Include all dupe types (event when value is zero) in scan stats.
[chromium-blink-merge.git] / base / sha1_portable.cc
blob0b9df830797c6f5de28b587f0ccafc9168b7eedf
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/sha1.h"
7 #include <string.h>
9 #include "base/basictypes.h"
11 namespace base {
13 // Implementation of SHA-1. Only handles data in byte-sized blocks,
14 // which simplifies the code a fair bit.
16 // Identifier names follow notation in FIPS PUB 180-3, where you'll
17 // also find a description of the algorithm:
18 // http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
20 // Usage example:
22 // SecureHashAlgorithm sha;
23 // while(there is data to hash)
24 // sha.Update(moredata, size of data);
25 // sha.Final();
26 // memcpy(somewhere, sha.Digest(), 20);
28 // to reuse the instance of sha, call sha.Init();
30 // TODO(jhawkins): Replace this implementation with a per-platform
31 // implementation using each platform's crypto library. See
32 // http://crbug.com/47218
34 class SecureHashAlgorithm {
35 public:
36 SecureHashAlgorithm() { Init(); }
38 static const int kDigestSizeBytes;
40 void Init();
41 void Update(const void* data, size_t nbytes);
42 void Final();
44 // 20 bytes of message digest.
45 const unsigned char* Digest() const {
46 return reinterpret_cast<const unsigned char*>(H);
49 private:
50 void Pad();
51 void Process();
53 uint32 A, B, C, D, E;
55 uint32 H[5];
57 union {
58 uint32 W[80];
59 uint8 M[64];
62 uint32 cursor;
63 uint64 l;
66 static inline uint32 f(uint32 t, uint32 B, uint32 C, uint32 D) {
67 if (t < 20) {
68 return (B & C) | ((~B) & D);
69 } else if (t < 40) {
70 return B ^ C ^ D;
71 } else if (t < 60) {
72 return (B & C) | (B & D) | (C & D);
73 } else {
74 return B ^ C ^ D;
78 static inline uint32 S(uint32 n, uint32 X) {
79 return (X << n) | (X >> (32-n));
82 static inline uint32 K(uint32 t) {
83 if (t < 20) {
84 return 0x5a827999;
85 } else if (t < 40) {
86 return 0x6ed9eba1;
87 } else if (t < 60) {
88 return 0x8f1bbcdc;
89 } else {
90 return 0xca62c1d6;
94 static inline void swapends(uint32* t) {
95 *t = (*t >> 24) | ((*t >> 8) & 0xff00) | ((*t & 0xff00) << 8) | (*t << 24);
98 const int SecureHashAlgorithm::kDigestSizeBytes = 20;
100 void SecureHashAlgorithm::Init() {
101 A = 0;
102 B = 0;
103 C = 0;
104 D = 0;
105 E = 0;
106 cursor = 0;
107 l = 0;
108 H[0] = 0x67452301;
109 H[1] = 0xefcdab89;
110 H[2] = 0x98badcfe;
111 H[3] = 0x10325476;
112 H[4] = 0xc3d2e1f0;
115 void SecureHashAlgorithm::Final() {
116 Pad();
117 Process();
119 for (int t = 0; t < 5; ++t)
120 swapends(&H[t]);
123 void SecureHashAlgorithm::Update(const void* data, size_t nbytes) {
124 const uint8* d = reinterpret_cast<const uint8*>(data);
125 while (nbytes--) {
126 M[cursor++] = *d++;
127 if (cursor >= 64)
128 Process();
129 l += 8;
133 void SecureHashAlgorithm::Pad() {
134 M[cursor++] = 0x80;
136 if (cursor > 64-8) {
137 // pad out to next block
138 while (cursor < 64)
139 M[cursor++] = 0;
141 Process();
144 while (cursor < 64-8)
145 M[cursor++] = 0;
147 M[cursor++] = (l >> 56) & 0xff;
148 M[cursor++] = (l >> 48) & 0xff;
149 M[cursor++] = (l >> 40) & 0xff;
150 M[cursor++] = (l >> 32) & 0xff;
151 M[cursor++] = (l >> 24) & 0xff;
152 M[cursor++] = (l >> 16) & 0xff;
153 M[cursor++] = (l >> 8) & 0xff;
154 M[cursor++] = l & 0xff;
157 void SecureHashAlgorithm::Process() {
158 uint32 t;
160 // Each a...e corresponds to a section in the FIPS 180-3 algorithm.
162 // a.
164 // W and M are in a union, so no need to memcpy.
165 // memcpy(W, M, sizeof(M));
166 for (t = 0; t < 16; ++t)
167 swapends(&W[t]);
169 // b.
170 for (t = 16; t < 80; ++t)
171 W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
173 // c.
174 A = H[0];
175 B = H[1];
176 C = H[2];
177 D = H[3];
178 E = H[4];
180 // d.
181 for (t = 0; t < 80; ++t) {
182 uint32 TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
183 E = D;
184 D = C;
185 C = S(30, B);
186 B = A;
187 A = TEMP;
190 // e.
191 H[0] += A;
192 H[1] += B;
193 H[2] += C;
194 H[3] += D;
195 H[4] += E;
197 cursor = 0;
200 std::string SHA1HashString(const std::string& str) {
201 char hash[SecureHashAlgorithm::kDigestSizeBytes];
202 SHA1HashBytes(reinterpret_cast<const unsigned char*>(str.c_str()),
203 str.length(), reinterpret_cast<unsigned char*>(hash));
204 return std::string(hash, SecureHashAlgorithm::kDigestSizeBytes);
207 void SHA1HashBytes(const unsigned char* data, size_t len,
208 unsigned char* hash) {
209 SecureHashAlgorithm sha;
210 sha.Update(data, len);
211 sha.Final();
213 memcpy(hash, sha.Digest(), SecureHashAlgorithm::kDigestSizeBytes);
216 } // namespace base