbe
;
4765 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
4766 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
4767 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
4768 if( pProbe
->tnum
<=0 ){
4769 /* Integer primary key index */
4770 pNew
->wsFlags
= WHERE_IPK
;
4772 /* Full table scan */
4773 pNew
->iSortIdx
= b
? iSortIdx
: 0;
4774 /* TUNING: Cost of full table scan is (N*3.0). */
4775 pNew
->rRun
= rSize
+ 16;
4776 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
4777 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
4778 rc
= whereLoopInsert(pBuilder
, pNew
);
4783 if( pProbe
->isCovering
){
4784 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
4787 m
= pSrc
->colUsed
& ~columnsInIndex(pProbe
);
4788 pNew
->wsFlags
= (m
==0) ? (WHERE_IDX_ONLY
|WHERE_INDEXED
) : WHERE_INDEXED
;
4791 /* Full scan via index */
4795 && pProbe
->bUnordered
==0
4796 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
4797 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
4798 && sqlite3GlobalConfig
.bUseCis
4799 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
4802 pNew
->iSortIdx
= b
? iSortIdx
: 0;
4804 /* The cost of visiting the index rows is N*K, where K is
4805 ** between 1.1 and 3.0, depending on the relative sizes of the
4806 ** index and table rows. If this is a non-covering index scan,
4807 ** also add the cost of visiting table rows (N*3.0). */
4808 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
4810 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, rSize
+16);
4812 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
4813 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
4814 rc
= whereLoopInsert(pBuilder
, pNew
);
4820 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
4821 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4822 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
4823 pBuilder
->nRecValid
= 0;
4827 /* If there was an INDEXED BY clause, then only that one index is
4829 if( pSrc
->pIndex
) break;
4834 #ifndef SQLITE_OMIT_VIRTUALTABLE
4836 ** Add all WhereLoop objects for a table of the join identified by
4837 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
4839 static int whereLoopAddVirtual(
4840 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
4843 WhereInfo
*pWInfo
; /* WHERE analysis context */
4844 Parse
*pParse
; /* The parsing context */
4845 WhereClause
*pWC
; /* The WHERE clause */
4846 struct SrcList_item
*pSrc
; /* The FROM clause term to search */
4849 sqlite3_index_info
*pIdxInfo
;
4850 struct sqlite3_index_constraint
*pIdxCons
;
4851 struct sqlite3_index_constraint_usage
*pUsage
;
4856 int seenIn
= 0; /* True if an IN operator is seen */
4857 int seenVar
= 0; /* True if a non-constant constraint is seen */
4858 int iPhase
; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */
4862 pWInfo
= pBuilder
->pWInfo
;
4863 pParse
= pWInfo
->pParse
;
4865 pWC
= pBuilder
->pWC
;
4866 pNew
= pBuilder
->pNew
;
4867 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
4869 assert( IsVirtual(pTab
) );
4870 pIdxInfo
= allocateIndexInfo(pParse
, pWC
, pSrc
, pBuilder
->pOrderBy
);
4871 if( pIdxInfo
==0 ) return SQLITE_NOMEM
;
4874 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
4876 pNew
->u
.vtab
.needFree
= 0;
4877 pUsage
= pIdxInfo
->aConstraintUsage
;
4878 nConstraint
= pIdxInfo
->nConstraint
;
4879 if( whereLoopResize(db
, pNew
, nConstraint
) ){
4880 sqlite3DbFree(db
, pIdxInfo
);
4881 return SQLITE_NOMEM
;
4884 for(iPhase
=0; iPhase
<=3; iPhase
++){
4885 if( !seenIn
&& (iPhase
&1)!=0 ){
4887 if( iPhase
>3 ) break;
4889 if( !seenVar
&& iPhase
>1 ) break;
4890 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
4891 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++, pIdxCons
++){
4892 j
= pIdxCons
->iTermOffset
;
4895 case 0: /* Constants without IN operator */
4896 pIdxCons
->usable
= 0;
4897 if( (pTerm
->eOperator
& WO_IN
)!=0 ){
4900 if( pTerm
->prereqRight
!=0 ){
4902 }else if( (pTerm
->eOperator
& WO_IN
)==0 ){
4903 pIdxCons
->usable
= 1;
4906 case 1: /* Constants with IN operators */
4908 pIdxCons
->usable
= (pTerm
->prereqRight
==0);
4910 case 2: /* Variables without IN */
4912 pIdxCons
->usable
= (pTerm
->eOperator
& WO_IN
)==0;
4914 default: /* Variables with IN */
4915 assert( seenVar
&& seenIn
);
4916 pIdxCons
->usable
= 1;
4920 memset(pUsage
, 0, sizeof(pUsage
[0])*pIdxInfo
->nConstraint
);
4921 if( pIdxInfo
->needToFreeIdxStr
) sqlite3_free(pIdxInfo
->idxStr
);
4922 pIdxInfo
->idxStr
= 0;
4923 pIdxInfo
->idxNum
= 0;
4924 pIdxInfo
->needToFreeIdxStr
= 0;
4925 pIdxInfo
->orderByConsumed
= 0;
4926 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
4927 pIdxInfo
->estimatedRows
= 25;
4928 rc
= vtabBestIndex(pParse
, pTab
, pIdxInfo
);
4929 if( rc
) goto whereLoopAddVtab_exit
;
4930 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
4931 pNew
->prereq
= mExtra
;
4933 assert( pNew
->nLSlot
>=nConstraint
);
4934 for(i
=0; i
<nConstraint
; i
++) pNew
->aLTerm
[i
] = 0;
4935 pNew
->u
.vtab
.omitMask
= 0;
4936 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
4937 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
4938 j
= pIdxCons
->iTermOffset
;
4939 if( iTerm
>=nConstraint
4942 || pNew
->aLTerm
[iTerm
]!=0
4945 sqlite3ErrorMsg(pParse
, "%s.xBestIndex() malfunction", pTab
->zName
);
4946 goto whereLoopAddVtab_exit
;
4948 testcase( iTerm
==nConstraint
-1 );
4950 testcase( j
==pWC
->nTerm
-1 );
4952 pNew
->prereq
|= pTerm
->prereqRight
;
4953 assert( iTerm
<pNew
->nLSlot
);
4954 pNew
->aLTerm
[iTerm
] = pTerm
;
4955 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
4956 testcase( iTerm
==15 );
4957 testcase( iTerm
==16 );
4958 if( iTerm
<16 && pUsage
[i
].omit
) pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
4959 if( (pTerm
->eOperator
& WO_IN
)!=0 ){
4960 if( pUsage
[i
].omit
==0 ){
4961 /* Do not attempt to use an IN constraint if the virtual table
4962 ** says that the equivalent EQ constraint cannot be safely omitted.
4963 ** If we do attempt to use such a constraint, some rows might be
4964 ** repeated in the output. */
4967 /* A virtual table that is constrained by an IN clause may not
4968 ** consume the ORDER BY clause because (1) the order of IN terms
4969 ** is not necessarily related to the order of output terms and
4970 ** (2) Multiple outputs from a single IN value will not merge
4972 pIdxInfo
->orderByConsumed
= 0;
4976 if( i
>=nConstraint
){
4977 pNew
->nLTerm
= mxTerm
+1;
4978 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
4979 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
4980 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
4981 pIdxInfo
->needToFreeIdxStr
= 0;
4982 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
4983 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
4984 pIdxInfo
->nOrderBy
: 0);
4986 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
4987 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
4988 whereLoopInsert(pBuilder
, pNew
);
4989 if( pNew
->u
.vtab
.needFree
){
4990 sqlite3_free(pNew
->u
.vtab
.idxStr
);
4991 pNew
->u
.vtab
.needFree
= 0;
4996 whereLoopAddVtab_exit
:
4997 if( pIdxInfo
->needToFreeIdxStr
) sqlite3_free(pIdxInfo
->idxStr
);
4998 sqlite3DbFree(db
, pIdxInfo
);
5001 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5004 ** Add WhereLoop entries to handle OR terms. This works for either
5005 ** btrees or virtual tables.
5007 static int whereLoopAddOr(WhereLoopBuilder
*pBuilder
, Bitmask mExtra
){
5008 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
5011 WhereTerm
*pTerm
, *pWCEnd
;
5015 WhereLoopBuilder sSubBuild
;
5016 WhereOrSet sSum
, sCur
;
5017 struct SrcList_item
*pItem
;
5019 pWC
= pBuilder
->pWC
;
5020 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
5021 pNew
= pBuilder
->pNew
;
5022 memset(&sSum
, 0, sizeof(sSum
));
5023 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
5024 iCur
= pItem
->iCursor
;
5026 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
5027 if( (pTerm
->eOperator
& WO_OR
)!=0
5028 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
5030 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
5031 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
5036 sSubBuild
= *pBuilder
;
5037 sSubBuild
.pOrderBy
= 0;
5038 sSubBuild
.pOrSet
= &sCur
;
5040 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm
));
5041 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
5042 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
5043 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
5044 }else if( pOrTerm
->leftCursor
==iCur
){
5045 tempWC
.pWInfo
= pWC
->pWInfo
;
5046 tempWC
.pOuter
= pWC
;
5050 sSubBuild
.pWC
= &tempWC
;
5055 #ifdef WHERETRACE_ENABLED
5056 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
5057 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
5058 if( sqlite3WhereTrace
& 0x400 ){
5059 for(i
=0; i
<sSubBuild
.pWC
->nTerm
; i
++){
5060 whereTermPrint(&sSubBuild
.pWC
->a
[i
], i
);
5064 #ifndef SQLITE_OMIT_VIRTUALTABLE
5065 if( IsVirtual(pItem
->pTab
) ){
5066 rc
= whereLoopAddVirtual(&sSubBuild
, mExtra
);
5070 rc
= whereLoopAddBtree(&sSubBuild
, mExtra
);
5072 if( rc
==SQLITE_OK
){
5073 rc
= whereLoopAddOr(&sSubBuild
, mExtra
);
5075 assert( rc
==SQLITE_OK
|| sCur
.n
==0 );
5080 whereOrMove(&sSum
, &sCur
);
5084 whereOrMove(&sPrev
, &sSum
);
5086 for(i
=0; i
<sPrev
.n
; i
++){
5087 for(j
=0; j
<sCur
.n
; j
++){
5088 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
5089 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
5090 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
5096 pNew
->aLTerm
[0] = pTerm
;
5097 pNew
->wsFlags
= WHERE_MULTI_OR
;
5100 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
5101 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
5102 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
5103 ** of all sub-scans required by the OR-scan. However, due to rounding
5104 ** errors, it may be that the cost of the OR-scan is equal to its
5105 ** most expensive sub-scan. Add the smallest possible penalty
5106 ** (equivalent to multiplying the cost by 1.07) to ensure that
5107 ** this does not happen. Otherwise, for WHERE clauses such as the
5108 ** following where there is an index on "y":
5110 ** WHERE likelihood(x=?, 0.99) OR y=?
5112 ** the planner may elect to "OR" together a full-table scan and an
5113 ** index lookup. And other similarly odd results. */
5114 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
5115 pNew
->nOut
= sSum
.a
[i
].nOut
;
5116 pNew
->prereq
= sSum
.a
[i
].prereq
;
5117 rc
= whereLoopInsert(pBuilder
, pNew
);
5119 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm
));
5126 ** Add all WhereLoop objects for all tables
5128 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
5129 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
5133 SrcList
*pTabList
= pWInfo
->pTabList
;
5134 struct SrcList_item
*pItem
;
5135 sqlite3
*db
= pWInfo
->pParse
->db
;
5136 int nTabList
= pWInfo
->nLevel
;
5138 u8 priorJoinType
= 0;
5141 /* Loop over the tables in the join, from left to right */
5142 pNew
= pBuilder
->pNew
;
5143 whereLoopInit(pNew
);
5144 for(iTab
=0, pItem
=pTabList
->a
; iTab
<nTabList
; iTab
++, pItem
++){
5146 pNew
->maskSelf
= getMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
5147 if( ((pItem
->jointype
|priorJoinType
) & (JT_LEFT
|JT_CROSS
))!=0 ){
5150 priorJoinType
= pItem
->jointype
;
5151 if( IsVirtual(pItem
->pTab
) ){
5152 rc
= whereLoopAddVirtual(pBuilder
, mExtra
);
5154 rc
= whereLoopAddBtree(pBuilder
, mExtra
);
5156 if( rc
==SQLITE_OK
){
5157 rc
= whereLoopAddOr(pBuilder
, mExtra
);
5159 mPrior
|= pNew
->maskSelf
;
5160 if( rc
|| db
->mallocFailed
) break;
5162 whereLoopClear(db
, pNew
);
5167 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
5168 ** parameters) to see if it outputs rows in the requested ORDER BY
5169 ** (or GROUP BY) without requiring a separate sort operation. Return N:
5171 ** N>0: N terms of the ORDER BY clause are satisfied
5172 ** N==0: No terms of the ORDER BY clause are satisfied
5173 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
5175 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
5176 ** strict. With GROUP BY and DISTINCT the only requirement is that
5177 ** equivalent rows appear immediately adjacent to one another. GROUP BY
5178 ** and DISTINCT do not require rows to appear in any particular order as long
5179 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
5180 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
5181 ** pOrderBy terms must be matched in strict left-to-right order.
5183 static i8
wherePathSatisfiesOrderBy(
5184 WhereInfo
*pWInfo
, /* The WHERE clause */
5185 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
5186 WherePath
*pPath
, /* The WherePath to check */
5187 u16 wctrlFlags
, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
5188 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
5189 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
5190 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
5192 u8 revSet
; /* True if rev is known */
5193 u8 rev
; /* Composite sort order */
5194 u8 revIdx
; /* Index sort order */
5195 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
5196 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
5197 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
5198 u16 nKeyCol
; /* Number of key columns in pIndex */
5199 u16 nColumn
; /* Total number of ordered columns in the index */
5200 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
5201 int iLoop
; /* Index of WhereLoop in pPath being processed */
5202 int i
, j
; /* Loop counters */
5203 int iCur
; /* Cursor number for current WhereLoop */
5204 int iColumn
; /* A column number within table iCur */
5205 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
5206 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
5207 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
5208 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
5209 Index
*pIndex
; /* The index associated with pLoop */
5210 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
5211 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
5212 Bitmask obDone
; /* Mask of all ORDER BY terms */
5213 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
5214 Bitmask ready
; /* Mask of inner loops */
5217 ** We say the WhereLoop is "one-row" if it generates no more than one
5218 ** row of output. A WhereLoop is one-row if all of the following are true:
5219 ** (a) All index columns match with WHERE_COLUMN_EQ.
5220 ** (b) The index is unique
5221 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
5222 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
5224 ** We say the WhereLoop is "order-distinct" if the set of columns from
5225 ** that WhereLoop that are in the ORDER BY clause are different for every
5226 ** row of the WhereLoop. Every one-row WhereLoop is automatically
5227 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
5228 ** is not order-distinct. To be order-distinct is not quite the same as being
5229 ** UNIQUE since a UNIQUE column or index can have multiple rows that
5230 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
5231 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
5233 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
5234 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
5235 ** automatically order-distinct.
5238 assert( pOrderBy
!=0 );
5239 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
5241 nOrderBy
= pOrderBy
->nExpr
;
5242 testcase( nOrderBy
==BMS
-1 );
5243 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
5244 isOrderDistinct
= 1;
5245 obDone
= MASKBIT(nOrderBy
)-1;
5246 orderDistinctMask
= 0;
5248 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
5249 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
5250 pLoop
= iLoop
<nLoop
? pPath
->aLoop
[iLoop
] : pLast
;
5251 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
5252 if( pLoop
->u
.vtab
.isOrdered
) obSat
= obDone
;
5255 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
5257 /* Mark off any ORDER BY term X that is a column in the table of
5258 ** the current loop for which there is term in the WHERE
5259 ** clause of the form X IS NULL or X=? that reference only outer
5262 for(i
=0; i
<nOrderBy
; i
++){
5263 if( MASKBIT(i
) & obSat
) continue;
5264 pOBExpr
= sqlite3ExprSkipCollate(pOrderBy
->a
[i
].pExpr
);
5265 if( pOBExpr
->op
!=TK_COLUMN
) continue;
5266 if( pOBExpr
->iTable
!=iCur
) continue;
5267 pTerm
= findTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
5268 ~ready
, WO_EQ
|WO_ISNULL
, 0);
5269 if( pTerm
==0 ) continue;
5270 if( (pTerm
->eOperator
&WO_EQ
)!=0 && pOBExpr
->iColumn
>=0 ){
5271 const char *z1
, *z2
;
5272 pColl
= sqlite3ExprCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
5273 if( !pColl
) pColl
= db
->pDfltColl
;
5275 pColl
= sqlite3ExprCollSeq(pWInfo
->pParse
, pTerm
->pExpr
);
5276 if( !pColl
) pColl
= db
->pDfltColl
;
5278 if( sqlite3StrICmp(z1
, z2
)!=0 ) continue;
5280 obSat
|= MASKBIT(i
);
5283 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
5284 if( pLoop
->wsFlags
& WHERE_IPK
){
5288 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
5291 nKeyCol
= pIndex
->nKeyCol
;
5292 nColumn
= pIndex
->nColumn
;
5293 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
5294 assert( pIndex
->aiColumn
[nColumn
-1]==(-1) || !HasRowid(pIndex
->pTable
));
5295 isOrderDistinct
= IsUniqueIndex(pIndex
);
5298 /* Loop through all columns of the index and deal with the ones
5299 ** that are not constrained by == or IN.
5302 distinctColumns
= 0;
5303 for(j
=0; j
<nColumn
; j
++){
5304 u8 bOnce
; /* True to run the ORDER BY search loop */
5306 /* Skip over == and IS NULL terms */
5307 if( j
<pLoop
->u
.btree
.nEq
5308 && pLoop
->u
.btree
.nSkip
==0
5309 && ((i
= pLoop
->aLTerm
[j
]->eOperator
) & (WO_EQ
|WO_ISNULL
))!=0
5311 if( i
& WO_ISNULL
){
5312 testcase( isOrderDistinct
);
5313 isOrderDistinct
= 0;
5318 /* Get the column number in the table (iColumn) and sort order
5319 ** (revIdx) for the j-th column of the index.
5322 iColumn
= pIndex
->aiColumn
[j
];
5323 revIdx
= pIndex
->aSortOrder
[j
];
5324 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= -1;
5330 /* An unconstrained column that might be NULL means that this
5331 ** WhereLoop is not well-ordered
5335 && j
>=pLoop
->u
.btree
.nEq
5336 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
5338 isOrderDistinct
= 0;
5341 /* Find the ORDER BY term that corresponds to the j-th column
5342 ** of the index and mark that ORDER BY term off
5346 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
5347 if( MASKBIT(i
) & obSat
) continue;
5348 pOBExpr
= sqlite3ExprSkipCollate(pOrderBy
->a
[i
].pExpr
);
5349 testcase( wctrlFlags
& WHERE_GROUPBY
);
5350 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
5351 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
5352 if( pOBExpr
->op
!=TK_COLUMN
) continue;
5353 if( pOBExpr
->iTable
!=iCur
) continue;
5354 if( pOBExpr
->iColumn
!=iColumn
) continue;
5356 pColl
= sqlite3ExprCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
5357 if( !pColl
) pColl
= db
->pDfltColl
;
5358 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
5363 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
5364 /* Make sure the sort order is compatible in an ORDER BY clause.
5365 ** Sort order is irrelevant for a GROUP BY clause. */
5367 if( (rev
^ revIdx
)!=pOrderBy
->a
[i
].sortOrder
) isMatch
= 0;
5369 rev
= revIdx
^ pOrderBy
->a
[i
].sortOrder
;
5370 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
5376 testcase( distinctColumns
==0 );
5377 distinctColumns
= 1;
5379 obSat
|= MASKBIT(i
);
5381 /* No match found */
5382 if( j
==0 || j
<nKeyCol
){
5383 testcase( isOrderDistinct
!=0 );
5384 isOrderDistinct
= 0;
5388 } /* end Loop over all index columns */
5389 if( distinctColumns
){
5390 testcase( isOrderDistinct
==0 );
5391 isOrderDistinct
= 1;
5393 } /* end-if not one-row */
5395 /* Mark off any other ORDER BY terms that reference pLoop */
5396 if( isOrderDistinct
){
5397 orderDistinctMask
|= pLoop
->maskSelf
;
5398 for(i
=0; i
<nOrderBy
; i
++){
5401 if( MASKBIT(i
) & obSat
) continue;
5402 p
= pOrderBy
->a
[i
].pExpr
;
5403 mTerm
= exprTableUsage(&pWInfo
->sMaskSet
,p
);
5404 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
5405 if( (mTerm
&~orderDistinctMask
)==0 ){
5406 obSat
|= MASKBIT(i
);
5410 } /* End the loop over all WhereLoops from outer-most down to inner-most */
5411 if( obSat
==obDone
) return (i8
)nOrderBy
;
5412 if( !isOrderDistinct
){
5413 for(i
=nOrderBy
-1; i
>0; i
--){
5414 Bitmask m
= MASKBIT(i
) - 1;
5415 if( (obSat
&m
)==m
) return i
;
5424 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
5425 ** the planner assumes that the specified pOrderBy list is actually a GROUP
5426 ** BY clause - and so any order that groups rows as required satisfies the
5429 ** Normally, in this case it is not possible for the caller to determine
5430 ** whether or not the rows are really being delivered in sorted order, or
5431 ** just in some other order that provides the required grouping. However,
5432 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
5433 ** this function may be called on the returned WhereInfo object. It returns
5434 ** true if the rows really will be sorted in the specified order, or false
5437 ** For example, assuming:
5439 ** CREATE INDEX i1 ON t1(x, Y);
5443 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
5444 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
5446 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
5447 assert( pWInfo
->wctrlFlags
& WHERE_GROUPBY
);
5448 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
5449 return pWInfo
->sorted
;
5452 #ifdef WHERETRACE_ENABLED
5453 /* For debugging use only: */
5454 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
5455 static char zName
[65];
5457 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
5458 if( pLast
) zName
[i
++] = pLast
->cId
;
5465 ** Return the cost of sorting nRow rows, assuming that the keys have
5466 ** nOrderby columns and that the first nSorted columns are already in
5469 static LogEst
whereSortingCost(
5475 /* TUNING: Estimated cost of a full external sort, where N is
5476 ** the number of rows to sort is:
5478 ** cost = (3.0 * N * log(N)).
5480 ** Or, if the order-by clause has X terms but only the last Y
5481 ** terms are out of order, then block-sorting will reduce the
5484 ** cost = (3.0 * N * log(N)) * (Y/X)
5486 ** The (Y/X) term is implemented using stack variable rScale
5488 LogEst rScale
, rSortCost
;
5489 assert( nOrderBy
>0 && 66==sqlite3LogEst(100) );
5490 rScale
= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
5491 rSortCost
= nRow
+ estLog(nRow
) + rScale
+ 16;
5493 /* TUNING: The cost of implementing DISTINCT using a B-TREE is
5494 ** similar but with a larger constant of proportionality.
5495 ** Multiply by an additional factor of 3.0. */
5496 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
5504 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
5505 ** attempts to find the lowest cost path that visits each WhereLoop
5506 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
5508 ** Assume that the total number of output rows that will need to be sorted
5509 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
5510 ** costs if nRowEst==0.
5512 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
5515 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
5516 int mxChoice
; /* Maximum number of simultaneous paths tracked */
5517 int nLoop
; /* Number of terms in the join */
5518 Parse
*pParse
; /* Parsing context */
5519 sqlite3
*db
; /* The database connection */
5520 int iLoop
; /* Loop counter over the terms of the join */
5521 int ii
, jj
; /* Loop counters */
5522 int mxI
= 0; /* Index of next entry to replace */
5523 int nOrderBy
; /* Number of ORDER BY clause terms */
5524 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
5525 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
5526 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
5527 WherePath
*aFrom
; /* All nFrom paths at the previous level */
5528 WherePath
*aTo
; /* The nTo best paths at the current level */
5529 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
5530 WherePath
*pTo
; /* An element of aTo[] that we are working on */
5531 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
5532 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
5533 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
5534 char *pSpace
; /* Temporary memory used by this routine */
5535 int nSpace
; /* Bytes of space allocated at pSpace */
5537 pParse
= pWInfo
->pParse
;
5539 nLoop
= pWInfo
->nLevel
;
5540 /* TUNING: For simple queries, only the best path is tracked.
5541 ** For 2-way joins, the 5 best paths are followed.
5542 ** For joins of 3 or more tables, track the 10 best paths */
5543 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
5544 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
5545 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst
));
5547 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
5548 ** case the purpose of this call is to estimate the number of rows returned
5549 ** by the overall query. Once this estimate has been obtained, the caller
5550 ** will invoke this function a second time, passing the estimate as the
5551 ** nRowEst parameter. */
5552 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
5555 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
5558 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
5559 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
5560 nSpace
+= sizeof(LogEst
) * nOrderBy
;
5561 pSpace
= sqlite3DbMallocRaw(db
, nSpace
);
5562 if( pSpace
==0 ) return SQLITE_NOMEM
;
5563 aTo
= (WherePath
*)pSpace
;
5564 aFrom
= aTo
+mxChoice
;
5565 memset(aFrom
, 0, sizeof(aFrom
[0]));
5566 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
5567 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
5571 /* If there is an ORDER BY clause and it is not being ignored, set up
5572 ** space for the aSortCost[] array. Each element of the aSortCost array
5573 ** is either zero - meaning it has not yet been initialized - or the
5574 ** cost of sorting nRowEst rows of data where the first X terms of
5575 ** the ORDER BY clause are already in order, where X is the array
5577 aSortCost
= (LogEst
*)pX
;
5578 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
5580 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
5581 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
5583 /* Seed the search with a single WherePath containing zero WhereLoops.
5585 ** TUNING: Do not let the number of iterations go above 25. If the cost
5586 ** of computing an automatic index is not paid back within the first 25
5587 ** rows, then do not use the automatic index. */
5588 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 46); assert( 46==sqlite3LogEst(25) );
5590 assert( aFrom
[0].isOrdered
==0 );
5592 /* If nLoop is zero, then there are no FROM terms in the query. Since
5593 ** in this case the query may return a maximum of one row, the results
5594 ** are already in the requested order. Set isOrdered to nOrderBy to
5595 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
5596 ** -1, indicating that the result set may or may not be ordered,
5597 ** depending on the loops added to the current plan. */
5598 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
5601 /* Compute successively longer WherePaths using the previous generation
5602 ** of WherePaths as the basis for the next. Keep track of the mxChoice
5603 ** best paths at each generation */
5604 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5606 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
5607 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
5608 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
5609 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
5610 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
5611 i8 isOrdered
= pFrom
->isOrdered
; /* isOrdered for (pFrom+pWLoop) */
5612 Bitmask maskNew
; /* Mask of src visited by (..) */
5613 Bitmask revMask
= 0; /* Mask of rev-order loops for (..) */
5615 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
5616 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
5617 /* At this point, pWLoop is a candidate to be the next loop.
5618 ** Compute its cost */
5619 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
5620 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
5621 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
5622 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5624 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
5625 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
5626 iLoop
, pWLoop
, &revMask
);
5628 revMask
= pFrom
->revLoop
;
5630 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
5631 if( aSortCost
[isOrdered
]==0 ){
5632 aSortCost
[isOrdered
] = whereSortingCost(
5633 pWInfo
, nRowEst
, nOrderBy
, isOrdered
5636 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]);
5639 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
5640 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
5646 /* Check to see if pWLoop should be added to the set of
5647 ** mxChoice best-so-far paths.
5649 ** First look for an existing path among best-so-far paths
5650 ** that covers the same set of loops and has the same isOrdered
5651 ** setting as the current path candidate.
5653 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
5654 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
5655 ** of legal values for isOrdered, -1..64.
5657 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
5658 if( pTo
->maskLoop
==maskNew
5659 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
5661 testcase( jj
==nTo
-1 );
5666 /* None of the existing best-so-far paths match the candidate. */
5668 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
5670 /* The current candidate is no better than any of the mxChoice
5671 ** paths currently in the best-so-far buffer. So discard
5672 ** this candidate as not viable. */
5673 #ifdef WHERETRACE_ENABLED /* 0x4 */
5674 if( sqlite3WhereTrace
&0x4 ){
5675 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n",
5676 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
,
5677 isOrdered
>=0 ? isOrdered
+'0' : '?');
5682 /* If we reach this points it means that the new candidate path
5683 ** needs to be added to the set of best-so-far paths. */
5685 /* Increase the size of the aTo set by one */
5688 /* New path replaces the prior worst to keep count below mxChoice */
5692 #ifdef WHERETRACE_ENABLED /* 0x4 */
5693 if( sqlite3WhereTrace
&0x4 ){
5694 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n",
5695 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
,
5696 isOrdered
>=0 ? isOrdered
+'0' : '?');
5700 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
5701 ** same set of loops and has the sam isOrdered setting as the
5702 ** candidate path. Check to see if the candidate should replace
5703 ** pTo or if the candidate should be skipped */
5704 if( pTo
->rCost
<rCost
|| (pTo
->rCost
==rCost
&& pTo
->nRow
<=nOut
) ){
5705 #ifdef WHERETRACE_ENABLED /* 0x4 */
5706 if( sqlite3WhereTrace
&0x4 ){
5708 "Skip %s cost=%-3d,%3d order=%c",
5709 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
,
5710 isOrdered
>=0 ? isOrdered
+'0' : '?');
5711 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n",
5712 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5713 pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5716 /* Discard the candidate path from further consideration */
5717 testcase( pTo
->rCost
==rCost
);
5720 testcase( pTo
->rCost
==rCost
+1 );
5721 /* Control reaches here if the candidate path is better than the
5722 ** pTo path. Replace pTo with the candidate. */
5723 #ifdef WHERETRACE_ENABLED /* 0x4 */
5724 if( sqlite3WhereTrace
&0x4 ){
5726 "Update %s cost=%-3d,%3d order=%c",
5727 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
,
5728 isOrdered
>=0 ? isOrdered
+'0' : '?');
5729 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n",
5730 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5731 pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5735 /* pWLoop is a winner. Add it to the set of best so far */
5736 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5737 pTo
->revLoop
= revMask
;
5740 pTo
->rUnsorted
= rUnsorted
;
5741 pTo
->isOrdered
= isOrdered
;
5742 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
5743 pTo
->aLoop
[iLoop
] = pWLoop
;
5744 if( nTo
>=mxChoice
){
5746 mxCost
= aTo
[0].rCost
;
5747 mxUnsorted
= aTo
[0].nRow
;
5748 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
5749 if( pTo
->rCost
>mxCost
5750 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
5752 mxCost
= pTo
->rCost
;
5753 mxUnsorted
= pTo
->rUnsorted
;
5761 #ifdef WHERETRACE_ENABLED /* >=2 */
5762 if( sqlite3WhereTrace
>=2 ){
5763 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
5764 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
5765 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
5766 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5767 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
5768 if( pTo
->isOrdered
>0 ){
5769 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
5771 sqlite3DebugPrintf("\n");
5777 /* Swap the roles of aFrom and aTo for the next generation */
5785 sqlite3ErrorMsg(pParse
, "no query solution");
5786 sqlite3DbFree(db
, pSpace
);
5787 return SQLITE_ERROR
;
5790 /* Find the lowest cost path. pFrom will be left pointing to that path */
5792 for(ii
=1; ii
<nFrom
; ii
++){
5793 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
5795 assert( pWInfo
->nLevel
==nLoop
);
5796 /* Load the lowest cost path into pWInfo */
5797 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5798 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
5799 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
5800 pLevel
->iFrom
= pWLoop
->iTab
;
5801 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
5803 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
5804 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
5805 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
5809 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
5810 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
5811 if( rc
==pWInfo
->pResultSet
->nExpr
){
5812 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5815 if( pWInfo
->pOrderBy
){
5816 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
5817 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
5818 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5821 pWInfo
->nOBSat
= pFrom
->isOrdered
;
5822 if( pWInfo
->nOBSat
<0 ) pWInfo
->nOBSat
= 0;
5823 pWInfo
->revMask
= pFrom
->revLoop
;
5825 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
5826 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
5828 Bitmask revMask
= 0;
5829 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
5830 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
5832 assert( pWInfo
->sorted
==0 );
5833 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
5835 pWInfo
->revMask
= revMask
;
5841 pWInfo
->nRowOut
= pFrom
->nRow
;
5843 /* Free temporary memory and return success */
5844 sqlite3DbFree(db
, pSpace
);
5849 ** Most queries use only a single table (they are not joins) and have
5850 ** simple == constraints against indexed fields. This routine attempts
5851 ** to plan those simple cases using much less ceremony than the
5852 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5853 ** times for the common case.
5855 ** Return non-zero on success, if this query can be handled by this
5856 ** no-frills query planner. Return zero if this query needs the
5857 ** general-purpose query planner.
5859 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
5861 struct SrcList_item
*pItem
;
5870 pWInfo
= pBuilder
->pWInfo
;
5871 if( pWInfo
->wctrlFlags
& WHERE_FORCE_TABLE
) return 0;
5872 assert( pWInfo
->pTabList
->nSrc
>=1 );
5873 pItem
= pWInfo
->pTabList
->a
;
5875 if( IsVirtual(pTab
) ) return 0;
5876 if( pItem
->zIndex
) return 0;
5877 iCur
= pItem
->iCursor
;
5879 pLoop
= pBuilder
->pNew
;
5881 pLoop
->u
.btree
.nSkip
= 0;
5882 pTerm
= findTerm(pWC
, iCur
, -1, 0, WO_EQ
, 0);
5884 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
5885 pLoop
->aLTerm
[0] = pTerm
;
5887 pLoop
->u
.btree
.nEq
= 1;
5888 /* TUNING: Cost of a rowid lookup is 10 */
5889 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
5891 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5892 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
5893 assert( ArraySize(pLoop
->aLTermSpace
)==4 );
5894 if( !IsUniqueIndex(pIdx
)
5895 || pIdx
->pPartIdxWhere
!=0
5896 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
5898 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5899 pTerm
= findTerm(pWC
, iCur
, pIdx
->aiColumn
[j
], 0, WO_EQ
, pIdx
);
5900 if( pTerm
==0 ) break;
5901 pLoop
->aLTerm
[j
] = pTerm
;
5903 if( j
!=pIdx
->nKeyCol
) continue;
5904 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
5905 if( pIdx
->isCovering
|| (pItem
->colUsed
& ~columnsInIndex(pIdx
))==0 ){
5906 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
5909 pLoop
->u
.btree
.nEq
= j
;
5910 pLoop
->u
.btree
.pIndex
= pIdx
;
5911 /* TUNING: Cost of a unique index lookup is 15 */
5912 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
5916 if( pLoop
->wsFlags
){
5917 pLoop
->nOut
= (LogEst
)1;
5918 pWInfo
->a
[0].pWLoop
= pLoop
;
5919 pLoop
->maskSelf
= getMask(&pWInfo
->sMaskSet
, iCur
);
5920 pWInfo
->a
[0].iTabCur
= iCur
;
5921 pWInfo
->nRowOut
= 1;
5922 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
5923 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
5924 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5935 ** Generate the beginning of the loop used for WHERE clause processing.
5936 ** The return value is a pointer to an opaque structure that contains
5937 ** information needed to terminate the loop. Later, the calling routine
5938 ** should invoke sqlite3WhereEnd() with the return value of this function
5939 ** in order to complete the WHERE clause processing.
5941 ** If an error occurs, this routine returns NULL.
5943 ** The basic idea is to do a nested loop, one loop for each table in
5944 ** the FROM clause of a select. (INSERT and UPDATE statements are the
5945 ** same as a SELECT with only a single table in the FROM clause.) For
5946 ** example, if the SQL is this:
5948 ** SELECT * FROM t1, t2, t3 WHERE ...;
5950 ** Then the code generated is conceptually like the following:
5952 ** foreach row1 in t1 do \ Code generated
5953 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
5954 ** foreach row3 in t3 do /
5956 ** end \ Code generated
5957 ** end |-- by sqlite3WhereEnd()
5960 ** Note that the loops might not be nested in the order in which they
5961 ** appear in the FROM clause if a different order is better able to make
5962 ** use of indices. Note also that when the IN operator appears in
5963 ** the WHERE clause, it might result in additional nested loops for
5964 ** scanning through all values on the right-hand side of the IN.
5966 ** There are Btree cursors associated with each table. t1 uses cursor
5967 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
5968 ** And so forth. This routine generates code to open those VDBE cursors
5969 ** and sqlite3WhereEnd() generates the code to close them.
5971 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5972 ** in pTabList pointing at their appropriate entries. The [...] code
5973 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5974 ** data from the various tables of the loop.
5976 ** If the WHERE clause is empty, the foreach loops must each scan their
5977 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5978 ** the tables have indices and there are terms in the WHERE clause that
5979 ** refer to those indices, a complete table scan can be avoided and the
5980 ** code will run much faster. Most of the work of this routine is checking
5981 ** to see if there are indices that can be used to speed up the loop.
5983 ** Terms of the WHERE clause are also used to limit which rows actually
5984 ** make it to the "..." in the middle of the loop. After each "foreach",
5985 ** terms of the WHERE clause that use only terms in that loop and outer
5986 ** loops are evaluated and if false a jump is made around all subsequent
5987 ** inner loops (or around the "..." if the test occurs within the inner-
5992 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5994 ** foreach row1 in t1 do
5996 ** foreach row2 in t2 do
6002 ** move the row2 cursor to a null row
6007 ** ORDER BY CLAUSE PROCESSING
6009 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
6010 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
6011 ** if there is one. If there is no ORDER BY clause or if this routine
6012 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
6014 ** The iIdxCur parameter is the cursor number of an index. If
6015 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
6016 ** to use for OR clause processing. The WHERE clause should use this
6017 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
6018 ** the first cursor in an array of cursors for all indices. iIdxCur should
6019 ** be used to compute the appropriate cursor depending on which index is
6022 WhereInfo
*sqlite3WhereBegin(
6023 Parse
*pParse
, /* The parser context */
6024 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
6025 Expr
*pWhere
, /* The WHERE clause */
6026 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
6027 ExprList
*pResultSet
, /* Result set of the query */
6028 u16 wctrlFlags
, /* One of the WHERE_* flags defined in sqliteInt.h */
6029 int iIdxCur
/* If WHERE_ONETABLE_ONLY is set, index cursor number */
6031 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
6032 int nTabList
; /* Number of elements in pTabList */
6033 WhereInfo
*pWInfo
; /* Will become the return value of this function */
6034 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
6035 Bitmask notReady
; /* Cursors that are not yet positioned */
6036 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
6037 WhereMaskSet
*pMaskSet
; /* The expression mask set */
6038 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
6039 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
6040 int ii
; /* Loop counter */
6041 sqlite3
*db
; /* Database connection */
6042 int rc
; /* Return code */
6045 /* Variable initialization */
6047 memset(&sWLB
, 0, sizeof(sWLB
));
6049 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
6050 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
6051 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
) pOrderBy
= 0;
6052 sWLB
.pOrderBy
= pOrderBy
;
6054 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
6055 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
6056 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
6057 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6060 /* The number of tables in the FROM clause is limited by the number of
6061 ** bits in a Bitmask
6063 testcase( pTabList
->nSrc
==BMS
);
6064 if( pTabList
->nSrc
>BMS
){
6065 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
6069 /* This function normally generates a nested loop for all tables in
6070 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
6071 ** only generate code for the first table in pTabList and assume that
6072 ** any cursors associated with subsequent tables are uninitialized.
6074 nTabList
= (wctrlFlags
& WHERE_ONETABLE_ONLY
) ? 1 : pTabList
->nSrc
;
6076 /* Allocate and initialize the WhereInfo structure that will become the
6077 ** return value. A single allocation is used to store the WhereInfo
6078 ** struct, the contents of WhereInfo.a[], the WhereClause structure
6079 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
6080 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
6081 ** some architectures. Hence the ROUND8() below.
6083 nByteWInfo
= ROUND8(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
6084 pWInfo
= sqlite3DbMallocZero(db
, nByteWInfo
+ sizeof(WhereLoop
));
6085 if( db
->mallocFailed
){
6086 sqlite3DbFree(db
, pWInfo
);
6088 goto whereBeginError
;
6090 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
6091 pWInfo
->nLevel
= nTabList
;
6092 pWInfo
->pParse
= pParse
;
6093 pWInfo
->pTabList
= pTabList
;
6094 pWInfo
->pOrderBy
= pOrderBy
;
6095 pWInfo
->pResultSet
= pResultSet
;
6096 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(v
);
6097 pWInfo
->wctrlFlags
= wctrlFlags
;
6098 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
6099 pMaskSet
= &pWInfo
->sMaskSet
;
6100 sWLB
.pWInfo
= pWInfo
;
6101 sWLB
.pWC
= &pWInfo
->sWC
;
6102 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
6103 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
6104 whereLoopInit(sWLB
.pNew
);
6106 sWLB
.pNew
->cId
= '*';
6109 /* Split the WHERE clause into separate subexpressions where each
6110 ** subexpression is separated by an AND operator.
6112 initMaskSet(pMaskSet
);
6113 whereClauseInit(&pWInfo
->sWC
, pWInfo
);
6114 whereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
6116 /* Special case: a WHERE clause that is constant. Evaluate the
6117 ** expression and either jump over all of the code or fall thru.
6119 for(ii
=0; ii
<sWLB
.pWC
->nTerm
; ii
++){
6120 if( nTabList
==0 || sqlite3ExprIsConstantNotJoin(sWLB
.pWC
->a
[ii
].pExpr
) ){
6121 sqlite3ExprIfFalse(pParse
, sWLB
.pWC
->a
[ii
].pExpr
, pWInfo
->iBreak
,
6123 sWLB
.pWC
->a
[ii
].wtFlags
|= TERM_CODED
;
6127 /* Special case: No FROM clause
6130 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
6131 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
6132 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6136 /* Assign a bit from the bitmask to every term in the FROM clause.
6138 ** When assigning bitmask values to FROM clause cursors, it must be
6139 ** the case that if X is the bitmask for the N-th FROM clause term then
6140 ** the bitmask for all FROM clause terms to the left of the N-th term
6141 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
6142 ** its Expr.iRightJoinTable value to find the bitmask of the right table
6143 ** of the join. Subtracting one from the right table bitmask gives a
6144 ** bitmask for all tables to the left of the join. Knowing the bitmask
6145 ** for all tables to the left of a left join is important. Ticket #3015.
6147 ** Note that bitmasks are created for all pTabList->nSrc tables in
6148 ** pTabList, not just the first nTabList tables. nTabList is normally
6149 ** equal to pTabList->nSrc but might be shortened to 1 if the
6150 ** WHERE_ONETABLE_ONLY flag is set.
6152 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
6153 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6157 Bitmask toTheLeft
= 0;
6158 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
6159 Bitmask m
= getMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6160 assert( (m
-1)==toTheLeft
);
6166 /* Analyze all of the subexpressions. Note that exprAnalyze() might
6167 ** add new virtual terms onto the end of the WHERE clause. We do not
6168 ** want to analyze these virtual terms, so start analyzing at the end
6169 ** and work forward so that the added virtual terms are never processed.
6171 exprAnalyzeAll(pTabList
, &pWInfo
->sWC
);
6172 if( db
->mallocFailed
){
6173 goto whereBeginError
;
6176 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
6177 if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
6178 /* The DISTINCT marking is pointless. Ignore it. */
6179 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6180 }else if( pOrderBy
==0 ){
6181 /* Try to ORDER BY the result set to make distinct processing easier */
6182 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
6183 pWInfo
->pOrderBy
= pResultSet
;
6187 /* Construct the WhereLoop objects */
6188 WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
6189 #if defined(WHERETRACE_ENABLED)
6190 /* Display all terms of the WHERE clause */
6191 if( sqlite3WhereTrace
& 0x100 ){
6193 for(i
=0; i
<sWLB
.pWC
->nTerm
; i
++){
6194 whereTermPrint(&sWLB
.pWC
->a
[i
], i
);
6199 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
6200 rc
= whereLoopAddAll(&sWLB
);
6201 if( rc
) goto whereBeginError
;
6203 /* Display all of the WhereLoop objects if wheretrace is enabled */
6204 #ifdef WHERETRACE_ENABLED /* !=0 */
6205 if( sqlite3WhereTrace
){
6208 static char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
6209 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
6210 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
6211 p
->cId
= zLabel
[i
%sizeof(zLabel
)];
6212 whereLoopPrint(p
, sWLB
.pWC
);
6217 wherePathSolver(pWInfo
, 0);
6218 if( db
->mallocFailed
) goto whereBeginError
;
6219 if( pWInfo
->pOrderBy
){
6220 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
6221 if( db
->mallocFailed
) goto whereBeginError
;
6224 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
6225 pWInfo
->revMask
= (Bitmask
)(-1);
6227 if( pParse
->nErr
|| NEVER(db
->mallocFailed
) ){
6228 goto whereBeginError
;
6230 #ifdef WHERETRACE_ENABLED /* !=0 */
6231 if( sqlite3WhereTrace
){
6233 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
6234 if( pWInfo
->nOBSat
>0 ){
6235 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
6237 switch( pWInfo
->eDistinct
){
6238 case WHERE_DISTINCT_UNIQUE
: {
6239 sqlite3DebugPrintf(" DISTINCT=unique");
6242 case WHERE_DISTINCT_ORDERED
: {
6243 sqlite3DebugPrintf(" DISTINCT=ordered");
6246 case WHERE_DISTINCT_UNORDERED
: {
6247 sqlite3DebugPrintf(" DISTINCT=unordered");
6251 sqlite3DebugPrintf("\n");
6252 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
6253 whereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
6257 /* Attempt to omit tables from the join that do not effect the result */
6258 if( pWInfo
->nLevel
>=2
6260 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
6262 Bitmask tabUsed
= exprListTableUsage(pMaskSet
, pResultSet
);
6263 if( sWLB
.pOrderBy
) tabUsed
|= exprListTableUsage(pMaskSet
, sWLB
.pOrderBy
);
6264 while( pWInfo
->nLevel
>=2 ){
6265 WhereTerm
*pTerm
, *pEnd
;
6266 pLoop
= pWInfo
->a
[pWInfo
->nLevel
-1].pWLoop
;
6267 if( (pWInfo
->pTabList
->a
[pLoop
->iTab
].jointype
& JT_LEFT
)==0 ) break;
6268 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)==0
6269 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
6273 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) break;
6274 pEnd
= sWLB
.pWC
->a
+ sWLB
.pWC
->nTerm
;
6275 for(pTerm
=sWLB
.pWC
->a
; pTerm
<pEnd
; pTerm
++){
6276 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0
6277 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
6282 if( pTerm
<pEnd
) break;
6283 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop
->cId
));
6288 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
6289 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
6291 /* If the caller is an UPDATE or DELETE statement that is requesting
6292 ** to use a one-pass algorithm, determine if this is appropriate.
6293 ** The one-pass algorithm only works if the WHERE clause constrains
6294 ** the statement to update a single row.
6296 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
6297 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
6298 && (pWInfo
->a
[0].pWLoop
->wsFlags
& WHERE_ONEROW
)!=0 ){
6299 pWInfo
->okOnePass
= 1;
6300 if( HasRowid(pTabList
->a
[0].pTab
) ){
6301 pWInfo
->a
[0].pWLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
6305 /* Open all tables in the pTabList and any indices selected for
6306 ** searching those tables.
6308 notReady
= ~(Bitmask
)0;
6309 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
6310 Table
*pTab
; /* Table to open */
6311 int iDb
; /* Index of database containing table/index */
6312 struct SrcList_item
*pTabItem
;
6314 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6315 pTab
= pTabItem
->pTab
;
6316 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6317 pLoop
= pLevel
->pWLoop
;
6318 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || pTab
->pSelect
){
6321 #ifndef SQLITE_OMIT_VIRTUALTABLE
6322 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
6323 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
6324 int iCur
= pTabItem
->iCursor
;
6325 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
6326 }else if( IsVirtual(pTab
) ){
6330 if( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6331 && (wctrlFlags
& WHERE_OMIT_OPEN_CLOSE
)==0 ){
6332 int op
= OP_OpenRead
;
6333 if( pWInfo
->okOnePass
){
6335 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
6337 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
6338 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
6339 testcase( !pWInfo
->okOnePass
&& pTab
->nCol
==BMS
-1 );
6340 testcase( !pWInfo
->okOnePass
&& pTab
->nCol
==BMS
);
6341 if( !pWInfo
->okOnePass
&& pTab
->nCol
<BMS
&& HasRowid(pTab
) ){
6342 Bitmask b
= pTabItem
->colUsed
;
6344 for(; b
; b
=b
>>1, n
++){}
6345 sqlite3VdbeChangeP4(v
, sqlite3VdbeCurrentAddr(v
)-1,
6346 SQLITE_INT_TO_PTR(n
), P4_INT32
);
6347 assert( n
<=pTab
->nCol
);
6350 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
6352 if( pLoop
->wsFlags
& WHERE_INDEXED
){
6353 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
6355 int op
= OP_OpenRead
;
6356 /* iIdxCur is always set if to a positive value if ONEPASS is possible */
6357 assert( iIdxCur
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
6358 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
6359 && (wctrlFlags
& WHERE_ONETABLE_ONLY
)!=0
6361 /* This is one term of an OR-optimization using the PRIMARY KEY of a
6362 ** WITHOUT ROWID table. No need for a separate index */
6363 iIndexCur
= pLevel
->iTabCur
;
6365 }else if( pWInfo
->okOnePass
){
6366 Index
*pJ
= pTabItem
->pTab
->pIndex
;
6367 iIndexCur
= iIdxCur
;
6368 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
6369 while( ALWAYS(pJ
) && pJ
!=pIx
){
6374 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
6375 }else if( iIdxCur
&& (wctrlFlags
& WHERE_ONETABLE_ONLY
)!=0 ){
6376 iIndexCur
= iIdxCur
;
6377 if( wctrlFlags
& WHERE_REOPEN_IDX
) op
= OP_ReopenIdx
;
6379 iIndexCur
= pParse
->nTab
++;
6381 pLevel
->iIdxCur
= iIndexCur
;
6382 assert( pIx
->pSchema
==pTab
->pSchema
);
6383 assert( iIndexCur
>=0 );
6385 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
6386 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6387 VdbeComment((v
, "%s", pIx
->zName
));
6390 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
6391 notReady
&= ~getMask(&pWInfo
->sMaskSet
, pTabItem
->iCursor
);
6393 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
6394 if( db
->mallocFailed
) goto whereBeginError
;
6396 /* Generate the code to do the search. Each iteration of the for
6397 ** loop below generates code for a single nested loop of the VM
6400 notReady
= ~(Bitmask
)0;
6401 for(ii
=0; ii
<nTabList
; ii
++){
6402 pLevel
= &pWInfo
->a
[ii
];
6403 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6404 if( (pLevel
->pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
6405 constructAutomaticIndex(pParse
, &pWInfo
->sWC
,
6406 &pTabList
->a
[pLevel
->iFrom
], notReady
, pLevel
);
6407 if( db
->mallocFailed
) goto whereBeginError
;
6410 explainOneScan(pParse
, pTabList
, pLevel
, ii
, pLevel
->iFrom
, wctrlFlags
);
6411 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
6412 notReady
= codeOneLoopStart(pWInfo
, ii
, notReady
);
6413 pWInfo
->iContinue
= pLevel
->addrCont
;
6417 VdbeModuleComment((v
, "Begin WHERE-core"));
6420 /* Jump here if malloc fails */
6423 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6424 whereInfoFree(db
, pWInfo
);
6430 ** Generate the end of the WHERE loop. See comments on
6431 ** sqlite3WhereBegin() for additional information.
6433 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
6434 Parse
*pParse
= pWInfo
->pParse
;
6435 Vdbe
*v
= pParse
->pVdbe
;
6439 SrcList
*pTabList
= pWInfo
->pTabList
;
6440 sqlite3
*db
= pParse
->db
;
6442 /* Generate loop termination code.
6444 VdbeModuleComment((v
, "End WHERE-core"));
6445 sqlite3ExprCacheClear(pParse
);
6446 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
6448 pLevel
= &pWInfo
->a
[i
];
6449 pLoop
= pLevel
->pWLoop
;
6450 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6451 if( pLevel
->op
!=OP_Noop
){
6452 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
6453 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
6455 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
6456 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
6457 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
6459 if( pLoop
->wsFlags
& WHERE_IN_ABLE
&& pLevel
->u
.in
.nIn
>0 ){
6462 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
6463 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
6464 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6465 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
6467 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_PrevIfOpen
);
6468 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_NextIfOpen
);
6469 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
6471 sqlite3DbFree(db
, pLevel
->u
.in
.aInLoop
);
6473 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
6474 if( pLevel
->addrSkip
){
6475 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrSkip
);
6476 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
6477 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
6478 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
6480 if( pLevel
->iLeftJoin
){
6481 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
6482 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6483 || (pLoop
->wsFlags
& WHERE_INDEXED
)!=0 );
6484 if( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0 ){
6485 sqlite3VdbeAddOp1(v
, OP_NullRow
, pTabList
->a
[i
].iCursor
);
6487 if( pLoop
->wsFlags
& WHERE_INDEXED
){
6488 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
6490 if( pLevel
->op
==OP_Return
){
6491 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
6493 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrFirst
);
6495 sqlite3VdbeJumpHere(v
, addr
);
6497 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
6498 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
6501 /* The "break" point is here, just past the end of the outer loop.
6504 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
6506 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
6507 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
6511 struct SrcList_item
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6512 Table
*pTab
= pTabItem
->pTab
;
6514 pLoop
= pLevel
->pWLoop
;
6516 /* For a co-routine, change all OP_Column references to the table of
6517 ** the co-routine into OP_SCopy of result contained in a register.
6518 ** OP_Rowid becomes OP_Null.
6520 if( pTabItem
->viaCoroutine
&& !db
->mallocFailed
){
6521 last
= sqlite3VdbeCurrentAddr(v
);
6522 k
= pLevel
->addrBody
;
6523 pOp
= sqlite3VdbeGetOp(v
, k
);
6524 for(; k
<last
; k
++, pOp
++){
6525 if( pOp
->p1
!=pLevel
->iTabCur
) continue;
6526 if( pOp
->opcode
==OP_Column
){
6527 pOp
->opcode
= OP_Copy
;
6528 pOp
->p1
= pOp
->p2
+ pTabItem
->regResult
;
6531 }else if( pOp
->opcode
==OP_Rowid
){
6532 pOp
->opcode
= OP_Null
;
6540 /* Close all of the cursors that were opened by sqlite3WhereBegin.
6541 ** Except, do not close cursors that will be reused by the OR optimization
6542 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors
6543 ** created for the ONEPASS optimization.
6545 if( (pTab
->tabFlags
& TF_Ephemeral
)==0
6547 && (pWInfo
->wctrlFlags
& WHERE_OMIT_OPEN_CLOSE
)==0
6549 int ws
= pLoop
->wsFlags
;
6550 if( !pWInfo
->okOnePass
&& (ws
& WHERE_IDX_ONLY
)==0 ){
6551 sqlite3VdbeAddOp1(v
, OP_Close
, pTabItem
->iCursor
);
6553 if( (ws
& WHERE_INDEXED
)!=0
6554 && (ws
& (WHERE_IPK
|WHERE_AUTO_INDEX
))==0
6555 && pLevel
->iIdxCur
!=pWInfo
->aiCurOnePass
[1]
6557 sqlite3VdbeAddOp1(v
, OP_Close
, pLevel
->iIdxCur
);
6561 /* If this scan uses an index, make VDBE code substitutions to read data
6562 ** from the index instead of from the table where possible. In some cases
6563 ** this optimization prevents the table from ever being read, which can
6564 ** yield a significant performance boost.
6566 ** Calls to the code generator in between sqlite3WhereBegin and
6567 ** sqlite3WhereEnd will have created code that references the table
6568 ** directly. This loop scans all that code looking for opcodes
6569 ** that reference the table and converts them into opcodes that
6570 ** reference the index.
6572 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
6573 pIdx
= pLoop
->u
.btree
.pIndex
;
6574 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
6575 pIdx
= pLevel
->u
.pCovidx
;
6577 if( pIdx
&& !db
->mallocFailed
){
6578 last
= sqlite3VdbeCurrentAddr(v
);
6579 k
= pLevel
->addrBody
;
6580 pOp
= sqlite3VdbeGetOp(v
, k
);
6581 for(; k
<last
; k
++, pOp
++){
6582 if( pOp
->p1
!=pLevel
->iTabCur
) continue;
6583 if( pOp
->opcode
==OP_Column
){
6585 assert( pIdx
->pTable
==pTab
);
6586 if( !HasRowid(pTab
) ){
6587 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6588 x
= pPk
->aiColumn
[x
];
6590 x
= sqlite3ColumnOfIndex(pIdx
, x
);
6593 pOp
->p1
= pLevel
->iIdxCur
;
6595 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0 || x
>=0 );
6596 }else if( pOp
->opcode
==OP_Rowid
){
6597 pOp
->p1
= pLevel
->iIdxCur
;
6598 pOp
->opcode
= OP_IdxRowid
;
6606 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6607 whereInfoFree(db
, pWInfo
);