Add ENABLE_MEDIA_ROUTER define to builds other than Android and iOS.
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob833791096b91f8d7a1c6a60040230be5525e45b0
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
18 #include "net/quic/quic_utils.h"
20 using base::StringPiece;
21 using std::map;
22 using std::max;
23 using std::min;
24 using std::numeric_limits;
25 using std::string;
27 namespace net {
29 namespace {
31 // Mask to select the lowest 48 bits of a sequence number.
32 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33 GG_UINT64_C(0x0000FFFFFFFFFFFF);
34 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35 GG_UINT64_C(0x00000000FFFFFFFF);
36 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37 GG_UINT64_C(0x000000000000FFFF);
38 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39 GG_UINT64_C(0x00000000000000FF);
41 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
44 // Number of bits the sequence number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding : 0b 00000000 (0x00)
55 // ResetStream : 0b 00000001 (0x01)
56 // ConnectionClose : 0b 00000010 (0x02)
57 // GoAway : 0b 00000011 (0x03)
58 // WindowUpdate : 0b 00000100 (0x04)
59 // Blocked : 0b 00000101 (0x05)
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream : 0b 1xxxxxxx
64 // Ack : 0b 01xxxxxx
66 // Semantics of the flag bits above (the x bits) depends on the frame type.
68 // Masks to determine if the frame type is a special use
69 // and for specific special frame types.
70 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
71 const uint8 kQuicFrameTypeStreamMask = 0x80;
72 const uint8 kQuicFrameTypeAckMask = 0x40;
74 // Stream frame relative shifts and masks for interpreting the stream flags.
75 // StreamID may be 1, 2, 3, or 4 bytes.
76 const uint8 kQuicStreamIdShift = 2;
77 const uint8 kQuicStreamIDLengthMask = 0x03;
79 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
80 const uint8 kQuicStreamOffsetShift = 3;
81 const uint8 kQuicStreamOffsetMask = 0x07;
83 // Data length may be 0 or 2 bytes.
84 const uint8 kQuicStreamDataLengthShift = 1;
85 const uint8 kQuicStreamDataLengthMask = 0x01;
87 // Fin bit may be set or not.
88 const uint8 kQuicStreamFinShift = 1;
89 const uint8 kQuicStreamFinMask = 0x01;
91 // Sequence number size shift used in AckFrames.
92 const uint8 kQuicSequenceNumberLengthShift = 2;
94 // Acks may be truncated.
95 const uint8 kQuicAckTruncatedShift = 1;
96 const uint8 kQuicAckTruncatedMask = 0x01;
98 // Acks may not have any nacks.
99 const uint8 kQuicHasNacksMask = 0x01;
101 // Returns the absolute value of the difference between |a| and |b|.
102 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
103 QuicPacketSequenceNumber b) {
104 // Since these are unsigned numbers, we can't just return abs(a - b)
105 if (a < b) {
106 return b - a;
108 return a - b;
111 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
112 QuicPacketSequenceNumber a,
113 QuicPacketSequenceNumber b) {
114 return (Delta(target, a) < Delta(target, b)) ? a : b;
117 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
118 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
119 case PACKET_FLAGS_6BYTE_SEQUENCE:
120 return PACKET_6BYTE_SEQUENCE_NUMBER;
121 case PACKET_FLAGS_4BYTE_SEQUENCE:
122 return PACKET_4BYTE_SEQUENCE_NUMBER;
123 case PACKET_FLAGS_2BYTE_SEQUENCE:
124 return PACKET_2BYTE_SEQUENCE_NUMBER;
125 case PACKET_FLAGS_1BYTE_SEQUENCE:
126 return PACKET_1BYTE_SEQUENCE_NUMBER;
127 default:
128 LOG(DFATAL) << "Unreachable case statement.";
129 return PACKET_6BYTE_SEQUENCE_NUMBER;
133 } // namespace
135 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
136 const QuicWindowUpdateFrame& frame) {
137 return true;
140 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
141 return true;
144 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
145 QuicTime creation_time,
146 Perspective perspective)
147 : visitor_(nullptr),
148 fec_builder_(nullptr),
149 entropy_calculator_(nullptr),
150 error_(QUIC_NO_ERROR),
151 last_sequence_number_(0),
152 last_serialized_connection_id_(0),
153 supported_versions_(supported_versions),
154 decrypter_level_(ENCRYPTION_NONE),
155 alternative_decrypter_level_(ENCRYPTION_NONE),
156 alternative_decrypter_latch_(false),
157 perspective_(perspective),
158 validate_flags_(true),
159 creation_time_(creation_time),
160 last_timestamp_(QuicTime::Delta::Zero()) {
161 DCHECK(!supported_versions.empty());
162 quic_version_ = supported_versions_[0];
163 decrypter_.reset(QuicDecrypter::Create(kNULL));
164 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
167 QuicFramer::~QuicFramer() {}
169 // static
170 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
171 QuicStreamOffset offset,
172 bool last_frame_in_packet,
173 InFecGroup is_in_fec_group) {
174 bool no_stream_frame_length = last_frame_in_packet &&
175 is_in_fec_group == NOT_IN_FEC_GROUP;
176 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
177 GetStreamOffsetSize(offset) +
178 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
181 // static
182 size_t QuicFramer::GetMinAckFrameSize(
183 QuicSequenceNumberLength sequence_number_length,
184 QuicSequenceNumberLength largest_observed_length) {
185 return kQuicFrameTypeSize + kQuicEntropyHashSize +
186 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
189 // static
190 size_t QuicFramer::GetStopWaitingFrameSize(
191 QuicSequenceNumberLength sequence_number_length) {
192 return kQuicFrameTypeSize + kQuicEntropyHashSize +
193 sequence_number_length;
196 // static
197 size_t QuicFramer::GetMinRstStreamFrameSize() {
198 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
199 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
200 kQuicErrorDetailsLengthSize;
203 // static
204 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
205 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
208 // static
209 size_t QuicFramer::GetMinGoAwayFrameSize() {
210 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
211 kQuicMaxStreamIdSize;
214 // static
215 size_t QuicFramer::GetWindowUpdateFrameSize() {
216 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
219 // static
220 size_t QuicFramer::GetBlockedFrameSize() {
221 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
224 // static
225 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
226 // Sizes are 1 through 4 bytes.
227 for (int i = 1; i <= 4; ++i) {
228 stream_id >>= 8;
229 if (stream_id == 0) {
230 return i;
233 LOG(DFATAL) << "Failed to determine StreamIDSize.";
234 return 4;
237 // static
238 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
239 // 0 is a special case.
240 if (offset == 0) {
241 return 0;
243 // 2 through 8 are the remaining sizes.
244 offset >>= 8;
245 for (int i = 2; i <= 8; ++i) {
246 offset >>= 8;
247 if (offset == 0) {
248 return i;
251 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
252 return 8;
255 // static
256 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
257 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
258 number_versions * kQuicVersionSize;
261 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
262 for (size_t i = 0; i < supported_versions_.size(); ++i) {
263 if (version == supported_versions_[i]) {
264 return true;
267 return false;
270 size_t QuicFramer::GetSerializedFrameLength(
271 const QuicFrame& frame,
272 size_t free_bytes,
273 bool first_frame,
274 bool last_frame,
275 InFecGroup is_in_fec_group,
276 QuicSequenceNumberLength sequence_number_length) {
277 if (frame.type == PADDING_FRAME) {
278 // PADDING implies end of packet.
279 return free_bytes;
281 size_t frame_len =
282 ComputeFrameLength(frame, last_frame, is_in_fec_group,
283 sequence_number_length);
284 if (frame_len <= free_bytes) {
285 // Frame fits within packet. Note that acks may be truncated.
286 return frame_len;
288 // Only truncate the first frame in a packet, so if subsequent ones go
289 // over, stop including more frames.
290 if (!first_frame) {
291 return 0;
293 bool can_truncate = frame.type == ACK_FRAME &&
294 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
295 PACKET_6BYTE_SEQUENCE_NUMBER);
296 if (can_truncate) {
297 // Truncate the frame so the packet will not exceed kMaxPacketSize.
298 // Note that we may not use every byte of the writer in this case.
299 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
300 return free_bytes;
302 if (!FLAGS_quic_allow_oversized_packets_for_test) {
303 return 0;
305 LOG(DFATAL) << "Packet size too small to fit frame.";
306 return frame_len;
309 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
311 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
313 // static
314 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
315 const QuicPacketHeader& header) {
316 return header.entropy_flag << (header.packet_sequence_number % 8);
319 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
320 const QuicFrames& frames,
321 char* buffer,
322 size_t packet_length) {
323 QuicDataWriter writer(packet_length, buffer);
324 if (!AppendPacketHeader(header, &writer)) {
325 LOG(DFATAL) << "AppendPacketHeader failed";
326 return nullptr;
329 size_t i = 0;
330 for (const QuicFrame& frame : frames) {
331 // Determine if we should write stream frame length in header.
332 const bool no_stream_frame_length =
333 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
334 (i == frames.size() - 1);
335 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
336 LOG(DFATAL) << "AppendTypeByte failed";
337 return nullptr;
340 switch (frame.type) {
341 case PADDING_FRAME:
342 writer.WritePadding();
343 break;
344 case STREAM_FRAME:
345 if (!AppendStreamFrame(
346 *frame.stream_frame, no_stream_frame_length, &writer)) {
347 LOG(DFATAL) << "AppendStreamFrame failed";
348 return nullptr;
350 break;
351 case ACK_FRAME:
352 if (!AppendAckFrameAndTypeByte(
353 header, *frame.ack_frame, &writer)) {
354 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
355 return nullptr;
357 break;
358 case STOP_WAITING_FRAME:
359 if (!AppendStopWaitingFrame(
360 header, *frame.stop_waiting_frame, &writer)) {
361 LOG(DFATAL) << "AppendStopWaitingFrame failed";
362 return nullptr;
364 break;
365 case PING_FRAME:
366 // Ping has no payload.
367 break;
368 case RST_STREAM_FRAME:
369 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
370 LOG(DFATAL) << "AppendRstStreamFrame failed";
371 return nullptr;
373 break;
374 case CONNECTION_CLOSE_FRAME:
375 if (!AppendConnectionCloseFrame(
376 *frame.connection_close_frame, &writer)) {
377 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
378 return nullptr;
380 break;
381 case GOAWAY_FRAME:
382 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
383 LOG(DFATAL) << "AppendGoAwayFrame failed";
384 return nullptr;
386 break;
387 case WINDOW_UPDATE_FRAME:
388 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
389 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
390 return nullptr;
392 break;
393 case BLOCKED_FRAME:
394 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
395 LOG(DFATAL) << "AppendBlockedFrame failed";
396 return nullptr;
398 break;
399 default:
400 RaiseError(QUIC_INVALID_FRAME_DATA);
401 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
402 return nullptr;
404 ++i;
407 QuicPacket* packet =
408 new QuicPacket(writer.data(), writer.length(), false,
409 header.public_header.connection_id_length,
410 header.public_header.version_flag,
411 header.public_header.sequence_number_length);
413 if (fec_builder_) {
414 fec_builder_->OnBuiltFecProtectedPayload(header,
415 packet->FecProtectedData());
418 return packet;
421 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
422 const QuicFecData& fec) {
423 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
424 DCHECK_NE(0u, header.fec_group);
425 size_t len = GetPacketHeaderSize(header);
426 len += fec.redundancy.length();
428 scoped_ptr<char[]> buffer(new char[len]);
429 QuicDataWriter writer(len, buffer.get());
430 if (!AppendPacketHeader(header, &writer)) {
431 LOG(DFATAL) << "AppendPacketHeader failed";
432 return nullptr;
435 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
436 LOG(DFATAL) << "Failed to add FEC";
437 return nullptr;
440 return new QuicPacket(buffer.release(), len, true,
441 header.public_header.connection_id_length,
442 header.public_header.version_flag,
443 header.public_header.sequence_number_length);
446 // static
447 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
448 const QuicPublicResetPacket& packet) {
449 DCHECK(packet.public_header.reset_flag);
451 CryptoHandshakeMessage reset;
452 reset.set_tag(kPRST);
453 reset.SetValue(kRNON, packet.nonce_proof);
454 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
455 if (!packet.client_address.address().empty()) {
456 // packet.client_address is non-empty.
457 QuicSocketAddressCoder address_coder(packet.client_address);
458 string serialized_address = address_coder.Encode();
459 if (serialized_address.empty()) {
460 return nullptr;
462 reset.SetStringPiece(kCADR, serialized_address);
464 const QuicData& reset_serialized = reset.GetSerialized();
466 size_t len =
467 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
468 scoped_ptr<char[]> buffer(new char[len]);
469 QuicDataWriter writer(len, buffer.get());
471 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
472 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
473 if (!writer.WriteUInt8(flags)) {
474 return nullptr;
477 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
478 return nullptr;
481 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
482 return nullptr;
485 return new QuicEncryptedPacket(buffer.release(), len, true);
488 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
489 const QuicPacketPublicHeader& header,
490 const QuicVersionVector& supported_versions) {
491 DCHECK(header.version_flag);
492 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
493 scoped_ptr<char[]> buffer(new char[len]);
494 QuicDataWriter writer(len, buffer.get());
496 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
497 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
498 if (!writer.WriteUInt8(flags)) {
499 return nullptr;
502 if (!writer.WriteUInt64(header.connection_id)) {
503 return nullptr;
506 for (size_t i = 0; i < supported_versions.size(); ++i) {
507 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
508 return nullptr;
512 return new QuicEncryptedPacket(buffer.release(), len, true);
515 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
516 DCHECK(!reader_.get());
517 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
519 visitor_->OnPacket();
521 // First parse the public header.
522 QuicPacketPublicHeader public_header;
523 if (!ProcessPublicHeader(&public_header)) {
524 DLOG(WARNING) << "Unable to process public header.";
525 DCHECK_NE("", detailed_error_);
526 return RaiseError(QUIC_INVALID_PACKET_HEADER);
529 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
530 // The visitor suppresses further processing of the packet.
531 reader_.reset(nullptr);
532 return true;
535 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
536 public_header.versions[0] != quic_version_) {
537 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
538 reader_.reset(nullptr);
539 return true;
543 bool rv;
544 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
545 rv = ProcessVersionNegotiationPacket(&public_header);
546 } else if (public_header.reset_flag) {
547 rv = ProcessPublicResetPacket(public_header);
548 } else if (packet.length() <= kMaxPacketSize) {
549 char buffer[kMaxPacketSize];
550 rv = ProcessDataPacket(public_header, packet, buffer, kMaxPacketSize);
551 } else {
552 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
553 rv = ProcessDataPacket(public_header, packet, large_buffer.get(),
554 packet.length());
555 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
556 << "larger than kMaxPacketSize. packet size:"
557 << packet.length();
560 reader_.reset(nullptr);
561 return rv;
564 bool QuicFramer::ProcessVersionNegotiationPacket(
565 QuicPacketPublicHeader* public_header) {
566 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
567 // Try reading at least once to raise error if the packet is invalid.
568 do {
569 QuicTag version;
570 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
571 set_detailed_error("Unable to read supported version in negotiation.");
572 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
574 public_header->versions.push_back(QuicTagToQuicVersion(version));
575 } while (!reader_->IsDoneReading());
577 visitor_->OnVersionNegotiationPacket(*public_header);
578 return true;
581 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader& public_header,
582 const QuicEncryptedPacket& packet,
583 char* decrypted_buffer,
584 size_t buffer_length) {
585 QuicPacketHeader header(public_header);
586 if (!ProcessPacketHeader(&header, packet, decrypted_buffer, buffer_length)) {
587 DLOG(WARNING) << "Unable to process data packet header.";
588 return false;
591 if (!visitor_->OnPacketHeader(header)) {
592 // The visitor suppresses further processing of the packet.
593 return true;
596 if (packet.length() > kMaxPacketSize) {
597 DLOG(WARNING) << "Packet too large: " << packet.length();
598 return RaiseError(QUIC_PACKET_TOO_LARGE);
601 // Handle the payload.
602 if (!header.fec_flag) {
603 if (header.is_in_fec_group == IN_FEC_GROUP) {
604 StringPiece payload = reader_->PeekRemainingPayload();
605 visitor_->OnFecProtectedPayload(payload);
607 if (!ProcessFrameData(header)) {
608 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
609 DLOG(WARNING) << "Unable to process frame data.";
610 return false;
612 } else {
613 QuicFecData fec_data;
614 fec_data.fec_group = header.fec_group;
615 fec_data.redundancy = reader_->ReadRemainingPayload();
616 visitor_->OnFecData(fec_data);
619 visitor_->OnPacketComplete();
620 return true;
623 bool QuicFramer::ProcessPublicResetPacket(
624 const QuicPacketPublicHeader& public_header) {
625 QuicPublicResetPacket packet(public_header);
627 scoped_ptr<CryptoHandshakeMessage> reset(
628 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
629 if (!reset.get()) {
630 set_detailed_error("Unable to read reset message.");
631 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
633 if (reset->tag() != kPRST) {
634 set_detailed_error("Incorrect message tag.");
635 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
638 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
639 set_detailed_error("Unable to read nonce proof.");
640 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
642 // TODO(satyamshekhar): validate nonce to protect against DoS.
644 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
645 QUIC_NO_ERROR) {
646 set_detailed_error("Unable to read rejected sequence number.");
647 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
650 StringPiece address;
651 if (reset->GetStringPiece(kCADR, &address)) {
652 QuicSocketAddressCoder address_coder;
653 if (address_coder.Decode(address.data(), address.length())) {
654 packet.client_address = IPEndPoint(address_coder.ip(),
655 address_coder.port());
659 visitor_->OnPublicResetPacket(packet);
660 return true;
663 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
664 StringPiece payload) {
665 DCHECK(!reader_.get());
667 visitor_->OnRevivedPacket();
669 header->entropy_hash = GetPacketEntropyHash(*header);
671 if (!visitor_->OnPacketHeader(*header)) {
672 return true;
675 if (payload.length() > kMaxPacketSize) {
676 set_detailed_error("Revived packet too large.");
677 return RaiseError(QUIC_PACKET_TOO_LARGE);
680 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
681 if (!ProcessFrameData(*header)) {
682 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
683 DLOG(WARNING) << "Unable to process frame data.";
684 return false;
687 visitor_->OnPacketComplete();
688 reader_.reset(nullptr);
689 return true;
692 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
693 QuicDataWriter* writer) {
694 DVLOG(1) << "Appending header: " << header;
695 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
696 uint8 public_flags = 0;
697 if (header.public_header.reset_flag) {
698 public_flags |= PACKET_PUBLIC_FLAGS_RST;
700 if (header.public_header.version_flag) {
701 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
704 public_flags |=
705 GetSequenceNumberFlags(header.public_header.sequence_number_length)
706 << kPublicHeaderSequenceNumberShift;
708 switch (header.public_header.connection_id_length) {
709 case PACKET_0BYTE_CONNECTION_ID:
710 if (!writer->WriteUInt8(
711 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
712 return false;
714 break;
715 case PACKET_1BYTE_CONNECTION_ID:
716 if (!writer->WriteUInt8(
717 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
718 return false;
720 if (!writer->WriteUInt8(
721 header.public_header.connection_id & k1ByteConnectionIdMask)) {
722 return false;
724 break;
725 case PACKET_4BYTE_CONNECTION_ID:
726 if (!writer->WriteUInt8(
727 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
728 return false;
730 if (!writer->WriteUInt32(
731 header.public_header.connection_id & k4ByteConnectionIdMask)) {
732 return false;
734 break;
735 case PACKET_8BYTE_CONNECTION_ID:
736 if (!writer->WriteUInt8(
737 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
738 return false;
740 if (!writer->WriteUInt64(header.public_header.connection_id)) {
741 return false;
743 break;
745 last_serialized_connection_id_ = header.public_header.connection_id;
747 if (header.public_header.version_flag) {
748 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
749 QuicTag tag = QuicVersionToQuicTag(quic_version_);
750 writer->WriteUInt32(tag);
751 DVLOG(1) << "version = " << quic_version_
752 << ", tag = '" << QuicUtils::TagToString(tag) << "'";
755 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
756 header.packet_sequence_number, writer)) {
757 return false;
760 uint8 private_flags = 0;
761 if (header.entropy_flag) {
762 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
764 if (header.is_in_fec_group == IN_FEC_GROUP) {
765 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
767 if (header.fec_flag) {
768 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
770 if (!writer->WriteUInt8(private_flags)) {
771 return false;
774 // The FEC group number is the sequence number of the first fec
775 // protected packet, or 0 if this packet is not protected.
776 if (header.is_in_fec_group == IN_FEC_GROUP) {
777 DCHECK_LE(header.fec_group, header.packet_sequence_number);
778 DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
779 // Offset from the current packet sequence number to the first fec
780 // protected packet.
781 uint8 first_fec_protected_packet_offset =
782 static_cast<uint8>(header.packet_sequence_number - header.fec_group);
783 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
784 return false;
788 return true;
791 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
792 uint32 time_delta_us) {
793 // The new time_delta might have wrapped to the next epoch, or it
794 // might have reverse wrapped to the previous epoch, or it might
795 // remain in the same epoch. Select the time closest to the previous
796 // time.
798 // epoch_delta is the delta between epochs. A delta is 4 bytes of
799 // microseconds.
800 const uint64 epoch_delta = GG_UINT64_C(1) << 32;
801 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
802 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
803 uint64 prev_epoch = epoch - epoch_delta;
804 uint64 next_epoch = epoch + epoch_delta;
806 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
807 epoch + time_delta_us,
808 ClosestTo(last_timestamp_.ToMicroseconds(),
809 prev_epoch + time_delta_us,
810 next_epoch + time_delta_us));
812 return QuicTime::Delta::FromMicroseconds(time);
815 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
816 QuicSequenceNumberLength sequence_number_length,
817 QuicPacketSequenceNumber packet_sequence_number) const {
818 // The new sequence number might have wrapped to the next epoch, or
819 // it might have reverse wrapped to the previous epoch, or it might
820 // remain in the same epoch. Select the sequence number closest to the
821 // next expected sequence number, the previous sequence number plus 1.
823 // epoch_delta is the delta between epochs the sequence number was serialized
824 // with, so the correct value is likely the same epoch as the last sequence
825 // number or an adjacent epoch.
826 const QuicPacketSequenceNumber epoch_delta =
827 GG_UINT64_C(1) << (8 * sequence_number_length);
828 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
829 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
830 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
831 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
833 return ClosestTo(next_sequence_number,
834 epoch + packet_sequence_number,
835 ClosestTo(next_sequence_number,
836 prev_epoch + packet_sequence_number,
837 next_epoch + packet_sequence_number));
840 bool QuicFramer::ProcessPublicHeader(
841 QuicPacketPublicHeader* public_header) {
842 uint8 public_flags;
843 if (!reader_->ReadBytes(&public_flags, 1)) {
844 set_detailed_error("Unable to read public flags.");
845 return false;
848 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
849 public_header->version_flag =
850 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
852 if (validate_flags_ &&
853 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
854 set_detailed_error("Illegal public flags value.");
855 return false;
858 if (public_header->reset_flag && public_header->version_flag) {
859 set_detailed_error("Got version flag in reset packet");
860 return false;
863 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
864 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
865 if (!reader_->ReadUInt64(&public_header->connection_id)) {
866 set_detailed_error("Unable to read ConnectionId.");
867 return false;
869 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
870 break;
871 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
872 // If the connection_id is truncated, expect to read the last serialized
873 // connection_id.
874 if (!reader_->ReadBytes(&public_header->connection_id,
875 PACKET_4BYTE_CONNECTION_ID)) {
876 set_detailed_error("Unable to read ConnectionId.");
877 return false;
879 if (last_serialized_connection_id_ &&
880 (public_header->connection_id & k4ByteConnectionIdMask) !=
881 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
882 set_detailed_error("Truncated 4 byte ConnectionId does not match "
883 "previous connection_id.");
884 return false;
886 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
887 public_header->connection_id = last_serialized_connection_id_;
888 break;
889 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
890 if (!reader_->ReadBytes(&public_header->connection_id,
891 PACKET_1BYTE_CONNECTION_ID)) {
892 set_detailed_error("Unable to read ConnectionId.");
893 return false;
895 if (last_serialized_connection_id_ &&
896 (public_header->connection_id & k1ByteConnectionIdMask) !=
897 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
898 set_detailed_error("Truncated 1 byte ConnectionId does not match "
899 "previous connection_id.");
900 return false;
902 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
903 public_header->connection_id = last_serialized_connection_id_;
904 break;
905 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
906 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
907 public_header->connection_id = last_serialized_connection_id_;
908 break;
911 public_header->sequence_number_length =
912 ReadSequenceNumberLength(
913 public_flags >> kPublicHeaderSequenceNumberShift);
915 // Read the version only if the packet is from the client.
916 // version flag from the server means version negotiation packet.
917 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
918 QuicTag version_tag;
919 if (!reader_->ReadUInt32(&version_tag)) {
920 set_detailed_error("Unable to read protocol version.");
921 return false;
924 // If the version from the new packet is the same as the version of this
925 // framer, then the public flags should be set to something we understand.
926 // If not, this raises an error.
927 QuicVersion version = QuicTagToQuicVersion(version_tag);
928 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
929 set_detailed_error("Illegal public flags value.");
930 return false;
932 public_header->versions.push_back(version);
934 return true;
937 // static
938 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
939 QuicPacketSequenceNumber sequence_number) {
940 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
941 return PACKET_1BYTE_SEQUENCE_NUMBER;
942 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
943 return PACKET_2BYTE_SEQUENCE_NUMBER;
944 } else if (sequence_number <
945 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
946 return PACKET_4BYTE_SEQUENCE_NUMBER;
947 } else {
948 return PACKET_6BYTE_SEQUENCE_NUMBER;
952 // static
953 uint8 QuicFramer::GetSequenceNumberFlags(
954 QuicSequenceNumberLength sequence_number_length) {
955 switch (sequence_number_length) {
956 case PACKET_1BYTE_SEQUENCE_NUMBER:
957 return PACKET_FLAGS_1BYTE_SEQUENCE;
958 case PACKET_2BYTE_SEQUENCE_NUMBER:
959 return PACKET_FLAGS_2BYTE_SEQUENCE;
960 case PACKET_4BYTE_SEQUENCE_NUMBER:
961 return PACKET_FLAGS_4BYTE_SEQUENCE;
962 case PACKET_6BYTE_SEQUENCE_NUMBER:
963 return PACKET_FLAGS_6BYTE_SEQUENCE;
964 default:
965 LOG(DFATAL) << "Unreachable case statement.";
966 return PACKET_FLAGS_6BYTE_SEQUENCE;
970 // static
971 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
972 const QuicAckFrame& frame) {
973 AckFrameInfo ack_info;
974 if (frame.missing_packets.empty()) {
975 return ack_info;
977 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
978 size_t cur_range_length = 0;
979 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
980 QuicPacketSequenceNumber last_missing = *iter;
981 ++iter;
982 for (; iter != frame.missing_packets.end(); ++iter) {
983 if (cur_range_length < numeric_limits<uint8>::max() &&
984 *iter == (last_missing + 1)) {
985 ++cur_range_length;
986 } else {
987 ack_info.nack_ranges[last_missing - cur_range_length] =
988 static_cast<uint8>(cur_range_length);
989 cur_range_length = 0;
991 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
992 last_missing = *iter;
994 // Include the last nack range.
995 ack_info.nack_ranges[last_missing - cur_range_length] =
996 static_cast<uint8>(cur_range_length);
997 // Include the range to the largest observed.
998 ack_info.max_delta =
999 max(ack_info.max_delta, frame.largest_observed - last_missing);
1000 return ack_info;
1003 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header,
1004 const QuicEncryptedPacket& packet,
1005 char* decrypted_buffer,
1006 size_t buffer_length) {
1007 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1008 &header->packet_sequence_number)) {
1009 set_detailed_error("Unable to read sequence number.");
1010 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1013 if (header->packet_sequence_number == 0u) {
1014 set_detailed_error("Packet sequence numbers cannot be 0.");
1015 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1018 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1019 return false;
1022 if (!DecryptPayload(*header, packet, decrypted_buffer, buffer_length)) {
1023 set_detailed_error("Unable to decrypt payload.");
1024 return RaiseError(QUIC_DECRYPTION_FAILURE);
1027 uint8 private_flags;
1028 if (!reader_->ReadBytes(&private_flags, 1)) {
1029 set_detailed_error("Unable to read private flags.");
1030 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1033 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1034 set_detailed_error("Illegal private flags value.");
1035 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1038 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1039 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1041 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1042 header->is_in_fec_group = IN_FEC_GROUP;
1043 uint8 first_fec_protected_packet_offset;
1044 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1045 set_detailed_error("Unable to read first fec protected packet offset.");
1046 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1048 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1049 set_detailed_error("First fec protected packet offset must be less "
1050 "than the sequence number.");
1051 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1053 header->fec_group =
1054 header->packet_sequence_number - first_fec_protected_packet_offset;
1057 header->entropy_hash = GetPacketEntropyHash(*header);
1058 // Set the last sequence number after we have decrypted the packet
1059 // so we are confident is not attacker controlled.
1060 last_sequence_number_ = header->packet_sequence_number;
1061 return true;
1064 bool QuicFramer::ProcessPacketSequenceNumber(
1065 QuicSequenceNumberLength sequence_number_length,
1066 QuicPacketSequenceNumber* sequence_number) {
1067 QuicPacketSequenceNumber wire_sequence_number = 0u;
1068 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1069 return false;
1072 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1073 // in case the first guess is incorrect.
1074 *sequence_number =
1075 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1076 wire_sequence_number);
1077 return true;
1080 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1081 if (reader_->IsDoneReading()) {
1082 set_detailed_error("Packet has no frames.");
1083 return RaiseError(QUIC_MISSING_PAYLOAD);
1085 while (!reader_->IsDoneReading()) {
1086 uint8 frame_type;
1087 if (!reader_->ReadBytes(&frame_type, 1)) {
1088 set_detailed_error("Unable to read frame type.");
1089 return RaiseError(QUIC_INVALID_FRAME_DATA);
1092 if (frame_type & kQuicFrameTypeSpecialMask) {
1093 // Stream Frame
1094 if (frame_type & kQuicFrameTypeStreamMask) {
1095 QuicStreamFrame frame;
1096 if (!ProcessStreamFrame(frame_type, &frame)) {
1097 return RaiseError(QUIC_INVALID_STREAM_DATA);
1099 if (!visitor_->OnStreamFrame(frame)) {
1100 DVLOG(1) << "Visitor asked to stop further processing.";
1101 // Returning true since there was no parsing error.
1102 return true;
1104 continue;
1107 // Ack Frame
1108 if (frame_type & kQuicFrameTypeAckMask) {
1109 QuicAckFrame frame;
1110 if (!ProcessAckFrame(frame_type, &frame)) {
1111 return RaiseError(QUIC_INVALID_ACK_DATA);
1113 if (!visitor_->OnAckFrame(frame)) {
1114 DVLOG(1) << "Visitor asked to stop further processing.";
1115 // Returning true since there was no parsing error.
1116 return true;
1118 continue;
1121 // This was a special frame type that did not match any
1122 // of the known ones. Error.
1123 set_detailed_error("Illegal frame type.");
1124 DLOG(WARNING) << "Illegal frame type: "
1125 << static_cast<int>(frame_type);
1126 return RaiseError(QUIC_INVALID_FRAME_DATA);
1129 switch (frame_type) {
1130 case PADDING_FRAME:
1131 // We're done with the packet.
1132 return true;
1134 case RST_STREAM_FRAME: {
1135 QuicRstStreamFrame frame;
1136 if (!ProcessRstStreamFrame(&frame)) {
1137 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1139 if (!visitor_->OnRstStreamFrame(frame)) {
1140 DVLOG(1) << "Visitor asked to stop further processing.";
1141 // Returning true since there was no parsing error.
1142 return true;
1144 continue;
1147 case CONNECTION_CLOSE_FRAME: {
1148 QuicConnectionCloseFrame frame;
1149 if (!ProcessConnectionCloseFrame(&frame)) {
1150 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1153 if (!visitor_->OnConnectionCloseFrame(frame)) {
1154 DVLOG(1) << "Visitor asked to stop further processing.";
1155 // Returning true since there was no parsing error.
1156 return true;
1158 continue;
1161 case GOAWAY_FRAME: {
1162 QuicGoAwayFrame goaway_frame;
1163 if (!ProcessGoAwayFrame(&goaway_frame)) {
1164 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1166 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1167 DVLOG(1) << "Visitor asked to stop further processing.";
1168 // Returning true since there was no parsing error.
1169 return true;
1171 continue;
1174 case WINDOW_UPDATE_FRAME: {
1175 QuicWindowUpdateFrame window_update_frame;
1176 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1177 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1179 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1180 DVLOG(1) << "Visitor asked to stop further processing.";
1181 // Returning true since there was no parsing error.
1182 return true;
1184 continue;
1187 case BLOCKED_FRAME: {
1188 QuicBlockedFrame blocked_frame;
1189 if (!ProcessBlockedFrame(&blocked_frame)) {
1190 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1192 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1193 DVLOG(1) << "Visitor asked to stop further processing.";
1194 // Returning true since there was no parsing error.
1195 return true;
1197 continue;
1200 case STOP_WAITING_FRAME: {
1201 QuicStopWaitingFrame stop_waiting_frame;
1202 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1203 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1205 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1206 DVLOG(1) << "Visitor asked to stop further processing.";
1207 // Returning true since there was no parsing error.
1208 return true;
1210 continue;
1212 case PING_FRAME: {
1213 // Ping has no payload.
1214 QuicPingFrame ping_frame;
1215 if (!visitor_->OnPingFrame(ping_frame)) {
1216 DVLOG(1) << "Visitor asked to stop further processing.";
1217 // Returning true since there was no parsing error.
1218 return true;
1220 continue;
1223 default:
1224 set_detailed_error("Illegal frame type.");
1225 DLOG(WARNING) << "Illegal frame type: "
1226 << static_cast<int>(frame_type);
1227 return RaiseError(QUIC_INVALID_FRAME_DATA);
1231 return true;
1234 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1235 QuicStreamFrame* frame) {
1236 uint8 stream_flags = frame_type;
1238 stream_flags &= ~kQuicFrameTypeStreamMask;
1240 // Read from right to left: StreamID, Offset, Data Length, Fin.
1241 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1242 stream_flags >>= kQuicStreamIdShift;
1244 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1245 // There is no encoding for 1 byte, only 0 and 2 through 8.
1246 if (offset_length > 0) {
1247 offset_length += 1;
1249 stream_flags >>= kQuicStreamOffsetShift;
1251 bool has_data_length =
1252 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1253 stream_flags >>= kQuicStreamDataLengthShift;
1255 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1257 frame->stream_id = 0;
1258 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1259 set_detailed_error("Unable to read stream_id.");
1260 return false;
1263 frame->offset = 0;
1264 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1265 set_detailed_error("Unable to read offset.");
1266 return false;
1269 StringPiece frame_data;
1270 if (has_data_length) {
1271 if (!reader_->ReadStringPiece16(&frame_data)) {
1272 set_detailed_error("Unable to read frame data.");
1273 return false;
1275 } else {
1276 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1277 set_detailed_error("Unable to read frame data.");
1278 return false;
1281 // Point frame to the right data.
1282 frame->data.Clear();
1283 if (!frame_data.empty()) {
1284 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1287 return true;
1290 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1291 // Determine the three lengths from the frame type: largest observed length,
1292 // missing sequence number length, and missing range length.
1293 const QuicSequenceNumberLength missing_sequence_number_length =
1294 ReadSequenceNumberLength(frame_type);
1295 frame_type >>= kQuicSequenceNumberLengthShift;
1296 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1297 ReadSequenceNumberLength(frame_type);
1298 frame_type >>= kQuicSequenceNumberLengthShift;
1299 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1300 frame_type >>= kQuicAckTruncatedShift;
1301 bool has_nacks = frame_type & kQuicHasNacksMask;
1303 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1304 set_detailed_error("Unable to read entropy hash for received packets.");
1305 return false;
1308 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1309 largest_observed_sequence_number_length)) {
1310 set_detailed_error("Unable to read largest observed.");
1311 return false;
1314 uint64 delta_time_largest_observed_us;
1315 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1316 set_detailed_error("Unable to read delta time largest observed.");
1317 return false;
1320 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1321 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1322 } else {
1323 ack_frame->delta_time_largest_observed =
1324 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1327 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1328 return false;
1331 if (!has_nacks) {
1332 return true;
1335 uint8 num_missing_ranges;
1336 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1337 set_detailed_error("Unable to read num missing packet ranges.");
1338 return false;
1341 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1342 for (size_t i = 0; i < num_missing_ranges; ++i) {
1343 QuicPacketSequenceNumber missing_delta = 0;
1344 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1345 set_detailed_error("Unable to read missing sequence number delta.");
1346 return false;
1348 last_sequence_number -= missing_delta;
1349 QuicPacketSequenceNumber range_length = 0;
1350 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1351 set_detailed_error("Unable to read missing sequence number range.");
1352 return false;
1354 for (size_t j = 0; j <= range_length; ++j) {
1355 ack_frame->missing_packets.insert(last_sequence_number - j);
1357 // Subtract an extra 1 to ensure ranges are represented efficiently and
1358 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1359 // to represent an adjacent nack range.
1360 last_sequence_number -= (range_length + 1);
1363 // Parse the revived packets list.
1364 uint8 num_revived_packets;
1365 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1366 set_detailed_error("Unable to read num revived packets.");
1367 return false;
1370 for (size_t i = 0; i < num_revived_packets; ++i) {
1371 QuicPacketSequenceNumber revived_packet = 0;
1372 if (!reader_->ReadBytes(&revived_packet,
1373 largest_observed_sequence_number_length)) {
1374 set_detailed_error("Unable to read revived packet.");
1375 return false;
1378 ack_frame->revived_packets.insert(revived_packet);
1381 return true;
1384 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1385 if (!ack_frame->is_truncated) {
1386 uint8 num_received_packets;
1387 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1388 set_detailed_error("Unable to read num received packets.");
1389 return false;
1392 if (num_received_packets > 0) {
1393 uint8 delta_from_largest_observed;
1394 if (!reader_->ReadBytes(&delta_from_largest_observed,
1395 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1396 set_detailed_error(
1397 "Unable to read sequence delta in received packets.");
1398 return false;
1400 QuicPacketSequenceNumber seq_num = ack_frame->largest_observed -
1401 delta_from_largest_observed;
1403 // Time delta from the framer creation.
1404 uint32 time_delta_us;
1405 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1406 set_detailed_error("Unable to read time delta in received packets.");
1407 return false;
1410 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1412 ack_frame->received_packet_times.push_back(
1413 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1415 for (uint8 i = 1; i < num_received_packets; ++i) {
1416 if (!reader_->ReadBytes(&delta_from_largest_observed,
1417 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1418 set_detailed_error(
1419 "Unable to read sequence delta in received packets.");
1420 return false;
1422 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1424 // Time delta from the previous timestamp.
1425 uint64 incremental_time_delta_us;
1426 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1427 set_detailed_error(
1428 "Unable to read incremental time delta in received packets.");
1429 return false;
1432 last_timestamp_ = last_timestamp_.Add(
1433 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1434 ack_frame->received_packet_times.push_back(
1435 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1439 return true;
1442 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1443 QuicStopWaitingFrame* stop_waiting) {
1444 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1445 set_detailed_error("Unable to read entropy hash for sent packets.");
1446 return false;
1449 QuicPacketSequenceNumber least_unacked_delta = 0;
1450 if (!reader_->ReadBytes(&least_unacked_delta,
1451 header.public_header.sequence_number_length)) {
1452 set_detailed_error("Unable to read least unacked delta.");
1453 return false;
1455 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1456 stop_waiting->least_unacked =
1457 header.packet_sequence_number - least_unacked_delta;
1459 return true;
1462 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1463 if (!reader_->ReadUInt32(&frame->stream_id)) {
1464 set_detailed_error("Unable to read stream_id.");
1465 return false;
1468 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1469 set_detailed_error("Unable to read rst stream sent byte offset.");
1470 return false;
1473 uint32 error_code;
1474 if (!reader_->ReadUInt32(&error_code)) {
1475 set_detailed_error("Unable to read rst stream error code.");
1476 return false;
1479 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1480 set_detailed_error("Invalid rst stream error code.");
1481 return false;
1484 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1486 StringPiece error_details;
1487 if (!reader_->ReadStringPiece16(&error_details)) {
1488 set_detailed_error("Unable to read rst stream error details.");
1489 return false;
1491 frame->error_details = error_details.as_string();
1493 return true;
1496 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1497 uint32 error_code;
1498 if (!reader_->ReadUInt32(&error_code)) {
1499 set_detailed_error("Unable to read connection close error code.");
1500 return false;
1503 if (error_code >= QUIC_LAST_ERROR) {
1504 set_detailed_error("Invalid error code.");
1505 return false;
1508 frame->error_code = static_cast<QuicErrorCode>(error_code);
1510 StringPiece error_details;
1511 if (!reader_->ReadStringPiece16(&error_details)) {
1512 set_detailed_error("Unable to read connection close error details.");
1513 return false;
1515 frame->error_details = error_details.as_string();
1517 return true;
1520 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1521 uint32 error_code;
1522 if (!reader_->ReadUInt32(&error_code)) {
1523 set_detailed_error("Unable to read go away error code.");
1524 return false;
1526 frame->error_code = static_cast<QuicErrorCode>(error_code);
1528 if (error_code >= QUIC_LAST_ERROR) {
1529 set_detailed_error("Invalid error code.");
1530 return false;
1533 uint32 stream_id;
1534 if (!reader_->ReadUInt32(&stream_id)) {
1535 set_detailed_error("Unable to read last good stream id.");
1536 return false;
1538 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1540 StringPiece reason_phrase;
1541 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1542 set_detailed_error("Unable to read goaway reason.");
1543 return false;
1545 frame->reason_phrase = reason_phrase.as_string();
1547 return true;
1550 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1551 if (!reader_->ReadUInt32(&frame->stream_id)) {
1552 set_detailed_error("Unable to read stream_id.");
1553 return false;
1556 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1557 set_detailed_error("Unable to read window byte_offset.");
1558 return false;
1561 return true;
1564 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1565 if (!reader_->ReadUInt32(&frame->stream_id)) {
1566 set_detailed_error("Unable to read stream_id.");
1567 return false;
1570 return true;
1573 // static
1574 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1575 const QuicEncryptedPacket& encrypted,
1576 QuicConnectionIdLength connection_id_length,
1577 bool includes_version,
1578 QuicSequenceNumberLength sequence_number_length) {
1579 return StringPiece(
1580 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1581 connection_id_length, includes_version, sequence_number_length)
1582 - kStartOfHashData);
1585 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1586 EncryptionLevel level) {
1587 DCHECK(alternative_decrypter_.get() == nullptr);
1588 DCHECK_GE(level, decrypter_level_);
1589 decrypter_.reset(decrypter);
1590 decrypter_level_ = level;
1593 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1594 EncryptionLevel level,
1595 bool latch_once_used) {
1596 alternative_decrypter_.reset(decrypter);
1597 alternative_decrypter_level_ = level;
1598 alternative_decrypter_latch_ = latch_once_used;
1601 const QuicDecrypter* QuicFramer::decrypter() const {
1602 return decrypter_.get();
1605 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1606 return alternative_decrypter_.get();
1609 void QuicFramer::SetEncrypter(EncryptionLevel level,
1610 QuicEncrypter* encrypter) {
1611 DCHECK_GE(level, 0);
1612 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1613 encrypter_[level].reset(encrypter);
1616 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1617 EncryptionLevel level,
1618 QuicPacketSequenceNumber packet_sequence_number,
1619 const QuicPacket& packet) {
1620 DCHECK(encrypter_[level].get() != nullptr);
1622 // Allocate a large enough buffer for the header and the encrypted data.
1623 const size_t encrypted_len =
1624 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1625 StringPiece header_data = packet.BeforePlaintext();
1626 const size_t len = header_data.length() + encrypted_len;
1627 // TODO(ianswett): Consider allocating this on the stack in the typical case.
1628 char* buffer = new char[len];
1629 // Copy in the header, because the encrypter only populates the encrypted
1630 // plaintext content.
1631 memcpy(buffer, header_data.data(), header_data.length());
1632 // Encrypt the plaintext into the buffer.
1633 size_t output_length = 0;
1634 if (!encrypter_[level]->EncryptPacket(
1635 packet_sequence_number, packet.AssociatedData(), packet.Plaintext(),
1636 buffer + header_data.length(), &output_length, encrypted_len)) {
1637 RaiseError(QUIC_ENCRYPTION_FAILURE);
1638 return nullptr;
1641 return new QuicEncryptedPacket(buffer, header_data.length() + output_length,
1642 true);
1645 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1646 // In order to keep the code simple, we don't have the current encryption
1647 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1648 size_t min_plaintext_size = ciphertext_size;
1650 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1651 if (encrypter_[i].get() != nullptr) {
1652 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1653 if (size < min_plaintext_size) {
1654 min_plaintext_size = size;
1659 return min_plaintext_size;
1662 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1663 const QuicEncryptedPacket& packet,
1664 char* decrypted_buffer,
1665 size_t buffer_length) {
1666 StringPiece encrypted = reader_->ReadRemainingPayload();
1667 DCHECK(decrypter_.get() != nullptr);
1668 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1669 packet, header.public_header.connection_id_length,
1670 header.public_header.version_flag,
1671 header.public_header.sequence_number_length);
1672 size_t decrypted_length = 0;
1673 bool success = decrypter_->DecryptPacket(
1674 header.packet_sequence_number, associated_data, encrypted,
1675 decrypted_buffer, &decrypted_length, buffer_length);
1676 if (success) {
1677 visitor_->OnDecryptedPacket(decrypter_level_);
1678 } else if (alternative_decrypter_.get() != nullptr) {
1679 success = alternative_decrypter_->DecryptPacket(
1680 header.packet_sequence_number, associated_data, encrypted,
1681 decrypted_buffer, &decrypted_length, buffer_length);
1682 if (success) {
1683 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1684 if (alternative_decrypter_latch_) {
1685 // Switch to the alternative decrypter and latch so that we cannot
1686 // switch back.
1687 decrypter_.reset(alternative_decrypter_.release());
1688 decrypter_level_ = alternative_decrypter_level_;
1689 alternative_decrypter_level_ = ENCRYPTION_NONE;
1690 } else {
1691 // Switch the alternative decrypter so that we use it first next time.
1692 decrypter_.swap(alternative_decrypter_);
1693 EncryptionLevel level = alternative_decrypter_level_;
1694 alternative_decrypter_level_ = decrypter_level_;
1695 decrypter_level_ = level;
1700 if (!success) {
1701 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1702 << header.packet_sequence_number;
1703 return false;
1706 reader_.reset(new QuicDataReader(decrypted_buffer, decrypted_length));
1707 return true;
1710 size_t QuicFramer::GetAckFrameSize(
1711 const QuicAckFrame& ack,
1712 QuicSequenceNumberLength sequence_number_length) {
1713 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1714 QuicSequenceNumberLength largest_observed_length =
1715 GetMinSequenceNumberLength(ack.largest_observed);
1716 QuicSequenceNumberLength missing_sequence_number_length =
1717 GetMinSequenceNumberLength(ack_info.max_delta);
1719 size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1720 largest_observed_length);
1721 if (!ack_info.nack_ranges.empty()) {
1722 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1723 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1724 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1725 ack_size += min(ack.revived_packets.size(),
1726 kMaxRevivedPackets) * largest_observed_length;
1729 // In version 23, if the ack will be truncated due to too many nack ranges,
1730 // then do not include the number of timestamps (1 byte).
1731 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1732 // 1 byte for the number of timestamps.
1733 ack_size += 1;
1734 if (ack.received_packet_times.size() > 0) {
1735 // 1 byte for sequence number, 4 bytes for timestamp for the first
1736 // packet.
1737 ack_size += 5;
1739 // 1 byte for sequence number, 2 bytes for timestamp for the other
1740 // packets.
1741 ack_size += 3 * (ack.received_packet_times.size() - 1);
1745 return ack_size;
1748 size_t QuicFramer::ComputeFrameLength(
1749 const QuicFrame& frame,
1750 bool last_frame_in_packet,
1751 InFecGroup is_in_fec_group,
1752 QuicSequenceNumberLength sequence_number_length) {
1753 switch (frame.type) {
1754 case STREAM_FRAME:
1755 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1756 frame.stream_frame->offset,
1757 last_frame_in_packet,
1758 is_in_fec_group) +
1759 frame.stream_frame->data.TotalBufferSize();
1760 case ACK_FRAME: {
1761 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1763 case STOP_WAITING_FRAME:
1764 return GetStopWaitingFrameSize(sequence_number_length);
1765 case PING_FRAME:
1766 // Ping has no payload.
1767 return kQuicFrameTypeSize;
1768 case RST_STREAM_FRAME:
1769 return GetMinRstStreamFrameSize() +
1770 frame.rst_stream_frame->error_details.size();
1771 case CONNECTION_CLOSE_FRAME:
1772 return GetMinConnectionCloseFrameSize() +
1773 frame.connection_close_frame->error_details.size();
1774 case GOAWAY_FRAME:
1775 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1776 case WINDOW_UPDATE_FRAME:
1777 return GetWindowUpdateFrameSize();
1778 case BLOCKED_FRAME:
1779 return GetBlockedFrameSize();
1780 case PADDING_FRAME:
1781 DCHECK(false);
1782 return 0;
1783 case NUM_FRAME_TYPES:
1784 DCHECK(false);
1785 return 0;
1788 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1789 DCHECK(false);
1790 return 0;
1793 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1794 bool no_stream_frame_length,
1795 QuicDataWriter* writer) {
1796 uint8 type_byte = 0;
1797 switch (frame.type) {
1798 case STREAM_FRAME: {
1799 if (frame.stream_frame == nullptr) {
1800 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1802 // Fin bit.
1803 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1805 // Data Length bit.
1806 type_byte <<= kQuicStreamDataLengthShift;
1807 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1809 // Offset 3 bits.
1810 type_byte <<= kQuicStreamOffsetShift;
1811 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1812 if (offset_len > 0) {
1813 type_byte |= offset_len - 1;
1816 // stream id 2 bits.
1817 type_byte <<= kQuicStreamIdShift;
1818 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1819 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1820 break;
1822 case ACK_FRAME:
1823 return true;
1824 default:
1825 type_byte = static_cast<uint8>(frame.type);
1826 break;
1829 return writer->WriteUInt8(type_byte);
1832 // static
1833 bool QuicFramer::AppendPacketSequenceNumber(
1834 QuicSequenceNumberLength sequence_number_length,
1835 QuicPacketSequenceNumber packet_sequence_number,
1836 QuicDataWriter* writer) {
1837 // Ensure the entire sequence number can be written.
1838 if (writer->capacity() - writer->length() <
1839 static_cast<size_t>(sequence_number_length)) {
1840 return false;
1842 switch (sequence_number_length) {
1843 case PACKET_1BYTE_SEQUENCE_NUMBER:
1844 return writer->WriteUInt8(
1845 packet_sequence_number & k1ByteSequenceNumberMask);
1846 break;
1847 case PACKET_2BYTE_SEQUENCE_NUMBER:
1848 return writer->WriteUInt16(
1849 packet_sequence_number & k2ByteSequenceNumberMask);
1850 break;
1851 case PACKET_4BYTE_SEQUENCE_NUMBER:
1852 return writer->WriteUInt32(
1853 packet_sequence_number & k4ByteSequenceNumberMask);
1854 break;
1855 case PACKET_6BYTE_SEQUENCE_NUMBER:
1856 return writer->WriteUInt48(
1857 packet_sequence_number & k6ByteSequenceNumberMask);
1858 break;
1859 default:
1860 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1861 return false;
1865 bool QuicFramer::AppendStreamFrame(
1866 const QuicStreamFrame& frame,
1867 bool no_stream_frame_length,
1868 QuicDataWriter* writer) {
1869 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1870 LOG(DFATAL) << "Writing stream id size failed.";
1871 return false;
1873 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1874 LOG(DFATAL) << "Writing offset size failed.";
1875 return false;
1877 if (!no_stream_frame_length) {
1878 if ((frame.data.TotalBufferSize() > numeric_limits<uint16>::max()) ||
1879 !writer->WriteUInt16(
1880 static_cast<uint16>(frame.data.TotalBufferSize()))) {
1881 LOG(DFATAL) << "Writing stream frame length failed";
1882 return false;
1886 if (!writer->WriteIOVector(frame.data)) {
1887 LOG(DFATAL) << "Writing frame data failed.";
1888 return false;
1890 return true;
1893 // static
1894 void QuicFramer::set_version(const QuicVersion version) {
1895 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1896 quic_version_ = version;
1899 bool QuicFramer::AppendAckFrameAndTypeByte(
1900 const QuicPacketHeader& header,
1901 const QuicAckFrame& frame,
1902 QuicDataWriter* writer) {
1903 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1904 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1905 QuicSequenceNumberLength largest_observed_length =
1906 GetMinSequenceNumberLength(ack_largest_observed);
1907 QuicSequenceNumberLength missing_sequence_number_length =
1908 GetMinSequenceNumberLength(ack_info.max_delta);
1909 // Determine whether we need to truncate ranges.
1910 size_t available_range_bytes = writer->capacity() - writer->length() -
1911 kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
1912 GetMinAckFrameSize(header.public_header.sequence_number_length,
1913 largest_observed_length);
1914 size_t max_num_ranges = available_range_bytes /
1915 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1916 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1917 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1918 DVLOG_IF(1, truncated) << "Truncating ack from "
1919 << ack_info.nack_ranges.size() << " ranges to "
1920 << max_num_ranges;
1921 // Write out the type byte by setting the low order bits and doing shifts
1922 // to make room for the next bit flags to be set.
1923 // Whether there are any nacks.
1924 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1926 // truncating bit.
1927 type_byte <<= kQuicAckTruncatedShift;
1928 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1930 // Largest observed sequence number length.
1931 type_byte <<= kQuicSequenceNumberLengthShift;
1932 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1934 // Missing sequence number length.
1935 type_byte <<= kQuicSequenceNumberLengthShift;
1936 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1938 type_byte |= kQuicFrameTypeAckMask;
1940 if (!writer->WriteUInt8(type_byte)) {
1941 return false;
1944 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1945 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1946 if (truncated) {
1947 // Skip the nack ranges which the truncated ack won't include and set
1948 // a correct largest observed for the truncated ack.
1949 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1950 ++i) {
1951 ++ack_iter;
1953 // If the last range is followed by acks, include them.
1954 // If the last range is followed by another range, specify the end of the
1955 // range as the largest_observed.
1956 ack_largest_observed = ack_iter->first - 1;
1957 // Also update the entropy so it matches the largest observed.
1958 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1959 ++ack_iter;
1962 if (!writer->WriteUInt8(ack_entropy_hash)) {
1963 return false;
1966 if (!AppendPacketSequenceNumber(largest_observed_length,
1967 ack_largest_observed, writer)) {
1968 return false;
1971 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
1972 if (!frame.delta_time_largest_observed.IsInfinite()) {
1973 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
1974 delta_time_largest_observed_us =
1975 frame.delta_time_largest_observed.ToMicroseconds();
1978 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
1979 return false;
1982 // Timestamp goes at the end of the required fields.
1983 if (!truncated) {
1984 if (!AppendTimestampToAckFrame(frame, writer)) {
1985 return false;
1989 if (ack_info.nack_ranges.empty()) {
1990 return true;
1993 const uint8 num_missing_ranges =
1994 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
1995 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
1996 return false;
1999 int num_ranges_written = 0;
2000 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2001 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2002 // Calculate the delta to the last number in the range.
2003 QuicPacketSequenceNumber missing_delta =
2004 last_sequence_written - (ack_iter->first + ack_iter->second);
2005 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2006 missing_delta, writer)) {
2007 return false;
2009 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2010 ack_iter->second, writer)) {
2011 return false;
2013 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2014 last_sequence_written = ack_iter->first - 1;
2015 ++num_ranges_written;
2017 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2019 // Append revived packets.
2020 // If not all the revived packets fit, only mention the ones that do.
2021 uint8 num_revived_packets =
2022 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2023 num_revived_packets = static_cast<uint8>(min(
2024 static_cast<size_t>(num_revived_packets),
2025 (writer->capacity() - writer->length()) / largest_observed_length));
2026 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2027 return false;
2030 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2031 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2032 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2033 if (!AppendPacketSequenceNumber(largest_observed_length,
2034 *iter, writer)) {
2035 return false;
2039 return true;
2042 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2043 QuicDataWriter* writer) {
2044 DCHECK_GE(version(), QUIC_VERSION_23);
2045 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2046 // num_received_packets is only 1 byte.
2047 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2048 return false;
2051 uint8 num_received_packets = frame.received_packet_times.size();
2053 if (!writer->WriteBytes(&num_received_packets, 1)) {
2054 return false;
2056 if (num_received_packets == 0) {
2057 return true;
2060 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2061 QuicPacketSequenceNumber sequence_number = it->first;
2062 QuicPacketSequenceNumber delta_from_largest_observed =
2063 frame.largest_observed - sequence_number;
2065 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2066 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2067 return false;
2070 if (!writer->WriteUInt8(
2071 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2072 return false;
2075 // Use the lowest 4 bytes of the time delta from the creation_time_.
2076 const uint64 time_epoch_delta_us = GG_UINT64_C(1) << 32;
2077 uint32 time_delta_us =
2078 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2079 & (time_epoch_delta_us - 1));
2080 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2081 return false;
2084 QuicTime prev_time = it->second;
2086 for (++it; it != frame.received_packet_times.end(); ++it) {
2087 sequence_number = it->first;
2088 delta_from_largest_observed = frame.largest_observed - sequence_number;
2090 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2091 return false;
2094 if (!writer->WriteUInt8(
2095 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2096 return false;
2099 uint64 frame_time_delta_us =
2100 it->second.Subtract(prev_time).ToMicroseconds();
2101 prev_time = it->second;
2102 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2103 return false;
2106 return true;
2109 bool QuicFramer::AppendStopWaitingFrame(
2110 const QuicPacketHeader& header,
2111 const QuicStopWaitingFrame& frame,
2112 QuicDataWriter* writer) {
2113 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2114 const QuicPacketSequenceNumber least_unacked_delta =
2115 header.packet_sequence_number - frame.least_unacked;
2116 const QuicPacketSequenceNumber length_shift =
2117 header.public_header.sequence_number_length * 8;
2118 if (!writer->WriteUInt8(frame.entropy_hash)) {
2119 LOG(DFATAL) << " hash failed";
2120 return false;
2123 if (least_unacked_delta >> length_shift > 0) {
2124 LOG(DFATAL) << "sequence_number_length "
2125 << header.public_header.sequence_number_length
2126 << " is too small for least_unacked_delta: "
2127 << least_unacked_delta;
2128 return false;
2130 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2131 least_unacked_delta, writer)) {
2132 LOG(DFATAL) << " seq failed: "
2133 << header.public_header.sequence_number_length;
2134 return false;
2137 return true;
2140 bool QuicFramer::AppendRstStreamFrame(
2141 const QuicRstStreamFrame& frame,
2142 QuicDataWriter* writer) {
2143 if (!writer->WriteUInt32(frame.stream_id)) {
2144 return false;
2147 if (!writer->WriteUInt64(frame.byte_offset)) {
2148 return false;
2151 uint32 error_code = static_cast<uint32>(frame.error_code);
2152 if (!writer->WriteUInt32(error_code)) {
2153 return false;
2156 if (!writer->WriteStringPiece16(frame.error_details)) {
2157 return false;
2159 return true;
2162 bool QuicFramer::AppendConnectionCloseFrame(
2163 const QuicConnectionCloseFrame& frame,
2164 QuicDataWriter* writer) {
2165 uint32 error_code = static_cast<uint32>(frame.error_code);
2166 if (!writer->WriteUInt32(error_code)) {
2167 return false;
2169 if (!writer->WriteStringPiece16(frame.error_details)) {
2170 return false;
2172 return true;
2175 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2176 QuicDataWriter* writer) {
2177 uint32 error_code = static_cast<uint32>(frame.error_code);
2178 if (!writer->WriteUInt32(error_code)) {
2179 return false;
2181 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2182 if (!writer->WriteUInt32(stream_id)) {
2183 return false;
2185 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2186 return false;
2188 return true;
2191 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2192 QuicDataWriter* writer) {
2193 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2194 if (!writer->WriteUInt32(stream_id)) {
2195 return false;
2197 if (!writer->WriteUInt64(frame.byte_offset)) {
2198 return false;
2200 return true;
2203 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2204 QuicDataWriter* writer) {
2205 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2206 if (!writer->WriteUInt32(stream_id)) {
2207 return false;
2209 return true;
2212 bool QuicFramer::RaiseError(QuicErrorCode error) {
2213 DVLOG(1) << "Error detail: " << detailed_error_;
2214 set_error(error);
2215 visitor_->OnError(this);
2216 reader_.reset(nullptr);
2217 return false;
2220 } // namespace net