Add ENABLE_MEDIA_ROUTER define to builds other than Android and iOS.
[chromium-blink-merge.git] / cc / resources / picture_pile.cc
blob1b814477b427f3324d0f5b9048187d5c658e949a
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
7 #include <algorithm>
8 #include <limits>
9 #include <vector>
11 #include "cc/base/region.h"
12 #include "cc/resources/picture_pile_impl.h"
13 #include "skia/ext/analysis_canvas.h"
15 namespace {
16 // Layout pixel buffer around the visible layer rect to record. Any base
17 // picture that intersects the visible layer rect expanded by this distance
18 // will be recorded.
19 const int kPixelDistanceToRecord = 8000;
20 // We don't perform solid color analysis on images that have more than 10 skia
21 // operations.
22 const int kOpCountThatIsOkToAnalyze = 10;
24 // Dimensions of the tiles in this picture pile as well as the dimensions of
25 // the base picture in each tile.
26 const int kBasePictureSize = 512;
28 // TODO(humper): The density threshold here is somewhat arbitrary; need a
29 // way to set // this from the command line so we can write a benchmark
30 // script and find a sweet spot.
31 const float kDensityThreshold = 0.5f;
33 bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) {
34 return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x());
37 bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) {
38 return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y());
41 float PerformClustering(const std::vector<gfx::Rect>& tiles,
42 std::vector<gfx::Rect>* clustered_rects) {
43 // These variables track the record area and invalid area
44 // for the entire clustering
45 int total_record_area = 0;
46 int total_invalid_area = 0;
48 // These variables track the record area and invalid area
49 // for the current cluster being constructed.
50 gfx::Rect cur_record_rect;
51 int cluster_record_area = 0, cluster_invalid_area = 0;
53 for (std::vector<gfx::Rect>::const_iterator it = tiles.begin();
54 it != tiles.end();
55 it++) {
56 gfx::Rect invalid_tile = *it;
58 // For each tile, we consider adding the invalid tile to the
59 // current record rectangle. Only add it if the amount of empty
60 // space created is below a density threshold.
61 int tile_area = invalid_tile.width() * invalid_tile.height();
63 gfx::Rect proposed_union = cur_record_rect;
64 proposed_union.Union(invalid_tile);
65 int proposed_area = proposed_union.width() * proposed_union.height();
66 float proposed_density =
67 static_cast<float>(cluster_invalid_area + tile_area) /
68 static_cast<float>(proposed_area);
70 if (proposed_density >= kDensityThreshold) {
71 // It's okay to add this invalid tile to the
72 // current recording rectangle.
73 cur_record_rect = proposed_union;
74 cluster_record_area = proposed_area;
75 cluster_invalid_area += tile_area;
76 total_invalid_area += tile_area;
77 } else {
78 // Adding this invalid tile to the current recording rectangle
79 // would exceed our badness threshold, so put the current rectangle
80 // in the list of recording rects, and start a new one.
81 clustered_rects->push_back(cur_record_rect);
82 total_record_area += cluster_record_area;
83 cur_record_rect = invalid_tile;
84 cluster_invalid_area = tile_area;
85 cluster_record_area = tile_area;
89 DCHECK(!cur_record_rect.IsEmpty());
90 clustered_rects->push_back(cur_record_rect);
91 total_record_area += cluster_record_area;;
93 DCHECK_NE(total_record_area, 0);
95 return static_cast<float>(total_invalid_area) /
96 static_cast<float>(total_record_area);
99 void ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles,
100 std::vector<gfx::Rect>* record_rects) {
101 TRACE_EVENT1("cc", "ClusterTiles",
102 "count",
103 invalid_tiles.size());
104 if (invalid_tiles.size() <= 1) {
105 // Quickly handle the special case for common
106 // single-invalidation update, and also the less common
107 // case of no tiles passed in.
108 *record_rects = invalid_tiles;
109 return;
112 // Sort the invalid tiles by y coordinate.
113 std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles;
114 std::sort(invalid_tiles_vertical.begin(),
115 invalid_tiles_vertical.end(),
116 rect_sort_y);
118 std::vector<gfx::Rect> vertical_clustering;
119 float vertical_density =
120 PerformClustering(invalid_tiles_vertical, &vertical_clustering);
122 // If vertical density is optimal, then we can return early.
123 if (vertical_density == 1.f) {
124 *record_rects = vertical_clustering;
125 return;
128 // Now try again with a horizontal sort, see which one is best
129 std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles;
130 std::sort(invalid_tiles_horizontal.begin(),
131 invalid_tiles_horizontal.end(),
132 rect_sort_x);
134 std::vector<gfx::Rect> horizontal_clustering;
135 float horizontal_density =
136 PerformClustering(invalid_tiles_horizontal, &horizontal_clustering);
138 if (vertical_density < horizontal_density) {
139 *record_rects = horizontal_clustering;
140 return;
143 *record_rects = vertical_clustering;
146 #ifdef NDEBUG
147 const bool kDefaultClearCanvasSetting = false;
148 #else
149 const bool kDefaultClearCanvasSetting = true;
150 #endif
152 } // namespace
154 namespace cc {
156 PicturePile::PicturePile(float min_contents_scale,
157 const gfx::Size& tile_grid_size)
158 : min_contents_scale_(0),
159 slow_down_raster_scale_factor_for_debug_(0),
160 gather_pixel_refs_(false),
161 has_any_recordings_(false),
162 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
163 requires_clear_(true),
164 is_solid_color_(false),
165 solid_color_(SK_ColorTRANSPARENT),
166 background_color_(SK_ColorTRANSPARENT),
167 pixel_record_distance_(kPixelDistanceToRecord),
168 is_suitable_for_gpu_rasterization_(true) {
169 tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
170 SetMinContentsScale(min_contents_scale);
171 SetTileGridSize(tile_grid_size);
174 PicturePile::~PicturePile() {
177 bool PicturePile::UpdateAndExpandInvalidation(
178 ContentLayerClient* painter,
179 Region* invalidation,
180 const gfx::Size& layer_size,
181 const gfx::Rect& visible_layer_rect,
182 int frame_number,
183 RecordingSource::RecordingMode recording_mode) {
184 gfx::Rect interest_rect = visible_layer_rect;
185 interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_);
186 recorded_viewport_ = interest_rect;
187 recorded_viewport_.Intersect(gfx::Rect(layer_size));
189 bool updated = ApplyInvalidationAndResize(interest_rect, invalidation,
190 layer_size, frame_number);
191 std::vector<gfx::Rect> invalid_tiles;
192 GetInvalidTileRects(interest_rect, invalidation, visible_layer_rect,
193 frame_number, &invalid_tiles);
194 std::vector<gfx::Rect> record_rects;
195 ClusterTiles(invalid_tiles, &record_rects);
197 if (record_rects.empty())
198 return updated;
200 CreatePictures(painter, recording_mode, record_rects);
202 DetermineIfSolidColor();
204 has_any_recordings_ = true;
205 DCHECK(CanRasterSlowTileCheck(recorded_viewport_));
206 return true;
209 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect& interest_rect,
210 Region* invalidation,
211 const gfx::Size& layer_size,
212 int frame_number) {
213 bool updated = false;
215 Region synthetic_invalidation;
216 gfx::Size old_tiling_size = GetSize();
217 if (old_tiling_size != layer_size) {
218 tiling_.SetTilingSize(layer_size);
219 updated = true;
222 gfx::Rect interest_rect_over_tiles =
223 tiling_.ExpandRectToTileBounds(interest_rect);
225 if (old_tiling_size != layer_size) {
226 gfx::Size min_tiling_size(
227 std::min(GetSize().width(), old_tiling_size.width()),
228 std::min(GetSize().height(), old_tiling_size.height()));
229 gfx::Size max_tiling_size(
230 std::max(GetSize().width(), old_tiling_size.width()),
231 std::max(GetSize().height(), old_tiling_size.height()));
233 has_any_recordings_ = false;
235 // Drop recordings that are outside the new or old layer bounds or that
236 // changed size. Newly exposed areas are considered invalidated.
237 // Previously exposed areas that are now outside of bounds also need to
238 // be invalidated, as they may become part of raster when scale < 1.
239 std::vector<PictureMapKey> to_erase;
240 int min_toss_x = tiling_.num_tiles_x();
241 if (max_tiling_size.width() > min_tiling_size.width()) {
242 min_toss_x =
243 tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width());
245 int min_toss_y = tiling_.num_tiles_y();
246 if (max_tiling_size.height() > min_tiling_size.height()) {
247 min_toss_y =
248 tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height());
250 for (const auto& key_picture_pair : picture_map_) {
251 const PictureMapKey& key = key_picture_pair.first;
252 if (key.first < min_toss_x && key.second < min_toss_y) {
253 has_any_recordings_ = true;
254 continue;
256 to_erase.push_back(key);
259 for (size_t i = 0; i < to_erase.size(); ++i)
260 picture_map_.erase(to_erase[i]);
262 // If a recording is dropped and not re-recorded below, invalidate that
263 // full recording to cause any raster tiles that would use it to be
264 // dropped.
265 // If the recording will be replaced below, invalidate newly exposed
266 // areas and previously exposed areas to force raster tiles that include the
267 // old recording to know there is new recording to display.
268 gfx::Rect min_tiling_rect_over_tiles =
269 tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size));
270 if (min_toss_x < tiling_.num_tiles_x()) {
271 // The bounds which we want to invalidate are the tiles along the old
272 // edge of the pile when expanding, or the new edge of the pile when
273 // shrinking. In either case, it's the difference of the two, so we'll
274 // call this bounding box the DELTA EDGE RECT.
276 // In the picture below, the delta edge rect would be the bounding box of
277 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
278 // the same tiles.
280 // min pile edge-v max pile edge-v
281 // ---------------+ - - - - - - - -+
282 // mmppssvvyybbeeh|h .
283 // mmppssvvyybbeeh|h .
284 // nnqqttwwzzccffi|i .
285 // nnqqttwwzzccffi|i .
286 // oorruuxxaaddggj|j .
287 // oorruuxxaaddggj|j .
288 // ---------------+ - - - - - - - -+ <- min pile edge
289 // .
290 // - - - - - - - - - - - - - - - -+ <- max pile edge
292 // If you were to slide a vertical beam from the left edge of the
293 // delta edge rect toward the right, it would either hit the right edge
294 // of the delta edge rect, or the interest rect (expanded to the bounds
295 // of the tiles it touches). The same is true for a beam parallel to
296 // any of the four edges, sliding across the delta edge rect. We use
297 // the union of these four rectangles generated by these beams to
298 // determine which part of the delta edge rect is outside of the expanded
299 // interest rect.
301 // Case 1: Intersect rect is outside the delta edge rect. It can be
302 // either on the left or the right. The |left_rect| and |right_rect|,
303 // cover this case, one will be empty and one will cover the full
304 // delta edge rect. In the picture below, |left_rect| would cover the
305 // delta edge rect, and |right_rect| would be empty.
306 // +----------------------+ |^^^^^^^^^^^^^^^|
307 // |===> DELTA EDGE RECT | | |
308 // |===> | | INTEREST RECT |
309 // |===> | | |
310 // |===> | | |
311 // +----------------------+ |vvvvvvvvvvvvvvv|
313 // Case 2: Interest rect is inside the delta edge rect. It will always
314 // fill the entire delta edge rect horizontally since the old edge rect
315 // is a single tile wide, and the interest rect has been expanded to the
316 // bounds of the tiles it touches. In this case the |left_rect| and
317 // |right_rect| will be empty, but the case is handled by the |top_rect|
318 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
319 // |bottom_rect| would empty, they would each cover the area of the old
320 // edge rect outside the expanded interest rect.
321 // +-----------------+
322 // |:::::::::::::::::|
323 // |:::::::::::::::::|
324 // |vvvvvvvvvvvvvvvvv|
325 // | |
326 // +-----------------+
327 // | INTEREST RECT |
328 // | |
329 // +-----------------+
330 // | |
331 // | DELTA EDGE RECT |
332 // +-----------------+
334 // Lastly, we need to consider tiles inside the expanded interest rect.
335 // For those tiles, we want to invalidate exactly the newly exposed
336 // pixels. In the picture below the tiles in the delta edge rect have
337 // been resized and the area covered by periods must be invalidated. The
338 // |exposed_rect| will cover exactly that area.
339 // v-min pile edge
340 // +---------+-------+
341 // | ........|
342 // | ........|
343 // | DELTA EDGE.RECT.|
344 // | ........|
345 // | ........|
346 // | ........|
347 // | ........|
348 // | ........|
349 // | ........|
350 // +---------+-------+
352 int left = tiling_.TilePositionX(min_toss_x);
353 int right = left + tiling_.TileSizeX(min_toss_x);
354 int top = min_tiling_rect_over_tiles.y();
355 int bottom = min_tiling_rect_over_tiles.bottom();
357 int left_until = std::min(interest_rect_over_tiles.x(), right);
358 int right_until = std::max(interest_rect_over_tiles.right(), left);
359 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
360 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
362 int exposed_left = min_tiling_size.width();
363 int exposed_left_until = max_tiling_size.width();
364 int exposed_top = top;
365 int exposed_bottom = max_tiling_size.height();
366 DCHECK_GE(exposed_left, left);
368 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
369 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
370 gfx::Rect top_rect(left, top, right - left, top_until - top);
371 gfx::Rect bottom_rect(
372 left, bottom_until, right - left, bottom - bottom_until);
373 gfx::Rect exposed_rect(exposed_left,
374 exposed_top,
375 exposed_left_until - exposed_left,
376 exposed_bottom - exposed_top);
377 synthetic_invalidation.Union(left_rect);
378 synthetic_invalidation.Union(right_rect);
379 synthetic_invalidation.Union(top_rect);
380 synthetic_invalidation.Union(bottom_rect);
381 synthetic_invalidation.Union(exposed_rect);
383 if (min_toss_y < tiling_.num_tiles_y()) {
384 // The same thing occurs here as in the case above, but the invalidation
385 // rect is the bounding box around the bottom row of tiles in the min
386 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
388 int top = tiling_.TilePositionY(min_toss_y);
389 int bottom = top + tiling_.TileSizeY(min_toss_y);
390 int left = min_tiling_rect_over_tiles.x();
391 int right = min_tiling_rect_over_tiles.right();
393 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
394 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
395 int left_until = std::min(interest_rect_over_tiles.x(), right);
396 int right_until = std::max(interest_rect_over_tiles.right(), left);
398 int exposed_top = min_tiling_size.height();
399 int exposed_top_until = max_tiling_size.height();
400 int exposed_left = left;
401 int exposed_right = max_tiling_size.width();
402 DCHECK_GE(exposed_top, top);
404 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
405 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
406 gfx::Rect top_rect(left, top, right - left, top_until - top);
407 gfx::Rect bottom_rect(
408 left, bottom_until, right - left, bottom - bottom_until);
409 gfx::Rect exposed_rect(exposed_left,
410 exposed_top,
411 exposed_right - exposed_left,
412 exposed_top_until - exposed_top);
413 synthetic_invalidation.Union(left_rect);
414 synthetic_invalidation.Union(right_rect);
415 synthetic_invalidation.Union(top_rect);
416 synthetic_invalidation.Union(bottom_rect);
417 synthetic_invalidation.Union(exposed_rect);
421 // Detect cases where the full pile is invalidated, in this situation we
422 // can just drop/invalidate everything.
423 if (invalidation->Contains(gfx::Rect(old_tiling_size)) ||
424 invalidation->Contains(gfx::Rect(GetSize()))) {
425 updated = !picture_map_.empty();
426 picture_map_.clear();
427 } else {
428 // Expand invalidation that is on tiles that aren't in the interest rect and
429 // will not be re-recorded below. These tiles are no longer valid and should
430 // be considerered fully invalid, so we can know to not keep around raster
431 // tiles that intersect with these recording tiles.
432 Region invalidation_expanded_to_full_tiles;
434 for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) {
435 gfx::Rect invalid_rect = i.rect();
437 // This rect covers the bounds (excluding borders) of all tiles whose
438 // bounds (including borders) touch the |interest_rect|. This matches
439 // the iteration of the |invalid_rect| below which includes borders when
440 // calling Invalidate() on pictures.
441 gfx::Rect invalid_rect_outside_interest_rect_tiles =
442 tiling_.ExpandRectToTileBounds(invalid_rect);
443 // We subtract the |interest_rect_over_tiles| which represents the bounds
444 // of tiles that will be re-recorded below. This matches the iteration of
445 // |interest_rect| below which includes borders.
446 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
447 // instead of using Rect::Subtract which gives you the bounding box of the
448 // subtraction.
449 invalid_rect_outside_interest_rect_tiles.Subtract(
450 interest_rect_over_tiles);
451 invalidation_expanded_to_full_tiles.Union(
452 invalid_rect_outside_interest_rect_tiles);
454 // Split this inflated invalidation across tile boundaries and apply it
455 // to all tiles that it touches.
456 bool include_borders = true;
457 for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders);
458 iter;
459 ++iter) {
460 const PictureMapKey& key = iter.index();
462 PictureMap::iterator picture_it = picture_map_.find(key);
463 if (picture_it == picture_map_.end())
464 continue;
466 updated = true;
467 picture_map_.erase(key);
469 // Invalidate drops the picture so the whole tile better be invalidated
470 // if it won't be re-recorded below.
471 DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second)
472 .Intersects(interest_rect_over_tiles),
473 invalidation_expanded_to_full_tiles.Contains(
474 tiling_.TileBounds(key.first, key.second)));
477 invalidation->Union(invalidation_expanded_to_full_tiles);
480 invalidation->Union(synthetic_invalidation);
481 return updated;
484 void PicturePile::GetInvalidTileRects(const gfx::Rect& interest_rect,
485 Region* invalidation,
486 const gfx::Rect& visible_layer_rect,
487 int frame_number,
488 std::vector<gfx::Rect>* invalid_tiles) {
489 // Make a list of all invalid tiles; we will attempt to
490 // cluster these into multiple invalidation regions.
491 bool include_borders = true;
492 for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it;
493 ++it) {
494 const PictureMapKey& key = it.index();
495 if (picture_map_.find(key) == picture_map_.end())
496 invalid_tiles->push_back(tiling_.TileBounds(key.first, key.second));
500 void PicturePile::CreatePictures(ContentLayerClient* painter,
501 RecordingSource::RecordingMode recording_mode,
502 const std::vector<gfx::Rect>& record_rects) {
503 for (const auto& record_rect : record_rects) {
504 gfx::Rect padded_record_rect = PadRect(record_rect);
506 int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_);
507 scoped_refptr<Picture> picture;
509 for (int i = 0; i < repeat_count; i++) {
510 picture = Picture::Create(padded_record_rect, painter, tile_grid_size_,
511 gather_pixel_refs_, recording_mode);
512 // Note the '&&' with previous is-suitable state.
513 // This means that once a picture-pile becomes unsuitable for gpu
514 // rasterization due to some content, it will continue to be unsuitable
515 // even if that content is replaced by gpu-friendly content.
516 // This is an optimization to avoid iterating though all pictures in
517 // the pile after each invalidation.
518 if (is_suitable_for_gpu_rasterization_) {
519 const char* reason = nullptr;
520 is_suitable_for_gpu_rasterization_ &=
521 picture->IsSuitableForGpuRasterization(&reason);
523 if (!is_suitable_for_gpu_rasterization_) {
524 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
525 TRACE_EVENT_SCOPE_THREAD, "reason", reason);
530 bool found_tile_for_recorded_picture = false;
532 bool include_borders = true;
533 for (TilingData::Iterator it(&tiling_, padded_record_rect, include_borders);
534 it; ++it) {
535 const PictureMapKey& key = it.index();
536 gfx::Rect tile = PaddedRect(key);
537 if (padded_record_rect.Contains(tile)) {
538 picture_map_[key] = picture;
539 found_tile_for_recorded_picture = true;
542 DCHECK(found_tile_for_recorded_picture);
546 scoped_refptr<RasterSource> PicturePile::CreateRasterSource(
547 bool can_use_lcd_text) const {
548 return scoped_refptr<RasterSource>(
549 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text));
552 gfx::Size PicturePile::GetSize() const {
553 return tiling_.tiling_size();
556 void PicturePile::SetEmptyBounds() {
557 tiling_.SetTilingSize(gfx::Size());
558 Clear();
561 void PicturePile::SetMinContentsScale(float min_contents_scale) {
562 DCHECK(min_contents_scale);
563 if (min_contents_scale_ == min_contents_scale)
564 return;
566 // Picture contents are played back scaled. When the final contents scale is
567 // less than 1 (i.e. low res), then multiple recorded pixels will be used
568 // to raster one final pixel. To avoid splitting a final pixel across
569 // pictures (which would result in incorrect rasterization due to blending), a
570 // buffer margin is added so that any picture can be snapped to integral
571 // final pixels.
573 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
574 // pixels, since that's the minimum number of pixels to add so that resulting
575 // content can be snapped to a four pixel aligned grid.
576 int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
577 buffer_pixels = std::max(0, buffer_pixels);
578 SetBufferPixels(buffer_pixels);
579 min_contents_scale_ = min_contents_scale;
582 void PicturePile::SetSlowdownRasterScaleFactor(int factor) {
583 slow_down_raster_scale_factor_for_debug_ = factor;
586 void PicturePile::SetGatherPixelRefs(bool gather_pixel_refs) {
587 gather_pixel_refs_ = gather_pixel_refs;
590 void PicturePile::SetBackgroundColor(SkColor background_color) {
591 background_color_ = background_color;
594 void PicturePile::SetRequiresClear(bool requires_clear) {
595 requires_clear_ = requires_clear;
598 bool PicturePile::IsSuitableForGpuRasterization() const {
599 return is_suitable_for_gpu_rasterization_;
602 void PicturePile::SetTileGridSize(const gfx::Size& tile_grid_size) {
603 DCHECK_GT(tile_grid_size.width(), 0);
604 DCHECK_GT(tile_grid_size.height(), 0);
606 tile_grid_size_ = tile_grid_size;
609 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
610 is_suitable_for_gpu_rasterization_ = false;
613 gfx::Size PicturePile::GetTileGridSizeForTesting() const {
614 return tile_grid_size_;
617 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect& layer_rect) const {
618 bool include_borders = false;
619 for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders);
620 tile_iter; ++tile_iter) {
621 PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
622 if (map_iter == picture_map_.end())
623 return false;
625 return true;
628 void PicturePile::DetermineIfSolidColor() {
629 is_solid_color_ = false;
630 solid_color_ = SK_ColorTRANSPARENT;
632 if (picture_map_.empty()) {
633 return;
636 PictureMap::const_iterator it = picture_map_.begin();
637 const Picture* picture = it->second.get();
639 // Missing recordings due to frequent invalidations or being too far away
640 // from the interest rect will cause the a null picture to exist.
641 if (!picture)
642 return;
644 // Don't bother doing more work if the first image is too complicated.
645 if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze)
646 return;
648 // Make sure all of the mapped images point to the same picture.
649 for (++it; it != picture_map_.end(); ++it) {
650 if (it->second.get() != picture)
651 return;
654 gfx::Size layer_size = GetSize();
655 skia::AnalysisCanvas canvas(layer_size.width(), layer_size.height());
657 picture->Raster(&canvas, nullptr, Region(), 1.0f);
658 is_solid_color_ = canvas.GetColorIfSolid(&solid_color_);
661 gfx::Rect PicturePile::PaddedRect(const PictureMapKey& key) const {
662 gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
663 return PadRect(tile);
666 gfx::Rect PicturePile::PadRect(const gfx::Rect& rect) const {
667 gfx::Rect padded_rect = rect;
668 padded_rect.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
669 -buffer_pixels());
670 return padded_rect;
673 void PicturePile::Clear() {
674 picture_map_.clear();
675 recorded_viewport_ = gfx::Rect();
676 has_any_recordings_ = false;
677 is_solid_color_ = false;
680 void PicturePile::SetBufferPixels(int new_buffer_pixels) {
681 if (new_buffer_pixels == buffer_pixels())
682 return;
684 Clear();
685 tiling_.SetBorderTexels(new_buffer_pixels);
688 } // namespace cc