2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
7 ** The author of this program disclaims copyright.
17 # if defined(_WIN32) || defined(WIN32)
26 extern int access(const char *path
, int mode
);
34 /* #define PRIVATE static */
38 #define MAXRHS 5 /* Set low to exercise exception code */
43 static int showPrecedenceConflict
= 0;
44 static char *msort(char*,char**,int(*)(const char*,const char*));
47 ** Compilers are getting increasingly pedantic about type conversions
48 ** as C evolves ever closer to Ada.... To work around the latest problems
49 ** we have to define the following variant of strlen().
51 #define lemonStrlen(X) ((int)strlen(X))
54 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
55 ** saying they are unsafe. So we define our own versions of those routines too.
57 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
58 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
59 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
60 ** buffer, making sure the buffer is always zero-terminated.
62 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
63 ** a few simply conversions:
70 static void lemon_addtext(
71 char *zBuf
, /* The buffer to which text is added */
72 int *pnUsed
, /* Slots of the buffer used so far */
73 const char *zIn
, /* Text to add */
74 int nIn
, /* Bytes of text to add. -1 to use strlen() */
75 int iWidth
/* Field width. Negative to left justify */
77 if( nIn
<0 ) for(nIn
=0; zIn
[nIn
]; nIn
++){}
78 while( iWidth
>nIn
){ zBuf
[(*pnUsed
)++] = ' '; iWidth
--; }
80 memcpy(&zBuf
[*pnUsed
], zIn
, nIn
);
82 while( (-iWidth
)>nIn
){ zBuf
[(*pnUsed
)++] = ' '; iWidth
++; }
85 static int lemon_vsprintf(char *str
, const char *zFormat
, va_list ap
){
91 for(i
=j
=0; (c
= zFormat
[i
])!=0; i
++){
94 lemon_addtext(str
, &nUsed
, &zFormat
[j
], i
-j
, 0);
96 if( isdigit(c
) || (c
=='-' && isdigit(zFormat
[i
+1])) ){
98 while( isdigit(zFormat
[i
]) ) iWidth
= iWidth
*10 + zFormat
[i
++] - '0';
99 if( c
=='-' ) iWidth
= -iWidth
;
103 int v
= va_arg(ap
, int);
105 lemon_addtext(str
, &nUsed
, "-", 1, iWidth
);
108 lemon_addtext(str
, &nUsed
, "0", 1, iWidth
);
113 zTemp
[sizeof(zTemp
)-k
] = (v
%10) + '0';
116 lemon_addtext(str
, &nUsed
, &zTemp
[sizeof(zTemp
)-k
], k
, iWidth
);
118 z
= va_arg(ap
, const char*);
119 lemon_addtext(str
, &nUsed
, z
, -1, iWidth
);
120 }else if( c
=='.' && memcmp(&zFormat
[i
], ".*s", 3)==0 ){
123 z
= va_arg(ap
, const char*);
124 lemon_addtext(str
, &nUsed
, z
, k
, iWidth
);
126 lemon_addtext(str
, &nUsed
, "%", 1, 0);
128 fprintf(stderr
, "illegal format\n");
134 lemon_addtext(str
, &nUsed
, &zFormat
[j
], i
-j
, 0);
137 static int lemon_sprintf(char *str
, const char *format
, ...){
140 va_start(ap
, format
);
141 rc
= lemon_vsprintf(str
, format
, ap
);
145 static void lemon_strcpy(char *dest
, const char *src
){
146 while( (*(dest
++) = *(src
++))!=0 ){}
148 static void lemon_strcat(char *dest
, const char *src
){
149 while( *dest
) dest
++;
150 lemon_strcpy(dest
, src
);
154 /* a few forward declarations... */
159 static struct action
*Action_new(void);
160 static struct action
*Action_sort(struct action
*);
162 /********** From the file "build.h" ************************************/
163 void FindRulePrecedences();
164 void FindFirstSets();
167 void FindFollowSets();
170 /********* From the file "configlist.h" *********************************/
171 void Configlist_init(void);
172 struct config
*Configlist_add(struct rule
*, int);
173 struct config
*Configlist_addbasis(struct rule
*, int);
174 void Configlist_closure(struct lemon
*);
175 void Configlist_sort(void);
176 void Configlist_sortbasis(void);
177 struct config
*Configlist_return(void);
178 struct config
*Configlist_basis(void);
179 void Configlist_eat(struct config
*);
180 void Configlist_reset(void);
182 /********* From the file "error.h" ***************************************/
183 void ErrorMsg(const char *, int,const char *, ...);
185 /****** From the file "option.h" ******************************************/
186 enum option_type
{ OPT_FLAG
=1, OPT_INT
, OPT_DBL
, OPT_STR
,
187 OPT_FFLAG
, OPT_FINT
, OPT_FDBL
, OPT_FSTR
};
189 enum option_type type
;
194 int OptInit(char**,struct s_options
*,FILE*);
200 /******** From the file "parse.h" *****************************************/
201 void Parse(struct lemon
*lemp
);
203 /********* From the file "plink.h" ***************************************/
204 struct plink
*Plink_new(void);
205 void Plink_add(struct plink
**, struct config
*);
206 void Plink_copy(struct plink
**, struct plink
*);
207 void Plink_delete(struct plink
*);
209 /********** From the file "report.h" *************************************/
210 void Reprint(struct lemon
*);
211 void ReportOutput(struct lemon
*);
212 void ReportTable(struct lemon
*, int);
213 void ReportHeader(struct lemon
*);
214 void CompressTables(struct lemon
*);
215 void ResortStates(struct lemon
*);
217 /********** From the file "set.h" ****************************************/
218 void SetSize(int); /* All sets will be of size N */
219 char *SetNew(void); /* A new set for element 0..N */
220 void SetFree(char*); /* Deallocate a set */
221 int SetAdd(char*,int); /* Add element to a set */
222 int SetUnion(char *,char *); /* A <- A U B, thru element N */
223 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
225 /********** From the file "struct.h" *************************************/
227 ** Principal data structures for the LEMON parser generator.
230 typedef enum {LEMON_FALSE
=0, LEMON_TRUE
} Boolean
;
232 /* Symbols (terminals and nonterminals) of the grammar are stored
233 ** in the following: */
246 const char *name
; /* Name of the symbol */
247 int index
; /* Index number for this symbol */
248 enum symbol_type type
; /* Symbols are all either TERMINALS or NTs */
249 struct rule
*rule
; /* Linked list of rules of this (if an NT) */
250 struct symbol
*fallback
; /* fallback token in case this token doesn't parse */
251 int prec
; /* Precedence if defined (-1 otherwise) */
252 enum e_assoc assoc
; /* Associativity if precedence is defined */
253 char *firstset
; /* First-set for all rules of this symbol */
254 Boolean lambda
; /* True if NT and can generate an empty string */
255 int useCnt
; /* Number of times used */
256 char *destructor
; /* Code which executes whenever this symbol is
257 ** popped from the stack during error processing */
258 int destLineno
; /* Line number for start of destructor */
259 char *datatype
; /* The data type of information held by this
260 ** object. Only used if type==NONTERMINAL */
261 int dtnum
; /* The data type number. In the parser, the value
262 ** stack is a union. The .yy%d element of this
263 ** union is the correct data type for this object */
264 /* The following fields are used by MULTITERMINALs only */
265 int nsubsym
; /* Number of constituent symbols in the MULTI */
266 struct symbol
**subsym
; /* Array of constituent symbols */
269 /* Each production rule in the grammar is stored in the following
272 struct symbol
*lhs
; /* Left-hand side of the rule */
273 const char *lhsalias
; /* Alias for the LHS (NULL if none) */
274 int lhsStart
; /* True if left-hand side is the start symbol */
275 int ruleline
; /* Line number for the rule */
276 int nrhs
; /* Number of RHS symbols */
277 struct symbol
**rhs
; /* The RHS symbols */
278 const char **rhsalias
; /* An alias for each RHS symbol (NULL if none) */
279 int line
; /* Line number at which code begins */
280 const char *code
; /* The code executed when this rule is reduced */
281 struct symbol
*precsym
; /* Precedence symbol for this rule */
282 int index
; /* An index number for this rule */
283 Boolean canReduce
; /* True if this rule is ever reduced */
284 struct rule
*nextlhs
; /* Next rule with the same LHS */
285 struct rule
*next
; /* Next rule in the global list */
288 /* A configuration is a production rule of the grammar together with
289 ** a mark (dot) showing how much of that rule has been processed so far.
290 ** Configurations also contain a follow-set which is a list of terminal
291 ** symbols which are allowed to immediately follow the end of the rule.
292 ** Every configuration is recorded as an instance of the following: */
298 struct rule
*rp
; /* The rule upon which the configuration is based */
299 int dot
; /* The parse point */
300 char *fws
; /* Follow-set for this configuration only */
301 struct plink
*fplp
; /* Follow-set forward propagation links */
302 struct plink
*bplp
; /* Follow-set backwards propagation links */
303 struct state
*stp
; /* Pointer to state which contains this */
304 enum cfgstatus status
; /* used during followset and shift computations */
305 struct config
*next
; /* Next configuration in the state */
306 struct config
*bp
; /* The next basis configuration */
314 SSCONFLICT
, /* A shift/shift conflict */
315 SRCONFLICT
, /* Was a reduce, but part of a conflict */
316 RRCONFLICT
, /* Was a reduce, but part of a conflict */
317 SH_RESOLVED
, /* Was a shift. Precedence resolved conflict */
318 RD_RESOLVED
, /* Was reduce. Precedence resolved conflict */
319 NOT_USED
/* Deleted by compression */
322 /* Every shift or reduce operation is stored as one of the following */
324 struct symbol
*sp
; /* The look-ahead symbol */
327 struct state
*stp
; /* The new state, if a shift */
328 struct rule
*rp
; /* The rule, if a reduce */
330 struct action
*next
; /* Next action for this state */
331 struct action
*collide
; /* Next action with the same hash */
334 /* Each state of the generated parser's finite state machine
335 ** is encoded as an instance of the following structure. */
337 struct config
*bp
; /* The basis configurations for this state */
338 struct config
*cfp
; /* All configurations in this set */
339 int statenum
; /* Sequential number for this state */
340 struct action
*ap
; /* Array of actions for this state */
341 int nTknAct
, nNtAct
; /* Number of actions on terminals and nonterminals */
342 int iTknOfst
, iNtOfst
; /* yy_action[] offset for terminals and nonterms */
343 int iDflt
; /* Default action */
345 #define NO_OFFSET (-2147483647)
347 /* A followset propagation link indicates that the contents of one
348 ** configuration followset should be propagated to another whenever
349 ** the first changes. */
351 struct config
*cfp
; /* The configuration to which linked */
352 struct plink
*next
; /* The next propagate link */
355 /* The state vector for the entire parser generator is recorded as
356 ** follows. (LEMON uses no global variables and makes little use of
357 ** static variables. Fields in the following structure can be thought
358 ** of as begin global variables in the program.) */
360 struct state
**sorted
; /* Table of states sorted by state number */
361 struct rule
*rule
; /* List of all rules */
362 int nstate
; /* Number of states */
363 int nrule
; /* Number of rules */
364 int nsymbol
; /* Number of terminal and nonterminal symbols */
365 int nterminal
; /* Number of terminal symbols */
366 struct symbol
**symbols
; /* Sorted array of pointers to symbols */
367 int errorcnt
; /* Number of errors */
368 struct symbol
*errsym
; /* The error symbol */
369 struct symbol
*wildcard
; /* Token that matches anything */
370 char *name
; /* Name of the generated parser */
371 char *arg
; /* Declaration of the 3th argument to parser */
372 char *tokentype
; /* Type of terminal symbols in the parser stack */
373 char *vartype
; /* The default type of non-terminal symbols */
374 char *start
; /* Name of the start symbol for the grammar */
375 char *stacksize
; /* Size of the parser stack */
376 char *include
; /* Code to put at the start of the C file */
377 char *error
; /* Code to execute when an error is seen */
378 char *overflow
; /* Code to execute on a stack overflow */
379 char *failure
; /* Code to execute on parser failure */
380 char *accept
; /* Code to execute when the parser excepts */
381 char *extracode
; /* Code appended to the generated file */
382 char *tokendest
; /* Code to execute to destroy token data */
383 char *vardest
; /* Code for the default non-terminal destructor */
384 char *filename
; /* Name of the input file */
385 char *outname
; /* Name of the current output file */
386 char *tokenprefix
; /* A prefix added to token names in the .h file */
387 int nconflict
; /* Number of parsing conflicts */
388 int tablesize
; /* Size of the parse tables */
389 int basisflag
; /* Print only basis configurations */
390 int has_fallback
; /* True if any %fallback is seen in the grammar */
391 int nolinenosflag
; /* True if #line statements should not be printed */
392 char *argv0
; /* Name of the program */
395 #define MemoryCheck(X) if((X)==0){ \
396 extern void memory_error(); \
400 /**************** From the file "table.h" *********************************/
402 ** All code in this file has been automatically generated
403 ** from a specification in the file
405 ** by the associative array code building program "aagen".
406 ** Do not edit this file! Instead, edit the specification
407 ** file, then rerun aagen.
410 ** Code for processing tables in the LEMON parser generator.
412 /* Routines for handling a strings */
414 const char *Strsafe(const char *);
416 void Strsafe_init(void);
417 int Strsafe_insert(const char *);
418 const char *Strsafe_find(const char *);
420 /* Routines for handling symbols of the grammar */
422 struct symbol
*Symbol_new(const char *);
423 int Symbolcmpp(const void *, const void *);
424 void Symbol_init(void);
425 int Symbol_insert(struct symbol
*, const char *);
426 struct symbol
*Symbol_find(const char *);
427 struct symbol
*Symbol_Nth(int);
428 int Symbol_count(void);
429 struct symbol
**Symbol_arrayof(void);
431 /* Routines to manage the state table */
433 int Configcmp(const char *, const char *);
434 struct state
*State_new(void);
435 void State_init(void);
436 int State_insert(struct state
*, struct config
*);
437 struct state
*State_find(struct config
*);
438 struct state
**State_arrayof(/* */);
440 /* Routines used for efficiency in Configlist_add */
442 void Configtable_init(void);
443 int Configtable_insert(struct config
*);
444 struct config
*Configtable_find(struct config
*);
445 void Configtable_clear(int(*)(struct config
*));
447 /****************** From the file "action.c" *******************************/
449 ** Routines processing parser actions in the LEMON parser generator.
452 /* Allocate a new parser action */
453 static struct action
*Action_new(void){
454 static struct action
*freelist
= 0;
455 struct action
*newaction
;
460 freelist
= (struct action
*)calloc(amt
, sizeof(struct action
));
462 fprintf(stderr
,"Unable to allocate memory for a new parser action.");
465 for(i
=0; i
<amt
-1; i
++) freelist
[i
].next
= &freelist
[i
+1];
466 freelist
[amt
-1].next
= 0;
468 newaction
= freelist
;
469 freelist
= freelist
->next
;
473 /* Compare two actions for sorting purposes. Return negative, zero, or
474 ** positive if the first action is less than, equal to, or greater than
477 static int actioncmp(
482 rc
= ap1
->sp
->index
- ap2
->sp
->index
;
484 rc
= (int)ap1
->type
- (int)ap2
->type
;
486 if( rc
==0 && ap1
->type
==REDUCE
){
487 rc
= ap1
->x
.rp
->index
- ap2
->x
.rp
->index
;
490 rc
= (int) (ap2
- ap1
);
495 /* Sort parser actions */
496 static struct action
*Action_sort(
499 ap
= (struct action
*)msort((char *)ap
,(char **)&ap
->next
,
500 (int(*)(const char*,const char*))actioncmp
);
510 struct action
*newaction
;
511 newaction
= Action_new();
512 newaction
->next
= *app
;
514 newaction
->type
= type
;
517 newaction
->x
.stp
= (struct state
*)arg
;
519 newaction
->x
.rp
= (struct rule
*)arg
;
522 /********************** New code to implement the "acttab" module ***********/
524 ** This module implements routines use to construct the yy_action[] table.
528 ** The state of the yy_action table under construction is an instance of
529 ** the following structure.
531 ** The yy_action table maps the pair (state_number, lookahead) into an
532 ** action_number. The table is an array of integers pairs. The state_number
533 ** determines an initial offset into the yy_action array. The lookahead
534 ** value is then added to this initial offset to get an index X into the
535 ** yy_action array. If the aAction[X].lookahead equals the value of the
536 ** of the lookahead input, then the value of the action_number output is
537 ** aAction[X].action. If the lookaheads do not match then the
538 ** default action for the state_number is returned.
540 ** All actions associated with a single state_number are first entered
541 ** into aLookahead[] using multiple calls to acttab_action(). Then the
542 ** actions for that single state_number are placed into the aAction[]
543 ** array with a single call to acttab_insert(). The acttab_insert() call
544 ** also resets the aLookahead[] array in preparation for the next
547 struct lookahead_action
{
548 int lookahead
; /* Value of the lookahead token */
549 int action
; /* Action to take on the given lookahead */
551 typedef struct acttab acttab
;
553 int nAction
; /* Number of used slots in aAction[] */
554 int nActionAlloc
; /* Slots allocated for aAction[] */
555 struct lookahead_action
556 *aAction
, /* The yy_action[] table under construction */
557 *aLookahead
; /* A single new transaction set */
558 int mnLookahead
; /* Minimum aLookahead[].lookahead */
559 int mnAction
; /* Action associated with mnLookahead */
560 int mxLookahead
; /* Maximum aLookahead[].lookahead */
561 int nLookahead
; /* Used slots in aLookahead[] */
562 int nLookaheadAlloc
; /* Slots allocated in aLookahead[] */
565 /* Return the number of entries in the yy_action table */
566 #define acttab_size(X) ((X)->nAction)
568 /* The value for the N-th entry in yy_action */
569 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
571 /* The value for the N-th entry in yy_lookahead */
572 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
574 /* Free all memory associated with the given acttab */
575 void acttab_free(acttab
*p
){
577 free( p
->aLookahead
);
581 /* Allocate a new acttab structure */
582 acttab
*acttab_alloc(void){
583 acttab
*p
= (acttab
*) calloc( 1, sizeof(*p
) );
585 fprintf(stderr
,"Unable to allocate memory for a new acttab.");
588 memset(p
, 0, sizeof(*p
));
592 /* Add a new action to the current transaction set.
594 ** This routine is called once for each lookahead for a particular
597 void acttab_action(acttab
*p
, int lookahead
, int action
){
598 if( p
->nLookahead
>=p
->nLookaheadAlloc
){
599 p
->nLookaheadAlloc
+= 25;
600 p
->aLookahead
= (struct lookahead_action
*) realloc( p
->aLookahead
,
601 sizeof(p
->aLookahead
[0])*p
->nLookaheadAlloc
);
602 if( p
->aLookahead
==0 ){
603 fprintf(stderr
,"malloc failed\n");
607 if( p
->nLookahead
==0 ){
608 p
->mxLookahead
= lookahead
;
609 p
->mnLookahead
= lookahead
;
610 p
->mnAction
= action
;
612 if( p
->mxLookahead
<lookahead
) p
->mxLookahead
= lookahead
;
613 if( p
->mnLookahead
>lookahead
){
614 p
->mnLookahead
= lookahead
;
615 p
->mnAction
= action
;
618 p
->aLookahead
[p
->nLookahead
].lookahead
= lookahead
;
619 p
->aLookahead
[p
->nLookahead
].action
= action
;
624 ** Add the transaction set built up with prior calls to acttab_action()
625 ** into the current action table. Then reset the transaction set back
626 ** to an empty set in preparation for a new round of acttab_action() calls.
628 ** Return the offset into the action table of the new transaction.
630 int acttab_insert(acttab
*p
){
632 assert( p
->nLookahead
>0 );
634 /* Make sure we have enough space to hold the expanded action table
635 ** in the worst case. The worst case occurs if the transaction set
636 ** must be appended to the current action table
638 n
= p
->mxLookahead
+ 1;
639 if( p
->nAction
+ n
>= p
->nActionAlloc
){
640 int oldAlloc
= p
->nActionAlloc
;
641 p
->nActionAlloc
= p
->nAction
+ n
+ p
->nActionAlloc
+ 20;
642 p
->aAction
= (struct lookahead_action
*) realloc( p
->aAction
,
643 sizeof(p
->aAction
[0])*p
->nActionAlloc
);
645 fprintf(stderr
,"malloc failed\n");
648 for(i
=oldAlloc
; i
<p
->nActionAlloc
; i
++){
649 p
->aAction
[i
].lookahead
= -1;
650 p
->aAction
[i
].action
= -1;
654 /* Scan the existing action table looking for an offset that is a
655 ** duplicate of the current transaction set. Fall out of the loop
656 ** if and when the duplicate is found.
658 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
660 for(i
=p
->nAction
-1; i
>=0; i
--){
661 if( p
->aAction
[i
].lookahead
==p
->mnLookahead
){
662 /* All lookaheads and actions in the aLookahead[] transaction
663 ** must match against the candidate aAction[i] entry. */
664 if( p
->aAction
[i
].action
!=p
->mnAction
) continue;
665 for(j
=0; j
<p
->nLookahead
; j
++){
666 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
667 if( k
<0 || k
>=p
->nAction
) break;
668 if( p
->aLookahead
[j
].lookahead
!=p
->aAction
[k
].lookahead
) break;
669 if( p
->aLookahead
[j
].action
!=p
->aAction
[k
].action
) break;
671 if( j
<p
->nLookahead
) continue;
673 /* No possible lookahead value that is not in the aLookahead[]
674 ** transaction is allowed to match aAction[i] */
676 for(j
=0; j
<p
->nAction
; j
++){
677 if( p
->aAction
[j
].lookahead
<0 ) continue;
678 if( p
->aAction
[j
].lookahead
==j
+p
->mnLookahead
-i
) n
++;
680 if( n
==p
->nLookahead
){
681 break; /* An exact match is found at offset i */
686 /* If no existing offsets exactly match the current transaction, find an
687 ** an empty offset in the aAction[] table in which we can add the
688 ** aLookahead[] transaction.
691 /* Look for holes in the aAction[] table that fit the current
692 ** aLookahead[] transaction. Leave i set to the offset of the hole.
693 ** If no holes are found, i is left at p->nAction, which means the
694 ** transaction will be appended. */
695 for(i
=0; i
<p
->nActionAlloc
- p
->mxLookahead
; i
++){
696 if( p
->aAction
[i
].lookahead
<0 ){
697 for(j
=0; j
<p
->nLookahead
; j
++){
698 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
700 if( p
->aAction
[k
].lookahead
>=0 ) break;
702 if( j
<p
->nLookahead
) continue;
703 for(j
=0; j
<p
->nAction
; j
++){
704 if( p
->aAction
[j
].lookahead
==j
+p
->mnLookahead
-i
) break;
707 break; /* Fits in empty slots */
712 /* Insert transaction set at index i. */
713 for(j
=0; j
<p
->nLookahead
; j
++){
714 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
715 p
->aAction
[k
] = p
->aLookahead
[j
];
716 if( k
>=p
->nAction
) p
->nAction
= k
+1;
720 /* Return the offset that is added to the lookahead in order to get the
721 ** index into yy_action of the action */
722 return i
- p
->mnLookahead
;
725 /********************** From the file "build.c" *****************************/
727 ** Routines to construction the finite state machine for the LEMON
731 /* Find a precedence symbol of every rule in the grammar.
733 ** Those rules which have a precedence symbol coded in the input
734 ** grammar using the "[symbol]" construct will already have the
735 ** rp->precsym field filled. Other rules take as their precedence
736 ** symbol the first RHS symbol with a defined precedence. If there
737 ** are not RHS symbols with a defined precedence, the precedence
738 ** symbol field is left blank.
740 void FindRulePrecedences(struct lemon
*xp
)
743 for(rp
=xp
->rule
; rp
; rp
=rp
->next
){
744 if( rp
->precsym
==0 ){
746 for(i
=0; i
<rp
->nrhs
&& rp
->precsym
==0; i
++){
747 struct symbol
*sp
= rp
->rhs
[i
];
748 if( sp
->type
==MULTITERMINAL
){
749 for(j
=0; j
<sp
->nsubsym
; j
++){
750 if( sp
->subsym
[j
]->prec
>=0 ){
751 rp
->precsym
= sp
->subsym
[j
];
755 }else if( sp
->prec
>=0 ){
756 rp
->precsym
= rp
->rhs
[i
];
764 /* Find all nonterminals which will generate the empty string.
765 ** Then go back and compute the first sets of every nonterminal.
766 ** The first set is the set of all terminal symbols which can begin
767 ** a string generated by that nonterminal.
769 void FindFirstSets(struct lemon
*lemp
)
775 for(i
=0; i
<lemp
->nsymbol
; i
++){
776 lemp
->symbols
[i
]->lambda
= LEMON_FALSE
;
778 for(i
=lemp
->nterminal
; i
<lemp
->nsymbol
; i
++){
779 lemp
->symbols
[i
]->firstset
= SetNew();
782 /* First compute all lambdas */
785 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
786 if( rp
->lhs
->lambda
) continue;
787 for(i
=0; i
<rp
->nrhs
; i
++){
788 struct symbol
*sp
= rp
->rhs
[i
];
789 assert( sp
->type
==NONTERMINAL
|| sp
->lambda
==LEMON_FALSE
);
790 if( sp
->lambda
==LEMON_FALSE
) break;
793 rp
->lhs
->lambda
= LEMON_TRUE
;
799 /* Now compute all first sets */
801 struct symbol
*s1
, *s2
;
803 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
805 for(i
=0; i
<rp
->nrhs
; i
++){
807 if( s2
->type
==TERMINAL
){
808 progress
+= SetAdd(s1
->firstset
,s2
->index
);
810 }else if( s2
->type
==MULTITERMINAL
){
811 for(j
=0; j
<s2
->nsubsym
; j
++){
812 progress
+= SetAdd(s1
->firstset
,s2
->subsym
[j
]->index
);
816 if( s1
->lambda
==LEMON_FALSE
) break;
818 progress
+= SetUnion(s1
->firstset
,s2
->firstset
);
819 if( s2
->lambda
==LEMON_FALSE
) break;
827 /* Compute all LR(0) states for the grammar. Links
828 ** are added to between some states so that the LR(1) follow sets
829 ** can be computed later.
831 PRIVATE
struct state
*getstate(struct lemon
*); /* forward reference */
832 void FindStates(struct lemon
*lemp
)
839 /* Find the start symbol */
841 sp
= Symbol_find(lemp
->start
);
843 ErrorMsg(lemp
->filename
,0,
844 "The specified start symbol \"%s\" is not \
845 in a nonterminal of the grammar. \"%s\" will be used as the start \
846 symbol instead.",lemp
->start
,lemp
->rule
->lhs
->name
);
848 sp
= lemp
->rule
->lhs
;
851 sp
= lemp
->rule
->lhs
;
854 /* Make sure the start symbol doesn't occur on the right-hand side of
855 ** any rule. Report an error if it does. (YACC would generate a new
856 ** start symbol in this case.) */
857 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
859 for(i
=0; i
<rp
->nrhs
; i
++){
860 if( rp
->rhs
[i
]==sp
){ /* FIX ME: Deal with multiterminals */
861 ErrorMsg(lemp
->filename
,0,
862 "The start symbol \"%s\" occurs on the \
863 right-hand side of a rule. This will result in a parser which \
864 does not work properly.",sp
->name
);
870 /* The basis configuration set for the first state
871 ** is all rules which have the start symbol as their
873 for(rp
=sp
->rule
; rp
; rp
=rp
->nextlhs
){
874 struct config
*newcfp
;
876 newcfp
= Configlist_addbasis(rp
,0);
877 SetAdd(newcfp
->fws
,0);
880 /* Compute the first state. All other states will be
881 ** computed automatically during the computation of the first one.
882 ** The returned pointer to the first state is not used. */
883 (void)getstate(lemp
);
887 /* Return a pointer to a state which is described by the configuration
888 ** list which has been built from calls to Configlist_add.
890 PRIVATE
void buildshifts(struct lemon
*, struct state
*); /* Forwd ref */
891 PRIVATE
struct state
*getstate(struct lemon
*lemp
)
893 struct config
*cfp
, *bp
;
896 /* Extract the sorted basis of the new state. The basis was constructed
897 ** by prior calls to "Configlist_addbasis()". */
898 Configlist_sortbasis();
899 bp
= Configlist_basis();
901 /* Get a state with the same basis */
902 stp
= State_find(bp
);
904 /* A state with the same basis already exists! Copy all the follow-set
905 ** propagation links from the state under construction into the
906 ** preexisting state, then return a pointer to the preexisting state */
907 struct config
*x
, *y
;
908 for(x
=bp
, y
=stp
->bp
; x
&& y
; x
=x
->bp
, y
=y
->bp
){
909 Plink_copy(&y
->bplp
,x
->bplp
);
910 Plink_delete(x
->fplp
);
911 x
->fplp
= x
->bplp
= 0;
913 cfp
= Configlist_return();
916 /* This really is a new state. Construct all the details */
917 Configlist_closure(lemp
); /* Compute the configuration closure */
918 Configlist_sort(); /* Sort the configuration closure */
919 cfp
= Configlist_return(); /* Get a pointer to the config list */
920 stp
= State_new(); /* A new state structure */
922 stp
->bp
= bp
; /* Remember the configuration basis */
923 stp
->cfp
= cfp
; /* Remember the configuration closure */
924 stp
->statenum
= lemp
->nstate
++; /* Every state gets a sequence number */
925 stp
->ap
= 0; /* No actions, yet. */
926 State_insert(stp
,stp
->bp
); /* Add to the state table */
927 buildshifts(lemp
,stp
); /* Recursively compute successor states */
933 ** Return true if two symbols are the same.
935 int same_symbol(struct symbol
*a
, struct symbol
*b
)
939 if( a
->type
!=MULTITERMINAL
) return 0;
940 if( b
->type
!=MULTITERMINAL
) return 0;
941 if( a
->nsubsym
!=b
->nsubsym
) return 0;
942 for(i
=0; i
<a
->nsubsym
; i
++){
943 if( a
->subsym
[i
]!=b
->subsym
[i
] ) return 0;
948 /* Construct all successor states to the given state. A "successor"
949 ** state is any state which can be reached by a shift action.
951 PRIVATE
void buildshifts(struct lemon
*lemp
, struct state
*stp
)
953 struct config
*cfp
; /* For looping thru the config closure of "stp" */
954 struct config
*bcfp
; /* For the inner loop on config closure of "stp" */
955 struct config
*newcfg
; /* */
956 struct symbol
*sp
; /* Symbol following the dot in configuration "cfp" */
957 struct symbol
*bsp
; /* Symbol following the dot in configuration "bcfp" */
958 struct state
*newstp
; /* A pointer to a successor state */
960 /* Each configuration becomes complete after it contibutes to a successor
961 ** state. Initially, all configurations are incomplete */
962 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
) cfp
->status
= INCOMPLETE
;
964 /* Loop through all configurations of the state "stp" */
965 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
966 if( cfp
->status
==COMPLETE
) continue; /* Already used by inner loop */
967 if( cfp
->dot
>=cfp
->rp
->nrhs
) continue; /* Can't shift this config */
968 Configlist_reset(); /* Reset the new config set */
969 sp
= cfp
->rp
->rhs
[cfp
->dot
]; /* Symbol after the dot */
971 /* For every configuration in the state "stp" which has the symbol "sp"
972 ** following its dot, add the same configuration to the basis set under
973 ** construction but with the dot shifted one symbol to the right. */
974 for(bcfp
=cfp
; bcfp
; bcfp
=bcfp
->next
){
975 if( bcfp
->status
==COMPLETE
) continue; /* Already used */
976 if( bcfp
->dot
>=bcfp
->rp
->nrhs
) continue; /* Can't shift this one */
977 bsp
= bcfp
->rp
->rhs
[bcfp
->dot
]; /* Get symbol after dot */
978 if( !same_symbol(bsp
,sp
) ) continue; /* Must be same as for "cfp" */
979 bcfp
->status
= COMPLETE
; /* Mark this config as used */
980 newcfg
= Configlist_addbasis(bcfp
->rp
,bcfp
->dot
+1);
981 Plink_add(&newcfg
->bplp
,bcfp
);
984 /* Get a pointer to the state described by the basis configuration set
985 ** constructed in the preceding loop */
986 newstp
= getstate(lemp
);
988 /* The state "newstp" is reached from the state "stp" by a shift action
989 ** on the symbol "sp" */
990 if( sp
->type
==MULTITERMINAL
){
992 for(i
=0; i
<sp
->nsubsym
; i
++){
993 Action_add(&stp
->ap
,SHIFT
,sp
->subsym
[i
],(char*)newstp
);
996 Action_add(&stp
->ap
,SHIFT
,sp
,(char *)newstp
);
1002 ** Construct the propagation links
1004 void FindLinks(struct lemon
*lemp
)
1007 struct config
*cfp
, *other
;
1011 /* Housekeeping detail:
1012 ** Add to every propagate link a pointer back to the state to
1013 ** which the link is attached. */
1014 for(i
=0; i
<lemp
->nstate
; i
++){
1015 stp
= lemp
->sorted
[i
];
1016 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
1021 /* Convert all backlinks into forward links. Only the forward
1022 ** links are used in the follow-set computation. */
1023 for(i
=0; i
<lemp
->nstate
; i
++){
1024 stp
= lemp
->sorted
[i
];
1025 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
1026 for(plp
=cfp
->bplp
; plp
; plp
=plp
->next
){
1028 Plink_add(&other
->fplp
,cfp
);
1034 /* Compute all followsets.
1036 ** A followset is the set of all symbols which can come immediately
1037 ** after a configuration.
1039 void FindFollowSets(struct lemon
*lemp
)
1047 for(i
=0; i
<lemp
->nstate
; i
++){
1048 for(cfp
=lemp
->sorted
[i
]->cfp
; cfp
; cfp
=cfp
->next
){
1049 cfp
->status
= INCOMPLETE
;
1055 for(i
=0; i
<lemp
->nstate
; i
++){
1056 for(cfp
=lemp
->sorted
[i
]->cfp
; cfp
; cfp
=cfp
->next
){
1057 if( cfp
->status
==COMPLETE
) continue;
1058 for(plp
=cfp
->fplp
; plp
; plp
=plp
->next
){
1059 change
= SetUnion(plp
->cfp
->fws
,cfp
->fws
);
1061 plp
->cfp
->status
= INCOMPLETE
;
1065 cfp
->status
= COMPLETE
;
1071 static int resolve_conflict(struct action
*,struct action
*);
1073 /* Compute the reduce actions, and resolve conflicts.
1075 void FindActions(struct lemon
*lemp
)
1083 /* Add all of the reduce actions
1084 ** A reduce action is added for each element of the followset of
1085 ** a configuration which has its dot at the extreme right.
1087 for(i
=0; i
<lemp
->nstate
; i
++){ /* Loop over all states */
1088 stp
= lemp
->sorted
[i
];
1089 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){ /* Loop over all configurations */
1090 if( cfp
->rp
->nrhs
==cfp
->dot
){ /* Is dot at extreme right? */
1091 for(j
=0; j
<lemp
->nterminal
; j
++){
1092 if( SetFind(cfp
->fws
,j
) ){
1093 /* Add a reduce action to the state "stp" which will reduce by the
1094 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1095 Action_add(&stp
->ap
,REDUCE
,lemp
->symbols
[j
],(char *)cfp
->rp
);
1102 /* Add the accepting token */
1104 sp
= Symbol_find(lemp
->start
);
1105 if( sp
==0 ) sp
= lemp
->rule
->lhs
;
1107 sp
= lemp
->rule
->lhs
;
1109 /* Add to the first state (which is always the starting state of the
1110 ** finite state machine) an action to ACCEPT if the lookahead is the
1111 ** start nonterminal. */
1112 Action_add(&lemp
->sorted
[0]->ap
,ACCEPT
,sp
,0);
1114 /* Resolve conflicts */
1115 for(i
=0; i
<lemp
->nstate
; i
++){
1116 struct action
*ap
, *nap
;
1118 stp
= lemp
->sorted
[i
];
1119 /* assert( stp->ap ); */
1120 stp
->ap
= Action_sort(stp
->ap
);
1121 for(ap
=stp
->ap
; ap
&& ap
->next
; ap
=ap
->next
){
1122 for(nap
=ap
->next
; nap
&& nap
->sp
==ap
->sp
; nap
=nap
->next
){
1123 /* The two actions "ap" and "nap" have the same lookahead.
1124 ** Figure out which one should be used */
1125 lemp
->nconflict
+= resolve_conflict(ap
,nap
);
1130 /* Report an error for each rule that can never be reduced. */
1131 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
) rp
->canReduce
= LEMON_FALSE
;
1132 for(i
=0; i
<lemp
->nstate
; i
++){
1134 for(ap
=lemp
->sorted
[i
]->ap
; ap
; ap
=ap
->next
){
1135 if( ap
->type
==REDUCE
) ap
->x
.rp
->canReduce
= LEMON_TRUE
;
1138 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
1139 if( rp
->canReduce
) continue;
1140 ErrorMsg(lemp
->filename
,rp
->ruleline
,"This rule can not be reduced.\n");
1145 /* Resolve a conflict between the two given actions. If the
1146 ** conflict can't be resolved, return non-zero.
1149 ** To resolve a conflict, first look to see if either action
1150 ** is on an error rule. In that case, take the action which
1151 ** is not associated with the error rule. If neither or both
1152 ** actions are associated with an error rule, then try to
1153 ** use precedence to resolve the conflict.
1155 ** If either action is a SHIFT, then it must be apx. This
1156 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1158 static int resolve_conflict(
1162 struct symbol
*spx
, *spy
;
1164 assert( apx
->sp
==apy
->sp
); /* Otherwise there would be no conflict */
1165 if( apx
->type
==SHIFT
&& apy
->type
==SHIFT
){
1166 apy
->type
= SSCONFLICT
;
1169 if( apx
->type
==SHIFT
&& apy
->type
==REDUCE
){
1171 spy
= apy
->x
.rp
->precsym
;
1172 if( spy
==0 || spx
->prec
<0 || spy
->prec
<0 ){
1173 /* Not enough precedence information. */
1174 apy
->type
= SRCONFLICT
;
1176 }else if( spx
->prec
>spy
->prec
){ /* higher precedence wins */
1177 apy
->type
= RD_RESOLVED
;
1178 }else if( spx
->prec
<spy
->prec
){
1179 apx
->type
= SH_RESOLVED
;
1180 }else if( spx
->prec
==spy
->prec
&& spx
->assoc
==RIGHT
){ /* Use operator */
1181 apy
->type
= RD_RESOLVED
; /* associativity */
1182 }else if( spx
->prec
==spy
->prec
&& spx
->assoc
==LEFT
){ /* to break tie */
1183 apx
->type
= SH_RESOLVED
;
1185 assert( spx
->prec
==spy
->prec
&& spx
->assoc
==NONE
);
1188 }else if( apx
->type
==REDUCE
&& apy
->type
==REDUCE
){
1189 spx
= apx
->x
.rp
->precsym
;
1190 spy
= apy
->x
.rp
->precsym
;
1191 if( spx
==0 || spy
==0 || spx
->prec
<0 ||
1192 spy
->prec
<0 || spx
->prec
==spy
->prec
){
1193 apy
->type
= RRCONFLICT
;
1195 }else if( spx
->prec
>spy
->prec
){
1196 apy
->type
= RD_RESOLVED
;
1197 }else if( spx
->prec
<spy
->prec
){
1198 apx
->type
= RD_RESOLVED
;
1202 apx
->type
==SH_RESOLVED
||
1203 apx
->type
==RD_RESOLVED
||
1204 apx
->type
==SSCONFLICT
||
1205 apx
->type
==SRCONFLICT
||
1206 apx
->type
==RRCONFLICT
||
1207 apy
->type
==SH_RESOLVED
||
1208 apy
->type
==RD_RESOLVED
||
1209 apy
->type
==SSCONFLICT
||
1210 apy
->type
==SRCONFLICT
||
1211 apy
->type
==RRCONFLICT
1213 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1214 ** REDUCEs on the list. If we reach this point it must be because
1215 ** the parser conflict had already been resolved. */
1219 /********************* From the file "configlist.c" *************************/
1221 ** Routines to processing a configuration list and building a state
1222 ** in the LEMON parser generator.
1225 static struct config
*freelist
= 0; /* List of free configurations */
1226 static struct config
*current
= 0; /* Top of list of configurations */
1227 static struct config
**currentend
= 0; /* Last on list of configs */
1228 static struct config
*basis
= 0; /* Top of list of basis configs */
1229 static struct config
**basisend
= 0; /* End of list of basis configs */
1231 /* Return a pointer to a new configuration */
1232 PRIVATE
struct config
*newconfig(){
1233 struct config
*newcfg
;
1237 freelist
= (struct config
*)calloc( amt
, sizeof(struct config
) );
1239 fprintf(stderr
,"Unable to allocate memory for a new configuration.");
1242 for(i
=0; i
<amt
-1; i
++) freelist
[i
].next
= &freelist
[i
+1];
1243 freelist
[amt
-1].next
= 0;
1246 freelist
= freelist
->next
;
1250 /* The configuration "old" is no longer used */
1251 PRIVATE
void deleteconfig(struct config
*old
)
1253 old
->next
= freelist
;
1257 /* Initialized the configuration list builder */
1258 void Configlist_init(){
1260 currentend
= ¤t
;
1267 /* Initialized the configuration list builder */
1268 void Configlist_reset(){
1270 currentend
= ¤t
;
1273 Configtable_clear(0);
1277 /* Add another configuration to the configuration list */
1278 struct config
*Configlist_add(
1279 struct rule
*rp
, /* The rule */
1280 int dot
/* Index into the RHS of the rule where the dot goes */
1282 struct config
*cfp
, model
;
1284 assert( currentend
!=0 );
1287 cfp
= Configtable_find(&model
);
1292 cfp
->fws
= SetNew();
1294 cfp
->fplp
= cfp
->bplp
= 0;
1298 currentend
= &cfp
->next
;
1299 Configtable_insert(cfp
);
1304 /* Add a basis configuration to the configuration list */
1305 struct config
*Configlist_addbasis(struct rule
*rp
, int dot
)
1307 struct config
*cfp
, model
;
1309 assert( basisend
!=0 );
1310 assert( currentend
!=0 );
1313 cfp
= Configtable_find(&model
);
1318 cfp
->fws
= SetNew();
1320 cfp
->fplp
= cfp
->bplp
= 0;
1324 currentend
= &cfp
->next
;
1326 basisend
= &cfp
->bp
;
1327 Configtable_insert(cfp
);
1332 /* Compute the closure of the configuration list */
1333 void Configlist_closure(struct lemon
*lemp
)
1335 struct config
*cfp
, *newcfp
;
1336 struct rule
*rp
, *newrp
;
1337 struct symbol
*sp
, *xsp
;
1340 assert( currentend
!=0 );
1341 for(cfp
=current
; cfp
; cfp
=cfp
->next
){
1344 if( dot
>=rp
->nrhs
) continue;
1346 if( sp
->type
==NONTERMINAL
){
1347 if( sp
->rule
==0 && sp
!=lemp
->errsym
){
1348 ErrorMsg(lemp
->filename
,rp
->line
,"Nonterminal \"%s\" has no rules.",
1352 for(newrp
=sp
->rule
; newrp
; newrp
=newrp
->nextlhs
){
1353 newcfp
= Configlist_add(newrp
,0);
1354 for(i
=dot
+1; i
<rp
->nrhs
; i
++){
1356 if( xsp
->type
==TERMINAL
){
1357 SetAdd(newcfp
->fws
,xsp
->index
);
1359 }else if( xsp
->type
==MULTITERMINAL
){
1361 for(k
=0; k
<xsp
->nsubsym
; k
++){
1362 SetAdd(newcfp
->fws
, xsp
->subsym
[k
]->index
);
1366 SetUnion(newcfp
->fws
,xsp
->firstset
);
1367 if( xsp
->lambda
==LEMON_FALSE
) break;
1370 if( i
==rp
->nrhs
) Plink_add(&cfp
->fplp
,newcfp
);
1377 /* Sort the configuration list */
1378 void Configlist_sort(){
1379 current
= (struct config
*)msort((char *)current
,(char **)&(current
->next
),Configcmp
);
1384 /* Sort the basis configuration list */
1385 void Configlist_sortbasis(){
1386 basis
= (struct config
*)msort((char *)current
,(char **)&(current
->bp
),Configcmp
);
1391 /* Return a pointer to the head of the configuration list and
1392 ** reset the list */
1393 struct config
*Configlist_return(){
1401 /* Return a pointer to the head of the configuration list and
1402 ** reset the list */
1403 struct config
*Configlist_basis(){
1411 /* Free all elements of the given configuration list */
1412 void Configlist_eat(struct config
*cfp
)
1414 struct config
*nextcfp
;
1415 for(; cfp
; cfp
=nextcfp
){
1416 nextcfp
= cfp
->next
;
1417 assert( cfp
->fplp
==0 );
1418 assert( cfp
->bplp
==0 );
1419 if( cfp
->fws
) SetFree(cfp
->fws
);
1424 /***************** From the file "error.c" *********************************/
1426 ** Code for printing error message.
1429 void ErrorMsg(const char *filename
, int lineno
, const char *format
, ...){
1431 fprintf(stderr
, "%s:%d: ", filename
, lineno
);
1432 va_start(ap
, format
);
1433 vfprintf(stderr
,format
,ap
);
1435 fprintf(stderr
, "\n");
1437 /**************** From the file "main.c" ************************************/
1439 ** Main program file for the LEMON parser generator.
1442 /* Report an out-of-memory condition and abort. This function
1443 ** is used mostly by the "MemoryCheck" macro in struct.h
1445 void memory_error(){
1446 fprintf(stderr
,"Out of memory. Aborting...\n");
1450 static int nDefine
= 0; /* Number of -D options on the command line */
1451 static char **azDefine
= 0; /* Name of the -D macros */
1453 /* This routine is called with the argument to each -D command-line option.
1454 ** Add the macro defined to the azDefine array.
1456 static void handle_D_option(char *z
){
1459 azDefine
= (char **) realloc(azDefine
, sizeof(azDefine
[0])*nDefine
);
1461 fprintf(stderr
,"out of memory\n");
1464 paz
= &azDefine
[nDefine
-1];
1465 *paz
= (char *) malloc( lemonStrlen(z
)+1 );
1467 fprintf(stderr
,"out of memory\n");
1470 lemon_strcpy(*paz
, z
);
1471 for(z
=*paz
; *z
&& *z
!='='; z
++){}
1475 static char *user_templatename
= NULL
;
1476 static void handle_T_option(char *z
){
1477 user_templatename
= (char *) malloc( lemonStrlen(z
)+1 );
1478 if( user_templatename
==0 ){
1481 lemon_strcpy(user_templatename
, z
);
1484 /* The main program. Parse the command line and do it... */
1485 int main(int argc
, char **argv
)
1487 static int version
= 0;
1488 static int rpflag
= 0;
1489 static int basisflag
= 0;
1490 static int compress
= 0;
1491 static int quiet
= 0;
1492 static int statistics
= 0;
1493 static int mhflag
= 0;
1494 static int nolinenosflag
= 0;
1495 static int noResort
= 0;
1496 static struct s_options options
[] = {
1497 {OPT_FLAG
, "b", (char*)&basisflag
, "Print only the basis in report."},
1498 {OPT_FLAG
, "c", (char*)&compress
, "Don't compress the action table."},
1499 {OPT_FSTR
, "D", (char*)handle_D_option
, "Define an %ifdef macro."},
1500 {OPT_FSTR
, "T", (char*)handle_T_option
, "Specify a template file."},
1501 {OPT_FLAG
, "g", (char*)&rpflag
, "Print grammar without actions."},
1502 {OPT_FLAG
, "m", (char*)&mhflag
, "Output a makeheaders compatible file."},
1503 {OPT_FLAG
, "l", (char*)&nolinenosflag
, "Do not print #line statements."},
1504 {OPT_FLAG
, "p", (char*)&showPrecedenceConflict
,
1505 "Show conflicts resolved by precedence rules"},
1506 {OPT_FLAG
, "q", (char*)&quiet
, "(Quiet) Don't print the report file."},
1507 {OPT_FLAG
, "r", (char*)&noResort
, "Do not sort or renumber states"},
1508 {OPT_FLAG
, "s", (char*)&statistics
,
1509 "Print parser stats to standard output."},
1510 {OPT_FLAG
, "x", (char*)&version
, "Print the version number."},
1517 OptInit(argv
,options
,stderr
);
1519 printf("Lemon version 1.0\n");
1522 if( OptNArgs()!=1 ){
1523 fprintf(stderr
,"Exactly one filename argument is required.\n");
1526 memset(&lem
, 0, sizeof(lem
));
1529 /* Initialize the machine */
1533 lem
.argv0
= argv
[0];
1534 lem
.filename
= OptArg(0);
1535 lem
.basisflag
= basisflag
;
1536 lem
.nolinenosflag
= nolinenosflag
;
1538 lem
.errsym
= Symbol_new("error");
1539 lem
.errsym
->useCnt
= 0;
1541 /* Parse the input file */
1543 if( lem
.errorcnt
) exit(lem
.errorcnt
);
1545 fprintf(stderr
,"Empty grammar.\n");
1549 /* Count and index the symbols of the grammar */
1550 Symbol_new("{default}");
1551 lem
.nsymbol
= Symbol_count();
1552 lem
.symbols
= Symbol_arrayof();
1553 for(i
=0; i
<lem
.nsymbol
; i
++) lem
.symbols
[i
]->index
= i
;
1554 qsort(lem
.symbols
,lem
.nsymbol
,sizeof(struct symbol
*), Symbolcmpp
);
1555 for(i
=0; i
<lem
.nsymbol
; i
++) lem
.symbols
[i
]->index
= i
;
1556 while( lem
.symbols
[i
-1]->type
==MULTITERMINAL
){ i
--; }
1557 assert( strcmp(lem
.symbols
[i
-1]->name
,"{default}")==0 );
1558 lem
.nsymbol
= i
- 1;
1559 for(i
=1; isupper(lem
.symbols
[i
]->name
[0]); i
++);
1562 /* Generate a reprint of the grammar, if requested on the command line */
1566 /* Initialize the size for all follow and first sets */
1567 SetSize(lem
.nterminal
+1);
1569 /* Find the precedence for every production rule (that has one) */
1570 FindRulePrecedences(&lem
);
1572 /* Compute the lambda-nonterminals and the first-sets for every
1574 FindFirstSets(&lem
);
1576 /* Compute all LR(0) states. Also record follow-set propagation
1577 ** links so that the follow-set can be computed later */
1580 lem
.sorted
= State_arrayof();
1582 /* Tie up loose ends on the propagation links */
1585 /* Compute the follow set of every reducible configuration */
1586 FindFollowSets(&lem
);
1588 /* Compute the action tables */
1591 /* Compress the action tables */
1592 if( compress
==0 ) CompressTables(&lem
);
1594 /* Reorder and renumber the states so that states with fewer choices
1595 ** occur at the end. This is an optimization that helps make the
1596 ** generated parser tables smaller. */
1597 if( noResort
==0 ) ResortStates(&lem
);
1599 /* Generate a report of the parser generated. (the "y.output" file) */
1600 if( !quiet
) ReportOutput(&lem
);
1602 /* Generate the source code for the parser */
1603 ReportTable(&lem
, mhflag
);
1605 /* Produce a header file for use by the scanner. (This step is
1606 ** omitted if the "-m" option is used because makeheaders will
1607 ** generate the file for us.) */
1608 if( !mhflag
) ReportHeader(&lem
);
1611 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1612 lem
.nterminal
, lem
.nsymbol
- lem
.nterminal
, lem
.nrule
);
1613 printf(" %d states, %d parser table entries, %d conflicts\n",
1614 lem
.nstate
, lem
.tablesize
, lem
.nconflict
);
1616 if( lem
.nconflict
> 0 ){
1617 fprintf(stderr
,"%d parsing conflicts.\n",lem
.nconflict
);
1620 /* return 0 on success, 1 on failure. */
1621 exitcode
= ((lem
.errorcnt
> 0) || (lem
.nconflict
> 0)) ? 1 : 0;
1625 /******************** From the file "msort.c" *******************************/
1627 ** A generic merge-sort program.
1630 ** Let "ptr" be a pointer to some structure which is at the head of
1631 ** a null-terminated list. Then to sort the list call:
1633 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1635 ** In the above, "cmpfnc" is a pointer to a function which compares
1636 ** two instances of the structure and returns an integer, as in
1637 ** strcmp. The second argument is a pointer to the pointer to the
1638 ** second element of the linked list. This address is used to compute
1639 ** the offset to the "next" field within the structure. The offset to
1640 ** the "next" field must be constant for all structures in the list.
1642 ** The function returns a new pointer which is the head of the list
1650 ** Return a pointer to the next structure in the linked list.
1652 #define NEXT(A) (*(char**)(((char*)A)+offset))
1656 ** a: A sorted, null-terminated linked list. (May be null).
1657 ** b: A sorted, null-terminated linked list. (May be null).
1658 ** cmp: A pointer to the comparison function.
1659 ** offset: Offset in the structure to the "next" field.
1662 ** A pointer to the head of a sorted list containing the elements
1666 ** The "next" pointers for elements in the lists a and b are
1672 int (*cmp
)(const char*,const char*),
1682 if( (*cmp
)(a
,b
)<=0 ){
1691 if( (*cmp
)(a
,b
)<=0 ){
1701 if( a
) NEXT(ptr
) = a
;
1709 ** list: Pointer to a singly-linked list of structures.
1710 ** next: Pointer to pointer to the second element of the list.
1711 ** cmp: A comparison function.
1714 ** A pointer to the head of a sorted list containing the elements
1715 ** orginally in list.
1718 ** The "next" pointers for elements in list are changed.
1724 int (*cmp
)(const char*,const char*)
1726 unsigned long offset
;
1728 char *set
[LISTSIZE
];
1730 offset
= (unsigned long)next
- (unsigned long)list
;
1731 for(i
=0; i
<LISTSIZE
; i
++) set
[i
] = 0;
1736 for(i
=0; i
<LISTSIZE
-1 && set
[i
]!=0; i
++){
1737 ep
= merge(ep
,set
[i
],cmp
,offset
);
1743 for(i
=0; i
<LISTSIZE
; i
++) if( set
[i
] ) ep
= merge(set
[i
],ep
,cmp
,offset
);
1746 /************************ From the file "option.c" **************************/
1748 static struct s_options
*op
;
1749 static FILE *errstream
;
1751 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1754 ** Print the command line with a carrot pointing to the k-th character
1755 ** of the n-th field.
1757 static void errline(int n
, int k
, FILE *err
)
1760 if( argv
[0] ) fprintf(err
,"%s",argv
[0]);
1761 spcnt
= lemonStrlen(argv
[0]) + 1;
1762 for(i
=1; i
<n
&& argv
[i
]; i
++){
1763 fprintf(err
," %s",argv
[i
]);
1764 spcnt
+= lemonStrlen(argv
[i
])+1;
1767 for(; argv
[i
]; i
++) fprintf(err
," %s",argv
[i
]);
1769 fprintf(err
,"\n%*s^-- here\n",spcnt
,"");
1771 fprintf(err
,"\n%*shere --^\n",spcnt
-7,"");
1776 ** Return the index of the N-th non-switch argument. Return -1
1777 ** if N is out of range.
1779 static int argindex(int n
)
1783 if( argv
!=0 && *argv
!=0 ){
1784 for(i
=1; argv
[i
]; i
++){
1785 if( dashdash
|| !ISOPT(argv
[i
]) ){
1786 if( n
==0 ) return i
;
1789 if( strcmp(argv
[i
],"--")==0 ) dashdash
= 1;
1795 static char emsg
[] = "Command line syntax error: ";
1798 ** Process a flag command line argument.
1800 static int handleflags(int i
, FILE *err
)
1805 for(j
=0; op
[j
].label
; j
++){
1806 if( strncmp(&argv
[i
][1],op
[j
].label
,lemonStrlen(op
[j
].label
))==0 ) break;
1808 v
= argv
[i
][0]=='-' ? 1 : 0;
1809 if( op
[j
].label
==0 ){
1811 fprintf(err
,"%sundefined option.\n",emsg
);
1815 }else if( op
[j
].type
==OPT_FLAG
){
1816 *((int*)op
[j
].arg
) = v
;
1817 }else if( op
[j
].type
==OPT_FFLAG
){
1818 (*(void(*)(int))(op
[j
].arg
))(v
);
1819 }else if( op
[j
].type
==OPT_FSTR
){
1820 (*(void(*)(char *))(op
[j
].arg
))(&argv
[i
][2]);
1823 fprintf(err
,"%smissing argument on switch.\n",emsg
);
1832 ** Process a command line switch which has an argument.
1834 static int handleswitch(int i
, FILE *err
)
1842 cp
= strchr(argv
[i
],'=');
1845 for(j
=0; op
[j
].label
; j
++){
1846 if( strcmp(argv
[i
],op
[j
].label
)==0 ) break;
1849 if( op
[j
].label
==0 ){
1851 fprintf(err
,"%sundefined option.\n",emsg
);
1857 switch( op
[j
].type
){
1861 fprintf(err
,"%soption requires an argument.\n",emsg
);
1868 dv
= strtod(cp
,&end
);
1871 fprintf(err
,"%sillegal character in floating-point argument.\n",emsg
);
1872 errline(i
,((unsigned long)end
)-(unsigned long)argv
[i
],err
);
1879 lv
= strtol(cp
,&end
,0);
1882 fprintf(err
,"%sillegal character in integer argument.\n",emsg
);
1883 errline(i
,((unsigned long)end
)-(unsigned long)argv
[i
],err
);
1893 switch( op
[j
].type
){
1898 *(double*)(op
[j
].arg
) = dv
;
1901 (*(void(*)(double))(op
[j
].arg
))(dv
);
1904 *(int*)(op
[j
].arg
) = lv
;
1907 (*(void(*)(int))(op
[j
].arg
))((int)lv
);
1910 *(char**)(op
[j
].arg
) = sv
;
1913 (*(void(*)(char *))(op
[j
].arg
))(sv
);
1920 int OptInit(char **a
, struct s_options
*o
, FILE *err
)
1926 if( argv
&& *argv
&& op
){
1928 for(i
=1; argv
[i
]; i
++){
1929 if( argv
[i
][0]=='+' || argv
[i
][0]=='-' ){
1930 errcnt
+= handleflags(i
,err
);
1931 }else if( strchr(argv
[i
],'=') ){
1932 errcnt
+= handleswitch(i
,err
);
1937 fprintf(err
,"Valid command line options for \"%s\" are:\n",*a
);
1948 if( argv
!=0 && argv
[0]!=0 ){
1949 for(i
=1; argv
[i
]; i
++){
1950 if( dashdash
|| !ISOPT(argv
[i
]) ) cnt
++;
1951 if( strcmp(argv
[i
],"--")==0 ) dashdash
= 1;
1961 return i
>=0 ? argv
[i
] : 0;
1968 if( i
>=0 ) errline(i
,0,errstream
);
1975 for(i
=0; op
[i
].label
; i
++){
1976 len
= lemonStrlen(op
[i
].label
) + 1;
1977 switch( op
[i
].type
){
1983 len
+= 9; /* length of "<integer>" */
1987 len
+= 6; /* length of "<real>" */
1991 len
+= 8; /* length of "<string>" */
1994 if( len
>max
) max
= len
;
1996 for(i
=0; op
[i
].label
; i
++){
1997 switch( op
[i
].type
){
2000 fprintf(errstream
," -%-*s %s\n",max
,op
[i
].label
,op
[i
].message
);
2004 fprintf(errstream
," %s=<integer>%*s %s\n",op
[i
].label
,
2005 (int)(max
-lemonStrlen(op
[i
].label
)-9),"",op
[i
].message
);
2009 fprintf(errstream
," %s=<real>%*s %s\n",op
[i
].label
,
2010 (int)(max
-lemonStrlen(op
[i
].label
)-6),"",op
[i
].message
);
2014 fprintf(errstream
," %s=<string>%*s %s\n",op
[i
].label
,
2015 (int)(max
-lemonStrlen(op
[i
].label
)-8),"",op
[i
].message
);
2020 /*********************** From the file "parse.c" ****************************/
2022 ** Input file parser for the LEMON parser generator.
2025 /* The state of the parser */
2028 WAITING_FOR_DECL_OR_RULE
,
2029 WAITING_FOR_DECL_KEYWORD
,
2030 WAITING_FOR_DECL_ARG
,
2031 WAITING_FOR_PRECEDENCE_SYMBOL
,
2041 RESYNC_AFTER_RULE_ERROR
,
2042 RESYNC_AFTER_DECL_ERROR
,
2043 WAITING_FOR_DESTRUCTOR_SYMBOL
,
2044 WAITING_FOR_DATATYPE_SYMBOL
,
2045 WAITING_FOR_FALLBACK_ID
,
2046 WAITING_FOR_WILDCARD_ID
,
2047 WAITING_FOR_CLASS_ID
,
2048 WAITING_FOR_CLASS_TOKEN
2051 char *filename
; /* Name of the input file */
2052 int tokenlineno
; /* Linenumber at which current token starts */
2053 int errorcnt
; /* Number of errors so far */
2054 char *tokenstart
; /* Text of current token */
2055 struct lemon
*gp
; /* Global state vector */
2056 enum e_state state
; /* The state of the parser */
2057 struct symbol
*fallback
; /* The fallback token */
2058 struct symbol
*tkclass
; /* Token class symbol */
2059 struct symbol
*lhs
; /* Left-hand side of current rule */
2060 const char *lhsalias
; /* Alias for the LHS */
2061 int nrhs
; /* Number of right-hand side symbols seen */
2062 struct symbol
*rhs
[MAXRHS
]; /* RHS symbols */
2063 const char *alias
[MAXRHS
]; /* Aliases for each RHS symbol (or NULL) */
2064 struct rule
*prevrule
; /* Previous rule parsed */
2065 const char *declkeyword
; /* Keyword of a declaration */
2066 char **declargslot
; /* Where the declaration argument should be put */
2067 int insertLineMacro
; /* Add #line before declaration insert */
2068 int *decllinenoslot
; /* Where to write declaration line number */
2069 enum e_assoc declassoc
; /* Assign this association to decl arguments */
2070 int preccounter
; /* Assign this precedence to decl arguments */
2071 struct rule
*firstrule
; /* Pointer to first rule in the grammar */
2072 struct rule
*lastrule
; /* Pointer to the most recently parsed rule */
2075 /* Parse a single token */
2076 static void parseonetoken(struct pstate
*psp
)
2079 x
= Strsafe(psp
->tokenstart
); /* Save the token permanently */
2081 printf("%s:%d: Token=[%s] state=%d\n",psp
->filename
,psp
->tokenlineno
,
2084 switch( psp
->state
){
2087 psp
->preccounter
= 0;
2088 psp
->firstrule
= psp
->lastrule
= 0;
2090 /* Fall thru to next case */
2091 case WAITING_FOR_DECL_OR_RULE
:
2093 psp
->state
= WAITING_FOR_DECL_KEYWORD
;
2094 }else if( islower(x
[0]) ){
2095 psp
->lhs
= Symbol_new(x
);
2098 psp
->state
= WAITING_FOR_ARROW
;
2099 }else if( x
[0]=='{' ){
2100 if( psp
->prevrule
==0 ){
2101 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2102 "There is no prior rule upon which to attach the code \
2103 fragment which begins on this line.");
2105 }else if( psp
->prevrule
->code
!=0 ){
2106 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2107 "Code fragment beginning on this line is not the first \
2108 to follow the previous rule.");
2111 psp
->prevrule
->line
= psp
->tokenlineno
;
2112 psp
->prevrule
->code
= &x
[1];
2114 }else if( x
[0]=='[' ){
2115 psp
->state
= PRECEDENCE_MARK_1
;
2117 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2118 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2123 case PRECEDENCE_MARK_1
:
2124 if( !isupper(x
[0]) ){
2125 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2126 "The precedence symbol must be a terminal.");
2128 }else if( psp
->prevrule
==0 ){
2129 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2130 "There is no prior rule to assign precedence \"[%s]\".",x
);
2132 }else if( psp
->prevrule
->precsym
!=0 ){
2133 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2134 "Precedence mark on this line is not the first \
2135 to follow the previous rule.");
2138 psp
->prevrule
->precsym
= Symbol_new(x
);
2140 psp
->state
= PRECEDENCE_MARK_2
;
2142 case PRECEDENCE_MARK_2
:
2144 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2145 "Missing \"]\" on precedence mark.");
2148 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2150 case WAITING_FOR_ARROW
:
2151 if( x
[0]==':' && x
[1]==':' && x
[2]=='=' ){
2152 psp
->state
= IN_RHS
;
2153 }else if( x
[0]=='(' ){
2154 psp
->state
= LHS_ALIAS_1
;
2156 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2157 "Expected to see a \":\" following the LHS symbol \"%s\".",
2160 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2164 if( isalpha(x
[0]) ){
2166 psp
->state
= LHS_ALIAS_2
;
2168 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2169 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2172 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2177 psp
->state
= LHS_ALIAS_3
;
2179 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2180 "Missing \")\" following LHS alias name \"%s\".",psp
->lhsalias
);
2182 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2186 if( x
[0]==':' && x
[1]==':' && x
[2]=='=' ){
2187 psp
->state
= IN_RHS
;
2189 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2190 "Missing \"->\" following: \"%s(%s)\".",
2191 psp
->lhs
->name
,psp
->lhsalias
);
2193 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2199 rp
= (struct rule
*)calloc( sizeof(struct rule
) +
2200 sizeof(struct symbol
*)*psp
->nrhs
+ sizeof(char*)*psp
->nrhs
, 1);
2202 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2203 "Can't allocate enough memory for this rule.");
2208 rp
->ruleline
= psp
->tokenlineno
;
2209 rp
->rhs
= (struct symbol
**)&rp
[1];
2210 rp
->rhsalias
= (const char**)&(rp
->rhs
[psp
->nrhs
]);
2211 for(i
=0; i
<psp
->nrhs
; i
++){
2212 rp
->rhs
[i
] = psp
->rhs
[i
];
2213 rp
->rhsalias
[i
] = psp
->alias
[i
];
2216 rp
->lhsalias
= psp
->lhsalias
;
2217 rp
->nrhs
= psp
->nrhs
;
2220 rp
->index
= psp
->gp
->nrule
++;
2221 rp
->nextlhs
= rp
->lhs
->rule
;
2224 if( psp
->firstrule
==0 ){
2225 psp
->firstrule
= psp
->lastrule
= rp
;
2227 psp
->lastrule
->next
= rp
;
2232 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2233 }else if( isalpha(x
[0]) ){
2234 if( psp
->nrhs
>=MAXRHS
){
2235 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2236 "Too many symbols on RHS of rule beginning at \"%s\".",
2239 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2241 psp
->rhs
[psp
->nrhs
] = Symbol_new(x
);
2242 psp
->alias
[psp
->nrhs
] = 0;
2245 }else if( (x
[0]=='|' || x
[0]=='/') && psp
->nrhs
>0 ){
2246 struct symbol
*msp
= psp
->rhs
[psp
->nrhs
-1];
2247 if( msp
->type
!=MULTITERMINAL
){
2248 struct symbol
*origsp
= msp
;
2249 msp
= (struct symbol
*) calloc(1,sizeof(*msp
));
2250 memset(msp
, 0, sizeof(*msp
));
2251 msp
->type
= MULTITERMINAL
;
2253 msp
->subsym
= (struct symbol
**) calloc(1,sizeof(struct symbol
*));
2254 msp
->subsym
[0] = origsp
;
2255 msp
->name
= origsp
->name
;
2256 psp
->rhs
[psp
->nrhs
-1] = msp
;
2259 msp
->subsym
= (struct symbol
**) realloc(msp
->subsym
,
2260 sizeof(struct symbol
*)*msp
->nsubsym
);
2261 msp
->subsym
[msp
->nsubsym
-1] = Symbol_new(&x
[1]);
2262 if( islower(x
[1]) || islower(msp
->subsym
[0]->name
[0]) ){
2263 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2264 "Cannot form a compound containing a non-terminal");
2267 }else if( x
[0]=='(' && psp
->nrhs
>0 ){
2268 psp
->state
= RHS_ALIAS_1
;
2270 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2271 "Illegal character on RHS of rule: \"%s\".",x
);
2273 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2277 if( isalpha(x
[0]) ){
2278 psp
->alias
[psp
->nrhs
-1] = x
;
2279 psp
->state
= RHS_ALIAS_2
;
2281 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2282 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2283 x
,psp
->rhs
[psp
->nrhs
-1]->name
);
2285 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2290 psp
->state
= IN_RHS
;
2292 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2293 "Missing \")\" following LHS alias name \"%s\".",psp
->lhsalias
);
2295 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2298 case WAITING_FOR_DECL_KEYWORD
:
2299 if( isalpha(x
[0]) ){
2300 psp
->declkeyword
= x
;
2301 psp
->declargslot
= 0;
2302 psp
->decllinenoslot
= 0;
2303 psp
->insertLineMacro
= 1;
2304 psp
->state
= WAITING_FOR_DECL_ARG
;
2305 if( strcmp(x
,"name")==0 ){
2306 psp
->declargslot
= &(psp
->gp
->name
);
2307 psp
->insertLineMacro
= 0;
2308 }else if( strcmp(x
,"include")==0 ){
2309 psp
->declargslot
= &(psp
->gp
->include
);
2310 }else if( strcmp(x
,"code")==0 ){
2311 psp
->declargslot
= &(psp
->gp
->extracode
);
2312 }else if( strcmp(x
,"token_destructor")==0 ){
2313 psp
->declargslot
= &psp
->gp
->tokendest
;
2314 }else if( strcmp(x
,"default_destructor")==0 ){
2315 psp
->declargslot
= &psp
->gp
->vardest
;
2316 }else if( strcmp(x
,"token_prefix")==0 ){
2317 psp
->declargslot
= &psp
->gp
->tokenprefix
;
2318 psp
->insertLineMacro
= 0;
2319 }else if( strcmp(x
,"syntax_error")==0 ){
2320 psp
->declargslot
= &(psp
->gp
->error
);
2321 }else if( strcmp(x
,"parse_accept")==0 ){
2322 psp
->declargslot
= &(psp
->gp
->accept
);
2323 }else if( strcmp(x
,"parse_failure")==0 ){
2324 psp
->declargslot
= &(psp
->gp
->failure
);
2325 }else if( strcmp(x
,"stack_overflow")==0 ){
2326 psp
->declargslot
= &(psp
->gp
->overflow
);
2327 }else if( strcmp(x
,"extra_argument")==0 ){
2328 psp
->declargslot
= &(psp
->gp
->arg
);
2329 psp
->insertLineMacro
= 0;
2330 }else if( strcmp(x
,"token_type")==0 ){
2331 psp
->declargslot
= &(psp
->gp
->tokentype
);
2332 psp
->insertLineMacro
= 0;
2333 }else if( strcmp(x
,"default_type")==0 ){
2334 psp
->declargslot
= &(psp
->gp
->vartype
);
2335 psp
->insertLineMacro
= 0;
2336 }else if( strcmp(x
,"stack_size")==0 ){
2337 psp
->declargslot
= &(psp
->gp
->stacksize
);
2338 psp
->insertLineMacro
= 0;
2339 }else if( strcmp(x
,"start_symbol")==0 ){
2340 psp
->declargslot
= &(psp
->gp
->start
);
2341 psp
->insertLineMacro
= 0;
2342 }else if( strcmp(x
,"left")==0 ){
2344 psp
->declassoc
= LEFT
;
2345 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2346 }else if( strcmp(x
,"right")==0 ){
2348 psp
->declassoc
= RIGHT
;
2349 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2350 }else if( strcmp(x
,"nonassoc")==0 ){
2352 psp
->declassoc
= NONE
;
2353 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2354 }else if( strcmp(x
,"destructor")==0 ){
2355 psp
->state
= WAITING_FOR_DESTRUCTOR_SYMBOL
;
2356 }else if( strcmp(x
,"type")==0 ){
2357 psp
->state
= WAITING_FOR_DATATYPE_SYMBOL
;
2358 }else if( strcmp(x
,"fallback")==0 ){
2360 psp
->state
= WAITING_FOR_FALLBACK_ID
;
2361 }else if( strcmp(x
,"wildcard")==0 ){
2362 psp
->state
= WAITING_FOR_WILDCARD_ID
;
2363 }else if( strcmp(x
,"token_class")==0 ){
2364 psp
->state
= WAITING_FOR_CLASS_ID
;
2366 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2367 "Unknown declaration keyword: \"%%%s\".",x
);
2369 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2372 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2373 "Illegal declaration keyword: \"%s\".",x
);
2375 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2378 case WAITING_FOR_DESTRUCTOR_SYMBOL
:
2379 if( !isalpha(x
[0]) ){
2380 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2381 "Symbol name missing after %%destructor keyword");
2383 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2385 struct symbol
*sp
= Symbol_new(x
);
2386 psp
->declargslot
= &sp
->destructor
;
2387 psp
->decllinenoslot
= &sp
->destLineno
;
2388 psp
->insertLineMacro
= 1;
2389 psp
->state
= WAITING_FOR_DECL_ARG
;
2392 case WAITING_FOR_DATATYPE_SYMBOL
:
2393 if( !isalpha(x
[0]) ){
2394 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2395 "Symbol name missing after %%type keyword");
2397 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2399 struct symbol
*sp
= Symbol_find(x
);
2400 if((sp
) && (sp
->datatype
)){
2401 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2402 "Symbol %%type \"%s\" already defined", x
);
2404 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2409 psp
->declargslot
= &sp
->datatype
;
2410 psp
->insertLineMacro
= 0;
2411 psp
->state
= WAITING_FOR_DECL_ARG
;
2415 case WAITING_FOR_PRECEDENCE_SYMBOL
:
2417 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2418 }else if( isupper(x
[0]) ){
2422 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2423 "Symbol \"%s\" has already be given a precedence.",x
);
2426 sp
->prec
= psp
->preccounter
;
2427 sp
->assoc
= psp
->declassoc
;
2430 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2431 "Can't assign a precedence to \"%s\".",x
);
2435 case WAITING_FOR_DECL_ARG
:
2436 if( x
[0]=='{' || x
[0]=='\"' || isalnum(x
[0]) ){
2437 const char *zOld
, *zNew
;
2439 int nOld
, n
, nLine
, nNew
, nBack
;
2443 if( zNew
[0]=='"' || zNew
[0]=='{' ) zNew
++;
2444 nNew
= lemonStrlen(zNew
);
2445 if( *psp
->declargslot
){
2446 zOld
= *psp
->declargslot
;
2450 nOld
= lemonStrlen(zOld
);
2451 n
= nOld
+ nNew
+ 20;
2452 addLineMacro
= !psp
->gp
->nolinenosflag
&& psp
->insertLineMacro
&&
2453 (psp
->decllinenoslot
==0 || psp
->decllinenoslot
[0]!=0);
2455 for(z
=psp
->filename
, nBack
=0; *z
; z
++){
2456 if( *z
=='\\' ) nBack
++;
2458 lemon_sprintf(zLine
, "#line %d ", psp
->tokenlineno
);
2459 nLine
= lemonStrlen(zLine
);
2460 n
+= nLine
+ lemonStrlen(psp
->filename
) + nBack
;
2462 *psp
->declargslot
= (char *) realloc(*psp
->declargslot
, n
);
2463 zBuf
= *psp
->declargslot
+ nOld
;
2465 if( nOld
&& zBuf
[-1]!='\n' ){
2468 memcpy(zBuf
, zLine
, nLine
);
2471 for(z
=psp
->filename
; *z
; z
++){
2480 if( psp
->decllinenoslot
&& psp
->decllinenoslot
[0]==0 ){
2481 psp
->decllinenoslot
[0] = psp
->tokenlineno
;
2483 memcpy(zBuf
, zNew
, nNew
);
2486 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2488 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2489 "Illegal argument to %%%s: %s",psp
->declkeyword
,x
);
2491 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2494 case WAITING_FOR_FALLBACK_ID
:
2496 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2497 }else if( !isupper(x
[0]) ){
2498 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2499 "%%fallback argument \"%s\" should be a token", x
);
2502 struct symbol
*sp
= Symbol_new(x
);
2503 if( psp
->fallback
==0 ){
2505 }else if( sp
->fallback
){
2506 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2507 "More than one fallback assigned to token %s", x
);
2510 sp
->fallback
= psp
->fallback
;
2511 psp
->gp
->has_fallback
= 1;
2515 case WAITING_FOR_WILDCARD_ID
:
2517 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2518 }else if( !isupper(x
[0]) ){
2519 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2520 "%%wildcard argument \"%s\" should be a token", x
);
2523 struct symbol
*sp
= Symbol_new(x
);
2524 if( psp
->gp
->wildcard
==0 ){
2525 psp
->gp
->wildcard
= sp
;
2527 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2528 "Extra wildcard to token: %s", x
);
2533 case WAITING_FOR_CLASS_ID
:
2534 if( !islower(x
[0]) ){
2535 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2536 "%%token_class must be followed by an identifier: ", x
);
2538 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2539 }else if( Symbol_find(x
) ){
2540 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2541 "Symbol \"%s\" already used", x
);
2543 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2545 psp
->tkclass
= Symbol_new(x
);
2546 psp
->tkclass
->type
= MULTITERMINAL
;
2547 psp
->state
= WAITING_FOR_CLASS_TOKEN
;
2550 case WAITING_FOR_CLASS_TOKEN
:
2552 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2553 }else if( isupper(x
[0]) || ((x
[0]=='|' || x
[0]=='/') && isupper(x
[1])) ){
2554 struct symbol
*msp
= psp
->tkclass
;
2556 msp
->subsym
= (struct symbol
**) realloc(msp
->subsym
,
2557 sizeof(struct symbol
*)*msp
->nsubsym
);
2558 if( !isupper(x
[0]) ) x
++;
2559 msp
->subsym
[msp
->nsubsym
-1] = Symbol_new(x
);
2561 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2562 "%%token_class argument \"%s\" should be a token", x
);
2564 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2567 case RESYNC_AFTER_RULE_ERROR
:
2568 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2570 case RESYNC_AFTER_DECL_ERROR
:
2571 if( x
[0]=='.' ) psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2572 if( x
[0]=='%' ) psp
->state
= WAITING_FOR_DECL_KEYWORD
;
2577 /* Run the preprocessor over the input file text. The global variables
2578 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2579 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2580 ** comments them out. Text in between is also commented out as appropriate.
2582 static void preprocess_input(char *z
){
2587 int start_lineno
= 1;
2588 for(i
=0; z
[i
]; i
++){
2589 if( z
[i
]=='\n' ) lineno
++;
2590 if( z
[i
]!='%' || (i
>0 && z
[i
-1]!='\n') ) continue;
2591 if( strncmp(&z
[i
],"%endif",6)==0 && isspace(z
[i
+6]) ){
2595 for(j
=start
; j
<i
; j
++) if( z
[j
]!='\n' ) z
[j
] = ' ';
2598 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2599 }else if( (strncmp(&z
[i
],"%ifdef",6)==0 && isspace(z
[i
+6]))
2600 || (strncmp(&z
[i
],"%ifndef",7)==0 && isspace(z
[i
+7])) ){
2604 for(j
=i
+7; isspace(z
[j
]); j
++){}
2605 for(n
=0; z
[j
+n
] && !isspace(z
[j
+n
]); n
++){}
2607 for(k
=0; k
<nDefine
; k
++){
2608 if( strncmp(azDefine
[k
],&z
[j
],n
)==0 && lemonStrlen(azDefine
[k
])==n
){
2613 if( z
[i
+3]=='n' ) exclude
= !exclude
;
2616 start_lineno
= lineno
;
2619 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2623 fprintf(stderr
,"unterminated %%ifdef starting on line %d\n", start_lineno
);
2628 /* In spite of its name, this function is really a scanner. It read
2629 ** in the entire input file (all at once) then tokenizes it. Each
2630 ** token is passed to the function "parseonetoken" which builds all
2631 ** the appropriate data structures in the global state vector "gp".
2633 void Parse(struct lemon
*gp
)
2644 memset(&ps
, '\0', sizeof(ps
));
2646 ps
.filename
= gp
->filename
;
2648 ps
.state
= INITIALIZE
;
2650 /* Begin by reading the input file */
2651 fp
= fopen(ps
.filename
,"rb");
2653 ErrorMsg(ps
.filename
,0,"Can't open this file for reading.");
2658 filesize
= ftell(fp
);
2660 filebuf
= (char *)malloc( filesize
+1 );
2661 if( filesize
>100000000 || filebuf
==0 ){
2662 ErrorMsg(ps
.filename
,0,"Input file too large.");
2667 if( fread(filebuf
,1,filesize
,fp
)!=filesize
){
2668 ErrorMsg(ps
.filename
,0,"Can't read in all %d bytes of this file.",
2676 filebuf
[filesize
] = 0;
2678 /* Make an initial pass through the file to handle %ifdef and %ifndef */
2679 preprocess_input(filebuf
);
2681 /* Now scan the text of the input file */
2683 for(cp
=filebuf
; (c
= *cp
)!=0; ){
2684 if( c
=='\n' ) lineno
++; /* Keep track of the line number */
2685 if( isspace(c
) ){ cp
++; continue; } /* Skip all white space */
2686 if( c
=='/' && cp
[1]=='/' ){ /* Skip C++ style comments */
2688 while( (c
= *cp
)!=0 && c
!='\n' ) cp
++;
2691 if( c
=='/' && cp
[1]=='*' ){ /* Skip C style comments */
2693 while( (c
= *cp
)!=0 && (c
!='/' || cp
[-1]!='*') ){
2694 if( c
=='\n' ) lineno
++;
2700 ps
.tokenstart
= cp
; /* Mark the beginning of the token */
2701 ps
.tokenlineno
= lineno
; /* Linenumber on which token begins */
2702 if( c
=='\"' ){ /* String literals */
2704 while( (c
= *cp
)!=0 && c
!='\"' ){
2705 if( c
=='\n' ) lineno
++;
2709 ErrorMsg(ps
.filename
,startline
,
2710 "String starting on this line is not terminated before the end of the file.");
2716 }else if( c
=='{' ){ /* A block of C code */
2719 for(level
=1; (c
= *cp
)!=0 && (level
>1 || c
!='}'); cp
++){
2720 if( c
=='\n' ) lineno
++;
2721 else if( c
=='{' ) level
++;
2722 else if( c
=='}' ) level
--;
2723 else if( c
=='/' && cp
[1]=='*' ){ /* Skip comments */
2727 while( (c
= *cp
)!=0 && (c
!='/' || prevc
!='*') ){
2728 if( c
=='\n' ) lineno
++;
2732 }else if( c
=='/' && cp
[1]=='/' ){ /* Skip C++ style comments too */
2734 while( (c
= *cp
)!=0 && c
!='\n' ) cp
++;
2736 }else if( c
=='\'' || c
=='\"' ){ /* String a character literals */
2737 int startchar
, prevc
;
2740 for(cp
++; (c
= *cp
)!=0 && (c
!=startchar
|| prevc
=='\\'); cp
++){
2741 if( c
=='\n' ) lineno
++;
2742 if( prevc
=='\\' ) prevc
= 0;
2748 ErrorMsg(ps
.filename
,ps
.tokenlineno
,
2749 "C code starting on this line is not terminated before the end of the file.");
2755 }else if( isalnum(c
) ){ /* Identifiers */
2756 while( (c
= *cp
)!=0 && (isalnum(c
) || c
=='_') ) cp
++;
2758 }else if( c
==':' && cp
[1]==':' && cp
[2]=='=' ){ /* The operator "::=" */
2761 }else if( (c
=='/' || c
=='|') && isalpha(cp
[1]) ){
2763 while( (c
= *cp
)!=0 && (isalnum(c
) || c
=='_') ) cp
++;
2765 }else{ /* All other (one character) operators */
2770 *cp
= 0; /* Null terminate the token */
2771 parseonetoken(&ps
); /* Parse the token */
2772 *cp
= c
; /* Restore the buffer */
2775 free(filebuf
); /* Release the buffer after parsing */
2776 gp
->rule
= ps
.firstrule
;
2777 gp
->errorcnt
= ps
.errorcnt
;
2779 /*************************** From the file "plink.c" *********************/
2781 ** Routines processing configuration follow-set propagation links
2782 ** in the LEMON parser generator.
2784 static struct plink
*plink_freelist
= 0;
2786 /* Allocate a new plink */
2787 struct plink
*Plink_new(){
2788 struct plink
*newlink
;
2790 if( plink_freelist
==0 ){
2793 plink_freelist
= (struct plink
*)calloc( amt
, sizeof(struct plink
) );
2794 if( plink_freelist
==0 ){
2796 "Unable to allocate memory for a new follow-set propagation link.\n");
2799 for(i
=0; i
<amt
-1; i
++) plink_freelist
[i
].next
= &plink_freelist
[i
+1];
2800 plink_freelist
[amt
-1].next
= 0;
2802 newlink
= plink_freelist
;
2803 plink_freelist
= plink_freelist
->next
;
2807 /* Add a plink to a plink list */
2808 void Plink_add(struct plink
**plpp
, struct config
*cfp
)
2810 struct plink
*newlink
;
2811 newlink
= Plink_new();
2812 newlink
->next
= *plpp
;
2817 /* Transfer every plink on the list "from" to the list "to" */
2818 void Plink_copy(struct plink
**to
, struct plink
*from
)
2820 struct plink
*nextpl
;
2822 nextpl
= from
->next
;
2829 /* Delete every plink on the list */
2830 void Plink_delete(struct plink
*plp
)
2832 struct plink
*nextpl
;
2836 plp
->next
= plink_freelist
;
2837 plink_freelist
= plp
;
2841 /*********************** From the file "report.c" **************************/
2843 ** Procedures for generating reports and tables in the LEMON parser generator.
2846 /* Generate a filename with the given suffix. Space to hold the
2847 ** name comes from malloc() and must be freed by the calling
2850 PRIVATE
char *file_makename(struct lemon
*lemp
, const char *suffix
)
2855 name
= (char*)malloc( lemonStrlen(lemp
->filename
) + lemonStrlen(suffix
) + 5 );
2857 fprintf(stderr
,"Can't allocate space for a filename.\n");
2860 lemon_strcpy(name
,lemp
->filename
);
2861 cp
= strrchr(name
,'.');
2863 lemon_strcat(name
,suffix
);
2867 /* Open a file with a name based on the name of the input file,
2868 ** but with a different (specified) suffix, and return a pointer
2870 PRIVATE
FILE *file_open(
2877 if( lemp
->outname
) free(lemp
->outname
);
2878 lemp
->outname
= file_makename(lemp
, suffix
);
2879 fp
= fopen(lemp
->outname
,mode
);
2880 if( fp
==0 && *mode
=='w' ){
2881 fprintf(stderr
,"Can't open file \"%s\".\n",lemp
->outname
);
2888 /* Duplicate the input file without comments and without actions
2890 void Reprint(struct lemon
*lemp
)
2894 int i
, j
, maxlen
, len
, ncolumns
, skip
;
2895 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp
->filename
);
2897 for(i
=0; i
<lemp
->nsymbol
; i
++){
2898 sp
= lemp
->symbols
[i
];
2899 len
= lemonStrlen(sp
->name
);
2900 if( len
>maxlen
) maxlen
= len
;
2902 ncolumns
= 76/(maxlen
+5);
2903 if( ncolumns
<1 ) ncolumns
= 1;
2904 skip
= (lemp
->nsymbol
+ ncolumns
- 1)/ncolumns
;
2905 for(i
=0; i
<skip
; i
++){
2907 for(j
=i
; j
<lemp
->nsymbol
; j
+=skip
){
2908 sp
= lemp
->symbols
[j
];
2909 assert( sp
->index
==j
);
2910 printf(" %3d %-*.*s",j
,maxlen
,maxlen
,sp
->name
);
2914 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
2915 printf("%s",rp
->lhs
->name
);
2916 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2918 for(i
=0; i
<rp
->nrhs
; i
++){
2920 if( sp
->type
==MULTITERMINAL
){
2921 printf(" %s", sp
->subsym
[0]->name
);
2922 for(j
=1; j
<sp
->nsubsym
; j
++){
2923 printf("|%s", sp
->subsym
[j
]->name
);
2926 printf(" %s", sp
->name
);
2928 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2931 if( rp
->precsym
) printf(" [%s]",rp
->precsym
->name
);
2932 /* if( rp->code ) printf("\n %s",rp->code); */
2937 void ConfigPrint(FILE *fp
, struct config
*cfp
)
2943 fprintf(fp
,"%s ::=",rp
->lhs
->name
);
2944 for(i
=0; i
<=rp
->nrhs
; i
++){
2945 if( i
==cfp
->dot
) fprintf(fp
," *");
2946 if( i
==rp
->nrhs
) break;
2948 if( sp
->type
==MULTITERMINAL
){
2949 fprintf(fp
," %s", sp
->subsym
[0]->name
);
2950 for(j
=1; j
<sp
->nsubsym
; j
++){
2951 fprintf(fp
,"|%s",sp
->subsym
[j
]->name
);
2954 fprintf(fp
," %s", sp
->name
);
2962 PRIVATE
void SetPrint(out
,set
,lemp
)
2970 fprintf(out
,"%12s[","");
2971 for(i
=0; i
<lemp
->nterminal
; i
++){
2972 if( SetFind(set
,i
) ){
2973 fprintf(out
,"%s%s",spacer
,lemp
->symbols
[i
]->name
);
2980 /* Print a plink chain */
2981 PRIVATE
void PlinkPrint(out
,plp
,tag
)
2987 fprintf(out
,"%12s%s (state %2d) ","",tag
,plp
->cfp
->stp
->statenum
);
2988 ConfigPrint(out
,plp
->cfp
);
2995 /* Print an action to the given file descriptor. Return FALSE if
2996 ** nothing was actually printed.
2998 int PrintAction(struct action
*ap
, FILE *fp
, int indent
){
3002 fprintf(fp
,"%*s shift %d",indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3005 fprintf(fp
,"%*s reduce %d",indent
,ap
->sp
->name
,ap
->x
.rp
->index
);
3008 fprintf(fp
,"%*s accept",indent
,ap
->sp
->name
);
3011 fprintf(fp
,"%*s error",indent
,ap
->sp
->name
);
3015 fprintf(fp
,"%*s reduce %-3d ** Parsing conflict **",
3016 indent
,ap
->sp
->name
,ap
->x
.rp
->index
);
3019 fprintf(fp
,"%*s shift %-3d ** Parsing conflict **",
3020 indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3023 if( showPrecedenceConflict
){
3024 fprintf(fp
,"%*s shift %-3d -- dropped by precedence",
3025 indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3031 if( showPrecedenceConflict
){
3032 fprintf(fp
,"%*s reduce %-3d -- dropped by precedence",
3033 indent
,ap
->sp
->name
,ap
->x
.rp
->index
);
3045 /* Generate the "y.output" log file */
3046 void ReportOutput(struct lemon
*lemp
)
3054 fp
= file_open(lemp
,".out","wb");
3056 for(i
=0; i
<lemp
->nstate
; i
++){
3057 stp
= lemp
->sorted
[i
];
3058 fprintf(fp
,"State %d:\n",stp
->statenum
);
3059 if( lemp
->basisflag
) cfp
=stp
->bp
;
3063 if( cfp
->dot
==cfp
->rp
->nrhs
){
3064 lemon_sprintf(buf
,"(%d)",cfp
->rp
->index
);
3065 fprintf(fp
," %5s ",buf
);
3069 ConfigPrint(fp
,cfp
);
3072 SetPrint(fp
,cfp
->fws
,lemp
);
3073 PlinkPrint(fp
,cfp
->fplp
,"To ");
3074 PlinkPrint(fp
,cfp
->bplp
,"From");
3076 if( lemp
->basisflag
) cfp
=cfp
->bp
;
3080 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
3081 if( PrintAction(ap
,fp
,30) ) fprintf(fp
,"\n");
3085 fprintf(fp
, "----------------------------------------------------\n");
3086 fprintf(fp
, "Symbols:\n");
3087 for(i
=0; i
<lemp
->nsymbol
; i
++){
3091 sp
= lemp
->symbols
[i
];
3092 fprintf(fp
, " %3d: %s", i
, sp
->name
);
3093 if( sp
->type
==NONTERMINAL
){
3096 fprintf(fp
, " <lambda>");
3098 for(j
=0; j
<lemp
->nterminal
; j
++){
3099 if( sp
->firstset
&& SetFind(sp
->firstset
, j
) ){
3100 fprintf(fp
, " %s", lemp
->symbols
[j
]->name
);
3110 /* Search for the file "name" which is in the same directory as
3111 ** the exacutable */
3112 PRIVATE
char *pathsearch(char *argv0
, char *name
, int modemask
)
3114 const char *pathlist
;
3121 cp
= strrchr(argv0
,'\\');
3123 cp
= strrchr(argv0
,'/');
3128 path
= (char *)malloc( lemonStrlen(argv0
) + lemonStrlen(name
) + 2 );
3129 if( path
) lemon_sprintf(path
,"%s/%s",argv0
,name
);
3132 pathlist
= getenv("PATH");
3133 if( pathlist
==0 ) pathlist
= ".:/bin:/usr/bin";
3134 pathbuf
= (char *) malloc( lemonStrlen(pathlist
) + 1 );
3135 path
= (char *)malloc( lemonStrlen(pathlist
)+lemonStrlen(name
)+2 );
3136 if( (pathbuf
!= 0) && (path
!=0) ){
3137 pathbufptr
= pathbuf
;
3138 lemon_strcpy(pathbuf
, pathlist
);
3140 cp
= strchr(pathbuf
,':');
3141 if( cp
==0 ) cp
= &pathbuf
[lemonStrlen(pathbuf
)];
3144 lemon_sprintf(path
,"%s/%s",pathbuf
,name
);
3146 if( c
==0 ) pathbuf
[0] = 0;
3147 else pathbuf
= &cp
[1];
3148 if( access(path
,modemask
)==0 ) break;
3156 /* Given an action, compute the integer value for that action
3157 ** which is to be put in the action table of the generated machine.
3158 ** Return negative if no action should be generated.
3160 PRIVATE
int compute_action(struct lemon
*lemp
, struct action
*ap
)
3164 case SHIFT
: act
= ap
->x
.stp
->statenum
; break;
3165 case REDUCE
: act
= ap
->x
.rp
->index
+ lemp
->nstate
; break;
3166 case ERROR
: act
= lemp
->nstate
+ lemp
->nrule
; break;
3167 case ACCEPT
: act
= lemp
->nstate
+ lemp
->nrule
+ 1; break;
3168 default: act
= -1; break;
3173 #define LINESIZE 1000
3174 /* The next cluster of routines are for reading the template file
3175 ** and writing the results to the generated parser */
3176 /* The first function transfers data from "in" to "out" until
3177 ** a line is seen which begins with "%%". The line number is
3180 ** if name!=0, then any word that begin with "Parse" is changed to
3181 ** begin with *name instead.
3183 PRIVATE
void tplt_xfer(char *name
, FILE *in
, FILE *out
, int *lineno
)
3186 char line
[LINESIZE
];
3187 while( fgets(line
,LINESIZE
,in
) && (line
[0]!='%' || line
[1]!='%') ){
3191 for(i
=0; line
[i
]; i
++){
3192 if( line
[i
]=='P' && strncmp(&line
[i
],"Parse",5)==0
3193 && (i
==0 || !isalpha(line
[i
-1]))
3195 if( i
>iStart
) fprintf(out
,"%.*s",i
-iStart
,&line
[iStart
]);
3196 fprintf(out
,"%s",name
);
3202 fprintf(out
,"%s",&line
[iStart
]);
3206 /* The next function finds the template file and opens it, returning
3207 ** a pointer to the opened file. */
3208 PRIVATE
FILE *tplt_open(struct lemon
*lemp
)
3210 static char templatename
[] = "lempar.c";
3216 /* first, see if user specified a template filename on the command line. */
3217 if (user_templatename
!= 0) {
3218 if( access(user_templatename
,004)==-1 ){
3219 fprintf(stderr
,"Can't find the parser driver template file \"%s\".\n",
3224 in
= fopen(user_templatename
,"rb");
3226 fprintf(stderr
,"Can't open the template file \"%s\".\n",user_templatename
);
3233 cp
= strrchr(lemp
->filename
,'.');
3235 lemon_sprintf(buf
,"%.*s.lt",(int)(cp
-lemp
->filename
),lemp
->filename
);
3237 lemon_sprintf(buf
,"%s.lt",lemp
->filename
);
3239 if( access(buf
,004)==0 ){
3241 }else if( access(templatename
,004)==0 ){
3242 tpltname
= templatename
;
3244 tpltname
= pathsearch(lemp
->argv0
,templatename
,0);
3247 fprintf(stderr
,"Can't find the parser driver template file \"%s\".\n",
3252 in
= fopen(tpltname
,"rb");
3254 fprintf(stderr
,"Can't open the template file \"%s\".\n",templatename
);
3261 /* Print a #line directive line to the output file. */
3262 PRIVATE
void tplt_linedir(FILE *out
, int lineno
, char *filename
)
3264 fprintf(out
,"#line %d \"",lineno
);
3266 if( *filename
== '\\' ) putc('\\',out
);
3267 putc(*filename
,out
);
3270 fprintf(out
,"\"\n");
3273 /* Print a string to the file and keep the linenumber up to date */
3274 PRIVATE
void tplt_print(FILE *out
, struct lemon
*lemp
, char *str
, int *lineno
)
3276 if( str
==0 ) return;
3279 if( *str
=='\n' ) (*lineno
)++;
3282 if( str
[-1]!='\n' ){
3286 if (!lemp
->nolinenosflag
) {
3287 (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
);
3293 ** The following routine emits code for the destructor for the
3296 void emit_destructor_code(
3304 if( sp
->type
==TERMINAL
){
3305 cp
= lemp
->tokendest
;
3307 fprintf(out
,"{\n"); (*lineno
)++;
3308 }else if( sp
->destructor
){
3309 cp
= sp
->destructor
;
3310 fprintf(out
,"{\n"); (*lineno
)++;
3311 if (!lemp
->nolinenosflag
) { (*lineno
)++; tplt_linedir(out
,sp
->destLineno
,lemp
->filename
); }
3312 }else if( lemp
->vardest
){
3315 fprintf(out
,"{\n"); (*lineno
)++;
3317 assert( 0 ); /* Cannot happen */
3320 if( *cp
=='$' && cp
[1]=='$' ){
3321 fprintf(out
,"(yypminor->yy%d)",sp
->dtnum
);
3325 if( *cp
=='\n' ) (*lineno
)++;
3328 fprintf(out
,"\n"); (*lineno
)++;
3329 if (!lemp
->nolinenosflag
) {
3330 (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
);
3332 fprintf(out
,"}\n"); (*lineno
)++;
3337 ** Return TRUE (non-zero) if the given symbol has a destructor.
3339 int has_destructor(struct symbol
*sp
, struct lemon
*lemp
)
3342 if( sp
->type
==TERMINAL
){
3343 ret
= lemp
->tokendest
!=0;
3345 ret
= lemp
->vardest
!=0 || sp
->destructor
!=0;
3351 ** Append text to a dynamically allocated string. If zText is 0 then
3352 ** reset the string to be empty again. Always return the complete text
3353 ** of the string (which is overwritten with each call).
3355 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3356 ** \000 terminator is stored. zText can contain up to two instances of
3357 ** %d. The values of p1 and p2 are written into the first and second
3360 ** If n==-1, then the previous character is overwritten.
3362 PRIVATE
char *append_str(const char *zText
, int n
, int p1
, int p2
){
3363 static char empty
[1] = { 0 };
3365 static int alloced
= 0;
3366 static int used
= 0;
3378 n
= lemonStrlen(zText
);
3380 if( (int) (n
+sizeof(zInt
)*2+used
) >= alloced
){
3381 alloced
= n
+ sizeof(zInt
)*2 + used
+ 200;
3382 z
= (char *) realloc(z
, alloced
);
3384 if( z
==0 ) return empty
;
3387 if( c
=='%' && n
>0 && zText
[0]=='d' ){
3388 lemon_sprintf(zInt
, "%d", p1
);
3390 lemon_strcpy(&z
[used
], zInt
);
3391 used
+= lemonStrlen(&z
[used
]);
3403 ** zCode is a string that is the action associated with a rule. Expand
3404 ** the symbols in this string so that the refer to elements of the parser
3407 PRIVATE
void translate_code(struct lemon
*lemp
, struct rule
*rp
){
3410 char lhsused
= 0; /* True if the LHS element has been used */
3411 char used
[MAXRHS
]; /* True for each RHS element which is used */
3413 for(i
=0; i
<rp
->nrhs
; i
++) used
[i
] = 0;
3417 static char newlinestr
[2] = { '\n', '\0' };
3418 rp
->code
= newlinestr
;
3419 rp
->line
= rp
->ruleline
;
3422 append_str(0,0,0,0);
3424 /* This const cast is wrong but harmless, if we're careful. */
3425 for(cp
=(char *)rp
->code
; *cp
; cp
++){
3426 if( isalpha(*cp
) && (cp
==rp
->code
|| (!isalnum(cp
[-1]) && cp
[-1]!='_')) ){
3428 for(xp
= &cp
[1]; isalnum(*xp
) || *xp
=='_'; xp
++);
3431 if( rp
->lhsalias
&& strcmp(cp
,rp
->lhsalias
)==0 ){
3432 append_str("yygotominor.yy%d",0,rp
->lhs
->dtnum
,0);
3436 for(i
=0; i
<rp
->nrhs
; i
++){
3437 if( rp
->rhsalias
[i
] && strcmp(cp
,rp
->rhsalias
[i
])==0 ){
3438 if( cp
!=rp
->code
&& cp
[-1]=='@' ){
3439 /* If the argument is of the form @X then substituted
3440 ** the token number of X, not the value of X */
3441 append_str("yymsp[%d].major",-1,i
-rp
->nrhs
+1,0);
3443 struct symbol
*sp
= rp
->rhs
[i
];
3445 if( sp
->type
==MULTITERMINAL
){
3446 dtnum
= sp
->subsym
[0]->dtnum
;
3450 append_str("yymsp[%d].minor.yy%d",0,i
-rp
->nrhs
+1, dtnum
);
3460 append_str(cp
, 1, 0, 0);
3463 /* Check to make sure the LHS has been used */
3464 if( rp
->lhsalias
&& !lhsused
){
3465 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3466 "Label \"%s\" for \"%s(%s)\" is never used.",
3467 rp
->lhsalias
,rp
->lhs
->name
,rp
->lhsalias
);
3471 /* Generate destructor code for RHS symbols which are not used in the
3473 for(i
=0; i
<rp
->nrhs
; i
++){
3474 if( rp
->rhsalias
[i
] && !used
[i
] ){
3475 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3476 "Label %s for \"%s(%s)\" is never used.",
3477 rp
->rhsalias
[i
],rp
->rhs
[i
]->name
,rp
->rhsalias
[i
]);
3479 }else if( rp
->rhsalias
[i
]==0 ){
3480 if( has_destructor(rp
->rhs
[i
],lemp
) ){
3481 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3482 rp
->rhs
[i
]->index
,i
-rp
->nrhs
+1);
3484 /* No destructor defined for this term */
3489 cp
= append_str(0,0,0,0);
3490 rp
->code
= Strsafe(cp
?cp
:"");
3495 ** Generate code which executes when the rule "rp" is reduced. Write
3496 ** the code to "out". Make sure lineno stays up-to-date.
3498 PRIVATE
void emit_code(
3506 /* Generate code to do the reduce action */
3508 if (!lemp
->nolinenosflag
) { (*lineno
)++; tplt_linedir(out
,rp
->line
,lemp
->filename
); }
3509 fprintf(out
,"{%s",rp
->code
);
3510 for(cp
=rp
->code
; *cp
; cp
++){
3511 if( *cp
=='\n' ) (*lineno
)++;
3513 fprintf(out
,"}\n"); (*lineno
)++;
3514 if (!lemp
->nolinenosflag
) { (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
); }
3515 } /* End if( rp->code ) */
3521 ** Print the definition of the union used for the parser's data stack.
3522 ** This union contains fields for every possible data type for tokens
3523 ** and nonterminals. In the process of computing and printing this
3524 ** union, also set the ".dtnum" field of every terminal and nonterminal
3527 void print_stack_union(
3528 FILE *out
, /* The output stream */
3529 struct lemon
*lemp
, /* The main info structure for this parser */
3530 int *plineno
, /* Pointer to the line number */
3531 int mhflag
/* True if generating makeheaders output */
3533 int lineno
= *plineno
; /* The line number of the output */
3534 char **types
; /* A hash table of datatypes */
3535 int arraysize
; /* Size of the "types" array */
3536 int maxdtlength
; /* Maximum length of any ".datatype" field. */
3537 char *stddt
; /* Standardized name for a datatype */
3538 int i
,j
; /* Loop counters */
3539 unsigned hash
; /* For hashing the name of a type */
3540 const char *name
; /* Name of the parser */
3542 /* Allocate and initialize types[] and allocate stddt[] */
3543 arraysize
= lemp
->nsymbol
* 2;
3544 types
= (char**)calloc( arraysize
, sizeof(char*) );
3546 fprintf(stderr
,"Out of memory.\n");
3549 for(i
=0; i
<arraysize
; i
++) types
[i
] = 0;
3551 if( lemp
->vartype
){
3552 maxdtlength
= lemonStrlen(lemp
->vartype
);
3554 for(i
=0; i
<lemp
->nsymbol
; i
++){
3556 struct symbol
*sp
= lemp
->symbols
[i
];
3557 if( sp
->datatype
==0 ) continue;
3558 len
= lemonStrlen(sp
->datatype
);
3559 if( len
>maxdtlength
) maxdtlength
= len
;
3561 stddt
= (char*)malloc( maxdtlength
*2 + 1 );
3563 fprintf(stderr
,"Out of memory.\n");
3567 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3568 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3569 ** used for terminal symbols. If there is no %default_type defined then
3570 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3571 ** a datatype using the %type directive.
3573 for(i
=0; i
<lemp
->nsymbol
; i
++){
3574 struct symbol
*sp
= lemp
->symbols
[i
];
3576 if( sp
==lemp
->errsym
){
3577 sp
->dtnum
= arraysize
+1;
3580 if( sp
->type
!=NONTERMINAL
|| (sp
->datatype
==0 && lemp
->vartype
==0) ){
3585 if( cp
==0 ) cp
= lemp
->vartype
;
3587 while( isspace(*cp
) ) cp
++;
3588 while( *cp
) stddt
[j
++] = *cp
++;
3589 while( j
>0 && isspace(stddt
[j
-1]) ) j
--;
3591 if( lemp
->tokentype
&& strcmp(stddt
, lemp
->tokentype
)==0 ){
3596 for(j
=0; stddt
[j
]; j
++){
3597 hash
= hash
*53 + stddt
[j
];
3599 hash
= (hash
& 0x7fffffff)%arraysize
;
3600 while( types
[hash
] ){
3601 if( strcmp(types
[hash
],stddt
)==0 ){
3602 sp
->dtnum
= hash
+ 1;
3606 if( hash
>=(unsigned)arraysize
) hash
= 0;
3608 if( types
[hash
]==0 ){
3609 sp
->dtnum
= hash
+ 1;
3610 types
[hash
] = (char*)malloc( lemonStrlen(stddt
)+1 );
3611 if( types
[hash
]==0 ){
3612 fprintf(stderr
,"Out of memory.\n");
3615 lemon_strcpy(types
[hash
],stddt
);
3619 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3620 name
= lemp
->name
? lemp
->name
: "Parse";
3622 if( mhflag
){ fprintf(out
,"#if INTERFACE\n"); lineno
++; }
3623 fprintf(out
,"#define %sTOKENTYPE %s\n",name
,
3624 lemp
->tokentype
?lemp
->tokentype
:"void*"); lineno
++;
3625 if( mhflag
){ fprintf(out
,"#endif\n"); lineno
++; }
3626 fprintf(out
,"typedef union {\n"); lineno
++;
3627 fprintf(out
," int yyinit;\n"); lineno
++;
3628 fprintf(out
," %sTOKENTYPE yy0;\n",name
); lineno
++;
3629 for(i
=0; i
<arraysize
; i
++){
3630 if( types
[i
]==0 ) continue;
3631 fprintf(out
," %s yy%d;\n",types
[i
],i
+1); lineno
++;
3634 if( lemp
->errsym
->useCnt
){
3635 fprintf(out
," int yy%d;\n",lemp
->errsym
->dtnum
); lineno
++;
3639 fprintf(out
,"} YYMINORTYPE;\n"); lineno
++;
3644 ** Return the name of a C datatype able to represent values between
3645 ** lwr and upr, inclusive.
3647 static const char *minimum_size_type(int lwr
, int upr
){
3650 return "unsigned char";
3651 }else if( upr
<65535 ){
3652 return "unsigned short int";
3654 return "unsigned int";
3656 }else if( lwr
>=-127 && upr
<=127 ){
3657 return "signed char";
3658 }else if( lwr
>=-32767 && upr
<32767 ){
3666 ** Each state contains a set of token transaction and a set of
3667 ** nonterminal transactions. Each of these sets makes an instance
3668 ** of the following structure. An array of these structures is used
3669 ** to order the creation of entries in the yy_action[] table.
3672 struct state
*stp
; /* A pointer to a state */
3673 int isTkn
; /* True to use tokens. False for non-terminals */
3674 int nAction
; /* Number of actions */
3675 int iOrder
; /* Original order of action sets */
3679 ** Compare to axset structures for sorting purposes
3681 static int axset_compare(const void *a
, const void *b
){
3682 struct axset
*p1
= (struct axset
*)a
;
3683 struct axset
*p2
= (struct axset
*)b
;
3685 c
= p2
->nAction
- p1
->nAction
;
3687 c
= p2
->iOrder
- p1
->iOrder
;
3689 assert( c
!=0 || p1
==p2
);
3694 ** Write text on "out" that describes the rule "rp".
3696 static void writeRuleText(FILE *out
, struct rule
*rp
){
3698 fprintf(out
,"%s ::=", rp
->lhs
->name
);
3699 for(j
=0; j
<rp
->nrhs
; j
++){
3700 struct symbol
*sp
= rp
->rhs
[j
];
3701 if( sp
->type
!=MULTITERMINAL
){
3702 fprintf(out
," %s", sp
->name
);
3705 fprintf(out
," %s", sp
->subsym
[0]->name
);
3706 for(k
=1; k
<sp
->nsubsym
; k
++){
3707 fprintf(out
,"|%s",sp
->subsym
[k
]->name
);
3714 /* Generate C source code for the parser */
3717 int mhflag
/* Output in makeheaders format if true */
3720 char line
[LINESIZE
];
3725 struct acttab
*pActtab
;
3728 int mnTknOfst
, mxTknOfst
;
3729 int mnNtOfst
, mxNtOfst
;
3732 in
= tplt_open(lemp
);
3734 out
= file_open(lemp
,".c","wb");
3740 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
3742 /* Generate the include code, if any */
3743 tplt_print(out
,lemp
,lemp
->include
,&lineno
);
3745 char *name
= file_makename(lemp
, ".h");
3746 fprintf(out
,"#include \"%s\"\n", name
); lineno
++;
3749 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
3751 /* Generate #defines for all tokens */
3754 fprintf(out
,"#if INTERFACE\n"); lineno
++;
3755 if( lemp
->tokenprefix
) prefix
= lemp
->tokenprefix
;
3757 for(i
=1; i
<lemp
->nterminal
; i
++){
3758 fprintf(out
,"#define %s%-30s %2d\n",prefix
,lemp
->symbols
[i
]->name
,i
);
3761 fprintf(out
,"#endif\n"); lineno
++;
3763 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
3765 /* Generate the defines */
3766 fprintf(out
,"#define YYCODETYPE %s\n",
3767 minimum_size_type(0, lemp
->nsymbol
+1)); lineno
++;
3768 fprintf(out
,"#define YYNOCODE %d\n",lemp
->nsymbol
+1); lineno
++;
3769 fprintf(out
,"#define YYACTIONTYPE %s\n",
3770 minimum_size_type(0, lemp
->nstate
+lemp
->nrule
+5)); lineno
++;
3771 if( lemp
->wildcard
){
3772 fprintf(out
,"#define YYWILDCARD %d\n",
3773 lemp
->wildcard
->index
); lineno
++;
3775 print_stack_union(out
,lemp
,&lineno
,mhflag
);
3776 fprintf(out
, "#ifndef YYSTACKDEPTH\n"); lineno
++;
3777 if( lemp
->stacksize
){
3778 fprintf(out
,"#define YYSTACKDEPTH %s\n",lemp
->stacksize
); lineno
++;
3780 fprintf(out
,"#define YYSTACKDEPTH 100\n"); lineno
++;
3782 fprintf(out
, "#endif\n"); lineno
++;
3784 fprintf(out
,"#if INTERFACE\n"); lineno
++;
3786 name
= lemp
->name
? lemp
->name
: "Parse";
3787 if( lemp
->arg
&& lemp
->arg
[0] ){
3789 i
= lemonStrlen(lemp
->arg
);
3790 while( i
>=1 && isspace(lemp
->arg
[i
-1]) ) i
--;
3791 while( i
>=1 && (isalnum(lemp
->arg
[i
-1]) || lemp
->arg
[i
-1]=='_') ) i
--;
3792 fprintf(out
,"#define %sARG_SDECL %s;\n",name
,lemp
->arg
); lineno
++;
3793 fprintf(out
,"#define %sARG_PDECL ,%s\n",name
,lemp
->arg
); lineno
++;
3794 fprintf(out
,"#define %sARG_FETCH %s = yypParser->%s\n",
3795 name
,lemp
->arg
,&lemp
->arg
[i
]); lineno
++;
3796 fprintf(out
,"#define %sARG_STORE yypParser->%s = %s\n",
3797 name
,&lemp
->arg
[i
],&lemp
->arg
[i
]); lineno
++;
3799 fprintf(out
,"#define %sARG_SDECL\n",name
); lineno
++;
3800 fprintf(out
,"#define %sARG_PDECL\n",name
); lineno
++;
3801 fprintf(out
,"#define %sARG_FETCH\n",name
); lineno
++;
3802 fprintf(out
,"#define %sARG_STORE\n",name
); lineno
++;
3805 fprintf(out
,"#endif\n"); lineno
++;
3807 fprintf(out
,"#define YYNSTATE %d\n",lemp
->nstate
); lineno
++;
3808 fprintf(out
,"#define YYNRULE %d\n",lemp
->nrule
); lineno
++;
3809 if( lemp
->errsym
->useCnt
){
3810 fprintf(out
,"#define YYERRORSYMBOL %d\n",lemp
->errsym
->index
); lineno
++;
3811 fprintf(out
,"#define YYERRSYMDT yy%d\n",lemp
->errsym
->dtnum
); lineno
++;
3813 if( lemp
->has_fallback
){
3814 fprintf(out
,"#define YYFALLBACK 1\n"); lineno
++;
3816 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
3818 /* Generate the action table and its associates:
3820 ** yy_action[] A single table containing all actions.
3821 ** yy_lookahead[] A table containing the lookahead for each entry in
3822 ** yy_action. Used to detect hash collisions.
3823 ** yy_shift_ofst[] For each state, the offset into yy_action for
3824 ** shifting terminals.
3825 ** yy_reduce_ofst[] For each state, the offset into yy_action for
3826 ** shifting non-terminals after a reduce.
3827 ** yy_default[] Default action for each state.
3830 /* Compute the actions on all states and count them up */
3831 ax
= (struct axset
*) calloc(lemp
->nstate
*2, sizeof(ax
[0]));
3833 fprintf(stderr
,"malloc failed\n");
3836 for(i
=0; i
<lemp
->nstate
; i
++){
3837 stp
= lemp
->sorted
[i
];
3840 ax
[i
*2].nAction
= stp
->nTknAct
;
3841 ax
[i
*2+1].stp
= stp
;
3842 ax
[i
*2+1].isTkn
= 0;
3843 ax
[i
*2+1].nAction
= stp
->nNtAct
;
3845 mxTknOfst
= mnTknOfst
= 0;
3846 mxNtOfst
= mnNtOfst
= 0;
3848 /* Compute the action table. In order to try to keep the size of the
3849 ** action table to a minimum, the heuristic of placing the largest action
3850 ** sets first is used.
3852 for(i
=0; i
<lemp
->nstate
*2; i
++) ax
[i
].iOrder
= i
;
3853 qsort(ax
, lemp
->nstate
*2, sizeof(ax
[0]), axset_compare
);
3854 pActtab
= acttab_alloc();
3855 for(i
=0; i
<lemp
->nstate
*2 && ax
[i
].nAction
>0; i
++){
3858 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
3860 if( ap
->sp
->index
>=lemp
->nterminal
) continue;
3861 action
= compute_action(lemp
, ap
);
3862 if( action
<0 ) continue;
3863 acttab_action(pActtab
, ap
->sp
->index
, action
);
3865 stp
->iTknOfst
= acttab_insert(pActtab
);
3866 if( stp
->iTknOfst
<mnTknOfst
) mnTknOfst
= stp
->iTknOfst
;
3867 if( stp
->iTknOfst
>mxTknOfst
) mxTknOfst
= stp
->iTknOfst
;
3869 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
3871 if( ap
->sp
->index
<lemp
->nterminal
) continue;
3872 if( ap
->sp
->index
==lemp
->nsymbol
) continue;
3873 action
= compute_action(lemp
, ap
);
3874 if( action
<0 ) continue;
3875 acttab_action(pActtab
, ap
->sp
->index
, action
);
3877 stp
->iNtOfst
= acttab_insert(pActtab
);
3878 if( stp
->iNtOfst
<mnNtOfst
) mnNtOfst
= stp
->iNtOfst
;
3879 if( stp
->iNtOfst
>mxNtOfst
) mxNtOfst
= stp
->iNtOfst
;
3884 /* Output the yy_action table */
3885 n
= acttab_size(pActtab
);
3886 fprintf(out
,"#define YY_ACTTAB_COUNT (%d)\n", n
); lineno
++;
3887 fprintf(out
,"static const YYACTIONTYPE yy_action[] = {\n"); lineno
++;
3888 for(i
=j
=0; i
<n
; i
++){
3889 int action
= acttab_yyaction(pActtab
, i
);
3890 if( action
<0 ) action
= lemp
->nstate
+ lemp
->nrule
+ 2;
3891 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
3892 fprintf(out
, " %4d,", action
);
3893 if( j
==9 || i
==n
-1 ){
3894 fprintf(out
, "\n"); lineno
++;
3900 fprintf(out
, "};\n"); lineno
++;
3902 /* Output the yy_lookahead table */
3903 fprintf(out
,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno
++;
3904 for(i
=j
=0; i
<n
; i
++){
3905 int la
= acttab_yylookahead(pActtab
, i
);
3906 if( la
<0 ) la
= lemp
->nsymbol
;
3907 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
3908 fprintf(out
, " %4d,", la
);
3909 if( j
==9 || i
==n
-1 ){
3910 fprintf(out
, "\n"); lineno
++;
3916 fprintf(out
, "};\n"); lineno
++;
3918 /* Output the yy_shift_ofst[] table */
3919 fprintf(out
, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst
-1); lineno
++;
3921 while( n
>0 && lemp
->sorted
[n
-1]->iTknOfst
==NO_OFFSET
) n
--;
3922 fprintf(out
, "#define YY_SHIFT_COUNT (%d)\n", n
-1); lineno
++;
3923 fprintf(out
, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst
); lineno
++;
3924 fprintf(out
, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst
); lineno
++;
3925 fprintf(out
, "static const %s yy_shift_ofst[] = {\n",
3926 minimum_size_type(mnTknOfst
-1, mxTknOfst
)); lineno
++;
3927 for(i
=j
=0; i
<n
; i
++){
3929 stp
= lemp
->sorted
[i
];
3930 ofst
= stp
->iTknOfst
;
3931 if( ofst
==NO_OFFSET
) ofst
= mnTknOfst
- 1;
3932 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
3933 fprintf(out
, " %4d,", ofst
);
3934 if( j
==9 || i
==n
-1 ){
3935 fprintf(out
, "\n"); lineno
++;
3941 fprintf(out
, "};\n"); lineno
++;
3943 /* Output the yy_reduce_ofst[] table */
3944 fprintf(out
, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst
-1); lineno
++;
3946 while( n
>0 && lemp
->sorted
[n
-1]->iNtOfst
==NO_OFFSET
) n
--;
3947 fprintf(out
, "#define YY_REDUCE_COUNT (%d)\n", n
-1); lineno
++;
3948 fprintf(out
, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst
); lineno
++;
3949 fprintf(out
, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst
); lineno
++;
3950 fprintf(out
, "static const %s yy_reduce_ofst[] = {\n",
3951 minimum_size_type(mnNtOfst
-1, mxNtOfst
)); lineno
++;
3952 for(i
=j
=0; i
<n
; i
++){
3954 stp
= lemp
->sorted
[i
];
3955 ofst
= stp
->iNtOfst
;
3956 if( ofst
==NO_OFFSET
) ofst
= mnNtOfst
- 1;
3957 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
3958 fprintf(out
, " %4d,", ofst
);
3959 if( j
==9 || i
==n
-1 ){
3960 fprintf(out
, "\n"); lineno
++;
3966 fprintf(out
, "};\n"); lineno
++;
3968 /* Output the default action table */
3969 fprintf(out
, "static const YYACTIONTYPE yy_default[] = {\n"); lineno
++;
3971 for(i
=j
=0; i
<n
; i
++){
3972 stp
= lemp
->sorted
[i
];
3973 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
3974 fprintf(out
, " %4d,", stp
->iDflt
);
3975 if( j
==9 || i
==n
-1 ){
3976 fprintf(out
, "\n"); lineno
++;
3982 fprintf(out
, "};\n"); lineno
++;
3983 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
3985 /* Generate the table of fallback tokens.
3987 if( lemp
->has_fallback
){
3988 int mx
= lemp
->nterminal
- 1;
3989 while( mx
>0 && lemp
->symbols
[mx
]->fallback
==0 ){ mx
--; }
3990 for(i
=0; i
<=mx
; i
++){
3991 struct symbol
*p
= lemp
->symbols
[i
];
3992 if( p
->fallback
==0 ){
3993 fprintf(out
, " 0, /* %10s => nothing */\n", p
->name
);
3995 fprintf(out
, " %3d, /* %10s => %s */\n", p
->fallback
->index
,
3996 p
->name
, p
->fallback
->name
);
4001 tplt_xfer(lemp
->name
, in
, out
, &lineno
);
4003 /* Generate a table containing the symbolic name of every symbol
4005 for(i
=0; i
<lemp
->nsymbol
; i
++){
4006 lemon_sprintf(line
,"\"%s\",",lemp
->symbols
[i
]->name
);
4007 fprintf(out
," %-15s",line
);
4008 if( (i
&3)==3 ){ fprintf(out
,"\n"); lineno
++; }
4010 if( (i
&3)!=0 ){ fprintf(out
,"\n"); lineno
++; }
4011 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4013 /* Generate a table containing a text string that describes every
4014 ** rule in the rule set of the grammar. This information is used
4015 ** when tracing REDUCE actions.
4017 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4018 assert( rp
->index
==i
);
4019 fprintf(out
," /* %3d */ \"", i
);
4020 writeRuleText(out
, rp
);
4021 fprintf(out
,"\",\n"); lineno
++;
4023 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4025 /* Generate code which executes every time a symbol is popped from
4026 ** the stack while processing errors or while destroying the parser.
4027 ** (In other words, generate the %destructor actions)
4029 if( lemp
->tokendest
){
4031 for(i
=0; i
<lemp
->nsymbol
; i
++){
4032 struct symbol
*sp
= lemp
->symbols
[i
];
4033 if( sp
==0 || sp
->type
!=TERMINAL
) continue;
4035 fprintf(out
, " /* TERMINAL Destructor */\n"); lineno
++;
4038 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4040 for(i
=0; i
<lemp
->nsymbol
&& lemp
->symbols
[i
]->type
!=TERMINAL
; i
++);
4041 if( i
<lemp
->nsymbol
){
4042 emit_destructor_code(out
,lemp
->symbols
[i
],lemp
,&lineno
);
4043 fprintf(out
," break;\n"); lineno
++;
4046 if( lemp
->vardest
){
4047 struct symbol
*dflt_sp
= 0;
4049 for(i
=0; i
<lemp
->nsymbol
; i
++){
4050 struct symbol
*sp
= lemp
->symbols
[i
];
4051 if( sp
==0 || sp
->type
==TERMINAL
||
4052 sp
->index
<=0 || sp
->destructor
!=0 ) continue;
4054 fprintf(out
, " /* Default NON-TERMINAL Destructor */\n"); lineno
++;
4057 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4061 emit_destructor_code(out
,dflt_sp
,lemp
,&lineno
);
4063 fprintf(out
," break;\n"); lineno
++;
4065 for(i
=0; i
<lemp
->nsymbol
; i
++){
4066 struct symbol
*sp
= lemp
->symbols
[i
];
4067 if( sp
==0 || sp
->type
==TERMINAL
|| sp
->destructor
==0 ) continue;
4068 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4070 /* Combine duplicate destructors into a single case */
4071 for(j
=i
+1; j
<lemp
->nsymbol
; j
++){
4072 struct symbol
*sp2
= lemp
->symbols
[j
];
4073 if( sp2
&& sp2
->type
!=TERMINAL
&& sp2
->destructor
4074 && sp2
->dtnum
==sp
->dtnum
4075 && strcmp(sp
->destructor
,sp2
->destructor
)==0 ){
4076 fprintf(out
," case %d: /* %s */\n",
4077 sp2
->index
, sp2
->name
); lineno
++;
4078 sp2
->destructor
= 0;
4082 emit_destructor_code(out
,lemp
->symbols
[i
],lemp
,&lineno
);
4083 fprintf(out
," break;\n"); lineno
++;
4085 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4087 /* Generate code which executes whenever the parser stack overflows */
4088 tplt_print(out
,lemp
,lemp
->overflow
,&lineno
);
4089 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4091 /* Generate the table of rule information
4093 ** Note: This code depends on the fact that rules are number
4094 ** sequentually beginning with 0.
4096 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4097 fprintf(out
," { %d, %d },\n",rp
->lhs
->index
,rp
->nrhs
); lineno
++;
4099 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4101 /* Generate code which execution during each REDUCE action */
4102 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4103 translate_code(lemp
, rp
);
4105 /* First output rules other than the default: rule */
4106 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4107 struct rule
*rp2
; /* Other rules with the same action */
4108 if( rp
->code
==0 ) continue;
4109 if( rp
->code
[0]=='\n' && rp
->code
[1]==0 ) continue; /* Will be default: */
4110 fprintf(out
," case %d: /* ", rp
->index
);
4111 writeRuleText(out
, rp
);
4112 fprintf(out
, " */\n"); lineno
++;
4113 for(rp2
=rp
->next
; rp2
; rp2
=rp2
->next
){
4114 if( rp2
->code
==rp
->code
){
4115 fprintf(out
," case %d: /* ", rp2
->index
);
4116 writeRuleText(out
, rp2
);
4117 fprintf(out
," */ yytestcase(yyruleno==%d);\n", rp2
->index
); lineno
++;
4121 emit_code(out
,rp
,lemp
,&lineno
);
4122 fprintf(out
," break;\n"); lineno
++;
4125 /* Finally, output the default: rule. We choose as the default: all
4126 ** empty actions. */
4127 fprintf(out
," default:\n"); lineno
++;
4128 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4129 if( rp
->code
==0 ) continue;
4130 assert( rp
->code
[0]=='\n' && rp
->code
[1]==0 );
4131 fprintf(out
," /* (%d) ", rp
->index
);
4132 writeRuleText(out
, rp
);
4133 fprintf(out
, " */ yytestcase(yyruleno==%d);\n", rp
->index
); lineno
++;
4135 fprintf(out
," break;\n"); lineno
++;
4136 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4138 /* Generate code which executes if a parse fails */
4139 tplt_print(out
,lemp
,lemp
->failure
,&lineno
);
4140 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4142 /* Generate code which executes when a syntax error occurs */
4143 tplt_print(out
,lemp
,lemp
->error
,&lineno
);
4144 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4146 /* Generate code which executes when the parser accepts its input */
4147 tplt_print(out
,lemp
,lemp
->accept
,&lineno
);
4148 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4150 /* Append any addition code the user desires */
4151 tplt_print(out
,lemp
,lemp
->extracode
,&lineno
);
4158 /* Generate a header file for the parser */
4159 void ReportHeader(struct lemon
*lemp
)
4163 char line
[LINESIZE
];
4164 char pattern
[LINESIZE
];
4167 if( lemp
->tokenprefix
) prefix
= lemp
->tokenprefix
;
4169 in
= file_open(lemp
,".h","rb");
4172 for(i
=1; i
<lemp
->nterminal
&& fgets(line
,LINESIZE
,in
); i
++){
4173 lemon_sprintf(pattern
,"#define %s%-30s %3d\n",
4174 prefix
,lemp
->symbols
[i
]->name
,i
);
4175 if( strcmp(line
,pattern
) ) break;
4177 nextChar
= fgetc(in
);
4179 if( i
==lemp
->nterminal
&& nextChar
==EOF
){
4180 /* No change in the file. Don't rewrite it. */
4184 out
= file_open(lemp
,".h","wb");
4186 for(i
=1; i
<lemp
->nterminal
; i
++){
4187 fprintf(out
,"#define %s%-30s %3d\n",prefix
,lemp
->symbols
[i
]->name
,i
);
4194 /* Reduce the size of the action tables, if possible, by making use
4197 ** In this version, we take the most frequent REDUCE action and make
4198 ** it the default. Except, there is no default if the wildcard token
4199 ** is a possible look-ahead.
4201 void CompressTables(struct lemon
*lemp
)
4204 struct action
*ap
, *ap2
;
4205 struct rule
*rp
, *rp2
, *rbest
;
4210 for(i
=0; i
<lemp
->nstate
; i
++){
4211 stp
= lemp
->sorted
[i
];
4216 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4217 if( ap
->type
==SHIFT
&& ap
->sp
==lemp
->wildcard
){
4220 if( ap
->type
!=REDUCE
) continue;
4222 if( rp
->lhsStart
) continue;
4223 if( rp
==rbest
) continue;
4225 for(ap2
=ap
->next
; ap2
; ap2
=ap2
->next
){
4226 if( ap2
->type
!=REDUCE
) continue;
4228 if( rp2
==rbest
) continue;
4237 /* Do not make a default if the number of rules to default
4238 ** is not at least 1 or if the wildcard token is a possible
4241 if( nbest
<1 || usesWildcard
) continue;
4244 /* Combine matching REDUCE actions into a single default */
4245 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4246 if( ap
->type
==REDUCE
&& ap
->x
.rp
==rbest
) break;
4249 ap
->sp
= Symbol_new("{default}");
4250 for(ap
=ap
->next
; ap
; ap
=ap
->next
){
4251 if( ap
->type
==REDUCE
&& ap
->x
.rp
==rbest
) ap
->type
= NOT_USED
;
4253 stp
->ap
= Action_sort(stp
->ap
);
4259 ** Compare two states for sorting purposes. The smaller state is the
4260 ** one with the most non-terminal actions. If they have the same number
4261 ** of non-terminal actions, then the smaller is the one with the most
4264 static int stateResortCompare(const void *a
, const void *b
){
4265 const struct state
*pA
= *(const struct state
**)a
;
4266 const struct state
*pB
= *(const struct state
**)b
;
4269 n
= pB
->nNtAct
- pA
->nNtAct
;
4271 n
= pB
->nTknAct
- pA
->nTknAct
;
4273 n
= pB
->statenum
- pA
->statenum
;
4282 ** Renumber and resort states so that states with fewer choices
4283 ** occur at the end. Except, keep state 0 as the first state.
4285 void ResortStates(struct lemon
*lemp
)
4291 for(i
=0; i
<lemp
->nstate
; i
++){
4292 stp
= lemp
->sorted
[i
];
4293 stp
->nTknAct
= stp
->nNtAct
= 0;
4294 stp
->iDflt
= lemp
->nstate
+ lemp
->nrule
;
4295 stp
->iTknOfst
= NO_OFFSET
;
4296 stp
->iNtOfst
= NO_OFFSET
;
4297 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4298 if( compute_action(lemp
,ap
)>=0 ){
4299 if( ap
->sp
->index
<lemp
->nterminal
){
4301 }else if( ap
->sp
->index
<lemp
->nsymbol
){
4304 stp
->iDflt
= compute_action(lemp
, ap
);
4309 qsort(&lemp
->sorted
[1], lemp
->nstate
-1, sizeof(lemp
->sorted
[0]),
4310 stateResortCompare
);
4311 for(i
=0; i
<lemp
->nstate
; i
++){
4312 lemp
->sorted
[i
]->statenum
= i
;
4317 /***************** From the file "set.c" ************************************/
4319 ** Set manipulation routines for the LEMON parser generator.
4322 static int size
= 0;
4324 /* Set the set size */
4330 /* Allocate a new set */
4333 s
= (char*)calloc( size
, 1);
4335 extern void memory_error();
4341 /* Deallocate a set */
4342 void SetFree(char *s
)
4347 /* Add a new element to the set. Return TRUE if the element was added
4348 ** and FALSE if it was already there. */
4349 int SetAdd(char *s
, int e
)
4352 assert( e
>=0 && e
<size
);
4358 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
4359 int SetUnion(char *s1
, char *s2
)
4363 for(i
=0; i
<size
; i
++){
4364 if( s2
[i
]==0 ) continue;
4372 /********************** From the file "table.c" ****************************/
4374 ** All code in this file has been automatically generated
4375 ** from a specification in the file
4377 ** by the associative array code building program "aagen".
4378 ** Do not edit this file! Instead, edit the specification
4379 ** file, then rerun aagen.
4382 ** Code for processing tables in the LEMON parser generator.
4385 PRIVATE
unsigned strhash(const char *x
)
4388 while( *x
) h
= h
*13 + *(x
++);
4392 /* Works like strdup, sort of. Save a string in malloced memory, but
4393 ** keep strings in a table so that the same string is not in more
4396 const char *Strsafe(const char *y
)
4401 if( y
==0 ) return 0;
4402 z
= Strsafe_find(y
);
4403 if( z
==0 && (cpy
=(char *)malloc( lemonStrlen(y
)+1 ))!=0 ){
4404 lemon_strcpy(cpy
,y
);
4412 /* There is one instance of the following structure for each
4413 ** associative array of type "x1".
4416 int size
; /* The number of available slots. */
4417 /* Must be a power of 2 greater than or */
4419 int count
; /* Number of currently slots filled */
4420 struct s_x1node
*tbl
; /* The data stored here */
4421 struct s_x1node
**ht
; /* Hash table for lookups */
4424 /* There is one instance of this structure for every data element
4425 ** in an associative array of type "x1".
4427 typedef struct s_x1node
{
4428 const char *data
; /* The data */
4429 struct s_x1node
*next
; /* Next entry with the same hash */
4430 struct s_x1node
**from
; /* Previous link */
4433 /* There is only one instance of the array, which is the following */
4434 static struct s_x1
*x1a
;
4436 /* Allocate a new associative array */
4437 void Strsafe_init(){
4439 x1a
= (struct s_x1
*)malloc( sizeof(struct s_x1
) );
4443 x1a
->tbl
= (x1node
*)calloc(1024, sizeof(x1node
) + sizeof(x1node
*));
4449 x1a
->ht
= (x1node
**)&(x1a
->tbl
[1024]);
4450 for(i
=0; i
<1024; i
++) x1a
->ht
[i
] = 0;
4454 /* Insert a new record into the array. Return TRUE if successful.
4455 ** Prior data with the same key is NOT overwritten */
4456 int Strsafe_insert(const char *data
)
4462 if( x1a
==0 ) return 0;
4464 h
= ph
& (x1a
->size
-1);
4467 if( strcmp(np
->data
,data
)==0 ){
4468 /* An existing entry with the same key is found. */
4469 /* Fail because overwrite is not allows. */
4474 if( x1a
->count
>=x1a
->size
){
4475 /* Need to make the hash table bigger */
4478 array
.size
= size
= x1a
->size
*2;
4479 array
.count
= x1a
->count
;
4480 array
.tbl
= (x1node
*)calloc(size
, sizeof(x1node
) + sizeof(x1node
*));
4481 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
4482 array
.ht
= (x1node
**)&(array
.tbl
[size
]);
4483 for(i
=0; i
<size
; i
++) array
.ht
[i
] = 0;
4484 for(i
=0; i
<x1a
->count
; i
++){
4485 x1node
*oldnp
, *newnp
;
4486 oldnp
= &(x1a
->tbl
[i
]);
4487 h
= strhash(oldnp
->data
) & (size
-1);
4488 newnp
= &(array
.tbl
[i
]);
4489 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
4490 newnp
->next
= array
.ht
[h
];
4491 newnp
->data
= oldnp
->data
;
4492 newnp
->from
= &(array
.ht
[h
]);
4493 array
.ht
[h
] = newnp
;
4498 /* Insert the new data */
4499 h
= ph
& (x1a
->size
-1);
4500 np
= &(x1a
->tbl
[x1a
->count
++]);
4502 if( x1a
->ht
[h
] ) x1a
->ht
[h
]->from
= &(np
->next
);
4503 np
->next
= x1a
->ht
[h
];
4505 np
->from
= &(x1a
->ht
[h
]);
4509 /* Return a pointer to data assigned to the given key. Return NULL
4510 ** if no such key. */
4511 const char *Strsafe_find(const char *key
)
4516 if( x1a
==0 ) return 0;
4517 h
= strhash(key
) & (x1a
->size
-1);
4520 if( strcmp(np
->data
,key
)==0 ) break;
4523 return np
? np
->data
: 0;
4526 /* Return a pointer to the (terminal or nonterminal) symbol "x".
4527 ** Create a new symbol if this is the first time "x" has been seen.
4529 struct symbol
*Symbol_new(const char *x
)
4533 sp
= Symbol_find(x
);
4535 sp
= (struct symbol
*)calloc(1, sizeof(struct symbol
) );
4537 sp
->name
= Strsafe(x
);
4538 sp
->type
= isupper(*x
) ? TERMINAL
: NONTERMINAL
;
4544 sp
->lambda
= LEMON_FALSE
;
4549 Symbol_insert(sp
,sp
->name
);
4555 /* Compare two symbols for sorting purposes. Return negative,
4556 ** zero, or positive if a is less then, equal to, or greater
4559 ** Symbols that begin with upper case letters (terminals or tokens)
4560 ** must sort before symbols that begin with lower case letters
4561 ** (non-terminals). And MULTITERMINAL symbols (created using the
4562 ** %token_class directive) must sort at the very end. Other than
4563 ** that, the order does not matter.
4565 ** We find experimentally that leaving the symbols in their original
4566 ** order (the order they appeared in the grammar file) gives the
4567 ** smallest parser tables in SQLite.
4569 int Symbolcmpp(const void *_a
, const void *_b
)
4571 const struct symbol
*a
= *(const struct symbol
**) _a
;
4572 const struct symbol
*b
= *(const struct symbol
**) _b
;
4573 int i1
= a
->type
==MULTITERMINAL
? 3 : a
->name
[0]>'Z' ? 2 : 1;
4574 int i2
= b
->type
==MULTITERMINAL
? 3 : b
->name
[0]>'Z' ? 2 : 1;
4575 return i1
==i2
? a
->index
- b
->index
: i1
- i2
;
4578 /* There is one instance of the following structure for each
4579 ** associative array of type "x2".
4582 int size
; /* The number of available slots. */
4583 /* Must be a power of 2 greater than or */
4585 int count
; /* Number of currently slots filled */
4586 struct s_x2node
*tbl
; /* The data stored here */
4587 struct s_x2node
**ht
; /* Hash table for lookups */
4590 /* There is one instance of this structure for every data element
4591 ** in an associative array of type "x2".
4593 typedef struct s_x2node
{
4594 struct symbol
*data
; /* The data */
4595 const char *key
; /* The key */
4596 struct s_x2node
*next
; /* Next entry with the same hash */
4597 struct s_x2node
**from
; /* Previous link */
4600 /* There is only one instance of the array, which is the following */
4601 static struct s_x2
*x2a
;
4603 /* Allocate a new associative array */
4606 x2a
= (struct s_x2
*)malloc( sizeof(struct s_x2
) );
4610 x2a
->tbl
= (x2node
*)calloc(128, sizeof(x2node
) + sizeof(x2node
*));
4616 x2a
->ht
= (x2node
**)&(x2a
->tbl
[128]);
4617 for(i
=0; i
<128; i
++) x2a
->ht
[i
] = 0;
4621 /* Insert a new record into the array. Return TRUE if successful.
4622 ** Prior data with the same key is NOT overwritten */
4623 int Symbol_insert(struct symbol
*data
, const char *key
)
4629 if( x2a
==0 ) return 0;
4631 h
= ph
& (x2a
->size
-1);
4634 if( strcmp(np
->key
,key
)==0 ){
4635 /* An existing entry with the same key is found. */
4636 /* Fail because overwrite is not allows. */
4641 if( x2a
->count
>=x2a
->size
){
4642 /* Need to make the hash table bigger */
4645 array
.size
= size
= x2a
->size
*2;
4646 array
.count
= x2a
->count
;
4647 array
.tbl
= (x2node
*)calloc(size
, sizeof(x2node
) + sizeof(x2node
*));
4648 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
4649 array
.ht
= (x2node
**)&(array
.tbl
[size
]);
4650 for(i
=0; i
<size
; i
++) array
.ht
[i
] = 0;
4651 for(i
=0; i
<x2a
->count
; i
++){
4652 x2node
*oldnp
, *newnp
;
4653 oldnp
= &(x2a
->tbl
[i
]);
4654 h
= strhash(oldnp
->key
) & (size
-1);
4655 newnp
= &(array
.tbl
[i
]);
4656 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
4657 newnp
->next
= array
.ht
[h
];
4658 newnp
->key
= oldnp
->key
;
4659 newnp
->data
= oldnp
->data
;
4660 newnp
->from
= &(array
.ht
[h
]);
4661 array
.ht
[h
] = newnp
;
4666 /* Insert the new data */
4667 h
= ph
& (x2a
->size
-1);
4668 np
= &(x2a
->tbl
[x2a
->count
++]);
4671 if( x2a
->ht
[h
] ) x2a
->ht
[h
]->from
= &(np
->next
);
4672 np
->next
= x2a
->ht
[h
];
4674 np
->from
= &(x2a
->ht
[h
]);
4678 /* Return a pointer to data assigned to the given key. Return NULL
4679 ** if no such key. */
4680 struct symbol
*Symbol_find(const char *key
)
4685 if( x2a
==0 ) return 0;
4686 h
= strhash(key
) & (x2a
->size
-1);
4689 if( strcmp(np
->key
,key
)==0 ) break;
4692 return np
? np
->data
: 0;
4695 /* Return the n-th data. Return NULL if n is out of range. */
4696 struct symbol
*Symbol_Nth(int n
)
4698 struct symbol
*data
;
4699 if( x2a
&& n
>0 && n
<=x2a
->count
){
4700 data
= x2a
->tbl
[n
-1].data
;
4707 /* Return the size of the array */
4710 return x2a
? x2a
->count
: 0;
4713 /* Return an array of pointers to all data in the table.
4714 ** The array is obtained from malloc. Return NULL if memory allocation
4715 ** problems, or if the array is empty. */
4716 struct symbol
**Symbol_arrayof()
4718 struct symbol
**array
;
4720 if( x2a
==0 ) return 0;
4722 array
= (struct symbol
**)calloc(size
, sizeof(struct symbol
*));
4724 for(i
=0; i
<size
; i
++) array
[i
] = x2a
->tbl
[i
].data
;
4729 /* Compare two configurations */
4730 int Configcmp(const char *_a
,const char *_b
)
4732 const struct config
*a
= (struct config
*) _a
;
4733 const struct config
*b
= (struct config
*) _b
;
4735 x
= a
->rp
->index
- b
->rp
->index
;
4736 if( x
==0 ) x
= a
->dot
- b
->dot
;
4740 /* Compare two states */
4741 PRIVATE
int statecmp(struct config
*a
, struct config
*b
)
4744 for(rc
=0; rc
==0 && a
&& b
; a
=a
->bp
, b
=b
->bp
){
4745 rc
= a
->rp
->index
- b
->rp
->index
;
4746 if( rc
==0 ) rc
= a
->dot
- b
->dot
;
4756 PRIVATE
unsigned statehash(struct config
*a
)
4760 h
= h
*571 + a
->rp
->index
*37 + a
->dot
;
4766 /* Allocate a new state structure */
4767 struct state
*State_new()
4769 struct state
*newstate
;
4770 newstate
= (struct state
*)calloc(1, sizeof(struct state
) );
4771 MemoryCheck(newstate
);
4775 /* There is one instance of the following structure for each
4776 ** associative array of type "x3".
4779 int size
; /* The number of available slots. */
4780 /* Must be a power of 2 greater than or */
4782 int count
; /* Number of currently slots filled */
4783 struct s_x3node
*tbl
; /* The data stored here */
4784 struct s_x3node
**ht
; /* Hash table for lookups */
4787 /* There is one instance of this structure for every data element
4788 ** in an associative array of type "x3".
4790 typedef struct s_x3node
{
4791 struct state
*data
; /* The data */
4792 struct config
*key
; /* The key */
4793 struct s_x3node
*next
; /* Next entry with the same hash */
4794 struct s_x3node
**from
; /* Previous link */
4797 /* There is only one instance of the array, which is the following */
4798 static struct s_x3
*x3a
;
4800 /* Allocate a new associative array */
4803 x3a
= (struct s_x3
*)malloc( sizeof(struct s_x3
) );
4807 x3a
->tbl
= (x3node
*)calloc(128, sizeof(x3node
) + sizeof(x3node
*));
4813 x3a
->ht
= (x3node
**)&(x3a
->tbl
[128]);
4814 for(i
=0; i
<128; i
++) x3a
->ht
[i
] = 0;
4818 /* Insert a new record into the array. Return TRUE if successful.
4819 ** Prior data with the same key is NOT overwritten */
4820 int State_insert(struct state
*data
, struct config
*key
)
4826 if( x3a
==0 ) return 0;
4827 ph
= statehash(key
);
4828 h
= ph
& (x3a
->size
-1);
4831 if( statecmp(np
->key
,key
)==0 ){
4832 /* An existing entry with the same key is found. */
4833 /* Fail because overwrite is not allows. */
4838 if( x3a
->count
>=x3a
->size
){
4839 /* Need to make the hash table bigger */
4842 array
.size
= size
= x3a
->size
*2;
4843 array
.count
= x3a
->count
;
4844 array
.tbl
= (x3node
*)calloc(size
, sizeof(x3node
) + sizeof(x3node
*));
4845 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
4846 array
.ht
= (x3node
**)&(array
.tbl
[size
]);
4847 for(i
=0; i
<size
; i
++) array
.ht
[i
] = 0;
4848 for(i
=0; i
<x3a
->count
; i
++){
4849 x3node
*oldnp
, *newnp
;
4850 oldnp
= &(x3a
->tbl
[i
]);
4851 h
= statehash(oldnp
->key
) & (size
-1);
4852 newnp
= &(array
.tbl
[i
]);
4853 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
4854 newnp
->next
= array
.ht
[h
];
4855 newnp
->key
= oldnp
->key
;
4856 newnp
->data
= oldnp
->data
;
4857 newnp
->from
= &(array
.ht
[h
]);
4858 array
.ht
[h
] = newnp
;
4863 /* Insert the new data */
4864 h
= ph
& (x3a
->size
-1);
4865 np
= &(x3a
->tbl
[x3a
->count
++]);
4868 if( x3a
->ht
[h
] ) x3a
->ht
[h
]->from
= &(np
->next
);
4869 np
->next
= x3a
->ht
[h
];
4871 np
->from
= &(x3a
->ht
[h
]);
4875 /* Return a pointer to data assigned to the given key. Return NULL
4876 ** if no such key. */
4877 struct state
*State_find(struct config
*key
)
4882 if( x3a
==0 ) return 0;
4883 h
= statehash(key
) & (x3a
->size
-1);
4886 if( statecmp(np
->key
,key
)==0 ) break;
4889 return np
? np
->data
: 0;
4892 /* Return an array of pointers to all data in the table.
4893 ** The array is obtained from malloc. Return NULL if memory allocation
4894 ** problems, or if the array is empty. */
4895 struct state
**State_arrayof()
4897 struct state
**array
;
4899 if( x3a
==0 ) return 0;
4901 array
= (struct state
**)calloc(size
, sizeof(struct state
*));
4903 for(i
=0; i
<size
; i
++) array
[i
] = x3a
->tbl
[i
].data
;
4908 /* Hash a configuration */
4909 PRIVATE
unsigned confighash(struct config
*a
)
4912 h
= h
*571 + a
->rp
->index
*37 + a
->dot
;
4916 /* There is one instance of the following structure for each
4917 ** associative array of type "x4".
4920 int size
; /* The number of available slots. */
4921 /* Must be a power of 2 greater than or */
4923 int count
; /* Number of currently slots filled */
4924 struct s_x4node
*tbl
; /* The data stored here */
4925 struct s_x4node
**ht
; /* Hash table for lookups */
4928 /* There is one instance of this structure for every data element
4929 ** in an associative array of type "x4".
4931 typedef struct s_x4node
{
4932 struct config
*data
; /* The data */
4933 struct s_x4node
*next
; /* Next entry with the same hash */
4934 struct s_x4node
**from
; /* Previous link */
4937 /* There is only one instance of the array, which is the following */
4938 static struct s_x4
*x4a
;
4940 /* Allocate a new associative array */
4941 void Configtable_init(){
4943 x4a
= (struct s_x4
*)malloc( sizeof(struct s_x4
) );
4947 x4a
->tbl
= (x4node
*)calloc(64, sizeof(x4node
) + sizeof(x4node
*));
4953 x4a
->ht
= (x4node
**)&(x4a
->tbl
[64]);
4954 for(i
=0; i
<64; i
++) x4a
->ht
[i
] = 0;
4958 /* Insert a new record into the array. Return TRUE if successful.
4959 ** Prior data with the same key is NOT overwritten */
4960 int Configtable_insert(struct config
*data
)
4966 if( x4a
==0 ) return 0;
4967 ph
= confighash(data
);
4968 h
= ph
& (x4a
->size
-1);
4971 if( Configcmp((const char *) np
->data
,(const char *) data
)==0 ){
4972 /* An existing entry with the same key is found. */
4973 /* Fail because overwrite is not allows. */
4978 if( x4a
->count
>=x4a
->size
){
4979 /* Need to make the hash table bigger */
4982 array
.size
= size
= x4a
->size
*2;
4983 array
.count
= x4a
->count
;
4984 array
.tbl
= (x4node
*)calloc(size
, sizeof(x4node
) + sizeof(x4node
*));
4985 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
4986 array
.ht
= (x4node
**)&(array
.tbl
[size
]);
4987 for(i
=0; i
<size
; i
++) array
.ht
[i
] = 0;
4988 for(i
=0; i
<x4a
->count
; i
++){
4989 x4node
*oldnp
, *newnp
;
4990 oldnp
= &(x4a
->tbl
[i
]);
4991 h
= confighash(oldnp
->data
) & (size
-1);
4992 newnp
= &(array
.tbl
[i
]);
4993 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
4994 newnp
->next
= array
.ht
[h
];
4995 newnp
->data
= oldnp
->data
;
4996 newnp
->from
= &(array
.ht
[h
]);
4997 array
.ht
[h
] = newnp
;
5002 /* Insert the new data */
5003 h
= ph
& (x4a
->size
-1);
5004 np
= &(x4a
->tbl
[x4a
->count
++]);
5006 if( x4a
->ht
[h
] ) x4a
->ht
[h
]->from
= &(np
->next
);
5007 np
->next
= x4a
->ht
[h
];
5009 np
->from
= &(x4a
->ht
[h
]);
5013 /* Return a pointer to data assigned to the given key. Return NULL
5014 ** if no such key. */
5015 struct config
*Configtable_find(struct config
*key
)
5020 if( x4a
==0 ) return 0;
5021 h
= confighash(key
) & (x4a
->size
-1);
5024 if( Configcmp((const char *) np
->data
,(const char *) key
)==0 ) break;
5027 return np
? np
->data
: 0;
5030 /* Remove all data from the table. Pass each data to the function "f"
5031 ** as it is removed. ("f" may be null to avoid this step.) */
5032 void Configtable_clear(int(*f
)(struct config
*))
5035 if( x4a
==0 || x4a
->count
==0 ) return;
5036 if( f
) for(i
=0; i
<x4a
->count
; i
++) (*f
)(x4a
->tbl
[i
].data
);
5037 for(i
=0; i
<x4a
->size
; i
++) x4a
->ht
[i
] = 0;